263,659 research outputs found

    The asexual genome of Drosophila

    Full text link
    The rate of recombination affects the mode of molecular evolution. In high-recombining sequence, the targets of selection are individual genetic loci; under low recombination, selection collectively acts on large, genetically linked genomic segments. Selection under linkage can induce clonal interference, a specific mode of evolution by competition of genetic clades within a population. This mode is well known in asexually evolving microbes, but has not been traced systematically in an obligate sexual organism. Here we show that the Drosophila genome is partitioned into two modes of evolution: a local interference regime with limited effects of genetic linkage, and an interference condensate with clonal competition. We map these modes by differences in mutation frequency spectra, and we show that the transition between them occurs at a threshold recombination rate that is predictable from genomic summary statistics. We find the interference condensate in segments of low-recombining sequence that are located primarily in chromosomal regions flanking the centromeres and cover about 20% of the Drosophila genome. Condensate regions have characteristics of asexual evolution that impact gene function: the efficacy of selection and the speed of evolution are lower and the genetic load is higher than in regions of local interference. Our results suggest that multicellular eukaryotes can harbor heterogeneous modes and tempi of evolution within one genome. We argue that this variation generates selection on genome architecture

    Genetic Map of Bacteriophage [var phi]X174

    Get PDF
    Bacteriophage [var phi]X174 temperature-sensitive and nonsense mutations in eight cistrons were mapped by using two-, three-, and four-factor genetic crosses. The genetic map is circular with a total length of 24 × 10−4wt recombinants per progeny phage. The cistron order is D-E-F-G-H-A-B-C. High negative interference is seen, consistent with a small closed circular deoxyribonucleic acid molecule as a genome

    Genetic draft, selective interference, and population genetics of rapid adaptation

    Full text link
    To learn about the past from a sample of genomic sequences, one needs to understand how evolutionary processes shape genetic diversity. Most population genetic inference is based on frameworks assuming adaptive evolution is rare. But if positive selection operates on many loci simultaneously, as has recently been suggested for many species including animals such as flies, a different approach is necessary. In this review, I discuss recent progress in characterizing and understanding evolution in rapidly adapting populations where random associations of mutations with genetic backgrounds of different fitness, i.e., genetic draft, dominate over genetic drift. As a result, neutral genetic diversity depends weakly on population size, but strongly on the rate of adaptation or more generally the variance in fitness. Coalescent processes with multiple mergers, rather than Kingman's coalescent, are appropriate genealogical models for rapidly adapting populations with important implications for population genetic inference.Comment: supplementary illustrations and scripts are available at http://webdav.tuebingen.mpg.de/interference

    Genetically Enhanced Performance of a UTRA-like Time-Division Duplex CDMA Network

    No full text
    In this contribution a Dynamic Channel Allocation (DCA) algorithm is developed, which minimizes the amount of Multi-User Interference (MUI) experienced at the Base Stations (BSs) by employing Genetic Algorithms (GAs). A GA is utilized for finding a suboptimum, but highly beneficial Uplink (UL) or Downlink (DL) Timeslot (TS) allocation for improving the achievable performance of the third generation UTRA system’s Time Division Duplex (TDD) mode. It is demonstrated that a GA-assisted UL/DL timeslot scheduling scheme may avoid the severe BS to BS inter-cell interference potentially inflicted by the UTRA TDD CDMA air interface owing to allowing all TSs to be used both in the UL and D

    Clonal Interference, Multiple Mutations, and Adaptation in Large Asexual Populations

    Full text link
    Two important problems affect the ability of asexual populations to accumulate beneficial mutations, and hence to adapt. First, clonal interference causes some beneficial mutations to be outcompeted by more-fit mutations which occur in the same genetic background. Second, multiple mutations occur in some individuals, so even mutations of large effect can be outcompeted unless they occur in a good genetic background which contains other beneficial mutations. In this paper, we use a Monte Carlo simulation to study how these two factors influence the adaptation of asexual populations. We find that the results depend qualitatively on the shape of the distribution of the effects of possible beneficial mutations. When this distribution falls off slower than exponentially, clonal interference alone reasonably describes which mutations dominate the adaptation, although it gives a misleading picture of the evolutionary dynamics. When the distribution falls off faster than exponentially, an analysis based on multiple mutations is more appropriate. Using our simulations, we are able to explore the limits of validity of both of these approaches, and we explore the complex dynamics in the regimes where neither are fully applicable.Comment: 24 pages, 5 figure

    Evolutionary biology and genetic techniques for insect control

    Get PDF
    The requirement to develop new techniques for insect control that minimize negative environmental impacts has never been more pressing. Here we discuss population suppression and population replacement technologies. These include sterile insect technique, genetic elimination methods such as the release of insects carrying a dominant lethal (RIDL), and gene driving mechanisms offered by intracellular bacteria and homing endonucleases. We also review the potential of newer or underutilized methods such as reproductive interference, CRISPR technology, RNA interference (RNAi), and genetic underdominance. We focus on understanding principles and potential effectiveness from the perspective of evolutionary biology. This offers useful insights into mechanisms through which potential problems may be minimized, in much the same way that an understanding of how resistance evolves is key to slowing the spread of antibiotic and insecticide resistance. We conclude that there is much to gain from applying principles from the study of resistance in these other scenarios – specifically, the adoption of combinatorial approaches to minimize the spread of resistance evolution. We conclude by discussing the focused use of GM for insect pest control in the context of modern conservation planning under land-sparing scenarios
    • 

    corecore