9 research outputs found

    Genetic programming for kernel-based learning with co-evolving subsets selection

    Get PDF
    Abstract. Support Vector Machines (SVMs) are well-established Machine Learning (ML) algorithms. They rely on the fact that i) linear learning can be formalized as a well-posed optimization problem; ii) nonlinear learning can be brought into linear learning thanks to the kernel trick and the mapping of the initial search space onto a high dimensional feature space. The kernel is designed by the ML expert and it governs the efficiency of the SVM approach. In this paper, a new approach for the automatic design of kernels by Genetic Programming, called the Evolutionary Kernel Machine (EKM), is presented. EKM combines a well-founded fitness function inspired from the margin criterion, and a co-evolution framework ensuring the computational scalability of the approach. Empirical validation on standard ML benchmark demonstrates that EKM is competitive using state-of-the-art SVMs with tuned hyper-parameters.

    Genetic Programming for Kernel-based Learning with Co-evolving Subsets Selection

    No full text
    Support Vector Machines (SVMs) are well-established Machine Learning (ML) algorithms. They rely on the fact that i) linear learning can be formalized as a well-posed optimization problem; ii) non-linear learning can be brought into linear learning thanks to the kernel trick and the mapping of the initial search space onto a high dimensional feature space. The kernel is designed by the ML expert and it governs the efficiency of the SVM approach. In this paper, a new approach for the automatic design of kernels by Genetic Programming, called the Evolutionary Kernel Machine (EKM), is presented. EKM combines a well-founded fitness function inspired from the margin criterion, and a co-evolution framework ensuring the computational scalability of the approach. Empirical validation on standard ML benchmark demonstrates that EKM is competitive using state-of-the-art SVMs with tuned hyper-parameters

    Genetic Programming for Kernel-based Learning with Co-evolving Subsets Selection

    No full text
    Support Vector Machines (SVMs) are well-established Machine Learning (ML) algorithms. They rely on the fact that i) linear learning can be formalized as a well-posed optimization problem; ii) non-linear learning can be brought into linear learning thanks to the kernel trick and the mapping of the initial search space onto a high dimensional feature space. The kernel is designed by the ML expert and it governs the efficiency of the SVM approach. In this paper, a new approach for the automatic design of kernels by Genetic Programming, called the Evolutionary Kernel Machine (EKM), is presented. EKM combines a well-founded fitness function inspired from the margin criterion, and a co-evolution framework ensuring the computational scalability of the approach. Empirical validation on standard ML benchmark demonstrates that EKM is competitive using state-of-the-art SVMs with tuned hyper-parameters

    Proceedings of the 18th Irish Conference on Artificial Intelligence and Cognitive Science

    Get PDF
    These proceedings contain the papers that were accepted for publication at AICS-2007, the 18th Annual Conference on Artificial Intelligence and Cognitive Science, which was held in the Technological University Dublin; Dublin, Ireland; on the 29th to the 31st August 2007. AICS is the annual conference of the Artificial Intelligence Association of Ireland (AIAI)

    Efficient tuning in supervised machine learning

    Get PDF
    The tuning of learning algorithm parameters has become more and more important during the last years. With the fast growth of computational power and available memory databases have grown dramatically. This is very challenging for the tuning of parameters arising in machine learning, since the training can become very time-consuming for large datasets. For this reason efficient tuning methods are required, which are able to improve the predictions of the learning algorithms. In this thesis we incorporate model-assisted optimization techniques, for performing efficient optimization on noisy datasets with very limited budgets. Under this umbrella we also combine learning algorithms with methods for feature construction and selection. We propose to integrate a variety of elements into the learning process. E.g., can tuning be helpful in learning tasks like time series regression using state-of-the-art machine learning algorithms? Are statistical methods capable to reduce noise e ffects? Can surrogate models like Kriging learn a reasonable mapping of the parameter landscape to the quality measures, or are they deteriorated by disturbing factors? Summarizing all these parts, we analyze if superior learning algorithms can be created, with a special focus on efficient runtimes. Besides the advantages of systematic tuning approaches, we also highlight possible obstacles and issues of tuning. Di fferent tuning methods are compared and the impact of their features are exposed. It is a goal of this work to give users insights into applying state-of-the-art learning algorithms profitably in practiceBundesministerium f ür Bildung und Forschung (Germany), Cologne University of Applied Sciences (Germany), Kind-Steinm uller-Stiftung (Gummersbach, Germany)Algorithms and the Foundations of Software technolog
    corecore