4 research outputs found

    Information gain based dimensionality selection for classifying text documents

    Full text link
    Selecting the optimal dimensions for various knowledge extraction applications is an essential component of data mining. Dimensionality selection techniques are utilized in classification applications to increase the classification accuracy and reduce the computational complexity. In text classification, where the dimensionality of the dataset is extremely high, dimensionality selection is even more important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection in text mining applications that utilizes information gain. The presented methodology uses information gain of each dimension to change the mutation probability of chromosomes dynamically. Since the information gain is calculated a priori, the computational complexity is not affected. The presented method was tested on a specific text classification problem and compared with conventional genetic algorithm based dimensionality selection. The results show an improvement of 3% in the true positives and 1.6% in the true negatives over conventional dimensionality selection methods

    Information Gain Based Dimensionality Selection for Classifying Text Documents

    Get PDF
    Abstract-Selecting the optimal dimensions for various knowledge extraction applications is an essential component of data mining. Dimensionality selection techniques are utilized in classification applications to increase the classification accuracy and reduce the computational complexity. In text classification, where the dimensionality of the dataset is extremely high, dimensionality selection is even more important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection in text mining applications that utilizes information gain. The presented methodology uses information gain of each dimension to change the mutation probability of chromosomes dynamically. Since the information gain is calculated a priori, the computational complexity is not affected. The presented method was tested on a specific text classification problem and compared with conventional genetic algorithm based dimensionality selection. The results show an improvement of 3% in the true positives and 1.6% in the true negatives over conventional dimensionality selection methods

    Consistent Feature Construction with Constrained Genetic Programming for Experimental Physics

    Full text link
    A good feature representation is a determinant factor to achieve high performance for many machine learning algorithms in terms of classification. This is especially true for techniques that do not build complex internal representations of data (e.g. decision trees, in contrast to deep neural networks). To transform the feature space, feature construction techniques build new high-level features from the original ones. Among these techniques, Genetic Programming is a good candidate to provide interpretable features required for data analysis in high energy physics. Classically, original features or higher-level features based on physics first principles are used as inputs for training. However, physicists would benefit from an automatic and interpretable feature construction for the classification of particle collision events. Our main contribution consists in combining different aspects of Genetic Programming and applying them to feature construction for experimental physics. In particular, to be applicable to physics, dimensional consistency is enforced using grammars. Results of experiments on three physics datasets show that the constructed features can bring a significant gain to the classification accuracy. To the best of our knowledge, it is the first time a method is proposed for interpretable feature construction with units of measurement, and that experts in high-energy physics validate the overall approach as well as the interpretability of the built features.Comment: Accepted in this version to CEC 201
    corecore