10,751 research outputs found

    Genome-Wide Association between Transcription Factor Expression and Chromatin Accessibility Reveals Regulators of Chromatin Accessibility.

    Get PDF
    To better understand genome regulation, it is important to uncover the role of transcription factors in the process of chromatin structure establishment and maintenance. Here we present a data-driven approach to systematically characterise transcription factors that are relevant for this process. Our method uses a linear mixed modelling approach to combine datasets of transcription factor binding motif enrichments in open chromatin and gene expression across the same set of cell lines. Applying this approach to the ENCODE dataset, we confirm already known and imply numerous novel transcription factors that play a role in the establishment or maintenance of open chromatin. In particular, our approach rediscovers many factors that have been annotated as pioneer factors

    Selecting Optimal Combinations of Transcription Factors to Promote Axon Regeneration: Why Mechanisms Matter

    Get PDF
    Recovery from injuries to the central nervous system, including spinal cord injury, is constrained in part by the intrinsically low ability of many CNS neurons to mount an effective regenerative growth response. To improve outcomes, it is essential to understand and ultimately reverse these neuron-intrinsic constraints. Genetic manipulation of key transcription factors (TFs), which act to orchestrate production of multiple regeneration-associated genes, has emerged as a promising strategy. It is likely that no single TF will be sufficient to fully restore neuron-intrinsic growth potential, and that multiple, functionally interacting factors will be needed. An extensive literature, mostly from non-neural cell types, has identified potential mechanisms by which TFs can functionally synergize. Here we examine four potential mechanisms of TF/TF interaction; physical interaction, transcriptional cross-regulation, signaling-based cross regulation, and co-occupancy of regulatory DNA. For each mechanism, we consider how existing knowledge can be used to guide the discovery and effective use of TF combinations in the context of regenerative neuroscience. This mechanistic insight into TF interactions is needed to accelerate the design of effective TF-based interventions to relieve neuron-intrinsic constraints to regeneration and to foster recovery from CNS injury

    Single-cell epigenomic variability reveals functional cancer heterogeneity.

    Get PDF
    BackgroundCell-to-cell heterogeneity is a major driver of cancer evolution, progression, and emergence of drug resistance. Epigenomic variation at the single-cell level can rapidly create cancer heterogeneity but is difficult to detect and assess functionally.ResultsWe develop a strategy to bridge the gap between measurement and function in single-cell epigenomics. Using single-cell chromatin accessibility and RNA-seq data in K562 leukemic cells, we identify the cell surface marker CD24 as co-varying with chromatin accessibility changes linked to GATA transcription factors in single cells. Fluorescence-activated cell sorting of CD24 high versus low cells prospectively isolated GATA1 and GATA2 high versus low cells. GATA high versus low cells express differential gene regulatory networks, differential sensitivity to the drug imatinib mesylate, and differential self-renewal capacity. Lineage tracing experiments show that GATA/CD24hi cells have the capability to rapidly reconstitute the heterogeneity within the entire starting population, suggesting that GATA expression levels drive a phenotypically relevant source of epigenomic plasticity.ConclusionSingle-cell chromatin accessibility can guide prospective characterization of cancer heterogeneity. Epigenomic subpopulations in cancer impact drug sensitivity and the clonal dynamics of cancer evolution

    Epigenetic aberrations and cancer

    Get PDF
    The correlation between epigenetic aberrations and disease underscores the importance of epigenetic mechanisms. Here, we review recent findings regarding chromatin modifications and their relevance to cancer

    Function and Regulation of the Tip60-p400 Complex in Embryonic Stem Cells: A Dissertation

    Get PDF
    The following work examines the mechanisms by which Tip60-p400 chromatin remodeling complex regulates gene expression in embryonic stem cells (ESCs). Tip60-p400 complex has distinct functions in undifferentiated and differentiated cells. While Tip60-p400 is often associated with gene activation in differentiated cells, its most prominent function in ESCs is to repress differentiation-related genes. I show that Tip60-p400 interacts with Hdac6 and other proteins to form a unique form of the complex in ESCs. Tip60-Hdac6 interaction is stem cell specific and is necessary for Tip60-p400 mediated gene regulation, indicating that Tip60- p400 function is controlled in part through the regulation of Hdac6 during development. Furthermore, I find that Hdac6 is required for the binding of Tip60- p400 to many of its target genes, indicating Hdac6 is necessary for the unique function of Tip60-p400 in ESCs. In addition to accessory proteins like Hdac6, Tip60-p400 also interacts with thousands of coding and noncoding RNAs in ESCs. I show that R-loops, DNA-RNA hybrids formed during transcription of many genes, are important for regulation of chromatin binding by at least two chromatin regulators (Tip60-p400 and PRC2). This finding suggests that transcripts produced by many genes in ESC may serve as a signal to modulate binding of chromatin regulators. However, R-loops might also function to regulate chromatin architecture in differentiated cells as well. Future studies based on this work will be necessary to understand the full repertoire of cell types and chromatin regulators regulated by these structures

    Epigenetic Regulators as the Gatekeepers of Hematopoiesis

    Get PDF
    Hematopoiesis is the process by which both fetal and adult organisms derive the full repertoire of blood cells from a single multipotent progenitor cell type, the hematopoietic stem cells (HSCs). Correct enactment of this process relies on a synergistic interplay between genetically encoded differentiation programs and a host of cell-intrinsic and cell-extrinsic factors. These include the influence of the HSC niche microenvironment, action of specific transcription factors, and alterations in intracellular metabolic state. The consolidation of these inputs with the genetically encoded program into a coherent differentiation program for each lineage is thought to rely on epigenetic modifiers. Recent work has delineated the precise contributions of different classes of epigenetic modifiers to HSC self-renewal as well as lineage specification and differentiation into various cell types. Here, we bring together what is currently known about chromatin status and the development of cells in the hematopoietic system under normal and abnormal conditions

    Developmental Chromatin Restriction of Pro‐Growth Gene Networks Acts as an Epigenetic Barrier to Axon Regeneration in Cortical Neurons

    Get PDF
    Axon regeneration in the central nervous system is prevented in part by a developmental decline in the intrinsic regenerative ability of maturing neurons. This loss of axon growth ability likely reflects widespread changes in gene expression, but the mechanisms that drive this shift remain unclear. Chromatin accessibility has emerged as a key regulatory mechanism in other cellular contexts, raising the possibility that chromatin structure may contribute to the age‐dependent loss of regenerative potential. Here we establish an integrated bioinformatic pipeline that combines analysis of developmentally dynamic gene networks with transcription factor regulation and genome‐wide maps of chromatin accessibility. When applied to the developing cortex, this pipeline detected overall closure of chromatin in sub‐networks of genes associated with axon growth. We next analyzed mature CNS neurons that were supplied with various pro‐regenerative transcription factors. Unlike prior results with SOX11 and KLF7, here we found that neither JUN nor an activated form of STAT3 promoted substantial corticospinal tract regeneration. Correspondingly, chromatin accessibility in JUN or STAT3 target genes was substantially lower than in predicted targets of SOX11 and KLF7. Finally, we used the pipeline to predict pioneer factors that could potentially relieve chromatin constraints at growth‐associated loci. Overall this integrated analysis substantiates the hypothesis that dynamic chromatin accessibility contributes to the developmental decline in axon growth ability and influences the efficacy of pro‐regenerative interventions in the adult, while also pointing toward selected pioneer factors as high‐priority candidates for future combinatorial experiments
    corecore