3,798 research outputs found

    Four basic symmetry types in the universal 7-cluster structure of 143 complete bacterial genomic sequences

    Get PDF
    Coding information is the main source of heterogeneity (non-randomness) in the sequences of bacterial genomes. This information can be naturally modeled by analysing cluster structures in the ``in-phase'' triplet distributions of relatively short genomic fragments (200-400bp). We found a universal 7-cluster structure in all 143 completely sequenced bacterial genomes available in Genbank in August 2004, and explained its properties. The 7-cluster structure is responsible for the main part of sequence heterogeneity in bacterial genomes. In this sense, our 7 clusters is the basic model of bacterial genome sequence. We demonstrated that there are four basic ``pure'' types of this model, observed in nature: ``parallel triangles'', ``perpendicular triangles'', degenerated case and the flower-like type. We show that codon usage of bacterial genomes is a multi-linear function of their genomic G+C-content with high accuracy (more precisely, by two similar functions, one for eubacterial genomes and the other one for archaea). All 143 cluster animated 3D-scatters are collected in a database and is made available on our web-site: http://www.ihes.fr/~zinovyev/7clusters The finding can be readily introduced into any software for gene prediction, sequence alignment or bacterial genomes classification

    A Fast-Graph Approach to Modeling Similarity of Whole Genomes

    Get PDF
    As increasing numbers of closely related genomic sequences become available, the need to develop methods for detecting fine differences among them also grows apparent. Several calls have been made for improved algorithms to exploit the wealth of pathogenic viral and bacterial sequence data that are rapidly becoming available to researchers. The first stage of our research addresses the computational limitations associated with whole-genome comparisons of large numbers of subspecies sequences. We investigate the potential for the use of fast, word-based comparative measures to approximate computationally expensive, full alignment comparison methods. Recent advances in next generation sequencing are providing a number of large whole-genome sequence datasets stemming from globally distributed disease occurrences. This offers an unprecedented opportunity for epidemiological studies and the development of computationally efficient, robust tools for such studies. In the second stage of our research, we present an approach that enables a quick, effective, and robust epidemiological analysis of large whole-genome datasets. We then apply our method to a complex dataset of over 4,200 globally sampled Influenza A virus isolates from multiple host types, subtypes and years. These sequences are compared using an alignment-free method that runs in linear-time. These comparisons enable us to build 2-dimensional graphs that represent the relationships between sequences, where sequences are viewed as vertices, and high-degree sequence similarity as edges. These graphs prove useful, as they are able to model potential disease transmission paths when applied to viral sequences. Mixing patterns are then used to study the occurrence and patterns of edges between different types of sequence groups, such as the host type and year of collection, to better understand the potential of genotypic transfer between sequence groups

    Reconstruction Codes for DNA Sequences with Uniform Tandem-Duplication Errors

    Full text link
    DNA as a data storage medium has several advantages, including far greater data density compared to electronic media. We propose that schemes for data storage in the DNA of living organisms may benefit from studying the reconstruction problem, which is applicable whenever multiple reads of noisy data are available. This strategy is uniquely suited to the medium, which inherently replicates stored data in multiple distinct ways, caused by mutations. We consider noise introduced solely by uniform tandem-duplication, and utilize the relation to constant-weight integer codes in the Manhattan metric. By bounding the intersection of the cross-polytope with hyperplanes, we prove the existence of reconstruction codes with greater capacity than known error-correcting codes, which we can determine analytically for any set of parameters.Comment: 11 pages, 2 figures, Latex; version accepted for publicatio

    Modeling the evolution space of breakage fusion bridge cycles with a stochastic folding process

    Get PDF
    Breakage-Fusion-Bridge cycles in cancer arise when a broken segment of DNA is duplicated and an end from each copy joined together. This structure then 'unfolds' into a new piece of palindromic DNA. This is one mechanism responsible for the localised amplicons observed in cancer genome data. The process has parallels with paper folding sequences that arise when a piece of paper is folded several times and then unfolded. Here we adapt such methods to study the breakage-fusion-bridge structures in detail. We firstly consider discrete representations of this space with 2-d trees to demonstrate that there are 2^(n(n-1)/2) qualitatively distinct evolutions involving n breakage-fusion-bridge cycles. Secondly we consider the stochastic nature of the fold positions, to determine evolution likelihoods, and also describe how amplicons become localised. Finally we highlight these methods by inferring the evolution of breakage-fusion-bridge cycles with data from primary tissue cancer samples

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance.

    Get PDF
    Mycobacterium tuberculosis is a serious human pathogen threat exhibiting complex evolution of antimicrobial resistance (AMR). Accordingly, the many publicly available datasets describing its AMR characteristics demand disparate data-type analyses. Here, we develop a reference strain-agnostic computational platform that uses machine learning approaches, complemented by both genetic interaction analysis and 3D structural mutation-mapping, to identify signatures of AMR evolution to 13 antibiotics. This platform is applied to 1595 sequenced strains to yield four key results. First, a pan-genome analysis shows that M. tuberculosis is highly conserved with sequenced variation concentrated in PE/PPE/PGRS genes. Second, the platform corroborates 33 genes known to confer resistance and identifies 24 new genetic signatures of AMR. Third, 97 epistatic interactions across 10 resistance classes are revealed. Fourth, detailed structural analysis of these genes yields mechanistic bases for their selection. The platform can be used to study other human pathogens

    Mainstreams of Horizontal Gene Exchange in Enterobacteria: Consideration of the Outbreak of Enterohemorrhagic E. coli O104:H4 in Germany in 2011

    Get PDF
    Escherichia coli O104:H4 caused a severe outbreak in Europe in 2011. The strain TY-2482 sequenced from this outbreak allowed the discovery of its closest relatives but failed to resolve ways in which it originated and evolved. On account of the previous statement, may we expect similar upcoming outbreaks to occur recurrently or spontaneously in the future? The inability to answer these questions shows limitations of the current comparative and evolutionary genomics methods.status: publishe
    • …
    corecore