3,825 research outputs found

    Network growth models and genetic regulatory networks

    Full text link
    We study a class of growth algorithms for directed graphs that are candidate models for the evolution of genetic regulatory networks. The algorithms involve partial duplication of nodes and their links, together with innovation of new links, allowing for the possibility that input and output links from a newly created node may have different probabilities of survival. We find some counterintuitive trends as parameters are varied, including the broadening of indegree distribution when the probability for retaining input links is decreased. We also find that both the scaling of transcription factors with genome size and the measured degree distributions for genes in yeast can be reproduced by the growth algorithm if and only if a special seed is used to initiate the process.Comment: 8 pages with 7 eps figures; uses revtex4. Added references, cleaner figure

    Evolutionary robustness of differentiation in genetic regulatory networks

    Get PDF
    We investigate the ability of artificial Genetic Regulatory Networks (GRNs) to evolve differentiation. The proposed GRN model supports non-linear interaction between regulating factors, thereby facilitating the realization of complex regulatory logics. As a proof of concept we evolve GRNs of this kind to follow different pathways, producing two kinds of periodic dynamics in response to minimal differences in external input. Furthermore we find that successive increases in environmental pressure for differentiation, allowing a lineage to adapt gradually, compared to an immediate requirement for a switch between behaviors, yields better results on average. Apart from better success there is also less variability in performance, the latter indicating an increase in evolutionary robustness

    Discrete time piecewise affine models of genetic regulatory networks

    Full text link
    We introduce simple models of genetic regulatory networks and we proceed to the mathematical analysis of their dynamics. The models are discrete time dynamical systems generated by piecewise affine contracting mappings whose variables represent gene expression levels. When compared to other models of regulatory networks, these models have an additional parameter which is identified as quantifying interaction delays. In spite of their simplicity, their dynamics presents a rich variety of behaviours. This phenomenology is not limited to piecewise affine model but extends to smooth nonlinear discrete time models of regulatory networks. In a first step, our analysis concerns general properties of networks on arbitrary graphs (characterisation of the attractor, symbolic dynamics, Lyapunov stability, structural stability, symmetries, etc). In a second step, focus is made on simple circuits for which the attractor and its changes with parameters are described. In the negative circuit of 2 genes, a thorough study is presented which concern stable (quasi-)periodic oscillations governed by rotations on the unit circle -- with a rotation number depending continuously and monotonically on threshold parameters. These regular oscillations exist in negative circuits with arbitrary number of genes where they are most likely to be observed in genetic systems with non-negligible delay effects.Comment: 34 page

    Design of artificial genetic regulatory networks with multiple delayed adaptive responses

    Get PDF
    Genetic regulatory networks with adaptive responses are widely studied in biology. Usually, models consisting only of a few nodes have been considered. They present one input receptor for activation and one output node where the adaptive response is computed. In this work, we design genetic regulatory networks with many receptors and many output nodes able to produce delayed adaptive responses. This design is performed by using an evolutionary algorithm of mutations and selections that minimizes an error function defined by the adaptive response in signal shapes. We present several examples of network constructions with a predefined required set of adaptive delayed responses. We show that an output node can have different kinds of responses as a function of the activated receptor. Additionally, complex network structures are presented since processing nodes can be involved in several input-output pathways
    corecore