485 research outputs found

    Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana

    Get PDF
    We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ~32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene

    Global Identification and Characterization of Transcriptionally Active Regions in the Rice Genome

    Get PDF
    Genome tiling microarray studies have consistently documented rich transcriptional activity beyond the annotated genes. However, systematic characterization and transcriptional profiling of the putative novel transcripts on the genome scale are still lacking. We report here the identification of 25,352 and 27,744 transcriptionally active regions (TARs) not encoded by annotated exons in the rice (Oryza. sativa) subspecies japonica and indica, respectively. The non-exonic TARs account for approximately two thirds of the total TARs detected by tiling arrays and represent transcripts likely conserved between japonica and indica. Transcription of 21,018 (83%) japonica non-exonic TARs was verified through expression profiling in 10 tissue types using a re-array in which annotated genes and TARs were each represented by five independent probes. Subsequent analyses indicate that about 80% of the japonica TARs that were not assigned to annotated exons can be assigned to various putatively functional or structural elements of the rice genome, including splice variants, uncharacterized portions of incompletely annotated genes, antisense transcripts, duplicated gene fragments, and potential non-coding RNAs. These results provide a systematic characterization of non-exonic transcripts in rice and thus expand the current view of the complexity and dynamics of the rice transcriptome

    CHARACTERIZATION AND VALIDATION OF FLOWERING TIME GENES IN A DIVERSITY PANEL OF RICE (Oryza sativa L.)

    Get PDF
    In order to meet the needs of a growing population, rice production must be doubled by 2050 in comparison to 2005 production levels. However, rice production faces many challenges including rising temperatures, drought, and salinity stress. Flowering is one of the most heat sensitive periods of the rice life cycle, causing significant decreases to yield if temperatures are too high during the flowering process. As an agronomically important trait, days to flowering determines the climate rice varieties can grow in. Days to flowering is highly variable and quantitative in nature with over 30 genes known to control days to flowering. This study aimed to characterize genes controlling days to flowering through a genome wide association study (GWAS), analysis of genetic variation in known flowering time genes, and genome editing of two known flowering time genes. Genotyping of the material used in the GWAS was performed using a rice 7K SNP chip referred to as the Cornell-IR LD Rice Array (C7AIR). The C7AIR successfully distinguished between the five subgroups of Oryza sativa; however, due to all varieties genotyped being inbred, the amount of heterozygosity was low, causing problems with identifying where the heterozygous cluster should fall when creating the custom cluster file in GenomeStudio. The GWAS identified 5 candidate loci which contribute to days to flowering, including a region co-localizing with the known flowering time genes Hd3a and RFT1. The five genes analyzed for structural variation were highly conserved among the varieties observed with no nonsense, and few missense mutations being observed. Guide RNAs were designed to knockout the function of Hd3a and RFT1; however, the ribonucleoprotein (RNP) transfection was unsuccessful due to the need for optimizing the rice protoplast isolation protocol

    Genomic characterisation of Australian wild rice species

    Get PDF

    Tiling microarray analysis of rice chromosome 10 to identify the transcriptome and relate its expression to chromosomal architecture

    Get PDF
    BACKGROUND: Sequencing and annotation of the genome of rice (Oryza sativa) have generated gene models in numbers that top all other fully sequenced species, with many lacking recognizable sequence homology to known genes. Experimental evaluation of these gene models and identification of new models will facilitate rice genome annotation and the application of this knowledge to other more complex cereal genomes. RESULTS: We report here an analysis of the chromosome 10 transcriptome of the two major rice subspecies, japonica and indica, using oligonucleotide tiling microarrays. This analysis detected expression of approximately three-quarters of the gene models without previous experimental evidence in both subspecies. Cloning and sequence analysis of the previously unsupported models suggests that the predicted gene structure of nearly half of those models needs improvement. Coupled with comparative gene model mapping, the tiling microarray analysis identified 549 new models for the japonica chromosome, representing an 18% increase in the annotated protein-coding capacity. Furthermore, an asymmetric distribution of genome elements along the chromosome was found that coincides with the cytological definition of the heterochromatin and euchromatin domains. The heterochromatin domain appears to associate with distinct chromosome level transcriptional activities under normal and stress conditions. CONCLUSION: These results demonstrated the utility of genome tiling microarray in evaluating annotated rice gene models and in identifying novel transcriptional units. The tiling microarray sanalysis further revealed a chromosome-wide transcription pattern that suggests a role for transposable element-enriched heterochromatin in shaping global transcription in response to environmental changes in rice

    A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative reverse transcription – polymerase chain reaction (qRT-PCR) has been demonstrated to be particularly suitable for the analysis of weakly expressed genes, such as those encoding transcription factors. Rice (<it>Oryza sativa </it>L.) is an important crop and the most advanced model for monocotyledonous species; its nuclear genome has been sequenced and molecular tools are being developed for functional analyses. However, high-throughput methods for rice research are still limited and a large-scale qRT-PCR platform for gene expression analyses has not been reported.</p> <p>Results</p> <p>We established a qRT-PCR platform enabling the multi-parallel determination of the expression levels of more than 2500 rice transcription factor genes. Additionally, using different rice cultivars, tissues and physiological conditions, we evaluated the expression stability of seven reference genes. We demonstrate this resource allows specific and reliable detection of the expression of transcription factor genes in rice.</p> <p>Conclusion</p> <p>Multi-parallel qRT-PCR allows the versatile and sensitive transcriptome profiling of large numbers of rice transcription factor genes. The new platform complements existing microarray-based expression profiling techniques, by allowing the analysis of lowly expressed transcription factor genes to determine their involvement in developmental or physiological processes. We expect that this resource will be of broad utility to the scientific community in the further development of rice as an important model for plant science.</p

    A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative reverse transcription – polymerase chain reaction (qRT-PCR) has been demonstrated to be particularly suitable for the analysis of weakly expressed genes, such as those encoding transcription factors. Rice (<it>Oryza sativa </it>L.) is an important crop and the most advanced model for monocotyledonous species; its nuclear genome has been sequenced and molecular tools are being developed for functional analyses. However, high-throughput methods for rice research are still limited and a large-scale qRT-PCR platform for gene expression analyses has not been reported.</p> <p>Results</p> <p>We established a qRT-PCR platform enabling the multi-parallel determination of the expression levels of more than 2500 rice transcription factor genes. Additionally, using different rice cultivars, tissues and physiological conditions, we evaluated the expression stability of seven reference genes. We demonstrate this resource allows specific and reliable detection of the expression of transcription factor genes in rice.</p> <p>Conclusion</p> <p>Multi-parallel qRT-PCR allows the versatile and sensitive transcriptome profiling of large numbers of rice transcription factor genes. The new platform complements existing microarray-based expression profiling techniques, by allowing the analysis of lowly expressed transcription factor genes to determine their involvement in developmental or physiological processes. We expect that this resource will be of broad utility to the scientific community in the further development of rice as an important model for plant science.</p
    • …
    corecore