14,694 research outputs found

    Precision genome engineering

    Get PDF

    A Simple and Effective Method for Construction of Escherichia coli Strains Proficient for Genome Engineering

    Get PDF
    Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the l Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.open7

    Genome engineering of stem cells for autonomously regulated, closed-loop delivery of biologic drugs

    Get PDF
    Chronic inflammatory diseases such as arthritis are characterized by dysregulated responses to pro-inflammatory cytokines such as interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α). Pharmacologic anti-cytokine therapies are often effective at diminishing this inflammatory response but have significant side effects and are used at high, constant doses that do not reflect the dynamic nature of disease activity. Using the CRISPR/Cas9 genome-engineering system, we created stem cells that antagonize IL-1- or TNF-α-mediated inflammation in an autoregulated, feedback-controlled manner. Our results show that genome engineering can be used successfully to rewire endogenous cell circuits to allow for prescribed input/output relationships between inflammatory mediators and their antagonists, providing a foundation for cell-based drug delivery or cell-based vaccines via a rapidly responsive, autoregulated system. The customization of intrinsic cellular signaling pathways in stem cells, as demonstrated here, opens innovative possibilities for safer and more effective therapeutic approaches for a wide variety of diseases

    Improving single-cell cloning workflow for gene editing in human pluripotent stem cells

    Get PDF
    The availability of human pluripotent stem cells (hPSCs) and progress in genome engineering technology have altered the way we approach scientific research and drug development screens. Unfortunately, the procedures for genome editing of hPSCs often subject cells to harsh conditions that compromise viability: a major problem that is compounded by the innate challenge of single-cell culture. Here we describe a generally applicable workflow that supports single-cell cloning and expansion of hPSCs after genome editing and single-cell sorting. Stem-Flex and RevitaCell supplement, in combination with Geltrex or Vitronectin (VN), promote reliable single-cell growth in a feeder-free and defined environment. Characterization of final genome-edited clones reveals that pluripotency and normal karyotype are retained following this single-cell culture protocol. This time-efficient and simplified culture method paves the way for high-throughput hPSC culture and will be valuable for both basic research and clinical applications. Keywords: Human pluripotent stem cells, Embryonic stem cells, Single-cell cloning, Induced pluripotent stem cells, hPSCs, hESCs, Genome engineering, CRISPR-Cas

    Genome Engineering for Xenotransplantation

    Get PDF
    Xenotransplantation, the transfer of cells, tissues or organs between species, has the potential to overcome the critical need for organs to treat patients. One major barrier in the widespread application of xenotransplantation in the clinic is the overwhelming rejection response that occurs when non-human organs encounter the human immune system. Recent progress in developing new and better genome engineering tools now allows the genetic engineering of genes and pathways in non-human animals to overcome the human rejection response and provide an unlimited supply of rejection-free organs. In this review, the benefits and drawbacks of various genome engineering protocols, and examples of their application in xenotransplantation, are discussed

    Genome engineering of isogenic human ES cells to model autism disorders.

    Get PDF
    Isogenic pluripotent stem cells are critical tools for studying human neurological diseases by allowing one to study the effects of a mutation in a fixed genetic background. Of particular interest are the spectrum of autism disorders, some of which are monogenic such as Timothy syndrome (TS); others are multigenic such as the microdeletion and microduplication syndromes of the 16p11.2 chromosomal locus. Here, we report engineered human embryonic stem cell (hESC) lines for modeling these two disorders using locus-specific endonucleases to increase the efficiency of homology-directed repair (HDR). We developed a system to: (1) computationally identify unique transcription activator-like effector nuclease (TALEN) binding sites in the genome using a new software program, TALENSeek, (2) assemble the TALEN genes by combining golden gate cloning with modified constructs from the FLASH protocol, and (3) test the TALEN pairs in an amplification-based HDR assay that is more sensitive than the typical non-homologous end joining assay. We applied these methods to identify, construct, and test TALENs that were used with HDR donors in hESCs to generate an isogenic TS cell line in a scarless manner and to model the 16p11.2 copy number disorder without modifying genomic loci with high sequence similarity

    Genome engineering with targetable nucleases

    Get PDF
    Agricultural biotechnology; DNA editing; genome engineering; targetable nucleases; TALEN; CRISPR/cas9; DNA-targeting; mutagenesis; regulation; modern breeding technologies

    An extra dimension in protein tagging by quantifying universal proteotypic peptides using targeted proteomics

    Get PDF
    The use of protein tagging to facilitate detailed characterization of target proteins has not only revolutionized cell biology, but also enabled biochemical analysis through efficient recovery of the protein complexes wherein the tagged proteins reside. The endogenous use of these tags for detailed protein characterization is widespread in lower organisms that allow for efficient homologous recombination. With the recent advances in genome engineering, tagging of endogenous proteins is now within reach for most experimental systems, including mammalian cell lines cultures. In this work, we describe the selection of peptides with ideal mass spectrometry characteristics for use in quantification of tagged proteins using targeted proteomics. We mined the proteome of the hyperthermophile Pyrococcus furiosus to obtain two peptides that are unique in the proteomes of all known model organisms (proteotypic) and allow sensitive quantification of target proteins in a complex background. By combining these 'Proteotypic peptides for Quantification by SRM' (PQS peptides) with epitope tags, we demonstrate their use in co-immunoprecipitation experiments upon transfection of protein pairs, or after introduction of these tags in the endogenous proteins through genome engineering. Endogenous protein tagging for absolute quantification provides a powerful extra dimension to protein analysis, allowing the detailed characterization of endogenous proteins

    CRISPR/Cas-based genome engineering

    Get PDF
    corecore