
Evolutionary Induction of Projection Maps
for Feature Extraction

Thesis submitted

IN ACCORDANCE WITH THE REQUIREMENTS OF

the University of Liverpool

FOR THE DEGREE OF

Doctor in Philosophy

By

Eduardo Rodriguez Martinez

Department of Electrical Engineering and Electronics

The University of Liverpool

Liverpool, United Kingdom

2011

Dedicated to my parents Socorro and Eduardo,
and to my brother Omar.

Abstract

This thesis proposes an evolutionary scheme for automatic design of feature extraction
methods, tailored to a given classification problem. The main advantage of the proposed
scheme is its capacity to formulate new models when the existing ones do not fit the
problem at hand. The learning phase is expressed as a model selection problem, where
the best performing model is selected among the genetic pool, assessed by an estimation
of out-of-sample generalization error. Each individual in the genetic pool represents a
potential model encoded into a hybrid genotype, specifically designed to hold a tree
structure and an scalar array to represent both feature-extraction and classification
stages. The role of the inducer is to automatically design a mapping function to be
used as the core of the feature-extraction stage, as well as fine-tune the corresponding
hyper-parameters for the feature-extraction/classification pair. Two paradigms are
explored to express the feature-extraction stage, namely projection pursuit and spectral
embedding methods.

Both paradigms can express several feature extraction algorithms under a common
template. In the case of projection pursuit, such template consist on the optimisation
of a cost function, also known as projection index, that can be specifically designed
to highlight certain properties of the extracted features. While for spectral embedding
methods, a suitable set of similarity metrics is needed to construct a weight matrix,
which encodes the links between any two samples on the vertices of a graph. The
eigendecomposition of such weight matrix represents the solution to an optimisation
problem looking for a low-dimensional space, retaining the characteristics described by
the original distance metric. The proposed inducer evolves an optimal projection index
or a desired distance metric for the corresponding feature-extraction paradigm. Addi­
tionally, projection pursuit was extended to the nonlinear case by means of the kernel
trick. The determination of a nonlinear residual subspace for sequential projection
pursuit is reduced to the computation of an updated kernel matrix.

i

Contents

Abstract i

Contents ii

List of Figures v

List of Tables vi

Acknowledgements vii

Acronyms viii

Mathematical Notation ix

1 Introduction 1
1.1 Motivation and Objectives... 1
1.2 Scope and Contributions.. 3
1.3 Published/Submitted Articles.. 4

2 Machine Learning Methodologies 6
2.1 Types of Algoritlims.. 6

2.1.1 Supervised Learning.. 7
2.1.2 Unsupervised Learning.. 7
2.1.3 Reinforcement Learning.. 7
2.1.4 Transduction.. 7

2.2 Pattern Classification ... 8
2.2.1 Linear Classifiers.. 8

2.2.1.1 Generative classifiers ... 9
2.2.1.2 Discriminative classifiers ... 10

2.2.2 Nonlinear Classifiers.. 12
2.2.2.1 Generative classifiers ... 12
2.2.2.2 Discriminative classifiers ... 13

2.3 Feature Extraction... 14

ii

2.3.1 Projection Methods .. 14
2.3.1.1 Principal component analysis.. 14
2.3.1.2 Linear Fisher discriminant.. 15
2.3.1.3 Independent component analysis...................................... 16

2.3.2 Projection Methods in Kernel-Induced Feature Space.................. 18
2.3.2.1 Kernel principal component analysis................................ 18
2.3.2.2 Kernel Fisher discriminant.. 19

2.3.3 Projection Pursuit... 20
2.3.3.1 The optimisation problem... 20
2.3.3.2 Current projection indices .. 20
2.3.3.3 Extension to multiple dimensions 23

2.3.4 Spectral Embedding Methods.. 24
2.3.4.1 Unsupervised methods .. 25
2.3.4.2 Supervised methods.. 26

2.3.5 Feature Extraction for High-Dimensional Spaces.......................... 28

3 Optimisation Techniques in Machine Learning 30
3.1 Standard Optimisation Techniques... 31

3.1.1 Linear Programming.. 31
3.1.2 Quadratic Programming.. 31
3.1.3 Nonlinear Unconstrained Programming.. 33

3.2 Evolutionary Optimisation Techniques... 36
3.2.1 Genetic Algorithms... 37
3.2.2 Genetic Programming.. 39
3.2.3 Particle Swarm Optimisation.. 42

3.3 Evolutionary Optimisation in Pattern Recognition.................................. 44

4 Automated Induction of Projection Pursuit Indices 48
4.1 Introduction... 48
4.2 Proposed Evolutionary Learning System.. 49

4.2.1 Fitness Function.. 50
4.2.2 Index Optimisation... 51
4.2.3 Dimensionality Control .. 52

4.3 Evolutionary Framework Language Definition... 53
4.4 Experimental Results.. 57

4.4.1 Datasets... 57
4.4.2 Evolution Process ... 57
4.4.3 Training and Testing Set Design.. 60
4.4.4 Baseline Projection Pursuit Comparison.. 60
4.4.5 Comparison of EPP with Collaborative Methods......................... 66

iii

4.4.6 Evolved Indices as a Tree Representation.. 68
4.5 Summary.. 70

5 Nonlinear Projection Pursuit via Kernel-Induced Spaces 72
5.1 Introduction... 72
5.2 Problem Formulation in Kernel-Induced Spaces.. 73
5.3 Nonlinear Sequential Removal Process... 74
5.4 Whitening in Feature Space.. 75
5.5 Experimental Results.. 77

5.5.1 Datasets... 77
5.5.2 Experimental Setup... 79
5.5.3 Experimental Results and Analysis.. 80

5.6 Summary.. 86

6 Evolutionary Induction of Heterogeneous Proximities
for Supervised Embeddings 87
6.1 Model Definition.. 88
6.2 Evolutionary Induction... 94

6.2.1 Chromosome Encoding.. 94
6.2.2 Fitness Function.. 96
6.2.3 Function and Terminals... 97

6.3 Experimental Results...100
6.3.1 Datasets.. 100
6.3.2 Experimental Setup ...101
6.3.3 Experimental Results and Analysis... 102

6.4 Summary... 106

7 Conclusions and Future Work 107
7.1 Conclusions.. 107
7.2 Future Work ... 109

Bibliography 131

iv

List of Figures

2.1 Artificial neural network represented as weighted graph............................ 13
2.2 Nonlinear projection.. 18

3.1 Main genetic algorithm loop.. 37
3.2 Genetic algorithm flowchart.. 40
3.3 Basic subtree genetic operators for genetic programming......................... 42
3.4 Michigan and Pittsburgh architectures... 45

4.1 Evolutionary model selection... 49
4.2 GP fitness evaluation.. 51
4.3 Possible evolved trees ... 56
4.4 Induction process for wine dataset... 58
4.5 Minimisation of fitness function... 60
4.6 2D scatter plots of the best two projected features for wine data 62
4.7 2D scatter plots of the best two projected features for heart data 62
4.8 2D scatter plots of the best two projected features for cancer data ... 63
4.9 Synthetic dataset analysis... 65
4.10 Examples of ROC curves using the best projection methods for heart

dataset.. 65
4.11 Best evolved trees for different datasets .. 69

5.1 Sensitivity analysis for dominant features extracted with EKPP............ 83
5.2 Evolved trees for different datasets... 84

6.1 An example of a possible SSE configuration.. 88
6.2 Dollar sign and swiss roll in 3D.. 90
6.3 Example of proximity matrices and embeddings.. 91

v

List of Tables

2.1 PDF-Based Indices... 21
2.2 Moment-Based Indices... 21
2.3 Class-Information-Based Indices.. 22

4.1 Language Definition... 54
4.2 Datasets Summary... 57
4.3 Comparison of the evolved indices against Si — Q’lo.................................. 59
4.4 Summary of Table 4.3... 61
4.5 Contrasting collaborating methods... 67

5.1 Datasets summary: Testing, training and validation set sizes 78
5.2 Comparison between EKPP and relevant kernel methods.......................... 81
5.3 Computational time comparison of EKPP... 82

6.1 Classic similarity metrics in matrix notation.. 95
6.2 Function set... 98
6.3 Terminal set... 99
6.4 Selected SSE methods..100
6.5 Types definition ... 101
6.6 Dataset summary...101
6.7 Comparison of the proposed framework including median values of the

classification error assessed with 10-CV, and optimal parameters for se­
lected SSE methods consisting of size of the local neighbourhood k, num­
ber of extracted features 6, and penalty parameter (3................................. 103

6.8 Best evolved models for each classification problem, along with its tree
representation...104

vi

Acknowledgements

My research could not have been possible without the advice and support of many
people. To begin with, I want to deeply thank my supervisor Yannis Goulermas for his
unlimited patience and advice. Similarly I want to thank Tingting Mu for her insightful
comments and feedback to my work. I am grateful to all former and current members
of ISMoG group in the Department of Electrical Engineering, a special thanks goes to
Hane Aung, Vivek Govinda and Konstantinos Nikolaidis, which made my daily life at
our workplace more enjoyable.

Beyond academic matters, I have been blessed with a number of friends that bright­
ened my life in Liverpool. It was a pleasure to be part of the Mexican Students Society
in Liverpool, where I found many good friends for life. I want to also thank Daniel Rito,
Elihu Loza, and Rolando Medellin for being companionable housemates and helped me
to cope with the ups and downs of research life.

Finally my research was fully supported by grant number 196291 of the Mexican
Council of Science and Technology CONACYT.

vn

Acronyms

ANN Artificial Neural Networks
DNE Discriminant Neighbourhood Embedding
DONPP Discriminative ONPP
EA Evolutionary Algorithms
EKPP Evolutionary Kernel Projection Pursuit
EPP Evolutionary Projection Pursuit
ELD Fisher Linear Discriminant
GA Genetic Algorithms
GBML Genetic-Based Machine Learning
GEV Generalized Extreme Value
GP Genetic Programming
IGA Independent Component Analysis
IQR Inter-Quartile Range
KFD Kernel Fisher Discriminant
KLPP Kernel Locality Preserving Projections
kNN k-Nearest Neighbours
KPCA Kernel Principal Component Analysis
LDA Linear Discriminant Analysis
LE Laplacian Eigenmaps
LLE Local Linear Embedding
LPP Locality Preserving Projections
ML Machine Learning
MMC Maximum Margin Criterion
MP Mathematica Programming
NLP Non-linear Programming
OLPP Orthogonal LPP
OLPP-R OLPP with repulsion Laplacian
ONPP Orthogonal Neighbourhood Preserving Projections
ONPP-R ONPP with repulsion Laplacian
PGA Principal Component Analysis
POCS Projection Onto Convex Sets
PP Projection Pursuit
PPP Parallel Projection Pursuit
PSO Particle Swarm Optimisation
SPP Sequential Projection Pursuit
SSE Supervised Spectral Embedding
SONPP Supervised ONPP
SVM Support Vector Machine
USE Unsupervised Spectral Embedding

vm

Mathematical Notation

Pattern Classification
Rm Original feature space
Y={-1,+1} Binary label space
n Number of instances
Xi Feature vector in Rm

Feature vector and its corresponding class label
■0 : Mm —> Y Classification mapping
ip(x),ip+(x) Separating hyperplane
p, b Weight vector and bias of ip(x)
p(x*y) Joint probability of an example (x,y)
p{y\x) Class conditional probability, also known as posterior probability

X
.

'C
'

II + Probability of the positive class
p(y = ~1) Probability of the negative class

Normal distribution with mean p, and covariance matrix E
kn Number of samples inside an hypercube
ujk Refers to the jth input on the kth layer of an ANN
fik Activation function of the itfl neurone in the kth layer of an ANN

(k')
W--ij Weight for the input Ujk going to the activation function fac

Feature Extraction

♦e-a

II Learning seth
eII Matrix representation of a set of n feature vectors

Y= [yi,...,2/n] Matrix representation of a set of n class labels cor­
responding to each row in matrix X

P = [pi,. . . .Pft] Projection matrix that reduce the dimensionality of
a set of ??v dimensional feature vectors by means of
the linear transform Z — XP

X(Testing point in the original feature space
Z = [zi,... ,zn]T Projected version of X in a 6-dimensional space
Sj1 Total scatter matrix
Sw Within-class scatter matrix
Sb Between-class scatter matrix
Ai i-th eigenvalue corresponding to the i-th eigenvector

that is a solution to a given generalized eigenvalue
problem

IX

M
£{•}
v
E
(j) : Rm -» H

® - [^(xi),... ,0(xn)]T

K(-r)
K
7
Ki

K
In
In

In
Vi

Hi
ic

Incl(?/ = j)
&(•)
p* = [?!.••-.pfl

si-

B
A
B
W
G
D(W)
L
Siyj Sjg

W

wr
w3
w1

Inverse of the projection matrix P
Mathematical expectation
Vector orthogonal to
Modal matrix
Non-linear mapping to a non-observable high­
dimensional space
Matrix representation of the non-linear projected
version of the feature vectors in X
Kernel function
Kernel matrix of the feature vectors in X
Coefficient set defining a basis in H
Row vector of pairwise inner products between x/
and X in the non-observable space 77
Kernel matrix of the centred data in 77
Identity matrix of size n x n
Square matrix of size n x n with all its elements equal
to 1/n
Column vector with n elements equal to one
ith class mean in the non-observable space
ith class mean and covariance matrix in the original
feature space
Number of samples in the ith class
Ordered version of K, with its rows and columns
sorted according to class labels
Set of indices for samples belonging to the ith class
Projection pursuit index
Optimal projection matrix in PP with b projection
vectors as its columns
Orthogonal complement to the first jt!l optimal pro­
jection vectors
Modified Bayes factor
Arbitrary weight matrix
Arbitrary scaling/constraint matrix
Similarity matrix
Local covariance matrix
Degree matrix of (W)
Laplacian matrix
Local within-class and between-class scatter matri­
ces
Block diagonal matrix with regression coefficients as
elements of each block
Weighting matrix for the repulsion graph
Weighting matrix for the class graph
Binary adjacency matrix

x

Optimisation Techniques in Machine Learning

/(•)
9j(-)
k(-)
c
b
A
U = [tiij]
Xi} Oj

\ = [\i\ie = [9j]
Y
Z3
■x*
ML
dxi
Jx*
V/
Si

Ai
Bi
Si

7i-dimensional vector of design variables
Objective function
Inequality constraint function
Equality constraint function
Weighting column vector
Bias column vector
Mixing matrix
Weighting matrix for the quadratic term, with elements uij
Lagrange multipliers
Column vectors of Lagrange multipliers
Column vector of slack variables
Artificial variables
Optimum value for the design variables
Partial derivative of f with respect to variable Xi
Hessian matrix of / evaluated at x*
Gradient vector of partial derivatives of /
Steepest descent direction of / at point
Optimal displacement constant at point
Approximation to the Hessian matrix of / at point x$
Approximation to the inverse of the Hessian of f at point x$
Column vector of the same dimensions as V/, indicating the
variation of the gradient
Optimal displacement vector pointing to the steepest descent
direction

Evolutionary Optimisation
Pc Crossover probability
Prn Mutation probability
Ngen Total number of generations
Nirui Total number of individuals in the population
Vt(i,k) kth allele of the ith member of the population at generation t
L/c, Uk Lower and upper bound for the values allowed for the kth allele
O Adaptive, random-generator function
Fbesi Fitness value of the best individual in the current population
Favg Average fitness value of the current population
F*. Average fitness value at generation k
Natali Window size for stagnation test
/(•) Fitness function
q Generational gap ratio
Sbest(k) Set of fittest individuals at generation k
d Tree depth
dmax Maximum tree depth
N Number of particles for PSO
Xi Position of the ith particle
Vi Velocity vector of the ith particle
Pi Best position of the ith particle

xi

p5 Global best position of the swarm
ci, C2, w Constant coefficients and inertia weight
z Random positive number

Chapter 4 Automated Induction of
Projection Pursuit Indices

{3*0*}

j

0 = {fc,A}

Pi
/i
9i
D(f,g, p)
S(f\p)
ma
P'Ct <7c
Qn

Swi Sb

e
11
Nfeat i Feat
T!
t2
D = T1JT
Wk
A.z

Optimal pair of projection index and hyperparameters
Fitness function for model induction
0-1 loss function
Training and validation sets for the ith fold in cross-validation
Classifier function trained with prototypes in
Classifier hyperparameters corresponding to number of
neighbours and Minkowski distance coefficient
Deflated version of the ith optimal projection vector
Projected data probability estimate evaluated at Zj
Reference pdf evaluated at X£
Renyi’s generalized divergence of order-p
Renyi order-p entropy
st!l central sample moment
cth class mean and variance of the projected data z
nth quartile of class j of z
Within-class and between-class scatter of z
Scalar indicating the reference pdf p(x) to be used
Degrees of freedom for Student-t distribution
Shape parameter for GEY distribution
Ephemeral random constant
Number of reduced features
Average time for feature extraction and classification
Average time for index evolution
Dataset partitioned into learning set and testing set
Weighting coefficients for collaborative index
Area under ROC

Chapter 5 Nonlinear Projection Pursuit
via Kernel-induced Spaces

A4 Original feature space
B Reduced feature space
i/ Projection vector in 7i
v* Optimal projection vector in Ti
7* Optimal coefficient set defining a basis in H, for KPP
K.i Kernel matrix between samples from P*
Kji Kernel matrix between the jtfl sample from the validation set

(ii and all the samples from the training set fb

xn

V = [vu...,i/b] Projection matrix in 7i
r = [7iJ--->76] Coefficient matrix to express V in terms of a basis
is*

3 jth optimal projection vector in TC
V*

3 Set of the first j optimal projection vectors obtained by SPP
^3 Optimal coefficient matrix for Vi-

Residual kernel matrix to compute the coefficient set 7y+i)
Covariance matrix in H

w Whitening matrix in H
M Modal matrix of C(|>
L Diagonal matrix with the eigenvalues of on its diagonal

Modal matrix of K
A Diagonal matrix with the eigenvalues of K on its diagonal
K Whitened kernel matrix
1-SVM Linear SVM classifier
g-SVM SVM classifier with Gaussian kernel
MI+g-SVM SVM classifier with Gaussian kernel, and input feature se­

lected by mutual information
Kernel parameters

Chapter 6 Evolutionary Induction of Heterogeneous
Proximities for Supervised Embeddings

NF(]Ci,k) Set of k-nearest friends for sample x$
NE(Xi,k) Set of k-nearest enemies for sample
M — [mij] Reconstruction coefficient matrix
P Penalisation coefficient
m Similarity measure for the Ith on-diagonal block of the com­

posite weight matrix
9pq{') Similarity measure between enemies of classes p and q
-VE Xj, kpq, (j Set of /cpg-nearest enemies for sample x^ from class q
F Proximity matrix between friends
G Proximity matrix between enemies
F Laplacian form of F
G Laplacian form of G
A Regularization parameter
Nd Cardinality of a set of similarity functions

Centring matrix of size m x m
X/ Set of points belonging to class l
Fz Proximity matrix between Xz
FliGpq Matrix representation of /z(-) and fjpq(-)

Xlll

Chapter 1

Introduction

1.1 Motivation and Objectives

The importance of pattern classification and data analysis has been studied and under­
stood through the last few decades. R. Duda [1] in the introduction of his book offers a
good example of how pattern classification can be applied to solve real-world problems,
allowing the reader to distinguish the different levels in which he decomposes a full
pattern recognition system following a bottom-up approach. Following his discussion,
feature extraction is described as a searching process in order to find “... distinguishing
features that are invariant to irrelevant transformations ...” [1].

According to this author, the distinction between feature extraction and classifica­
tion is somehow blurred by the fact that both stages in patter recognition systems tend
to interact closely. Ideally a complex feature extractor would deliver a representation
robust enough to simplify the classification task; on the contrary, a powerful classifier
would not need the help of a feature extraction stage. In the real world, both stages
are needed since there is not such a thing as an infallible classifier or a perfect feature
extractor. Therefore the feature extraction task has been redefined as to search for a
suitable transformations that allow redundancy reduction over the space spanned by
the original features [2].

On the other hand, a simple phenomenon can be measured in several ways, which
may lead to a multiple representation of the same phenomenon but in different domains,
therefore multidimensional features vectors can be used to process such information.
Two close related problems can be experienced when working with multivariate data:
(1) the so-called Hughes phenomenon, that states a direct linear relation between the
number of dimensions and the number of samples needed to achieve high classification
accuracy [2]; and (2) the curse of dimensionality, saying that for nonparametric classi­
fiers based on density estimation, as the number of dimensions in the feature vectors
increases, the sample size needs to increase exponentially to successfully obtain a good
estimate.

As an example lets consider a k-nearest neighbours classifier in a A-dimensional

1

space. To capture a fraction r of the unit volume around a specific point, we need a
subcube with side-length given by ep(r) — r1//p. For 10 dimensions, to capture 1% of
the data to perform the k-nearest neighbours procedure, we need to cover eio(O.Ol) =

0.63 of the unit range of each input, turning out to be a non-so-local neighbourhood.
Besides, the computational cost of handling high-dimensional data in common matrix
operations frequently used in machine learning and pattern classification is extremely
high. Therefore the interest in searching for new methods that allow us to transform
high-dimensional spaces into low-dimensional ones but keeping the information needed
to accomplish successfully our task.

The principal objective of feature extraction is to derive new features from the direct
measurements of an experiment in order to boost classification accuracy and classifier
efficiency. The problem of finding a suitable transform for the raw data able to de­
liver invariant features is not easy. The standard way to perform feature extraction is
trough linear transformations, since they are easy to compute and exhibit useful prop­
erties such as statistical invariance, high information packing and redundancy removal.
Among linear transformations in pattern classification, projection techniques such as
principal component analysis (PCA), linear fisher discriminant (LFD), and independent
component analysis (ICA) have been widely used in a variety of applications like brain
imaging [3], telecommunications [4], audio separation and financial applications [5].

Despite the advances in pattern recognition and feature extraction, according to
the no free lunch theorem [6], there is no single algorithm that can be optimal for
every classification problem. In practice, two alternatives exist to propose adequate
feature extraction and classification algorithms when facing a new classification prob­
lem. The first one is the selection of the best performing pair among the existing
algorithms. Frequently, such selection process is modelled as a computationally expen­
sive grid search over all possible feature-extraction/classifier pairs, involving parameter
fine-tuning for each algorithm [7]. Although better search techniques have been de­
veloped to tackle the computational burden of grid search [8-10], the resulting model
may still be suboptimal as it makes strong assumptions about the characteristics of the
problem and the data distribution. The second option is to specifically design a new
feature-extraction/classification pair tailored to the problem at hand. Traditionally,
this task involves human experts which analyse the data, characterise the problem and
eventually propose a new mathematical model. The objective of this work is to pro­
pose a human-competitive alternative in the design of projection methods to extract
discriminative features that will assist in the problem of classification.

2

1.2 Scope and Contributions

The principal contribution of this work lies on the introduction of an evolutionary
framework to solve the problem of tailoring a feature extraction method for a given
classification problem. Three areas of feature extraction are explored: linear projection
methods, kernel-induced spaces for nonlinear projection methods, and spectral embed­
ding methods. Among the existing evolutionary algorithms, genetic programming (GP)
was selected to jointly perform model search and parameter optimisation of a feature-
extraction/classifier pair. The flexible tree-based chromosome encoding in GP lends
itself to the specific needs of the aforementioned feature extraction areas, allowing us
to encode a feature-extraction/classifier pair into a single individual. Thus, represen­
tation is one of the key issues addressed in this work, and it will drive our discussion
in the upcoming chapters.

Although heavily based on evolutionary algorithms, this work does not intend to
explore new genetic operators, nor compare different fitness landscapes provided by
different objective functions. Instead, experimental evidence is provided to support the
idea that carefully designed evolutionary algorithms, when applied to a given classifica­
tion problem, possess enough expressive power to not only solve the problem of model
selection, but to create new models when the existing ones perform poorly. The design
of our evolutionary framework consists of three main components: a composite chromo­
some able to capture the main characteristics of the targeted feature extraction area;
a fitness function to measure the performance of each potential model; and a function
and terminal sets that provide the primitives or building blocks for the construction of
potential models. A summary of the contributions of each chapter is provided in the
remaining of this section, focusing on the mentioned components.

Chapter 4. This chapter introduces the proposed evolutionary inducer, posing the
problem of model learning as a complex inference task, where a population of
potential solutions are evolved by means of genetic operators. A novel solution
encoding, regarded as an hybrid chromosome, was designed to hold a tree-based
part representing the projection index, and a scalar part with the parameters
needed by the tree-based part, and by the targeted classifier. Using the proposed
inducer, the problems related to design of linear projection methods are tackled
by developing a generalization framework based on projection pursuit. Sustained
by a carefully designed set of function primitives, the proposed inducer creates a
new projection pursuit index which delivers an optimal feature extraction stage
for the problem at hand. Additionally, it overcomes the problem of manually
characterising an interesting projection, when no information regarding the un­
derlying structure of the targeted dataset is available.

3

Chapter 5. A sequential model for nonlinear projection pursuit is presented, which
optimises an evolutionary index in a kernel-induced feature space. The evolution­
ary index is obtained through the evolutionary framework described in Chapter 4.
Determination of a nonlinear residual subspace for sequential projection pursuit
is reduced to the computation of an updated kernel matrix. Additionally, given
the use of whitening as a preprocessing stage in sequential projection pursuit, this
chapter provides a kernel extension for whitening in feature space.

Chapter 6. This chapter introduces a generalised model for supervised spectral em­
bedding, based on a heterogeneous proximity matrix, where the relations between
enemies and friends are described through a set of different similarity metrics. Ad­
ditionally a matrix representation is proposed for each of the aforesaid similarity
metrics, which besides providing a quick way of computing blocks of pairwise sim­
ilarities, promotes compactness and parsimony of the solutions. Different from
the previously designed hybrid chromosomes, the proposed composite weight ma­
trix was encoded as a multi-gene chromosome, where each gene consists of a
tree-based part and a scalar part representing a given similarity function and a
neighbourhood size.

1.3 Published/Submitted Articles

In this section the articles published or submitted as a result of the work presented in
this thesis are listed.

1. Journal articles.

- E. Rodriguez-Martinez, J. Y. Goulermas, Tingting Mu, and J. F. Ralph,
“Automatic Induction of Projection Pursuit Indices”, IEEE Transactions on
Neural Networks, vol. 21, no. 8, pp. 1281-1295, 2010.

- E. Rodriguez, K. Nikolaidis, T. Mu, J. F. Ralph, and J. Y. Goulermas,
“Towards Collaborative Feature Extraction for Face Recognition”, Natural
Computing, DOI 10.1007/sll047-011-9285-6, in press.

- E. Rodriguez-Martinez, J. Y. Goulermas, Tingting Mu, and J. F. Ralph,
“Evolutionary Kernel Projection Pursuit for Supervised Feature Extrac­
tion”, submitted to IEEE Transactions on Systems, Man, and Cybernetics,
Part B.

- E. Rodriguez-Martinez, Tingting Mu, J. Jiang, and J. Y. Goulermas, “Evolu­
tionary Induction of Heterogeneous Proximities for Supervised Embedding”,
submitted to IEEE Transactions on Pattern Analysis and Machine Learning.

4

2. Conference articles.

- E. Rodriguez, K. Nikolaidis, T. Mu, J. F. Ralph, and J. Y. Goulermas,
“Collaborative Projection Pursuit for Face Recognition,>, in Proc. IEEE
5th Int. Conf. Bio-Inspired Computing: Theories and Applications, pp.
1346-1350, Sept. 2010.

5

Chapter 2

Machine Learning Methodologies

Artificial intelligence is a broad field of study that aims at developing intelligent agents
capable of mimicking human reasoning and able to interact with their environment
when performing a specific task. One characteristic such agents must posses is the abil­
ity to learn, understood as an adaptation mechanism that modifies a specific behaviour
when performing a given task, that allows an increase in the agent’s performance on
repetition of the same task. From this idea, machine learning (ML) sprang as the
discipline concerned with the implementation and development of learning algorithms.
Nevertheless, modelling the learning pi'ocess not only requires defining an action plan
to modify an agent’s behaviour, known as learning strategy, but also needs to define
source and representation of the training experience, and a measure of performance.

Being a multidisciplinary field, ML makes use of significant results and postu­
lates of a wide range of subjects such as philosophy, information theory, probability
and statistics, control theory, optimisation theory, and computational complexity the­
ory. With such portfolio of subjects, ML features in a variety of applications such
as natural language processing [11], handwriting recognition [12], face and fingerprint
recognition [13-15], search engines [16], medical diagnosis [17,18], bioinformatics an
cheminformatics [19-21], detecting credit card fraud [22], stock market analysis [23],
classification of DNA sequences [24], object recognition in computer vision [25], image
compression [26-28], game playing [29], robot locomotion [30], and machine condition
monitoring [31,32].

2.1 Types of Algorithms

The representation of the training experience for a given learning problem indirectly
defines the type of learning strategy that must be adopted. In ML, algorithms are
cataloged according to the representation of the target function into supervised learning,
unsupervised learning, reinforcement learning, and transduction.

6

2.1.1 Supervised Learning

It is the most common type of learning algorithms, it is based on the assumption that
training examples are given in the form of descriptive feature vectors paired with their
desired outputs [33]. The target function is represented by a mapping from the feature
space to the output domain. Supervised learning tries to reduce the error between the
estimated target for a given training sample, and its desired output. Once the target
function is learnt, it can be used to estimate the category of a previously unknown
example. When the target is a continuous signal, the task is known as regression, and
when it is a label describing the class to which the input vector belongs, it is called
classification.

2.1.2 Unsupervised Learning

Unsupervised learning [34] is an inference process in which implicit relationships among
training examples are uncovered. In unsupervised learning there is no a priori informa­
tion about the output. The input examples are grouped following a similarity criterion,
which can be implicitly defined in the algorithm or explicitly given by a similarity func­
tion. Generally, the only a priori information an unsupervised algorithm needs is an
estimate of the number of groups defining the data structure. Representative examples
of unsupervised learning are clustering and dimensionality reduction.

2.1.3 Reinforcement Learning

Reinforcement learning [35] studies the interaction between the agent and its environ­
ment, in order to develop strategic plans such that any action performed by the agent
to modify its environment contributes towards improving a long-term reward. Gener­
ally, a reinforcement learning problem is modelled as a Markov decision process (MDP)
composed of four elements: a finite set of states, a finite set of actions, a probability
transition matrix P, and a reward transition matrix R. Its solution involves maximising
a weighted sum of rewards given by an optimal policy. A policy is a mapping from a
given state to a specific action. A MDP is solved using dynamic programming assuming
a priori knowledge of P and R by means of two variations: policy iteration which starts
with a initial policy and iteratively improves it, and value iteration which is based on
the convergence of a set of values known as values. When no a priori information is
assumed, temporal difference methods are used to learn an optimal policy. There are
two principal algorithms for temporal difference: actor-critic learning which parallels
policy iteration, and ^-learning which parallels value iteration.

2.1.4 Transduction

Different from induction, where a general rule to classify future examples is learnt from
training samples, transduction propose to directly predict the class label of a given sam-

7

pie based only on the available training examples [36]. Since it lacks a predictive model,
if a previously unknown sample is added to the problem, the whole algorithm would
need to be run again to produce a label. On the other hand, transductive algorithms
may be able to make better predictions with fewer points. When the objective is to
assign a discrete label to unlabelled points, the design of a transducer involves adding
partial-supervision to a clustering algorithm. According to the clustering technique,
such algorithms can be further divided into partitioning transduction and agglomera-
tive transduction. When the target is a continuous label, a transducer is designed by
adding partial-supervision to a manifold learning algorithm.

2.2 Pattern Classification

Classification can be placed at the core of the decision process in an intelligent agent.
It is the result of applying previously learned rules to sensory inputs. Typically, such
rules are modelled as a classification function whose parameters are estimated using
supervised learning. The classification task can be divided into two groups: binary
classification when the task consists in discriminating among two groups, and multi­
class classification when there exists more than two categories. The binary classification
framework can be extended to solve multi-class problems. Let the feature vectors be
labelled with one of c class labels, thus the task can be broken into c one-against-all
binary classification problems, each of which builds a classifier separating one class
from the rest. Formally, binary classification can be defined as follows: Given a set of
training examples {(x^, ?/i)}^=1 with n Tridimensional feature vetcors x* e paired
to n corresponding class labels T/i £ Y = {—1, +1}, the task consists in approximating
a unknown classification function ip : > Y that best predicts the label for an input
sample.

2.2.1 Linear Classifiers

Linear classifiers take their name from the linear function used to model the decision
boundary, which is modelled as a hyperplane in the Tridimensional feature space as

t/?(x) — pTx + 6, (2.1)

where p € Rm is a weight vector and 5 £ R is a threshold weight or bias. These
parameters are estimated from training examples using techniques such as maximum
likelihood, maximum a posteriori probability, Bayesian inference, or expectation max­
imisation. Usually, when a Bayesian approach is used to model the decision process,
Eq. (2.1) is given by the a posteriori probability p(y|x). Based on how such probability
is estimated, linear classifiers are divided into generative and discriminative.

2.2.1.1 Generative classifiers

Generative classifiers [37,38] use Bayesian decision theory to guarantee optimality in the
hyperplane parameters. They model a joint probability p(x, y) by means of Bayes rule
as p(x|y)p(?y) and learn the model parameters through maximisation of the a posteriori
probability. Their name conies from the fact new samples can be generated using
the estimated a priori and class-conditional probabilities. The decision rule selects
y = +1 if p(y — +l|x) > p(y — —l|x), otherwise y = —1. Such rule has been proven to
minimise both average risk and classification error probability. From a mathematical
point of view, sometimes it is better to work with a monotonically increasing function
of the probabilities, such that hyperplane separating class +1 from class -1 can be
modelled as

ini'?$fc+il1+ln p(y — +i)\
o.,p(xly — —i) J ' “ Vp(?/ =-!)>/ ^2’2)

Usually, the class-conditional probability is assumed to be Gaussian and independent.
Hence, for class +1 we have p(x\y = +1) ~ JV(ju+ .S+), where S+) is a Gaussian
probability distribution with mean p+ and covariance matrix E+, and its respective
discriminant function is

ip+ (x) - In p(x\y = +1) + In p(y — +1) (2.3)
= — ^(x — jU_|_)TEljl1(x — — ^l11 27T — -In |S+| -1- In p(y — +1).

In general, this is a nonlinear quadratic form and the resulting Bayesian classifier is
known as quadratic classifier.

When the covariance matrix is the same in all classes, E+ — XL = E, the quadratic
contribution of the term xt'Ex, as well as the constant term —yin 27r — ^ln |E| will be
the same in all discriminant functions and eventually cancelled out in the hyperplane
function. Thus the discriminant function can be expressed as

i>+(x) = p+x + 6 (2.4)

where p+ = E~V+ and b — — Jj/^E~1/i+ + In p(y — +1). From the structure of the
covariance matrix, two cases can be separated:

• Assuming statistically independent features with the same variance er, the covari­
ance matrix takes the form E — o*2Im, with inverse E-1 = where Im is
a m x m identity matrix. The weight vector and bias in Eq. (2.4) simplify to
p+ = -^y,+ and b = + In p(y = +1). As for the hyperplane, it can be
expressed as well as a linear function of the inputs as follows

PT(X — x0) = 0, (2.5)

where p = /i+ - /i_ and x0 = ±(p+ + pJ) - o2ln

9

• A second case arises when the classes present the same arbitrary covariance ma­
trix. In this case the discriminant function is the same as in Eq. (2.4), and the
hyperplane is described by Eq. (2.5) with parameters p = E“1(//+ — /Li_) and
x0 = i(M+ + M-) - In (^=±g)

If the parameters of the normal distribution are unknown, they can be estimated
from the training data using maximum likelihood (ML), maximum a posteriori proba­
bility (MAP), or Bayesian inference estimation. Examples of algorithms in this category
are Naive Bayes classifier and Linear Discriminant Analysis.

2.2.1.2 Discriminative classifiers

Contrary to generative classifiers, that need the class conditional probability and the a
priori probabilities to model the a posteriori probability, discriminative classifiers solve a
more specific problem by directly estimating the a posteriori probability p(y\x) [37,38].
An advantage of discriminative classifiers is that the number of adaptive parameters
to be determined is linearly dependent on the input space dimensionality, thus they
perform better than generative classifiers for high dimensional datasets.

An example of discriminative classifiers is logistic regression, where the posterior
probability is modelled as follows

and

p(y = -l|x) =

p(y = +l|x)

J. + exp(p:rx + b)

exp(pTx + b)

(2.6)

(2.7)1 -I- exp(pJ'x + b) *

Thus, the decision rule can be expressed as the inequality > 1. Substituting
the definitions of the posterior probabilities and taking the natural logarithm of both
sides of the inequality leads to Eq. (2.1), where the label y = +1 is assigned if ^(x) > 0,
and y = — 1 otherwise.

A second subcategory of discriminant classifiers are those which use a geometric
approach to directly estimates the unknown classification function i/>(x) such as the
perceptron algorithm, or support vector machines (SVM). They do not provide poste­
rior probabilities, instead they pose the problem of learning the parameters in Eq. (2.1)
as a convex optimisation problem which is solved by means of quadratic programming
or Lagrange multipliers.

Support vector machines SVMs [39-41] construct a linear separating hyperplane
in a given feature space that maximises the distance between itself and any training sam­
ple. When a perfect decision surface is assumed, the derived classifier is known as hard-
margin SVM classifier, and the separating hyperplane, defined as ^(x) =< p,x > -\-b,

10

can be built by minimising the following optimisation risk

min 4lpl2,p,b 21 1
s.t. 2/i(< p,x >+£>)> 1, $ = 1,2,... ,7i} (2.8)

where l-j and < • >, correspondingly denote vector norm and dot product in the given
feature space. A solution to the above constrained optimisation problem is found with
the help of Lagrange multipliers A = [Ai, A2,..., A;]r, which transform the referred
problem into its dual

T ELl Ai “1 E?=1 E?=1 ''"'"'A;A:" Xi’Xj' >■

s.t. ELi = °>
Ai > 0, i = 1,2,... ,n. (2.9)

Thus, the solution vector is given by the linear combination of the training set p —
Those samples with non-zero Ai are called support vectors (SVs).

For the case when an overlap between classes exists, there is no hard-margin defin­
ing an optimal decision surface. Introducing a loss term into the risk optimisation
problem with the help of slack variables £ = [£i, £2 5 • • • ? £,ri]T■, allows samples violating
the constraint yi(< p,x > +6) > 1 to be considered part of the SVs. In this case, the
decision surface is built by solving the optimisation problem

min |(|p|2+ C,2]"=i&) ,
P,0

s.t. yi(< p,Xi >+&) > 1
&>0,z = l,2,...^, (2.10)

where C is a positive regularisation parameter set by the user. Again, using the La­
grange multipliers A = [Ai, A2,..., Ai]T, a dual version of Eq. (2.10) can be written
as

max YJL\ A» - § EiLi E”=i ViVj^j < xj >>A
s.t. E?=i ViK = o,

0< Ai< C,i = l,2,...,n. (2.11)

This type of SVM is also known as soft-margin C-SVM or Xq-SVM. The C parameter
in Eq. (2.10) controls the trade-off between two conflicting objectives: maximisation of
the margin, and minimisation of the training error. An alternative soft-margin SVM,
known as zaSVM, attempts to directly control the number of margin errors and SVs
involved in the decision surface, which is determined by minimising the optimisation

11

risk

min i|p|2--i/p+££?=!&,

s.t. yi(< p,Xi >+6) > p-&,

^ >, i =

p > 0, (2.12)

where p is a constant defining the margin size, and v G [0,1] is a user-defined regular-
isation parameter, which sets an upper bound on the fraction of margin errors, and a
lower bound on the fraction of SVs.

2.2.2 Nonlinear Classifiers

Different from linear classifiers, the decision boundary built by nonlinear classifiers
is an arbitrary hypersurface different from a (in — l)-flat in the Mm feature space.
Similarly to linear classifiers, nonlinear classifiers can also be divided into discriminant
and generative classifiers. Examples of nonlinear discriminant classifiers are multilayer
perceptrons, radial basis function (RBF) networks and self-organizing maps (SOMs).
As for nonlinear generative classifiers, quadratic Bayesian and fc-nearest neighbours
(kNNs) are considered representative examples.

2.2.2.1 Generative classifiers

The extension of a naive Bayes classifier for the case of an arbitrary covariance matrix
for each class is a natural example for a nonlinear generative classifier [42]. As with the
linear case, the class conditional probability is assumed to be Gaussian, but this time
the quadratic term in the discriminant function can not be dropped, leading into the
quadratic classifier

^i(x) = xTCiX + wfx + o/iO) £ = +,—, (2.13)

where i = +, — denotes class label, Q = W{ = and uJio = — —
iln|Sj| +ln p(y = £).

Other example of nonlinear generative classifier is given by the fc-nearest neigh­
bours classifier that is based on nonparametric pdf estimation methods [7]. Such
methods are used to estimate the class-conditional probability p(x|y) when no assump­
tions about its structure are taken. They are based on an extension to multiple di­
mensions of the histogram estimation technique, and follow a common model given
by

p(x) = (2-14)

which represents the constant pdf value inside a hypercube of volume V holding kn
out of n total samples. Specifically, the ^-nearest neighbours method fixes the number
of samples to be contained within the hypercube. It works by placing an hypercube

12

Figure 2.1: Artificial neural network represented as weighted graph.

centred at each training point, which volume is expanded until it covers kn points, that
will be those closest to the centre. It follows the model

p(x) = ^vfe’ (2'15)

where the volume dependance on the training point x is made explicit by F(x). The
optimal number of neighbours can be learnt from the training set. The pdf estimate
computed by the /^nearest neighbours can be used within the Bayesian framework to
produce the fc-nearest neighbours classifier, which labels a test point with the most
frequent class label among its kNNs.

2.2.2.2 Discriminative classifiers

The mentioned examples are all based on a mathematical model known as artificial
neural networks (ANN) [43]. Inspired by neurobiological analogies, ANN algorithms
emulate the way human brains compute, offering highly nonlinear decision surfaces,
direct input-output mapping and dynamic adaptive mechanisms. A typical ANN can
be regarded as a weighted graph as shown in Fig. 2.1, where each node represents a
mathematical model known as artificial neuron, which is defined as

^(fe+i) = fik

where Ujic is the jth input to the iih neurone on the kth layer, weighted by coefficient
The function /$&(■) in the above expression is known as activation function, and

its purpose is to fire or inhibit the action of the corresponding neurone. Common
choices for are heaviside steps, sigmoids, linear functions, or Gaussians. There
are several variations to the structure shown in Fig. 2.1, but the basic directed acyclic
graphic (also known as feedforward network) consists of an input layer, one or more
(for multilayer perceptrons) hidden layers, and an output layer. When the activation
functions in all nodes of the hidden layer depend on the distance to a given point, the

13

resulting network is known as RBF network. SOMs are an entirely different approach
where the weights have a spatial component attached to the weighting coefficients.
Such component is used to locate them onto a two-dimensional lattice which produce
a low-dimensional representation of the data.

The learning process in an ANN involves adjusting its weights to minimise a
given cost function that depends on the available examples. The selection of a suit­
able cost function depends on the desired task, and on the properties of the learning
algorithm, being the mean-squared error a popular choice for supervising learning. Sev­
eral learning algorithms have been used to train a neural network, ranging from the
classical gradient descent algorithm [43] to more recent and sophisticated evolutionary
algorithms [44-46].

2.3 Feature Extraction

Selection and design of an ad-hoc classification algorithm plays an important role in
classifying an object. Nevertheless, few can be done if the feature vectors describing
such object are noisy or present redundant information. Traditionally, in pattern clas­
sification systems, a feature extraction stage is used before classification in order to
preprocess raw input data, and build representative features. Among feature extrac­
tion methods, projection methods are quite popular due to their low computational
cost, statistical invariance, and high information packing ability. In the following, a
brief description of different projection methods is offered.

2.3.1 Projection Methods

Let T — {(xi,pi)j , z = 1,..., n, be a given learning set containing n m-dimensional
whitened samples Xj, arranged in a matrix X 6 MnXm, each one belonging to one of c
classes, denoted by z/* being arranged in a corresponding class-vector Y G M". A linear
projection technique generates a projection matrix P e Rmxb such that

Zi = PTXi, z = 1,2,... ,7i (2-17)

is a ^-dimensional representation of the ith sample, for b < m. When the columns
of P are orthonormal, they represent the basis of a feature subspace, which can be
designed using a given criterion such that the information embedded in each component
decreases.

2.3.1.1 Principal component analysis

Principal component analysis (PCA) [47] generates an orthonormal basis spanning a
subspace that maximises the total scatter of the projected samples across all categories.

14

Such basis is obtained by solving the optimisation problem

Ppca = argmax Ip^StPI (2.18)
pgfl^mxb 1 I

where = Yaj=i total scatter matrix. The columns of the optimal basis
{pi|£ = 1,2,... can be estimated by the eigenvectors of St corresponding to its b
largest eigenvalues.

For high-dimensional data (i.e. m » n), computing the eigenvectors of the total
scatter is computationally expensive. In this case, an alternative method exist based
on the singular value decomposition (SVD) of the data matrix X. Let

xt ^ psvt (2tl9)

be the SVD of the transpose version of X, where P is the matrix with columns the
eigenvectors of XTX, V is the matrix with columns the eigenvectors of XX7'. Thus,
the PC A projections of X can be obtained as

z = XP = VXT. (2.20)

Due to the projection matrix being computed by maximising the total scatter, the
extracted features include information regarding the within-class scatter Sw Although
such information may provide high compression rate, the resulting subspace does not
always provide maximum class-separability as stated in [48],

2.3.1.2 Linear Fisher discriminant

In order to diminish the effects of the within-class scatter, and taking advantage of the
class-information available to produce higher discriminative features, LFD [1] uses a
direct measure of class separability to compute the projection matrix by solving the
optimisation problem

Pi/rf = argmax PeMmx6

PTSjjP

PrSwP
(2.21)

where
c c

Sp = - M)T and = X] S (X _ (2-22)
i=l i=l x:yei

are the between- and within-class scatter matrices, m is the average of ni samples in the
ith class, and fj, is the global mean. This time the columns of the optimal basis {pj|z =
1,2, ...,6} are estimated by solving the eigenvalue problem AjS^pj = S^p^, i —
1,2,..., & where the set of nonzero generalised eigenvalues {Ai|i — l,2,...,c—1} impose
an upper bound to the number of extracted features.

Given the high-dimensionality of the data, where m » n, the small sample size
problem is always present. A popular way to cope with such problem is to apply PC A

15

in a first stage to reduce the dimensionality of the original space to n — c, and then
applying LFD as defined in Eq. (2.21) to further reduce the dimensions to (c — 1).
In this way, the resulting search space after PCA dimensionality reduction possesses a
nonsingular within-class scatter matrix. Thus, the optimal basis P0/J£ is computed as
follows

JPopf = ^pca^lfd (2.23)

where

Pi/d — argmax
peR(n-c)x6

pTpT a p p
x pco^-D-1- pcax

PTP^SH,PpcoP

and J?pea is defined as in Eq. (2.18). Note that in this case, the space search for Ppca
consists of all the orthonormal matrices of size m x (n — c), whereas for P//d, it consists
of all the orthonormal matrices of size (n — c) x b.

2.3.1.3 Independent component analysis

Contrary to PCA and LFD, ICA does not count with a close form solution but rather
performs an iterative optimisation over a constrained space to maximise a given cost
function [49], The resulting projection matrix maps the original features to a sub­
space where every component is independent of each other. The core of ICA is the
assumption that each dimension of the observed samples is a linear combination of
b low-dimensional sources z* given by x?: = MTzi; thus by estimating the components
of the mixing matrix M = P-1 we could estimate every independent source z.p

Lets consider the linear combination z.j = Xpi = ZMpi = Zq;, which gives the
jth coniponent of the projected samples onto a low-dimensional subspace. In order for
the estimate z.^ to be exactly the correspondent i^1 independent component of Z,
should be a column vector with its ith element equals to 1 and zeros elsewhere. Given
the fact that any combination of the independent components in Z is more Gaussian
that any of its columns z.j, we can find p?; by letting it vary until the distribution Xpj
reach maximum nongaussianity; at that point q^ has only one nonzero component and
z.j is equal to the corresponding ith column in Z. Therefore by looking at the degree of
nongaussianity of the projected features distribution we can estimate the components
of the transformation matrix as an optimisation process where the search is performed
over the space spanned by all the Pi 6 IRm.

Several ways to measure the nongaussianity has been proposed such as kurtosis
and negentropy. Using gradient based optimisation methods, a search algorithm was
proposed in [50] where successive updates based on a contrast function are applied to
a random starting point until convergence is met. Such algorithm is known as FastICA

16

and the updating rules derived for kurtosis and negentropy are as follows

(2.24)

(2.25)

Pi^£;{Xr (X Pi)3}-3 Pi
Pi <- .E{Xr ^Xpi) - £{S'(Xpi)} Pi}

When the distribution of the independent components is Gaussian, no matter how the
observed features are projected, the evaluation of the contrast function for any given
angle will be the same and FastICA will fail to converge. For a deeper exposition of
ICA refer to [49].

FastICA is known as a one-unit algorithm since it estimates only one independent
component, i.e. projection onto a one-dimensional space. The way to extend this
algorithm to multiple dimensions is by exploiting the fact that the columns in the
transformation matrix, corresponding to different transformed features, are orthogonal
in the whitened space. Therefore, running a one-unit algorithm several times and ap­
plying orthogonalisation over the resulting transformation matrix after every iteration,
we can prevent different vectors from converging to the same optimum.

Two major orthogonalisation methods have been developed so far based on Gram-
Schmidt orthogonalisation. The first one is called deflationary orthogonalisation, where
the components of the transformation matrix are found sequentially as follows:

1. Choose ft, the number of independent components to estimate. Set z *— 1.

2. Initialize

3. Do an iteration of a one-unit algorithm on pi

4. Do the following orthogonalisation:

i—l

V = Pi-Z)(pf Pj)Pj (2-26)
j=l

5. Normalize pi and v.

6. If p^v < 1, go back to step 3.

7. Set i i -f 1. If i is not greater than the desired number of independent compo­
nents, go back to step 2.

The second one is symmetric orthogonalisation, contrasting with the former one by
computing in parallel all the components of the transformation matrix. This parallel
processing consists of running b independent one-unit algorithms, follow by an orthog­
onalisation involving matrix square roots. Symmetric orthogonalisation consists of the
following:

1. Choose b as the number of independent component to estimate.

17

2. Initialize randomly the p*, i = 1,..., 6.

3. Do an iteration of a one-unit algorithm on every p, in parallel.

4. Do a symmetric orthogonalisation as

P=(PPT)-1/2P (2.27)

(P Prr1/2 =E diag(Ar1/2,..., 1/2) • Er

where E is the matrix formed with the corresponding b eigenvectors from the
square matrix P P7.

5. If P P ^ Im, where Im is a m x m identity matrix, go back to step 3.

2.3.2 Projection Methods in Kernel-Induced Feature Space

The popularity of linear classifiers over nonlinear classifiers is due to their fast response,
robustness in high-dimensional spaces, and minimal storage requirements. Neverthe­
less, in many real-world problems, a linear decision surface is not enough to distinguish
among classes due to the underlying nonlinear data structure. In such cases, a nonlin­
ear mapping can be used to unfold any nonlinearity as can be seen in Fig. 2.2, and then
any linear classifier can be used in the new feature space. Additionally, nonlinear pro­
jection methods can be used as dimensionality reduction techniques when the number
of projection vectors are less than the dimensionality of the input space as described
in Eq. (2.17).

2.3.2.1 Kernel principal component analysis

Classical nonlinear feature extraction has been inspired by kernel principal component
analysis (KPCA) [51] and the use of the so-called kernel trick. KPCA assumes a non­
linear map (p : Rm —» TY to a non-observable high-dimensional space referred as feature
space. In such space, bearing in mind centred data, i.e. 0(xj) = 0> xj £
the principal components are computed by solving the eigenvalue problem

Ap = Cp, (2.28)

Figure 2.2: The idea of nonlinear mapping is to translate the original feature space into
a non-observable feature space where the samples can be linearly separated.

18

where C is the covariance matrix in feature space. As Cp = ^ jLi(^(xj)Tp)e/>(xj)5
all solutions p must lie in the span of {^(xj)}^, therefore exist a set of coefficients
7 e M71 such that p = <I?T7, where 3? = [0(xi), ^(x2), 0(x?l)]r is the matrix
representation of the mapped data in H. Using this expansion, the eigenproblem in
Eq. (2.28) can be expressed as

nX'y = K7, (2.29)

where K is a kernel matrix which defines the dot-product among the samples in feature
space as fcy = AT(xi, Xj) = ^T(xj)^)(xj). Thus, the coordinates of the embedded feature
vectors are not needed, but only their pairwise inner product. Once the first nonzero
eigenvalues 7^i = 1,... ,6 of the kernel matrix have been computed, the ith nonlinear
principal components of a testing point x* G Rm can be obtained as

P?V(xt) = = K(74, (2.30)

where K; is the ltl1 row vector of pairwise inner products between the testing point
and the training samples. Then the m-dimensional testing point is mapped into a b~
dimensional space. When the assumption of centred data in feature space is not valid,
the kernel matrix K can be replaced by K — K-InK—KHn+linKIn, where In = ^lnl^
is a x n matrix with all its elements equal to l/n, and ln is a column vector with n
elements equal to one.

2.3.2.2 Kernel Fisher discriminant

Following KPCA approach of mapping the input data to a non-observable space 7i,
kernel Fisher discriminant (KFD) maximises the Rayleigh’s ratio between the within-
class and the between-class scatter [52], which can be defined in H as

c _ C

= S (^(x) " ^)(<£(x) _ ui)T and SB = (2.31)
i=l V0(x):y=i i—1

where Vi —]Cv0(x):y=i 0(x) is the ith class mean. Given the only information regard­
ing 7i is the pairwise inner product among samples in the feature space, the Rayleigh’s
ratio can be redefined as follows [53]

PTSbP 7TKIK7
(2.32)

PTSwP 7rKK7

where K — (K.rt)r,t=i,...,c is a ordered version of K composed of blocks Krt = (fey), i =

1,... ,nrfj = 1.... ,rit holding the pairwise inner products between samples in class r
and samples in class £, I = diag(Kni, lln2,..., Enc) is a block diagonal matrix, and 7 G 1R?1
is a set of coefficients that describes p within the span of 3>. From Eq. (2.32) it is clear
that the solution to the optimisation problem posed by Eq. (2.21) in the non-observable
feature space is equivalent to the solution of the eigenvalue problem

AKK7 = KIK7, (2.33)

19

and the ith nonlinear component of a test point x; 6 Km is obtained as in Eq. (2.30),
but changing K/ by K/ = [< 0(xj), 0(xi) >iGind(y=j)] 7=1','.'.’"cb where Ind(y - j) returns
the set of sample indices in the jih class.

2.3.3 Projection Pursuit

Linear transformations have been widely used as feature extraction methods to over­
come problems related to high-dimensional spaces. Recently a generalized linear pro­
jection method, known as (exploratory) projection pursuit (PP), has been applied as
a preprocessing stage in high dimensional classification tasks dealing with face recog­
nition [54] and hyperspectral image analysis [26,27,55]. PP was defined as a technique
for exploratory analysis of large multivariate datasets, aimed at unsupervised dimen­
sionality reduction and feature extraction [56]. Projection pursuit tackles the curse
of dimensionality by means of projecting the whole dataset onto a low dimensional
embedding, which should retain the same amount of useful information as the original
dataset, and help to visualize the underlying data structure. The optimal projection
coefficient set is found by looking at the data degree of interestingness, which is assessed
by a predefined index function known as projection index.

The first work on projection pursuit was in 1969 by Kruskal [57], but was Friedman
and Tukey [56] who introduced the term. Several developments were inspired after their
work, extending the idea of projection pursuit (PP) to other contexts, like projection
pursuit regression [58] and projection pursuit density estimation [59]. But it was until
Jones and Sibson [60] established a framework based on information theory principles,
when this methodology drew the attention of researches. In the following a descrip­
tion of the optimisation problem pose by PP and the characteristics of representative
projection indices is provided.

2.3.3.1 The optimisation problem

Unlike PCA or LFD, PP does not count with a close solution. Instead, a suitable
optimisation method must be applied to solve the optimisation problem pose as follows.
Given the learning data defined in Section 2.3, and a projection pursuit index that
measure the degree of interestingness in the projected data defined as in Eq. (2.17),
we look for a projection matrix P* that maximises the criterion

P* = argmax 3(XP) (2.34)
peK,mx6
PrP=I6

2.3.3.2 Current projection indices

The selection of an adequate projection index plays an important part in PP, since
it defines the properties one wants to highlight in the projected subspace. Generally

20

Table 2.1: PDF-Based Indices.

Index Characteristics
Friedman-Tukey [60]

= f f2 dz
Minimised by a parabolic density
function. Easy to compute. Not
sensitive to outliers.

Fisher information criterion [61]
S /(/')2//dZ

Represents a non-entropy based
index, which is uniquely optimised
by a normal pdf. Requires an
approximation of the pdf
derivative.

Jones-Sibson [60]
^3 = /-/log(/)dz

It is uniquely optimised by the
normal pdf. Provides a natural
location for the origin. It highly
depends on selected pdf estimation
method.

Information divergence [27]
^4 = / /log (//<?!>) dz

+ /<£ log (</>//) dz

Allows the definition of
uninteresting projections by means
of their pdf. A reference pdf has to
be computed.

Table 2.2: Moment-Based Indices.

Index Characteristics
Skewness [26]
O; — m3(z)

— 3/2 / ,
m2 (Z)

Interesting projections will exhibit
negative skewness. Very sensitive
to outliers.

Kurtosis [26]

6

Less prone to outlying projections.
Interesting projections will exhibit
uniform scatter. Supports ICA.

PCA
0:7 = m2(z)

Together with the residual
subspace technique provides an
estimation of PCA as described
in [49].

Moments linear combination [60]
= n (^Kz) + 1^4(z))

Provides an approximation to
entropy. The balance between the
forth and third moments may vary.

21

Table 2.3: Class-Information-Based Indices.

Index
Lr-novm [62]

0=9 =
ELiEiiite-w)'

Characteristics
LDA is a special case for r = 2. Presents
smoother versions of LDA for r equals to
multiples of two. Sensitive to outliers as
the parameter r increases. In [62] it was
optimised using simulated annealing. In
the equation n:j is the number of
instances in class j, jij is the mean of
class j, and fi is the global mean.

Bharracharya distance [63]
O* _ 1 (au-m.,)2 I llnn,(7i+0''

It is based on first and second order
statistics, and is related with the
Bayes-classification accuracy. When
dealing with c > 2 classes, c(c — l)/2
computations are needed.

speaking, PP indices can be classified into three categories: pdf-based indices, moment-
based indices and class-information-based indices.

Among the most popular pdf-based indices are order-1 entropy [60], Fisher informa­
tion criterion [61], L2-metric [64], Hermitian index [65], and information divergence [27].
All this indices look for departure from Gaussian distributions, since they are considered
uninteresting. Their design facilitate the discovery of clusters, typically characterised
by multimodal distributions. A drawback in the optimisation of pdf-based indices is
that their robustness against outlying projections highly depends on the selected pdf
estimation technique.

Moment-based indices [26], like kurtosis, skewness, and the linear combination of
central sample moments, have being used to approximate entropy and avoid probability
density function (pdf) estimation. They have shown to be particularly useful in unsu­
pervised detection of small man-made targets distributed on an unknown image scene.
This ability to detect outlying projections is as well a disadvantage for classification
tasks, since the presence of outliers may hide projections that allow a clear cut between
classes.

Indices computed with class information consider data structures of different classes
as interesting, for which the frequent choice is linear discriminant analysis (LDA) based
on different computations of distance, such as Lr-norm [62] and Bhattacharyya distance
between two classes [63]. The Lr index offers a tradeoff between discrimination ability
and robustness against outliers as its parameter r is varied. Increasing the numeric value
of increases the ability of the index to detect outlying projections, while decreasing

22

it improves its resilience against outliers. Like any LDA based technique, the Lr-
norm index suffers from the small sample size problem; this problem has been recently
discussed in [66] where regularisation is applied to the index proposed in [62] and the
PP components are computed by means of simulating annealing.

2.3.3.3 Extension to multiple dimensions

Parallel projection pursuit. Although the classic formulation for PP optimises
only a one-dimensional projection and then expands its definition to more than one
projection, the final optimal projection matrix P* in Eq. (2.34) has been presented
without further detail. However, it is needed to clarify that there are two different
approaches in PP to build P*. The first approach is known as parallel projection
pursuit (PPP) [56] and works by jointly optimising every component in the projection
matrix by computational expensive methods. It uses symmetric orthogonalisation as
described in Section 2.3.1.3, but on Step 3 of the algorithm the optimisation described
by Eq. (2.34) is performed for 6=1.

Sequential projection pursuit. The second method is known as sequential pro­
jection pursuit (SPP), it finds the best one-dimensional projection p| corresponding
to the jth column of P*, and then removes the contribution of such projection from
the original feature space [67] by projecting it onto its residual subspace. Hence, the
{j T l)Lh projection vector is given by the solution to

Pi+i = argmaxSfXS+p), (2.35)
peK™

where Sj- = Im — P|P]T is the orthogonal complement of P) = [p|, pg,..., p|], which
is the optimal projection matrix for the first j projection vectors. Although PPP
gives all the projections components in two steps of the algorithm, the symmetric
orthogonalisation may disrupt the optimal solution for the cost function and not always
converges. Thus SPP was adopted as the preferred method to build P*.

Stopping criterion for SPP. A recently proposed stopping criterion which relies on
Bayesian model selection [21] was selected to automatically determine the number of
projections in the SPP procedure. It is based on the fact that the remaining structure
of the residual search space is decreased as the number of components increases. The
stopping criterion is defined as

^ = ^2nx[Q:(x'pi-i)“3:(x'pi)]-(-1^ 1 (2.36)

and includes the ith projection component pf if B is bigger than a predefined threshold
J, otherwise SPP stops with i-1 projection vectors in P*.

23

2,3.4 Spectral Embedding Methods

Although nonlinear feature extraction in a kernel-induced feature space is successfully
performed by the previously described algorithms, valuable information for the clas­
sification task may be lost together with the discarded eigenvectors when performing
dimensionality reduction. Additionally, recent evidence suggests that high-dimensional
spaces may allow a nonlinear embedding of data that originally could be lying in a
lower-dimensional manifold [68]. Under this assumption, a number of unsupervised
spectral embedding (USE) methods have been proposed [69-71], along with their linear
out-of-sample extension [13,72—74]. They preserve certain characteristics of the original
high-dimensional space, such as aggregate pairwise proximity information based on local
neighbourhood graphs. Nevertheless, in a supervised classification task, neighbouring
points near the class boundaries may get projected to the wrong class, damaging clas­
sification performance. Several supervised spectral embedding (SSE) alternatives have
been proposed to alleviate this problem. Those closely related to LED [75-77] make
use of the between- and within-class information to restrict the embeddings, whereas
a second class of algorithms modify the proximity definition as to consider the label
information [28,78-80].

The similarity in the optimisation problem pose by embedding methods has inspired
several works to formulate an unification framework [13,77,81]. In this thesis, the
dual formulation of the template proposed in [77] is adopted since it allow us a wider
representation of embedding methods. Such dual formulation can be expressed as

max tr [z^AZl , (2.37)
ZeMJ1><\ L -1

ZtBZ=I(,

where A <G Mnx?l can be viewed as an arbitrary weight matrix, B <E MnXn' as a scale
or label information constraint matrix, and I5 is a 6 x 5 identity matrix. Thus the
optimal embedding is given by the eigenvectors of B-1A corresponding to its b largest
eigenvalues. This template allow to express several embedding methods by changing the
structure of A and B. In the following, a brief description of the existing unsupervised
and supervised algorithms is provided under the foregoing unification framework.

To accommodate an out-of-sample extension, the definition of linear projection in
Eq. (2.17) is used to rewrite the template in Eq. (2.37) as

max tr [ptApp1 , (2.38)
PtBpP=I()

where Ap = XTAX and Bp axe the objective and constraint matrices, respectively.
This modification allows the projection matrix P to be computed directly, and through
Eq. (2.17) a test point can be straightforward projected into the embedding.

24

2.3.4.1 Unsupervised methods

Isomap [69] uses an estimation of geodesic distance among neighbouring points to
build a similarity matrix W, then classical multidimensional scaling (MDS) [82] is
applied to transform W into a Gram matrix A by means of the double centering
transformation

A = - i (I„ - ln) W (I„ -1„). (2.39)

Thus, the optimal embedding is given by the solution to Eq. (2.37) with B = In.

Local linear embedding (LLE) [70] preserves the structure within a neighbour­
hood, regarding the manifold as a set of intersecting patches. Each patch is assumed
to be linear and its structure is represented by a set of local predictive weights such
that wij — 1> wu = 0, Wij = 0 if Xj is not within the neighbourhood of and
llxi — ^ijXjll'2 is minimised. Thus, for each point x;, its corresponding local predic­
tive weights are computed as

Wi =
G"1!*

1ln (2.40)

where G is a local Gram matrix which depict the covariance in the neighbourhood
Vi °f xii with gij = (xj — Xj)T (xi — xj), if Xj E or g^j — 0 otherwise. To obtain
the embedding, each point in the lower-dimensional space is represented as well by a
weighted sum of its neighbours and the error ||zj - Xj wijzj\\2 is minimised with
respect to zi,... ,zn E M.b using the local predictive weights W previously computed.
This quadratic form can be rewritten in terms of inner products as

y: [Sij - Wij - Wji + y] wriwrj) (zfzj'j . (2.41)
ij \ T J

This criterion can be rewritten in order to meet the template proposed in Eq. (2.37),
such that the required matrices A and B are expressed as

A = W + WT - WTW and B = I?7 (2.42)

Laplacian eigenmaps (LE) [71] represents the dataset as a connected graph and
uses its Laplacian to compute a low-dimensional embedding. First a matrix W of
edge weights is built according to one of two criteria: 1) Wij — 1 if Xj is one of the
^-nearest neighbours of X*, and 0 otherwise. 2) = exp (~l|xi~x^ j if x^ and Xj are
connected nodes, 0 otherwise. Then the Laplacian matrix given by L — D(W) — W
is computed, where D = D(W) = diag(Wln) is a diagonal matrix indicating the
degree of each node. Under the assumption that connected points remain as close as
possible in the new subspace, the solution to the following optimisation problem gives
the low-dimensional embedding

min tr [zrLZl , (2.43)
zeir1*1’, L 1
ztdz

25

which can be formulated in terms of Eq. (2.37) with matrices A — W and B = D.

Locality preserving projections (LPP) [13] is a direct linearization of LE, where
the connected graph representation and the definition of the Laplacian matrix are
kept. Thus, LPP is formulated under Eq. (2.38) using matrices A = W — D and Bp =
XtDX. It is worth to notice that the extracted features using LPP are not longer
orthogonal.

Orthogonal neighbourhood preserving projections (ONPP) [72] seeks for an
orthogonal mapping that best preserves local connectivity among neighbours in the
graph. Similar to LLE, ONPP builds a weighting matrix W according to Eq. (2.40) to
describe the local structure to be preserved. It also imposes the same reconstruction
error constraint over each point on the reduced space, but the orthogonality constraint
is imposed over the projection matrix rather than over the projected points. Hence,
ONPP is defined under the proposed template by the matrices A = W+W7"—WTW—
In and Bp = Im

2.3.4.2 Supervised methods

Local Fisher discriminant analysis (LEDA) [76] combines the ideas behind LPP
and FDA by incorporating local information in the definition of the within-class and
between-class scatters. The local counterparts of Eq. (2.22), as well as the original
matrices, can be written as weighted sums of pairwise distances as follows

1 n
- xj-)(xi - xi)T and Ss = - Mxi ~ xi)(xi “ *-j)T, (2.44)

where

Vfij/na if Vi = Vj = a, ailci _ [wii0-/n
0 otherwise. 13 |l/?z

I/na) it Vi = Vi = a, (2 46)
otherwise.

Note the use of the affinity matrix W to weight the pairwise distance between samples
in the same class. Such matrix can be computed using several pairwise functions such
as the Gaussian kernel, the cosine norm, Person’s, Spearman’s or Kendall’s correlation
coefficients, or any user-defined similarity function. If the weights w^- are removed from
Eq. (2.45), the definitions in Eq. (2.44) and (2.22) are equivalent. From Eq. (2.44)
it can be shown that each scatter matrix can be expressed as the Laplacian matrix of
a connected graph with weights H and H, respectively. Thus, the optimal, discrimi­
native, projection basis can be computed using the proposed template with matrices
A - H — D(H) and Bp = Xr(D(H) - H)X.

26

Maximum margin criterion (MMC) [75] uses the summation of all pair inter-class
margins as feature extraction criterion, which is defined as

1 cJ = 2 ^ PiPi (^’ ^ _ tr(S^ _ tr(Si)) > (2-46)
i,J=l

where = (//^ — fj,j)T— /a^) is the distance between class mean vectors. It
can be shown such criterion reduces to

J = tr(S# — Sw), (2.47)

thus the optimal projection basis can be computed through Eq. (2.38) with matrices
Ap = Sj3 ~ Sty and Bp = Im. MMC overcomes the small sample size problem by not
needing to compute the inverse of the within-class scatter matrix.

Discriminant neighbourhood embedding (DNE) [83] incorporates class infor­
mation into the affinity matrix definition under the framework pose by LPP. This
refinement in the algorithm result in a criterion based on a not positive-semidefinite
matrix D(W) — W, where

(+1 if Xf and Xj are intra-class kNNs,
—1 if x; and Xj are inter-class kNNs, (2.48)

0 otherwise.

is the modified affinity matrix with label information. A sample x/. is considered the
inter-class nearest neighbour of Xf if |xj - x/, < [xf - x^ |, V;</j : yj = yk A y5 ^ y^
In terms of the adopted template, DNE can be expressed in terms of matrices A =
W — D(W) and Bp = Im.

Supervised orthogonal neighbourhood preserving projections (SONPP) [72]
modifies ONPP to take into account only intra-class examples as connected compo­
nents in the graph, eliminating the need to define the number of nearest neighbours
k involved in the optimal reconstruction process. In consequence, after sorting its
rows and columns using the class label of each sample, the predictive weights take
the form of a block diagonal matrix W = diag(Wi, W2,..., Wc), where each block
Wj = [wi]^!,...^ is computed as in Eq. (2.40) with samples of the jth class. Being a di­
rect modification of ONPP, the optimal projection matrix in SONPP can be computed
using the selected template with matrices A = W + WT - WT W - I„ and Bp = Im

Repulsion Laplaceans [78] established the concept of repulsion graph, defined as
a undirected graph where a node i is connected only to its ^-nearest enemies, which
are the nodes corresponding to the k-nearest samples not in the same class as x^. The
weighting matrix of the repulsion graph Wr is built using the heat kernel as in LE,

27

the regression coefficients as in LLE, or an alternative weight function proposed in [78].
The aim of the repulsion graph is to create repulsion forces that will separate points
from different classes that were originally close. Two methods were derived in [78]
from the introduction of the repulsion graph to classic graph embedding methods.
The first one, named OLPP-R, is a direct modification to LPP formulation, where
the laplacian matrix in Eq. (2.43) is replaced by a linear combination of a repulsion
laplacian Lr = D(Wr) — Wr and a class laplacian Ls = D(WS) — W6, where wfj —
l/na if yi — yj = a, 0 otherwise. The final laplacian for OLPP-R is L = Ls — /?Lr,
where /? > 0 is a user-defined parameter. OLPP-R can be expressed under Eq. (2.38)
using matrices A — H - D(H) and Bp ~ Im, where

hij '— <

Xna
-Pwh

if Vi = Vj = a,

if Xj and xy are inter-class kNNs,
otherwise.

(2.49)

Discriminative orthogonal neighbourhood preserving projections (DONPP)
[84] keeps the intra-class structure by minimising the reconstruction error in the low­
dimensional embedding using the predictive weights trained as in Eq. (2.40). Addition­
ally, DONPP maximises the distances between each sample and its inter-class kNNs to
keep a neat separation among classes. This process is modelled as a repulsion graph [78]
where only inter-class kNNs are made adjacent. Using a binary adjacency matrix

, f 1 if Xi and x7- are inter-class kNNs w - ■ ~ J
lJ [0 otherwise

to incorporate inter-class information to the optimisation problem stated by SONPP,
DONPP is formulated under Eq. (2.38) with the aid of matrices A = W + WT —

W W - In + ^(D(W;) - W') and Bp = Im, where /3 is a constant controlling the
contribution of the penalty term.

2.3.5 Feature Extraction for High-Dimensional Spaces

The problem of extracting compact, highly informative features to improve computa­
tional efficiency for the classification task of high-dimensional data has received a lot
of attention in the last couple of years. The difficulty in directly applying machine
learning algorithms to high-dimensional data lie on the curse of dimensionality [85].
Usually, feature extraction methods are employed as a preprocessing stage to tackle
this problem, mapping the original input space At to a lower-dimensional one B. Ac­
cording to the mapping structure, feature extraction methods can be categorised as
linear or nonlinear.

Linear feature extraction techniques improve the discriminatory characteristics of
the data, translating the original samples to a lower-dimensional representation using

28

a linear projection matrix. The commonly used linear methods include PC A [47],
ICA [49], and LFD [42], PC A can dramatically reduce the dimensions of the input space
by providing an orthonormal basis where the total scatter of the projected samples
is maximised, nevertheless it can discard useful information for classification. LFD
produces highly discriminatory features by directly maximising an explicit measure of
class separability (i.e., Rayleigh quotient). One of the drawbacks of LFD is present
when the dimensionality of the data exceeds the sample size. Under this situation,
known as the singularity or undersampled problem, all the scatter matrices in LFD
become singular and classical LFD cannot be applied. Several techniques have been
proposed to alleviate this problem [86-91]. Contrary to PCA and LFD, ICA generates
non-orthogonal, highly independent features by iteratively optimising a measure of
nongaussianity. Thus, impeding its use when the original feature space presents normal
distributions.

Linear projection techniques have been successfully applied to a broad diversity
of tasks, however in many real-world problems, a linear mapping is not enough to
model the underlying nonlinear data structure. Different research has been developed
for nonlinear feature extraction, and can be roughly classified into spectral embedding
methods and kernel-induced feature space methods. Spectral embedding methods [13,
72-74] are based on the assumption that the underlying structure of a high-dimensional
dataset can be embedded into a low-dimensional subspace, where a measure of similarity
between neighbours must be preserved. They have shown good performance on artificial
datasets. A popular method in this category is LPP [74], it works by providing a low­
dimensional embedding retaining the distance among samples in a local neighbourhood.
Kernel-induced feature space methods make use of the kernel trick [52] to project
the original input space to a non-observable feature space, accessible only through its
dot product given by a kernel function evaluated at those points. The core idea is
that the projection to the non-observable feature space will unfold any nonlinearity
and will make possible to apply the linear projection techniques in the non-observable
space. Under this assumption, extensions of the most popular linear feature extraction
methods have been proposed such as KPCA [51], and KFD [53,92]. Similarly to its
linear counterpart, KFD presents the singularity problem which have been solved by
means of regularisation [93,94].

29

Chapter 3

Optimisation Techniques in
Machine Learning

Optimisation, also known as mathematical programming (MP) is a broad subfield in
operations research that deals with the selection of a best element from some set of
available alternatives. Since the cost of a potential solution can be expressed as a func­
tion of some decision variables, optimisation can be formulated as well as the process
of finding the minimum of the cost function, within a constraint domain. ML and
MP present an intrinsic relationship that has been studied and exposed in [95,96].
Understanding the common grounds between ML and MP has allowed improvement
and development of existing and new learning models, respectively, based on popular
optimisation methods. In ML, optimisation methods are used in three different prob­
lems namely classification, parameter estimation and model selection. The last two
problems often are presented as nested optimisation problems, where several instances
of parameter estimation have to be solved in the process of model selection.

Formally speaking, an optimisation problem can be stated as

Find x = [xi,X2,. ■ ■, xn]T which minimises /(x)

s.t. ^-(x) < 0, j =

Ji(x) =0, i —(3.1)

where the minimum of the objective function /(x) is reached at some values of the
tv dimensional design vector x that meet the equality constraints Z$(x) and inequality
constrains ^(x). From the above formulation, MP problems can be categorised into two
wide and general classes based on the absence or existence of both type of constrains,
namely unconstrained or constrained problems. A more convenient and commonly used
classification is based on the structure of the objective function and constraint equa­
tions, grouping MP problems into nonlinear, linear, geometric and quadratic program­
ming problems. For every of the aforementioned categories exist specific optimisation
algorithms for their efficient solution. In the remaining of this section a brief description
of the relevant optimisation algorithms used in this work is provided.

30

3.1 Standard Optimisation Techniques
3.1.1 Linear Programming

Linear programming [97-99] is applicable to optimisation problems in which the objec­
tive function and the constrains are formulated as linear combinations of the decision
variables. Thus, the general structure presented in Eq. (3.1) takes the matrix form

min/(x) ~ c^x

s.t. Ax = b

x > 0 (3.2)

where A = is a mixing matrix, b = is a bias column vector,
and c = [ci}J=i^..,n is a weighting column vector. It is assumed that m < n such
that the linear system Ax — b has an infinite number of solutions from which the
one minimising /(x) is selected, or it has no solution at all. The other two cases
when m > n and m = n are of no interest since either the problem is overspecified
or has a unique solution. When the optimisation problem is properly formulated, the
feasible region (region defined by the intersection of the constrains domain) is a convex
polyhedron, and the optimum value occurs at an extreme point or vertex of the feasible
region.

Since the possible number of potential solutions on the feasible region increases
with the number of design variables, searching for the optimal solution becomes a
cumbersome task. An iterative method known as simplex algorithm provides an efficient
searching strategy consisting of two phases. Phase I constructs an auxiliary problem by
the introduction of artificial variables, then its optimal solution is found by a sequence
of pivotal operations. The optimal solution to the auxiliary problem coincides with a
basic feasible solution of the original problem. If such solution is no optimal, Phase II
delivers a neighbouring feasible solution with a lower or equal value of /(x) by means of
a second sequence of pivotal operations. This step is repeated until an optimal solution
is found.

3.1.2 Quadratic Programming

A quadratic programming problem [100, 101] is the simplest nonlinear’ programming
case, with a quadratic objective functions and linear constrains. Different from more
complex nonlinear programming cases, where the derivatives of the objective functions
can not be obtained, a quadratic programming problem can be solved by transform­
ing the problem into a linear programming problem through the use of the Lagrange
multipliers and the Kulm-Tucker conditions [102], The formulation of a quadratic pro-

31

gramming with linear constrains can be stated as follows
min/(x) = cTx+ixTUx

s.t. Ax < b

x > 0 (3.3)

where the term xrUx/2 is the quadratic part of the objective function with U =
being a symmetric positive-definite matrix. By using surplus variables

3 = 1,2}..., n and slack variables i — 1,2,..., ?n, the above optimisation prob­
lem can be pose in standard form

min/(a) = cTx4-^xT’Ux

s.t. Afx + sf = bi, i = l,2, ...,m

-Xj+t] = 0, j = (3.4)
where Aj = [a;i, , ain}T is the ith column of the mixing matrix. Using Lagrange
multipliers and 0j, the Kuhn-Tucker conditions for the stationariness of the Lagrange
function for the optimisation problem are given as

n m

cj ~ uijxj T o>ijXi = 0, / = 1,2,..., n (3.5a)
i=l z=l

Afx + li = 6i, i = (3.5b)
x>0, Y>0, A>0, 0>O (3.5c)

Aili = 0, i = 1,2,... ,?7i (3.5d)
Qjxj ~ 0, j = (3.5e)

where Y = [Yi], Y* = s? > 0, A = [A*], and G = [Qj], for i = 1,2,... ,m, and j =
1,2,..., n. In the above formulation, all but the last two equations are linear functions
of the variables Xj,Yi,\i and 0j. Hence, the optimal solution for Eq. (3.4) is given by
the feasible solution for the 2(n + m) simultaneous system described by Eqs. (3.5a)-
(3.5e). Although a basic feasible solution can be a local minimum, global optimality
is guaranteed as convexity of /(x) in Eq. (3.4) is granted by the positive-definitive
matrix U. The required basic feasible solution can be obtained by Phase I of the
simplex method on the system described by Eqs. (3.5a) and (3.5b), reformulated as
the linear problem

n
min F= Zj

j=i
n m

s.t. Cj — 6j -j- UijXj 4- aijXi -f- zj — 0, j~ 1,2,..., n
Z=1 Z=1

~ TAix + li = 6i, 2=1,2,... ,?n
x>0, Y>0, A>0, 0>O (3.6)

where Zj are artificial variables. When performing the sequence of pivoting operations
to reach the feasible solution, one must make sure the additional constraints Eqs. (3.5d)
and (3.5e) are satisfied by keeping into the basic solution either Y or A*, but not both.
Similar care has to be taken for variables 0j and Xj.

32

3.1.3 Nonlinear Unconstrained Programming

A nonlinear programming problem (NLP) is the most generic type of optimisation
problems, where any of the functions among the objective and constrains is nonlinear.
Although nonlinear unconstrained problems are rare, their study is important as it
provides the basis for most of the powerful methods for solving constraint nonlinear
problems [103]. Given an unconstraint minimisation problem with objective function
/(x), a local minimum exist at point x* if the necessary conditions

Q f
^i-(x = x*) = 0, i = l,2,...,7i (3.7)

are satisfied, along with the sufficient condition restricting the Hessian

Jx* — [*^]x’ d2f
dxidxj (3.8)

to be positive semidefinite. When the objective function is not differentiable in every
point of its domain, the above equations cannot be used to find a minimum, and
analytical methods can not be used to derive a close form solution. However, numerical
methods provide suitable approximations to the minimum, under certain conditions
[104,105]. They can be divided into tow broad categories as direct search methods and
gradient methods. Direct search methods overcome this problem by not requiring the
computation of partial derivatives, nevertheless these methods only give satisfactory
results for problems of low dimensionality.

Gradient Descent Methods

Gradient methods are a powerful alternative for the solution of nonlinear unconstrained
minimisation problems. They are based on the concept of steepest descent motion,
which states the objective function will decrease at the fastest rate in the opposite
direction of the gradient vector V/(x) = [df/dx1)df/dx2,...,df/dxn\T. Although
theoretical sound, gradient methods are restricted to problems where the objective
function is differentiable, but its gradient is either impractical or impossible to derive,
or computationally expensive. In such cases, approximations to the gradient at a given
point Xfc are computed using the forward finite-differences formula

9f _ /(x* + AxiUi) ~ /(xfc)
Axi ’ <3-9)

where a small quantity Axi is added in the direction given by the unitary vector
parallel to the ith axis. Selection of Axi plays an important role in the accuracy of the
approximation. A extremely small value in Axi may lead to round-off errors, while a
large one can cause truncation errors.

Given a starting point xi, gradient methods gradually approach the minimum of
/(x) by moving from point xj to point xi+1 in the direction -V/. An iterative sequence
of approximations to the minimum can be expressed as

33

1. Start with an initial position xi

2. Find the displacement direction S* = —V/; = — V/(xi)

3. Determine the optimal displacement amount zuf in direction S; and compute

Xi+i = + ci7*Si (3.10)

4. Stop if any of the following:
I /(Xt+l)-/(Xi) I ^
I /(xd = or

\9L\

I \i=l,2. < ^2)

otherwise, go to step 2.

or |xi+i -Xi| < e3,

Such iterative algorithm is known as Cauchy method [106]. Parameter w't in step 3 can
be found by minimising the rate of change of /(x*+1) along direction Si with respect
to parameter rui, given by

df df dxj
dzui dxj dzui

71
E df_

dxj
sd = V/rS (3.11)

Thus, the condition df/dzui = 0 must hold for tui to be a minimum, and the opti­
mal displacement amount w* in direction Si is obtained by finding the roots of the
characteristic polynomial d/(xi -f WiSi)/dzui — 0.

Newton’s method. Since the steepest descend direction is a local property, Cauchy
method can be sub optimal for most problems. By the incorporation of second deriva­
tives of the objective function, second-order methods improve efficiency. A well known
second-order method is Newton’s method [103-105], which is based on the Taylor’s series
expansion of /(x) at point x = x^

/(x) = /(*() + V/i(x-Xi) + i(x-Xi)TJi(x-Xi) (3.12)

where = JX£ and V/) are the Hessian matrix and the gradient of /(x) evaluated at
point Xi. The minimum of /(x) is found by setting df/dxt — 0, thus Eq. (3.12) leads
to V/ = V/i-|-Ji(x — Xi) =0. Assuming a nonsingular Hessian, an improved version
of Eq. (3.10) can be expressed as

— Xi V/i. (3.13)

To guarantee convergence to a minimum for a non-quadratic objective function, New­
ton’s method is modified by including an optimal displacement amount zd* in di­
rection Si = -J^V/i, reformulating Eq. (3.13) to match Eq. (3.10), leading to
Xi+1 = Xi - ruf Jj^V/i = Xi + t^Si.

34

Quasi-newton methods. Although the improved Newton’s method is a powerful
minimisation method, it requires computation, and inversion of the Hessian at every
iteration of the steepest descendent procedure. When the objective function involves
high-dimensional and intricate terms, Newton’s method turns to be computationally
expensive. A practical alternative to avoid computing the Hessian is to provide a
suitable approximation by means of matrix A;, similarly Jcan be approximate by
a symmetric and positive definite matrix B^. Quasi-newton methods [107] find matrix
Bj (and therefore matrix = B^1) in an iterative manner as

Bi+1 = Bi + ABh (3.14)

where AB^ can be considered as a correction matrix that is added at each iteration
of the Newton’s method. According to the rank of the correction term, Quasi-newton
methods are classified into rank 1 or rank 2 updates. Rank 2 updates are preferred over
rank 1 as they guarantee to keep symmetry and positive-definiteness on matrix B^+1 at
every iteration. Popular rank 2 choices are Davidon-Fletcher-Powell (DFP) [108,109]
and Broydon-Fletcher-Goldfarb-Shanno (BFGS) [109-112] updates. Contrary to DFP
formula, where the update is stated in terms of the inverse of the Hessian, BFGS
provides a direct approximation to the Hessian by means of matrix Ap Talcing as
starting point the Newton’s method update in Eq. (3.13) at iteration i, BFGS update
consists on the following steps

1. Find the displacement direction S* by solving A^S* = — V/i

2. Determine the optimal displacement amount zuf in direction and compute
Xt+l = *4 + rfSi

3. Stop if |V/i+i| < £, where £ is a tolerance threshold. Otherwise proceed with
next step.

4. Update the Hessian with the formula

A-i+i — Aj + Sigf
sFdi

Ajdjdf A;
dfAidi ’ (3.15)

where vectors cb = ro*Si and gj = V/i+i — V/i enforce the Newton’s methods
assumption of approximating the gradient through the Taylor’s series expansion
up to second order.

Once the Hessian is updated, a new iteration is started on Step 1. Since A/1 is required
to determine the optimal displacement direction, Eq. (3.15) can be reformulated in
terms of Bi as

■D _-D , didT f, , gT^igi\ Bigidf digfBi
B,+1 “ Bi + df^ (+ ~dfiirj ” “dfa dfiT

35

(3.16)

3.2 Evolutionary Optimisation Techniques

Frequently, in many real-world optimisation problems we face situations where the
objective function and/or the constraints are not analytically tractable or lack a close
form representation, e.g. if measuring an agent’s performance in a game [113]. A
common way to address such cases is to develop a close form approximation to the
original problem that can be solved by classical MP methods. Nevertheless, there is
a potential risk of oversimplifying the original problem, thus we could end up with
a completely different problem. Evolutionary algorithms (EAs) are stochastic search
techniques inspired by the process of evolution in living organisms [114-117]. They
start with a initial set of potential solutions, known as population, randomly distributed
in the solution space. Each potential solution in the population, called individual, is
associated with a fitness value which measure its quality in solving the current problem.
The population iteratively evolves into better solutions, close to the optimal, with the
help of genetic operators. At each iteration, an offspring population is generated by
recombination and/or mutation of the characteristics of the best individuals in the
current population. Replacement of genetic material is performed over copies of the
selected parents to avoid any disruption in their phenotype, in case they are selected
again for mating. Then the offsprings fitness value is computed and only the best
ones are allowed into the next generation. Sometimes the best performing parents are
allowed to compete against the offsprings for selection into the next generation [118].

One of the key aspects in evolutionary algorithms is how to represent a solution that
optimally fits the problem at hand. Generally, each individual is associated with a dual
representation consisting of: (1) its genotype, interpreted as the container structure of
its genetic material, and (2) its phenotype, understood as the actual expression of the
characteristics as dictated by its genetic material. Usually a specific chromosome is
designed to encode the characteristics of each problem, the population genotype, along
with matching genetic operands. Often the mapping between an individual’s phenotype
and the numeric variables used by the objective function is not straightforward and an
encoding function needs to be implemented. This mapping may introduce undesir­
able effects, such as unexpected nonlinearities, thus a representation design as close as
possible to the numerical representation is strongly suggested [119]. Another relevant
design component in EAs is the fitness function, which is responsible of assessing the
performance of each individual. Frequently, the fitness function is closely related to,
if not the same as, the objective function to be optimised. Variants to the aforesaid
components give rise to multiple techniques, nevertheless, genetic algorithms, particle
swarm optimisation and genetic programming are popular EAs among ML practitioners
and will be briefly overview in the next sections.

36

1 generation

!■■■■■■■

selection i breeding
BBBBBBBBI

evaluation

Figure 3.1: Main genetic algorithm loop, where a strong elitism policy is adopted by
retaining half of the population.

3.2.1 Genetic Algorithms

With a sound theoretical basis developed by Holland [120], genetic algorithms (GA)
are possible the most popular EA so far. They can be seen as stochastic directed
search algorithms which use a binary alphabet to directly encode optimisation variables
into a linear chromosome. The popularity of such representation is derived from the
analysis proposed by the schema theorem. It states that GAs are near-optimal sampling
strategies which increase the number of well-performing, short and low-order schemata
(i.e. similarity templates that represent a subset of strings) as the population evolves.
Nevertheless, a binary chromosome suffers an exponential growth with the increase
in design variables. In this case, non-binary alphabets can be used with a slightly
complexity increase in the genetic operations. A graphic representation of the main
GA routine is depicted in Fig. 3.1

Mutation and crossover are the two genetic operations used by GAs to generate off­
springs at each iteration of the algorithm. Crossover enables exploitation of the solution
space by passing onto the next generation the characteristics of the best performing
solutions. On the other hand, mutation makes possible to explore new solutions not
contemplated in the current population by introducing controlled perturbations into
the genetic material of selected individuals. Usually, a balance between mutation and
crossover is desirable to efficiently explore the solution space. Such balance is controlled
by means of a crossover probability Pc, that states the number of times crossover is
selected over mutation whenever an offspring needs to be generated. Although, in the
majority of implementations Pc is fixed, adaptive mutation rates can be used to pro­
mote high exploration at the start of a GA by setting a low Pc value, and gradually
increasing it with the number of generations so that exploitation of good solutions is
encouraged [121].

Several implementations of genetic operators have been developed to suit spe­
cific applications and/or problems [122]. A popular crossover implementation is
point crossover for discrete representations, which splits each parental chromosome at

37

X e {2/c; Vfc G Z} randomly selected points, and the genetic material is swapped corre­
spondingly to generate two children. This type of crossover permits a trade-off control
between distributional bias (i.e. production of offsprings with phenotype completely
different from their parents by selecting a high y value), and positional bias (i.e. inter­
change of only distant alleles in a chromosome as a consequence of low y values). For
real-valued representations, a widespread crossover known as intermediate arithmetical
crossover constructs each allele in the offsprings following the formula

Vi+iiiik) = rkPtihk) + (1 - rk)Vt(j,k), f
'Pt+i&k) = (l-rtiVtfrQ+rkPtfrk), [6-U)

where rk G [0,1] is a random uniform number, Vt(i, k) is the kth allele of the ith member
of the population at generation t.

Every time mutation takes place, an allele is considered for replacement with prob­
ability Pm — 1 — Pc. For discrete representations, mutation replaces each allele with a
random element from the given alphabet. While for real-valued representations, three
classic mutation schemes are reported in the literature. Uniform mutation substitutes
the kth allele with a uniformly distributed random value between the interval [Lk) Uk].
Gaussian mutation adds a normally distributed random number N^^rkPra) with zero
mean and variance proportional to the mutation rate to each genome in the parental
chromosome. Adaptive non-uniform mutation is based on a Bernoulli trial r, with
ps = 0.5 probability of success. It decides to replace the k^1 allele following the rule

Pt+i{i,k) — Pt{i, k) + 0(£, Uk — Vt{h k)) iir<pat
Vt(i, k) — £L(t, Pt(i, k) — Lk) otherwise (3.18)

where 0.(t,a) = a — rj* }s a mapping delivering a value in the range [0, o]

at generation £, closing towards zero as we reach the final generation Ngen.
Being a stochastic search, convergence can not be guaranteed in a fixed number of

steps, therefore a topping criterion needs to be defined. As with the majority of the EAs,
three possible heuristics can be implemented as stopping criterion: (1) Stop when the
maximum number of generations Ngen has been reached. (2) Run the algorithm until
there is no significant difference between the best fitness value Fbest and the average
population fitness FaVg, i.e. \Fbest — Favg < £• (3) Stop if the average cumulative change
in fitness function values over Nstau generations is less or equal than a given tolerance
3dsEti-Ar^-flb+i|<«.

In summary, a GA can be described by the following iterative sequence

1. Start with a random initial population TA|/—o with number of individuals.

2. Evaluate the performance of each individual by computing its fitness function
f(Pt(i))-

38

3. Rank each individual according to its fitness value and applied a selection scheme
to get a set of stallions S GVt for breeding.

4. For k from 1 to M = gNin(i, build a new individual based on a Bernoulli trial r
with Pc probability of success, following the rule

if r < Pc then
generate Pt+i(k) and Vt+i(k + 1) from CrossOver(<S(&), S(k + 1));
k ~ k ‘2)

else
generate Vt+i(k) from Mutate(<S(A;));
k = k

end if

where Crossover and Mutate are the corresponding crossover and mutation op­
erators, and £ < 1 is a scalar known as the generational gap ratio, which indicates
the amount of elite individuals that will be passed unaltered to the next genera­
tion.

5. For k from M -b 1 to iV^, insert = Sbest(k), where Sbest(k) is the set of
(1 — e)Nind fittest individuals.

6. Set £ — t + 1, and evaluate the performance of each individual in population Vt
by computing its fitness function

7. If the selected stopping conditions are met, return 5^(1) as the approximate
solution to the optimisation problem encoded in the fitness function, otherwise
go to step 3.

3.2.2 Genetic Programming

Initially developed by Koza [123] with the propose of evolving computer programs, ge­
netic programming (GP) is a strong and popular variation of GAs which employs parse
trees as genotype structures. The flexibility of such representation formalism makes
possible to evolve different knowledge abstractions, such as mathematical expressions,
rule-based systems, finite-state machines, or regular expressions. Additionally to the
genetic container, two more components need to be specified to completely define a
population’s genotype: a terminal set consisting of all the symbols leaf nodes will be
allowed to take; a function set, which includes nonterminal symbols associated with
functions and operators, that will interact with the input symbols. Two important
conditions are imposed on the design of function and terminal sets, namely sufficiency
and closure. Sufficiency states that together, function and terminal sets, must be able
to generate a solution to the specific problem. Closure, guarantees a free interaction

39

^Start^

Seed population:
Generate n individuals

"Genesis"

Scoring:
Assign fitness to each individual

Select two individuals
(Mother, Father) "Natural Selection"

Use crossover operator
to produce two offsprings

"Sexual
Reproduction"

Scoring:
Assign fitness to offsprings

No

sCrossover'i,

"Natural Selection"
Select one individual

(Mother)

"Asexual
Reproduction"

Apply mutation operator
to produce one offspring

Scoring:
Assign fitness to offspring

'Survival of the fittest"

Apply replacement operator
to incorporate new individuals

into population

Figure 3.2: Flowchart representation of a GA with crossover and mutation operators.

40

between leafs and internal nodes by requiring that any member in the function set must
be able to accept as input arguments any terminal, or output value from any function
composition of other members in the function set. The number of input arguments
a given member in the function set accepts is called arity, and it is reflected in the
number of branches the corresponding internal node can grow.

The complex representation adopted by GP demands specific changes to the build­
ing process of the initial population, and also to the mutation and crossover behaviour.
Given an initial maximum depth drnax, an initial population can be constructed follow­
ing one of three available methods [124]

Full method generates balanced trees with branches with equal depth. Starting from
the root node d — 1, it adds a randomly selected function node until it reaches
d = drnax — 1. At depth d ~ dmax, a terminal node is randomly selected. The
nodes are added in the same order they would be visited by a depth-first search.

Grow method randomly selects each new node from the union of the function and ter­
minal sets, except at depth d — dmax where only terminal nodes are allowed. This
method generates highly unbalance trees with variable depth between [1, dmax}.

Ramped half-and-half builds half of the total number of individuals Ninci using the
grow method, and the other half using the full method. For each half, the depth
of each individual is linearly increased, with the first individual having depth
d — 2, and the last one with depth d — dmax. The result is a diverse population
with trees of different shapes and depths.

Once an initial population has been created, each individual is decoded and eval­
uated according to the fitness function. Following, a population subset for mating is
defined with the help of selection mechanism used in others EAs. Nevertheless, off­
springs generation in GP differs significantly from others EAs. Typically, crossover is
performed via subtree crossover as shown in Fig. 3.3a. Given two parents, it randomly
selects a node as crossover point in each parent, and then the corresponding subtrees at
those points are swapped. Figure 3.3b shows an example of subtree mutation operator,
where a subtree rooted at a randomly selected mutation point is replaced with a newly
generated tree. This mutation operator is also known as ’’headless chicken” crossover,
because it can be implemented as a subtree crossover between the selected individual
and a random generated tree.

An interesting side effect of unrestricted subtree mutation and crossover is their
ability to produce extremely large individuals without a considerable increase in their
fitness value. This phenomenon is known as bloat and several strategies have been
proposed [125] to alleviate this problem. A wide spread technique restricts the size or
depth of generated offsprings to an upper limit [123]. Once an offspring is generated,
its size or depth is measured, if the offspring is within the set limits, it is pass onto the

41

parent 1 parent 2

child 1 child 2

(a) Subtree crossover

parent child

(b) Subtree mutation

Figure 3.3: Basic subtree genetic operators for genetic programming using the ter­
minal set {x,y,z}, and the function set , x,sin,exp} with corresponding arities
[2,2,2,1,1]. Crossover and mutation points are indicated by a V on the selected branch.

next generation, otherwise one of its parents is returned. Unfortunately this technique
tends to favour parents prone to violate the imposed restrictions, by copying them
unaltered into the next generation. Two alternatives exist to mitigate the adverse
effects of size and depth limits. The first option is to let the evolution process eliminate
an overgrown offspring by assigning it a low fitness value, close to — oo if we are dealing
with a maximisation problem. The second one is to try the corresponding genetic
operator again with the same parents, but different mutation or crossover points, or
with new selected parents. Other option for bloat control is the use of dynamic depth
or size limits [126], where every time an overgrown offspring is generated, if its fitness
value is better than the best solution found so far, the dynamic limit is set to the size
or depth of the offspring.

3.2.3 Particle Swarm Optimisation

Particle swarm optimisation (PSO) represents a different paradigm to the Darwinian
survival of the fittest advocated by GA and GP. It is inspired by the social interactions
present in groups of animals, moving or migrating in some direction. The algorithm
assumes a set of 7n-dimensional points, also known as the swarm, which explore the
solution space by iteratively adjusting the position of each point, referred as a particle,
towards the position of its own best and the best particle in the swarm. Besides its

42

position Xj, each particle is associated with a velocity Vj which indicates how far the
particle is allowed to travel. Given a maximum number of particles N, and assuming
the quality of a solution encoded in particle x^ can be directly assessed by /(x*), where
/ is the function to be optimized, PSO starts by creating randomly distributed particles
with aleatory velocities. The personal best position of the it!l particle is kept in variable
Pi, whereas the global best position is stored in p5. The iterative process in PSO can
be described as follows

For each particle x*, i = 1,..., iV in the swarm:

1. Evaluate the objective function /(xi)

2. If /(xi) < /(pi), then Pi = x4

3. Get the global best as p3 = argmmi=1 ^ /(Pi)

4. Update every component of the velocity vector v^ = [r?ii,..., Vim} as
follows

Vij = wvij + C!Z (Pij - Xij) + c2 2 (Pgj - Xij), j = 1,..., m (3.19)

where C\ and c2 are constant coefficients controlling how far the parti­
cle will travel every time its position is updated, z £ [0,1] is a random
positive number, drawn from a uniform distribution, and w £ [0,1] is
an inertia weight.

5. Update the position vector x^ = [a^i,... ,Xim] employing

Xij — Xij -f- Vij: j — 1, . . . , 771 (3.20)

Once every particle has been updated, if a given termination criterion is
met, return the global best, otherwise repeat the above process.

An additional variation to the standard PSO algorithm is given by time varying inertia
weights (TVIW-PSO) where the inertia weight w in Eq. 3.19 is replaced by a time
dependant version described as

w - (wq — Wt)
T-t

rp + wt (3.21)

where wq is the initial value of the inertia weight, wt is a desired upper-bound to be
reach at the final generation T. Thus for each iteration £, the value of the inertia weight
is linearly decreased.

43

3.3 Evolutionary Optimisation in Pattern Recognition

Over more than a decade, evolutionary algorithms (EAs) have been studied and ap­
plied as powerful design, search and optimisation techniques. Despite their differences,
all evolutionary algorithms are heuristic population-based search procedures that in­
corporate random variation and selection. They have been applied to diverse areas
such as biology [127-129], medicine [130-132], finance [133-135], law [136-138], en­
gineering [139-141], software engineering [142-144], oceanography [145], communica­
tions [146-148], and pharmacology [149-151], among others. In the field of machine
learning, EAs have been employed as designing tool, to perform system identification
for the tasks of classification, regression, feature extraction, feature selection, and clus­
tering. An extensive amount of research has been devoted to the previously mentioned
tasks, and has been thoroughly summarised in corresponding surveys [152-155]. In
most of the works, EAs employ a grey-box approach to system identification, where
a structure is assumed for a generic model, given by the targeted pattern recognition
algorithm. The free parameters of the model are encoded and estimated by the selected
EA. The term genetic-based machine learning (GBML) algorithms was coined in [156]
referring to applications of EAs to machine learning tasks, and will be adopted for the
remainder of this section.

For the problem of classification, three types of representations are regularly used
by GBMLs: decision trees [7], classification rules [157], and discriminant functions [1],
They often are encoded into tree-based chromosomes related to GP, or fixed-length
string chromosomes (also known as linear chromosomes) required by GAs. Although lin­
ear chromosomes have been used to encode all the aforesaid representations [158-160],
they have proven to be a more suitable formalism for classification rules. While tree-
based chromosomes are more popular among evolution of decision trees and discrimi­
nant functions. The variable nature of each individual under the tree-based represen­
tation implicitly defines a feature selection process, where only some of the original
features will be present in each individual. For instance, the number of features to be
tested will depend on the number of internal nodes when evolving axis-parallel decision
trees (e.g. [155,161-163]), while the hyperplane at each node in an oblique decision tree
will be a function of only a few input features (e.g. [164-167]).

Independently of the encoding scheme selected, GBMLs can be classified accord­
ing to two types of architectures [169]. Pittsburgh architecture encodes a full solution
(classifier) into a single chromosome, evolving a population of potential solutions which
delivers the best individual in the final population as output of the algorithm (Fig. 3.4
right). In Michigan architecture, the solution is encoded into the whole population,
where each individual, besides competing for reproduction, also complements and co­
operates with the rest of the population (Fig. 3.4 left). When a predefined number of
generations elapses or when some other termination criterion is met, the final popula-

44

Michigan Pittsburgh

Figure 3.4: Michigan and Pittsburgh architectures for rule-based systems. F:x indicates
the fitness for each individual. (Adapted from [168])

tion is decoded to build a single classifier which is delivered as output of the GBLM.
The design of a fitness function is more complex for Michigan than for Pittsburgh ar­
chitectures, since it must measure the degree to which one individual contributes to the
solution, but as well how it interacts with the rest of the population. On the other hand,
Pittsburgh architectures often need more elaborate genetic operators and chromosome
structures. Besides solution encoding, both architectures differ in the style of learning
adopted. While Pittsburgh systems operate in batch mode, processing at once all the
available data, Michigan systems perform incremental learning, updating the popula­
tion every time a new example is presented. Thus, the former strategy is commonly
used for offline learning, whereas the latter is more popular for online learning.

Leaving aside the previously described architectures, [154] proposed three addi­
tional categories to classify GBMLs for rule induction. Iterative rule learning (IRL)
algorithms build an ordered list of rules. The ith rule is evolved using the training
examples not covered by the previous rules. After evolution, the examples covered by
the current rule are removed and the EA is called again to generate a new rule. This
process stops when there is no more training examples. Representative algorithms in
this category comprise supervised inductive algorithm [170], and hierarchical decision
rules [171]. Genetic cooperative competitive learning (GCCL) algorithms differ from
Michigan style systems in that they use a generational GA to evolve a set of rules en­
coded into the population, but retain the incremental learning and solution encoding.
Also, they make use variable length individuals, avoiding ”don’t care” conditions, and
allow for nominal feature representation. GCCL examples include co-evolutionary rule
extractor [172], organizational co-evolutionary algorithm for classification [173], and
coverage-based genetic induction [174]. Hybrid evolutionary decision trees (HEDT) are
hybrid approaches that represent a rule set as a decision tree, which is evolved by
means of generational GAs, using linear chromosomes. They inherit the batch mode

45

learning from Pittsburgh architectures, and the use of oblique decision rules from its
tree representation. Although in general XCS exhibits high generalisation performance
when comparing to other algorithms because its solution encoding allows a compound
interaction between diverse rules, it is prone to deliver less interpretable solutions.

Other than decision trees and discriminant functions, GBMLs have been used to
evolve more complex classifiers. In [175] an hybrid classifier, consisting of a classi­
fication rule set and a discriminant function, is evolved using a two-stages GBML
algorithm. First a classification rule set is evolved using a Michigan architecture in
the first phase, which reduces the training set to examples not covered by the current
population. Second, a single-threshold discriminant function is evolved using the re­
duced training set. In this way, when a test instance is not covered by the evolved rule
set, the discriminant function is set a default rule. Evolutionary approaches have also
been applied to the induction of support vector machines (SVM) [176-180], where each
individual in the population encodes a kernel function, and their fitness is measured by
the classification performance of the SVM each one builds. Another classifier represen­
tation for GBMLs is the k-nearest neighbour classifier. In this case, EAs are designed
to optimised specific components of the classifier, such as weighting functions to scale
class counts [181], distance functions to compute the neighbours of a sample [182], or
the prototypes in their training set [183]. Other examples of evolved classifiers are
kernel nearest neighbour [184], and variable predictive models [185]. A more sophisti­
cated Michigan architecture, employing other classifiers representation, has been used
by GBMLs evolving ensemble classifiers [19,186-188]. An ensemble classifier combines
a set of week models in order to produce a strong model, thus each individual in the
population encodes a full classifier which cooperates with the rest of the population to
build the ensemble.

Evolutionary Optimisation for Feature Processing

As previously mentioned, the induction of classifiers by means of evolutionary ap­
proaches implicitly defines a feature selection process. Additionally, when the selected
chromosome encoding combines input features through arithmetic operators, an under­
lying feature construction process is suggested. Following this simple ideas, induction
of preprocessing methods by means of evolutionary algorithms can be defined as a spe­
cial category of GBMLs where a subset of the original features is selected/constructed
to boost a targeted classification algorithm. A vast amount of work has been dedicated
to this task [153], and can be grouped into two categories, namely wrapper and filter
systems. Wrapper systems make use of the subsequent classifier algorithm to evaluate
potential solutions within the evolution process. While filter systems employ some other
statistical information criterion to measure the quality of the subset, such as mutual
information, cosine norm, Pearson’s, Spearman’s or Kendall’s correlation [42], Usually

46

the number of selected/constructed features is predetermined by the user, which are
employed alone [32,189,190] or in combination with the original feature set [191] to
train a given classifier.

The preferred encoding scheme for feature extraction in GBMLs is the tree-based
chromosome because its flexibility and straight function evaluation. However, a few
works using linear chromosomes have been proposed [26,54,192,193]. For example, [54]
encodes into a linear chromosome the angles of a affine transformation that projects
input features into a subspace of low dimensionality. Often, in GBMLs for feature
extraction, the fitness function is implemented with the help of ROC-related concepts
such as sensitivity, accuracy, precision, hit rate, or a linear combination of them, es­
timated via cross validation. On the other hand, various fitness functions have been
proposed for filter approaches, such as information gain, the gini index, the chi-square
index [191], between-class scatter [32,189], and information entropy [190]. In order to
evolved a determined number of features, the selected GBML is run several times or a
multiple gene chromosome is adopted, where each gene represents a different feature.
A number of different classifiers have been applied as the core of wrapper approaches
such as k-NN, generalized linear machine [194], maximum likelihood, C4.5, and naive
Bayes.

In contrast, GBMLs for feature selection favour the use of fixed-length string chro­
mosomes. The common genotype-phenotype mapping for a binary alphabet consist on
selecting the ith feature whenever the corresponding bit is on (e.g. [17]). More complex
mappings exist for integer alphabets, for instance in [186] the chromosome is divided
in two parts, the first part corresponds to the feature encoding where each character
is in base-8, interpreted as three binary flags indicating the classifiers using the corre­
sponding feature (e.g. the character 5 in the third position indicates classifiers 1 and 3
use the third input feature); the last three characters denote the type of classifier, se­
lected from linear discriminant, quadratic discriminant, or logistic regression classifier.
Even though linear chromosomes are easier to implement and provide a straightfor­
ward genotype-phenotype mapping, for high-dimensional data they may require large
amount of memory. Tree-based chromosomes provide a more compact structure and
constitute a good alternative for such cases [195]. However, alternative representations
such as axis-parallel decision trees and univariate rule encodings need to be adopted,
forcing the genotype-phenotype to ignore any node different from the original set of
attributes. Although GBMLs for feature selection are time-consuming compared to
non-evolutionary ML methods, a better classification performance has been reported
in most of their applications [196-199].

47

Chapter 4

Automated Induction of
Projection Pursuit Indices

4.1 Introduction

In general, it is known that the performance of an entire pattern recognition system be­
comes affected by the interactions between the feature extraction and the classification
stages [1]. Thus, the overall design becomes a complex model selection problem where
a suitable feature extraction/classification pair needs to be found. The complexity of
this optimisation problem in [19] was tackled with a GA used to build an optimal en­
semble classifier. Other relevant work on feature extraction/classification pair selection
was described in [186] where an ensemble of three classifiers was used in conjunction
with a subset of features selected by a GA. A robust technique to synthesize a complete
recognition system was also proposed in [187] where GP built the structure of several
feature detectors and then a GA was applied to select a subset of them, followed by a
perceptron classifier performing multiclass recognition. Cooperative evolution of artifi­
cial neural networks ensembles was used to improve the generalization performance of
classification systems and avoid long training times overfitting in [45].

This chapter introduces a GP-based framework for automatic induction of projec­
tion pursuit indices. The referred framework optimises a set of hyperparameters for
a given classifier, and simultaneously obtains an optimal feature extraction/classifier
pair for a given classification problem. A complex set of function and terminal nodes
was designed based on robust high-order statistics and shape-shifting approximations
to divergence and entropy, in order to grant the GP search high expressive power and
generate new PP indices not previously considered in the field. Its search space is broad
enough to include the most popular indices among the existing literature. Although
the proposed algorithm has the ability to combine existing indices, it is not restricted
to a simple linear combination of them, but is capable of building any complex and
arbitrary but meaningful function composition of the members from the function set.
The targeted index function is used in PP to get a transform matrix that serves the

48

Genetic Programming

I Learning |
l set r J

Fittest individual

«*,»•}

Figure 4.1: Evolutionary model selection. The learning set T is fed into the GP module
to get an optimal model that suits the problem at hand. This module realises
the model selection procedure where the search is guided by the fitness function.

feature extraction stage. Because the projection index ^ delivers a linear transform,
we can think of it as a way of modelling or compacting the type of information the fea­
tures carry. The number of dimensions of the extracted feature space is automatically
estimated by a Bayesian criterion.

Once dimensionality reduction has been performed, classification is applied in the
reduced subspace by employing a k-nearest neighbours (kNN) classifier based on a
Minkowski distance. Therefore a two-level optimisation problem needs to be solved.
The first level consists on the selection of an optimal projection index & and optimal
hyperparameters for the selected classifier by means of GP. The second level corresponds
to the optimisation of the basis vectors of the transform P* in Eq. (2.34), by a simple
gradient descent algorithm.

4.2 Proposed Evolutionary Learning System

Ideally, in order to efficiently design an projection index that best suits the application
at hand, a guided search would be performed over all possible function compositions
of a basic set of functional primitives. In the current literature [7,10,200], the search
for an optimal feature extraction/classifier pair is often performed over a grid defined
by all possible combinations of the available methods for each application, driven by
an estimation of misclassification error. In addition to the complexity of the grid
search, one needs to consider the hyperparameters related to the classifier itself (such
as number of hidden nodes for multilayer perceptrons, covariance mixing parameters
for discriminant analysis, or regularizes for support vector machines). It is desirable
to fine-tune those parameters to suit the selected feature extraction method, and hence
they have to be included as part of the model [201], but this adds further complexity to
the search space. In order to avoid the computational burden involved in grid search,
evolutionary methodologies have been successfully applied to address automatic design
of classification systems [44,46,186,187,202]. GP, for instance, has proven to be a

49

suitable tool for feature generation [32,203], evolution of polynomial feedforward neural
networks [204], and feature selection [205].

This work proposes a novel framework based on GP which performs model selection
driven by an estimation of out-of-sample generalization error. In the following the
proposed evolutionary framework will be labelled as evolutionary projection pursuit
(EPP). The proposed framework follows a Pittsburg architecture to facilitate the design
of the fitness function. The population in the GP algorithm consists of potential models
that through evolution will be modified to increase their classification accuracy. Each
model is encoded as a pair {£y, 9}, where Q1 is a potential index function represented as
a tree structure, and 0 is a set of hyperparameters for a given classifier. Fig. 4.1 shows
a graphic representation of the proposed model selection algorithm.

A simple kNN classifier was selected as part of the evolved system in order to
highlight the feature selection part, since a more elaborate classifier may not benefit
from the complex feature extraction stage considered in this work. Nevertheless, EPP is
not restricted to the use of a specific classifier, and a more powerful one could be used
with the corresponding modifications in the fitness function. The referred classifier
is instantiated for each potential model as the number of nearest neighbours k and
the coefficient for the Minkowski metric A used to locate the neighbours are evolved
concurrently with the projection index, therefore 6 = {k} A}.

4.2.1 Fitness Function

Since the evolutionary system selects the best model, a suitable way for comparing
the different potential models in the GP population needs to be provided. The chosen
model selection criterion was the out-of-sample estimation error via cross-validation
(CV); thus the evolution process can be modelled as follows:

h
min F(3,0;T) = £; £ L(^, (xi; P*, 0))

s.t. P* = argmin
pGK<ixmj J

PTP=I
A > 0

keN+ (4.1)

where T = is a given learning set, L(-) is the 0-1 loss function between the
label yi and the prediction made by the classifier (x^; P*, 0) using sample xj <E Hi,
parameters 0 = {k, A}, and trained with prototypes in fV The imposed constraints in
Eq. (4.1) were designed to restrict the Minkowski distance coefficient to the positive
reals, and the number of neighbours k to the positive integers N"1". The projection index
A' and the optimal projection matrix P* were placed as inputs to the classification stage,

50

i* individual

Induction

Induction

Trained rla^KifiAr

Figure 4.2: GP fitness function involving 3-CV and induction of the feature extraction
stage.

since previous to the prediction process, the sample Xj G and the training prototypes
in Q; must be projected onto the subspace spanned by P*.

In order to obtain the out-of-sample estimation error for each individual, first the
given points T are divided into training and testing set f2j. The training set is
used to find the optimal projection matrix P*, which in turn is used to project both
Qi and Qj. Then, fjj is used to evaluate the performance of the potential feature
extraction/classification pair, using Q* as the prototypes of kNN and the k and A as
the kNN parameters. This process is repeated over each fold of a h-CV (a fix ft = 3
was set for all experiments) in Eq. (4.1), and the performance over the testing sets
averaged to form the estimated error. The reason behind the use of ft-CV as a way to
estimate the out-of-sample generalization error is to avoid overfitting [7].

Fig. 4.2 gives a system overview of Eq. (4.1). The block named “Induction”
performs PP using as projection index the function associated with the feature extrac­
tion part of the ith individual (i.e., S function). When using a non-prototype based
classifier, it is at this level where the training of the classifier will take place, as the
optimisation of k and A in this case, which are the hyperparameters related with the
classification part in each ith individual. Subsequently, the out-of- sample classification
error is estimated via CV and returned as a fitness measure to the GP module, which
selects the optimal tree and classifier parameters using this fitness measure.

4.2.2 Index Optimisation

Equation (4.1) can be interpreted as a bilevel optimisation problem [206] which is
solved by two optimisers. The first level minimisation problem is accomplished with
a GP algorithm, which searches for the optimal PP index and kNN parameters given
a training set. The second level minimisation problem is carried out with a gradient
algorithm, which finds the optimal basis vectors P* given the corresponding PP index

51

^ as in Eq. (2.34). Several optimisation methods have been used in PP to optimise
including hybrid GAs [67], simulating annealing [62] and PSO [26]. Nevertheless,

hill-climbing algorithms remain as the most popular methods used in PP. In this thesis,
the BEGS variant of the Quasi-Newton algorithm was selected to optimise the index
function in each potential model because it converges relatively fast, it uses finite-
differences to compute the derivative of the objective function, and avoids inversion of
the Hessian. Additionally, BEGS was also used satisfactorily for probability density
function (pdf)-based indices in [27].

It has to be noted that because gradient algorithms can be prone to local optima and
are often sensitive to steep nonlinearities of the objective function, an individual index
9? may not be optimised effectively, producing projections P* that are suboptimal and
do not illustrate the capacity of 9? realistically, yielding thus a weak fitness response.
Because of this, the proposed two level optimisation design not only searches for an
index able to minimise the classification error, but also an index easily optimizable by
a gradient method. The latter can be seen as an implicit optimisation objective of the
first level optimisation process.

4.2.3 Dimensionality Control

The number of columns in the matrix P* defines the dimensionality of the extracted
features. When using PP as feature extraction, there are two ways to build matrix
P*, by means of parallel projection pursuit (PPP) or using sequential projection pur­
suit (SPP). Parallel projection pursuit attempts to jointly optimise every component
in the projection matrix. Although PPP was defined earlier than SPP [56], the ex­
pensive computation of multivariate integrals implicitly defined in the projection index
restricted its use.

SPP finds the best 1-D projection (corresponding to the jth column of P*)
measured by a given projection index, and then removes the contribution of such pro­
jection from the original feature space [67]. This removal procedure can be carried by
projecting the original space onto the orthogonal complement of the projections found
so far [50], and then the index is optimised again over the residual space to get the next
column Pj+1 of P*. This process is iterated until a predefined number of factors are
found or the rank of the new data matrix approaches zero. Given its well established
use in the current literature, this thesis opts for the SPP style for constructing the
projections one dimension at a time.

Regarding the orthogonality restriction imposed over the components of the pro­
jection matrix, the method proposed in [84] is adopted to implement an efficient de­
flation scheme. It is based on the assumption that once the ith projection vector
P?) — \Pi,i! • ■ ■ {j ~ d — i+1 and i— 1,..., ?n) has been found then, there is at
least one component pi^q ^ 0 such that any vector v; = [ui,..., Vj-i]T with vi = 1{1 ^

52

q), vq = —Pij/piyq, and V[: = 0(k q, l), is orthogonal to pp\ The set of vectors {vj}
for l — 1,..., 5 — 1, g + 1,..., j form a basis defining the orthogonal space of as

0(9-1) xfj'-g)
Pi,l
Pi,q

Pi,<7+1
Pi,q

__Pi, 3
Pi,q

^(j-g)x(g-i) IJ\7—9

(4.2)

Its orthonormal version is computed by means of the Gram-Schmidt process and de­
noted as Qj^. Such transform is used to compute the reduced search space for p^ as
follows

Zi+1 = xqf Q^-1'... = X n Qi■ (4.3)
k=d

As can be seen, the search space Z^+i for the next projection vector is one dimension
lower than Zj, therefore p-^\ will be one component shorter than p^ as indicated by
j. To recover each p* from its deflated version pp^, we have

j+i
Pi = II Qi-P? * = 2,..., m. (4.4)

k=d

The use of this method has the advantages of being faster than Gram-Schmidt based
deflation scheme [84], reducing the computation and guaranteeing uncorrelatedness. A
disadvantage is the need to store every Q^, so that the projection matrix P* can be
built.

To automatically determine the number of projections in the SPP procedure, a
recently proposed stopping criterion is employed, which relies on Bayesian model se­
lection [21]. It is based on the fact that the remaining structure of the residual search
space is decreased as the number of components increases. The stopping criterion is
defined as

B = (2”*[3(x'P.*-.)"3(x-p.!)] + l)_1 (4.5)

and includes the ith projection component a* if B is bigger than a predefined threshold
5, otherwise SPP stops with i-1 projection vectors in P*.

4.3 Evolutionary Framework Language Definition

This section elaborates on the definition of a set of words and its formation rules to
build finite strings that will be treated as potential projection indices. An extremely
important characteristic of the proposed system is its expressive power, understood
as the ability to generate most of the existing indices. This depends on the proposed
function and terminal sets, since they will hold the building blocks available to the GP.

To make the present approach as general as possible, the GP module should have
adequately high expressive power to be capable of discovering the definition of any of
the aforementioned PP indices. Therefore, two very flexible function and terminal sets

53

Table 4.1: Language Definition.

(a) Function Set.

Functions Arity Description Parameters
+ > *> 2 Addition, subtraction, multiplication,
/, pow division and exponentiation
ms 2 s sample moment z,s
D 5 Renyi divergence z, p, r, v, £
H 2 Renyi generalized entropy z, p
Sb 2 Between-class scatter matrix Y, z
Sw 2 Within-class scatter matrix Y, z
fJ'C 3 Mean of the cth class Y, z, c
Vc 3 Variance of the cth class Y, z, c
Qn 4 nth quartile of the c class Y, z, c, n

(b) Terminal Set.

Terminals Description
z Vector of projected data
Y Vector of class labels
9 Ephemeral random

constant (e.g. /?, r, z/, £,
s, c, n)

are provided. First of all, basic arithmetic operands are needed in order to provide
the GP with the basic tools to combine more complex functions. These are included
in the function set, as displayed in the first row of Table 4.1a. To facilitate pdf-based
indices, two functions are considered to construct valid approximations. The first one
is Renyi’s generalized divergence of order-/?

D(/’s;d = vrTlog(it-^t) p>0 (4-6)

where fi = f(zi) is the projected data probability estimate evaluated at Zj and gi =
<?(xi) is the reference pdf evaluated at x^. This function measures divergence from
a reference density while displaying interesting properties when p is varied [207]. It
can potentially deliver the Kullback-Leibler divergence when /?—>!, thus allowing to
approximate 0=4 in Table 2.1.

The flexibility embedded into Renyi divergence allows to define what it is considered
as an uninteresting projection by means of the reference pdf. In [208] arguments were
given for the use of Student-t distribution as another uninteresting pdf when robustness
against outliers is required. Following a similar reasoning, divergence from a generalized
extreme value (GEV) distribution is considered in this work, since its shape parameter

54

£ governs the tail behaviour of the distribution. This property is highly suitable for the
proposed evolutionary system, as distribution specific parameters are included into the
evolution process. In this way, it is possible to discover the ideal distribution density
shape that will define what is considered as interesting or uninteresting projections.

Considering entropy as an efficient way to approximate divergence from gaussianity
[60], the second function adopted to approximate pdf-based indices is Renyi order-p
entropy defined as

H (/; p) = iv7los (E //);/>> o- (4.7)

This function acts as a generalization of Shannon entropy. Due to its morphing char­
acteristics conferred by the p coefficient, it can potentially deliver as p —► 1, and
allows us to appi'oximate when p = 2 (see Table 2.1). As an example of pdf-based
index construction, Fig. 4.3(e) and (d) shows the tree representation of Qi and the
first term in A4 built with the proposed function and terminal sets.

To build moment-based indices, the sth sample central moment defined as

??xs(z) = £7 [(z - £[z])s] (4.8)

where F7[-] is the expectation operator, is included as another member of the function
set. Together with the arithmetic operands and the terminal set, it allows the GP to
come up with the definition of the indices in Table 2.2. In Fig. 4.3(b) and (c), the tree
representation for indices £>6 and A5 can be observed in terms of the proposed function
and terminal sets so far.

As for the class-information-based indices, class means and variance, defined as
pc = p(c, Y,z) = E[{zi : yi — c}] and ac = cr(c, Y,z) = E[{(zi - pc)2 : yi — c}],
where c is a given class label, were considered as fundamental building blocks to model
the general Tr-norm. Since mean and variance are sensitive to outliers, quartiles were
added, defined as

Qn = Q(j, n,Y,z) =zL: L = [0.25 nn^] (4.9)

where represents the nLh quartile of class j, nj is the number of projected samples
with class label j, and Z£, is the Lth sample in the ordered set, as a robust alternative
to get a summary of the dispersion and overall central tendency within each class [209],
A second element of importance for the class-information-based indices is the Rayleigh
quotient, which was approximated for the 1-D case using between-class scatter Sb =
Sb(Y, z) = - p)2 and within-class scatter Sw =■ z) — Y%=i YnLiizi ~
Pj)2) appropriately included as members in the function set, where pj is the mean of
class j, and p is the global mean. An example of such class- information-based indices
in terms of the proposed function and terminal sets is displayed in Fig. 4.3(a). Table
4.1a summarises the proposed set of functionals.

Three parameters are needed to fully define Renyi divergence: an estimation of
the projected data pdf, the p coefficient and the reference pdf. To allow the evolution

55

(a) (b)

A,(Y,z) = —
nu

(c) (d)

Figure 4.3: Possible evolved trees, (a) Interaction between supervised and unsupervised
functions; a member of the function set is used instead of an ephemeral constant as input
to another function, and it needs to be rounded by means of the floor function, (b) Pure
supervised index; four supervised nodes resembling a linear combination of supervised
projection indices, (c) Reference density dependant on moments; the p coefficient
depends on the moments ratio, (d) Segregated supervised and unsupervised branches;
the supervised branch (left) and the unsupervised branch (right) are independent of
each other but combined through a binary operator.

process to select the right reference pdf, three additional scalar arguments for Renyi
divergence are included. The first argument (r) selects among the three different pdfs
(i.e., Gaussian, Student-t or GEV); the second one specifies the degrees of freedom (v)
for the Student-t distribution; and the last one is the shape parameter (£) for the GEV
distribution. These arguments along with the p coefficient are implemented by means
of the terminal //, which takes a random value when the potential index function is
built, and then remains constant for purposes of index evaluation unless the genetic
operators changed it (i.e., mutation can change the values of this ephemeral constants).
The order s of the moment m5, the quartile number n, and the class index c in the mean
Pc variance ac and quartile Q£ were implemented in a similar way. The remaining of
the terminal set, summarised in Table 4.1b, was built up to accommodate the arguments
needed by members of the function set. For instance, most of the functions in Table
4.1a receive as arguments the projected data z with exception of arithmetic operators.
For function members using class information the class labels Y are required.

56

As was explained earlier, the genetic library defined above is adequately expressive
to create most PP indices presented in Section 2.3.3.2, but also create many new ones
not considered before. Figure 4.3 displays a number of examples of hypothetical but
valid new indices. It includes simple cases (e.g., Fig. 4.3(d)) where the unsupervised
and supervised part are clearly identifiable, as well as complex relations where the
supervised part defines parameters governing the behaviour of the unsupervised part
(e.g., Fig. 4.3(c), where the ratio of sample central moments defines the coefficient p
of the Renyi divergence). This type of dependency is translated into a composition
of functions, where some of the index’s parameters are functions of other projection
quantities. In such case, the variable parameters precede the labels and projected data
in the arguments of the projection index.

4.4 Experimental Results

4.4.1 Datasets

In order to assess the generalization performance of EPP, a total of five datasets ob­
tained from the UCI Machine Learning Repository were tested: breast cancer Wisconsin
dataset (cancer) in its diagnostic variation, statlog heart dataset (heart), Pima Indi­
ans diabetes dataset (diabetes), wine dataset (wine), and glass identification dataset
(glass). Categorical features were replaced with binary variables. A summary of the
datasets can be found in Table 4.2.

Table 4.2: Datasets Summary.

Dataset Features Classes Samples
Cancer 30 2 568
Wine 13 3 178
Heart 13 2 270
Glass 9 3 214
Diabetes 8 2 768

4.4.2 Evolution Process

The GP algorithm was run over 50 generations with 60 individuals in the population;
the crossover and mutation rate were managed dynamically by GPLAB [210], which
was also the library used to implement the GP algorithm. Controls against bloat (e.g.
dynamic depth/size on the individual trees) were also activated at the beginning of
each GP trial. All experiments were run on a PC with CPU Intel Pentium 4 at 3.08
GHz, 1.00 GB in RAM and with Microsoft Windows XP Professional SP2 as operating
system; MATLAB 2009a was used to implement the required algorithms.

57

Generation 1 Generation 5

Fitness: 0.2063
Generation 15 Generation 20

Fitness: 0.1037 Fitness: 0.0809

Figure 4.4: Induction process for wine dataset. Selected generations showing the best
individual, along with its parents and the genetic operator selected to build it. Its
fitness function is given at the bottom of each best individual.

Figure 4.5 shows a sample of the fitness function minimisation carried out by the
proposed evolution process. Best so far, population fitness average and standard devi­
ation are displayed. It can be seen that convergence is reached after generation 30. An
example of the induction process modelled by Eq. (4.1) can be observed in Fig. 4.4,
where the best individual in the population is displayed as a tree representation, along
with its corresponding fitness value. To illustrate how the evolution process helps to
infer a suitable projection index, four different generations were selected from the whole
evolution process. In each case, the parents of the best member in the population and
the genetic operator involved in its making are shown. When crossover is selected as
genetic operator, the crossover point in every parent is highlighted, when mutation is
selected, the mutation point is signalled by an arrow, indicating the fraction of the tree
to be removed.

58

Table 4.3: Comparison of the proposed algorithm including median values and in­
terquartile ranges of error assessed with 10-CV, optimal classifier parameters for exist­
ing indices, average times taken for feature extraction and classification of a single fold
(Ti in seconds), and times taken to evolve a single index (T2 in hours).

Friedman & Tukey 711 Jones & Sibson 7?3
Problem Median IQR [*. A] Nfeat Ti Median IQR [ft, A] Nfeat Ti
Cancer 6.14 7.17 [4.4, 4.8] 4.0 3.60 5.26 7.02 [3.4, 5.6] 4.0 3.56
Wine 19.44 11.11 [5.4, 5.9] 3.0 1.99 22.22 16.67 [6.5, 3.9] 2.9 1.04
Heart 48.15 22.22 [5.5, 5.7] 11.0 0.99 31.48 22.22 [7.6, 6.1] 7.1 1.45
Glass 35.71 20.56 [3.0, 3.8] 5.4 2.91 37.23 7.58 [3.2, 5.4] 5.3 3.92
Diabetes 31.37 8.22 [7.6, 5.5] 5.6 4.80 36.61 7.79 [7.2, 5.1] 4.6 5.67

Information Divergence Tq Fisher Information 7?2
Problem Median IQR [ft, A] Nfeat Ti Median IQR [ft, A] Nfeat li
Cancer 5.51 7.02 [4.8, 5.1] 4.0 2.54 5.51 8.96 [5.2, 4.4] 4.0 3.76
Wine 16.67 5.56 [6.9, 3.7] 2.9 1.08 25.00 22.22 [5.2, 4.7] 2.5 1.29
Heart 33.33 11.11 [5.7, 5.3] 5.4 1.44 29.63 11.11 [6.9, 5.4] 4.2 1.68
Glass 30.19 19.05 [3.0, 5.5] 4.7 2.88 38.10 22.73 [4.0, 5.4] 5.6 4.71
Diabetes 32.47 8.24 [8.7, 6.6] 5.0 3.57 30.72 9.09 [7.5, 6.4] 4.1 5.98

Skewness TIq Kurtosis Q?g
Problem Median IQR [ft, A] A/eat Ti Median IQR [ft, A] Nfeat 2i
Cancer 7.06 7.02 [4.4, 2.7] 4.0 1.06 5.26 7.17 [4.0, 2.5] 4.0 0.93
Wine 27.78 16.67 [5.2, 8.7] 2.9 0.13 22.22 11.11 [6.3, 4.1] 3.0 0.14
Heart 40.74 14.81 [6.1, 5.0] 6.3 0.24 33.33 11.11 [6.1, 6.1] 10.3 0.22
Glass 39.50 9.52 [3.2, 4.8] 5.8 0.38 39.50 19.05 [3.8, 3.4] 5.5 0.19
Diabetes 32.02 7.79 [7.6, 3.8] 5.4 0.99 32.47 4.82 [8.5, 3.8] 5.5 1.48

Moment Linear Combination Sg Evolved Index
Problem Median IQR [ft, A] AW Ti Median IQR [ft, A] Nfeat Ti 72
Cancer 7.02 5.26 [4.2, 5.0] 4.0 1.12 4.39 1.75 [6.0, 4.90] 4.0 6.30 10.12
Wine 33.33 27.78 [6.4, 3.7] 2.7 0.16 5.56 11.11 [6.9, 5.42] 3.2 1.72 7.82
Heart 29.63 11.11 [6.6, 4.3] 7.8 0.27 18.52 11.11 [7.9, 5.72] 9.7 0.55 2.61
Glass 36.36 9.52 [2.7, 3.5] 4.9 0.31 16.67 9.52 [2.3, 5.47] 5.0 9.55 22.39
Diabetes 33.12 11.31 [6.8, 4.1] 5.3 1.55 27.92 7.36 [7.4, 5.98] 4.0 2.70 7.34

ICA PCA
Problem Median IQR [ft, A] Nfeat Ti Median IQR [ft, A] Nfeat Ti
Cancer 6.14 5.20 [4.3, 2.8] 4.0 1.54 6.14 5.26 [4.0, 2.9] 6.14 1.37
Wine 16.67 11.11 [7.3, 2.6] 3.0 0.75 22.22 27.45 [4.9, 3.0] 22.22 0.14
Heart 20.37 3.70 [5.8, 4.0] 9.1 0.29 19.58 14.81 [6.5, 2.6] 19.58 0.28
Glass 31.82 9.52 [2.4, 2.6] 7.0 0.28 25.54 9.52 [2.7, 1.3] 25.54 0.25
Diabetes 30.07 6.49 [6.8, 3.8] 6.0 2.49 28.27 22.81 [7.1, 4.3] 28.27 2.46

Fisher Linear Discriminant Tbj Bhattacharyya Distance 71 jq
Problem Median IQR [ft, A] Afeat Ti Median IQR [ft, A] Nfeat Ti
Cancer 4.51 8.96 [4.4, 3.2] 4.0 0.88 4.51 7.17 [4.2, 4.5] 4.0 0.99
Wine 19.44 6.86 [5.5, 2.4] 3.0 0.29 19.44 16.67 [6.3, 4.9] 2.7 0.51
Heart 19.54 11.11 [7.0, 4.9] 11.0 0.23 20.37 14.81 [6.0, 4.0] 11.0 0.31
Glass 32.58 9.52 [3.5, 4.9] 7.0 0.30 31.82 14.29 [2.3, 7.5] 6.1 0.43
Diabetes 28.62 5.19 [7.6, 5.8] 6.0 1.44 28.62 3.90 [8.5, 7.1] 6.0 1.52

59

generation generation

Figure 4.5: Minimisation of fitness function by the proposed evolution process for (a)
cancer and (b) heart.

4.4.3 Training and Testing Set Design

To objectively evaluate the performance of the proposed system, and at the same time
optimise the best feature extraction/classification pair, a 10-CV partition scheme was
used for final model assessment. Specifically, in each fold, 90% of the dataset was used
for the learning phase (i.e. the input data T = to the proposed system), and
the remaining 10% samples T were used to test the generalization performance of the
proposed system. Only the data within the learning phase is used to perform the model
selection, via the 3-CV and the genetic search, which returns the optimal index (tree)
and kNN parameters k and A. The entire model selection is repeated within each fold
of the model assessment 10CV procedure. Descriptive statistics over the ten folds are
reported in Table 4.4.

4.4.4 Baseline Projection Pursuit Comparison

This section compares the accuracy of the features extracted using the proposed evolu­
tionary framework with the ones obtained from existing indices used in PP, including
Friedman and Tukey (F&T) Jones and Sibson (J&S) S3, Fisher information S2,
information divergence S4, skewness S5, kurtosis Se, moments linear combination Sg,
Tr-norm S9 with r = 2 (FLD), and Bhattacharyya distance Siq. Additionally, this com­
parison includes the features extracted with standard unsupervised feature extraction
methods like PC A and ICA, as given in [50] and [49], respectively.

To make this comparison fair, the same partitioning scheme was used. For indices
using the projected data pdf, an estimation was provided by means of a normal kernel
using a window parameter that is a function of the number of points. Since 3 was given,
the remaining unknown parameter in the proposed model 0 = {k, A} was selected by
performing a grid search using T to train the classifier. After the optimal 0 was found,

60

ncJ
Pi
0

.O

a3
,a>

?—I
CP

l
S
o>

Fh

1

faO
Pi

£h
o
Pi

>
o

CD
rd

t3
CD

<D
rCf

'H.
CQ

^3

CD
CD

'S
c3
CD
CD
fH
CD

&
faJO
d

° ft
>> &

a I

CO ®
fti ^

3 ra
0)

^ -d
^ -p>
& &

CQ o {^3 co CO o rH lO co o o q
cd CO id d5 LQ LO id 1.0 cd cd

ci; *s--^
rOl t- ft ft rH ft (M CM ft CM CM CM <M

o3 o c-t CO CO ft O rH CO co 05
Q o GO T-- 1 cd CM cd CM CM CO oo od ft

(NCO CM CO CO CO CO CO CO CO CM CM

CQ
<Di o O CO ft co 00 lO 05 o rH o
d CO ft ft lO id H id id id 'C^l ft cd id

-C-3
o3 «^3 (M rH co 05 o o o CO 00 (M ftd oo lO ft CM T—H rH lO LO CO lO GO co

t—5 id id ft o od 05 05 cd CM 1“1 CO
iHCO CM CO CO CO co co co co CO CO

p
o T—\ o o 1—\ cM CO CO oo o o ft
Pi
Pi
CD

4^>
U

oi 1—1 rH ft id H cd o
rH ft T-- 1

1---1
r-H
i—1 05

PI CD
K

ft
CO go'

lO
10'
rH

CXJ CO
CO

CO
CO ft

co"
CO

cotp 'd'
lO

ft"
co

(M
Id

T3
CD

o
CN| Oi

r™H
00
d1 CO

cd
co

05
CM

cd
'Cf

cd
co

05
CM s cd

CM
00
rH

o o o 05 05 lO 05 o ft o ft (M
"5 CD

.a
CO CO cd CM CM CM CM cd CM cd cd cd
ft" cm" CM" ft" o" orT cm" cd" xtc"

co
q■+f CO CM CM CO o ft CM CO

TO
Q CO CM 05 CM CD Id ft CM cd 05 05

t-H CM i—i CM rH CM CM CM co T---1 T---1 id

p o O o O o o O o o O O o
CD
CD

d d d H H H 'd ■d ■d ft
g

o
'd" co" rH i—1 co" co" cm" i—1 rH 05"
rH rH i—1 CM lO lO o (M o lO LO CO
cd cd cd id id lO ft id ft 'd

ft

d
o

• rH

Cl)
a> Ph C3 CD
CD d Pj
d ft »rH c3
CD d Pj 4-3

ft bJU
p
CD

d
o 8

* rH
fH
CJ

TO

0^

d
o
m

>
Q

d
a
p

3
CD

_d

TO
^3 o3

d
d
d

03
=<3

a« l“d
TO

43
.a CO

TO
CP

TO TO
"S

CD
d■ r-H

ft
CD
d CDft

R
r‘d m

CD
d

a
p

c2

p
CD

rd
to

d
1

b
4-3

PhH

CDa
o

p
CD
ft

13
rb

.a
ft

x
CD

tJ

IC
A c

o

d o
l—o

CO

Ph1—i
» rH
ft CO

lO

W

CO

§

00

ft

<3)

ffl

o
rH

£
1

ft e? 61 61 61 61 61 61 61 61 ft

61

PPC2 PPC1PPC1

(a) (b) (c)

*CA PCA Evo(v«d

(d) (e) (0

Figure 4.6: 2D scatter plots of the best two projected features for wine data using
(a) skewness, (b) FDA and (c) F&T projection indices for feature extraction; contrast­
ing with scatter plots using (d) ICA, (e) PCA and (f) EPP

o 'fj;.

(a) (b)

a.
•s- . 8

(c)

[m [m
f*° a ft % Ip “

(d) (e) (0

Figure 4.7: 2D scatter plots of the best two projected features for heart data using
(a) skewness, (b) FDA and (c) F&T projection indices for feature extraction; contrast­
ing with scatter plots using (d) ICA, (e) PCA and (f) EPP

Figure 4.8: 2D scatter plots of the best two projected features for cancer data using
(a) skewness, (b) FDA and (c) F&T projection indices for feature extraction; contrast­
ing with scatter plots using (d) ICA, (e) PCA and (f) EPP

the projected samples in T were classified and the median of the classification errors
over the ten folds is reported as the generalization performance in Table 4.3, along
with the interquartile range (IQR), the average of the optimal classifier parameters,
the average number of dimensions and the time taken to perform feature extraction
and classification with the corresponding projection index for a single fold.

Table 4.4 summarizes and compares the 10-CV performance for the evolved index
and those eleven existing indices, from which it can be seen the evolved index performed
the best. As it was expected, classical supervised indices performed better, on average,
than unsupervised indices, frequently ranking in second or third place. Among the
two supervised indices, Bhattacharyya distance showed to be more consistent, as it was
ranked on third place for most of the classification problems considered on Table 4.3. As
for the unsupervised indices, PCA performed on average equally good as Bhattacharyya
distance, although PCA showed to be less consistent as it showed a variance of almost
double than Siq. Surprisingly, a big difference can be observed between the performance
of ICA and indices based on high-order statistics, such as kurtosis, skewness, and
moments linear combination. Finally, the reader can observe that the worst possible
choice of projection index for the selected problems is Se because, although it is not
ranked last in every problem, it does not exhibit a consistent behaviour.

Besides classification error, Table 4.3 also displays the average number of dimensions
induced for each feature-extraction/classifier pair. Although the evolved indices did
not always deliver the minimum number of extracted features, for example in the wine

63

dataset the evolved index extracted the maximum number of features when compared to
the others, they do extract informative features as it is confirmed by their classification
performance. As for the classifier hyperparameters, also showed in Table 4.3 for each
index in this comparison, the number of nearest neighbours induced by EPP is within
one and a half standard deviations from the mean of the distribution formed by this
same parameter induced for the rest of the indices. This could indicate the parameters
induced by the proposed evolutionary system could be trusted at 95% of confidence.
The compression power of PCA can also be observed in Table 4.3, where on average
PC A ranked first among the selected indices when measuring the optimal induced
number of neighbours needed for classification. This characteristic together with the
low dimensionality of the extracted features show why PCA is highly prone to loss
of discriminatory information. On the contrary, although the evolved indices can not
extract such low dimensional spaces, they provide reliable and optimal spaces with
maximum class separability.

To illustrate the classification ability of the extracted features with EPP, 2-D scatter
plots of selected features are compared for six different indices (i.e., skewness, FLD,
F&T, ICA, PCA, and evolved index), for wine, heart, and cancer datasets in Figs.
4.6-4.8. It can be seen the evolved index present better class separability, as can be
confirmed from the results displayed in Table 4.3. Additionally, a sensitivity analysis
over the extracted features is presented for the heart dataset using the tools provided
by Cardillo [211]. Receiver operating characteristic (ROC) curves [42] were computed
for both features used to build the scatter plots in Fig. 4.7, and the ROC curve for
the dominant feature for each index is displayed in Fig. 4.10 along with the area
under ROC curves (Az). From this figure it is clear the extracted features using the
evolutionary approach (and also the FDA for this dataset) have superior discrimination
power. As expected, the features extracted with the indices involving entropy and
its approximation displayed lower class discrimination, being overcome by supervised
indices.

Considering that GP produces trees that are often difficult to intuitively interpret,
a simple synthetic dataset is used to demonstrate the generation of a simple tree and
contrast it with the intuitively defined PCA and ICA indices. The synthetic dataset
was built from two 2-D elongated Gaussians of identical covariances, and positioned as
shown in Fig. 4.9. To provide a fair comparison with ICA and PCA, the supervised
members of the function set were removed. The smallest evolved tree/index, shown in
Fig. 4.9.d, is an instance of the Renyi entropy for a specific p and some offset. This
is expected as the maximum value for Renyi entropy is achieved when the projected
data distribution deviates from a Gaussian. This is quantitatively confirmed by the 1-D
projection axis, which matches closely the one by ICA, while PCA as expected fails to
locate a discriminatory projection. Fig. 4.9.b and 4.9.c summarize the differences of

64

Figure 4.9: Synthetic dataset analysis, (a) Projected vectors extracted using PCA,
ICA, and the proposed method, labeled as PP. (b) Boxplots and (c) distance matrix
showing the angle distribution between the axis of every compared method, (d) Smallest
optimal generated tree.

ROC curv*: Heart data act

False positive rate (1-Specificity)

Figure 4.10: Examples of ROC curves using the best projection methods for heart
dataset.

65

the axes between all pairs of methods for each model generated in each 10-CV fold. As
can be seen, the PP generated axes are close with those generated by ICA but are at
near 90° to those generated by PCA. Interestingly, as shown in Fig. 4.9.b and 4.9.c, PP
proved to be more stable than ICA, when both methods are compared against PCA as
ground truth.

4.4.5 Comparison of EPP with Collaborative Methods

Given the ability of the proposed system to generate a complex composition of func­
tionals, and thus a combination of the existing indices, it is natural to compare its
performance against other methods for combining projection based classifiers. Three
methods were selected to compete against the inferred indices, namely linear weighted
sum, majority vote [212] and projection onto convex sets [213]. The first method was
selected to demonstrate the difference between the evolution of projection indices, and
a simple linear combination of the six most common indices from Tables 2.1 and 2.2,
described by

6
&L = 5>fc9*(X-Pi)- (4.10)

fc=l
Each weight in Eq. (4.10) is learnt from the data and modelled as a system hy­

perparameter. This process was implemented following the same partition framework
as described in Section 4.4.3. The performance of a kNN classifier using the extracted
features resulting from projection pursuit with as projection index, is reported in
Table 4.5. Clearly, although A/, is capable of varying the contribution of each projec­
tion index through its corresponding weight, it is not flexible enough to explain the
underlying structure in the data as well as the newly evolved projection indices.

Majority vote was selected because of the advantages of the classifier ensembles
[212]. It is well known that an ensemble method can improve the performance of
otherwise weak set of classifiers, therefore the evolved indices are compared against
a classifier ensemble composed of six individual projection indices, Sq-O'e in Tables
2.1-2.2, each one concatenated with a single kNN classifier, thus giving a ensemble
of six classifiers. The parameters of each individual classifier are considered system
hyperparameters using the training, testing, and validation scheme proposed in Section
4.4.3. The out-of- sample classification error estimated with 10-CV is reported in
Table 4.5 along with the mean of the estimated classifier parameters. Surprisingly, the
ensemble performance is not always better than the linear weighted sum index, although
the low IQR values indicate congruency among the individual classifiers, making the
ensemble robust to sampling of the training set.

Projection onto convex sets (POCS) is an iterative algorithm aimed at solving
optimisation problems whose solution lies in the intersection of spaces defined by the
problem constraints. These sets are required to be convex so that the method converges.

66

f-l
CDcd

o
u0)
CD

CD
rCl
-l-=
CD
bJOo

>
U

(D
bJO
3

da1

HQ
CD

O
rd

bJOd• r-H
-4-3d

PhO
3

bJOd

do
O
LO

l

<d in t- Cd in I>-
Id c-i Id H d1

o7 in" TP" FT cd"
d5 in in in cd

-se1--1 d1 d< cd i—i 05COO d^ d^ cd .cd. cd.

m o> Cd OO co
fd CO cd cd cd cd

cxT TP" oo dF dT1
d5 d< in d5 in

1--1 CO in CO T-1»oQ CO .d<. H. dV dv

d1 o o o o
Id co cd cd d<

cT co' cd" F"
d< d5 d5 d^ cd

-y1--1 o m t- m dcd1 in in cd cd diO
0> 4-3{?3 CO oo CO t- oo

fd co d co cd cd,___, cd" in" cd"4-3 d< m in idPh -5£O '--' CN d1 Cd t>*a3 CO d5 m in Cd cdo

■fll o t- t- Cd 05
Ed d^ <d cd CO cd

oT cd" cd" cd" cd"
ni d5 cd cd H-se i—i co CO t'- incs in >n d5 (d H,O

o cn rH o CO
Ed d1 <d d5 cd cd
31 'in' cd" F" F"
co in m cd T—i

1--' co o CO <drH
O ,co ,d^, ,cd. cd, .cd.

IQ
R cd 1—1 Cd co 05o co co o b-

t4 rH d1 cd F

§
d1 Cd i'- i-- l"—

o>
cd m in 05

cd <d OO od !■-Cd Cd Cd CO

COS

doFh

Ph
CD
CD CD

.d
4-3
%
CD

CO
CO
cd

CDH-3
CD

Ph o H 0 Q

PO
CS

|

Fe
at

ur
es

97 34 35 24 30

-d
d£

[2
.5

, 3.
9]

[3
.0

, 5
.6

]
[6

.5
, 4

.6
] CO

rH

o'
1—1 [5

.1
, 7.

6]

IQ
R

7.
02

6.
54

18
.5

2 | CO<d
00 7.

35

M
ed

ia
n

5.
39

16
.6

7
22

.2
2

23
.8

1
32

.5
4

W
ei

gh
te

d S
um

Fe
at

ur
es

2.
5 o

cd
o

3.
5

4.
0

<
w.

[6
.0

, 4.
7]

[5
.5

. 7.
7]

[7
.0

, 6.
3] o

F
o
.cd. [6

.0
, 2.

7]

IQ
R

8.
77

6.
86

11
.1

1
14

.2
9

6.
90

M
ed

ia
n

8.
77

16
.6

7
27

.7
8

34
.8

5
29

.4
1

Pr
ob

le
m

 ;
Ca

nc
er

W
in

e
H

ea
rt

G
la

ss
D

ia
be

te
s

67

POCS makes use of predefined projection operators on a single set to successively
project a starting point from one convex set to another until it falls inside the solution
area. The most frequent applications of POCS are image restoration, denoising and
recently super-resolution (SR) image reconstruction from low-resolution (LR) samples
[7], For the purpose of comparison, POCS was implemented as in [214] assuming each
sample was a LR sample image of an unknown high resolution version. Taking each
sample as the reference image and its nearest neighbors within the same class as LR
versions, POCS is applied to construct a SR image for each sample in the dataset.
This process embeds the dataset into a high-dimensional space where each point is
representative of its within-class nearest neighbors in the original feature space. Then
PC A is applied to reduce the number of dimensions and facilitate the classifier task.
After this preprocessing stage, the extracted features are used to infer the parameters
of a kNN classifier using the proposed partition scheme in Section 4.4.3. The out-of-
sample estimation error of a 10-CV is reported in Table 4.5 along with the mean of
the inferred classifier parameters and the number of used features. In general, POCS
performs better than the other two collaborated schemes, nevertheless the results show
the evolved indices outperform any of the collaborated schemes considered.

4.4.6 Evolved Indices as a Tree Representation

Finally, Fig. 4.11 presents the best evolved index for each dataset. It is worthy to
highlight from this figure the fact that in each of the evolved indices at least one term
considers class information, which suggests that, as expected, that class information
plays an important part in feature extraction for classification. Additionally, Renyi
entropy and Renyi divergence did not appear in the same tree for all the datasets,
which indicates they may have overlapping information extraction properties.

The most complex index obtained was the one for the glass dataset, Fig. 4.11(e),
which exhibits a highly unbalanced structure with the highest number of unsupervised
nodes and a depth of nine levels. Contrastingly, the evolved index for the cancer
dataset, Fig. 4.11(a), presents a fairly balanced structure and a depth of four levels.
Despite the inclusion of unsupervised nodes in the structure of all the evolved indices,
the ratio between supervised and unsupervised nodes leans toward the supervised side
for most of the indices. The advantage of a highly supervised index, like the one in
Fig. 4.11(b), can be seen from Fig. 4.11(f) where the evolved index presented the best
class separability among the compared indices.

68

3(p0,A,Y,z)^//(/;Al)-//(/;A)
Pa(Y,z) = wlvJ; ^^(¥,2) = 5,,^+0.92)

(a)

(mv000B

3(c,n, Y,r) = Oj^j ~SW
c(Y.*)-[//(/;Sr)J; n(Y,z)-LSrJ

(d)

3(®,Y,z) = ^/„

a>(a>.,c„n,,Y,i) = j: = [^ J
c1(Y,z) = |0.08 + SII.J; «1(Y,z) = [//(/;0.34)J

"(/;q'rtJ)l; a>.K.Y.«)=KJ
"HjJ

(b) C/'l

<7,
l(Ya) = <r,fi ^(A.AY.z) = £)(/./(r.0.17).^) + £>(/./(r,0.51)fA) + 5i, + 0.28
A(Y,z) = D[f,fat, (z,SB),<x,); pc(pj,Y,z) = D(/,/otl (r.cr^j),^)

^(Y,z) = D(/,/(z.ef5*-l),0.17)+I>(/,/(2,0.51),0.4l)+5,+0.27

(a)
Figure 4.11: Best evolved trees for different datasets, (a) Cancer: a highly symmetric
tree where the parameters of the unsupervised functions are defined by supervised
nodes, (b) Wine: a highly unbalanced tree mainly built with supervised nodes, (c)
Heart: a compact tree with redundant branches (Renyi entropy on the left and right of
the first division node), but good generalization performance, (d) Diabetes: unbalanced
and highly supervised tree where within-class scatter plays an important role, (e) Glass:
very complex and unbalanced tree with equal number of supervised and unsupervised
nodes.

69

4.5 Summary

In this chapter an evolutionary framework for automatic design of classification systems
was introduced. It poses the learning problem as a model selection problem, consisting
of two stages. In the first stage, a set of potential models is built with the help of
genetic operators, then in a second stage they are evaluated using a wrapper approach,
where cross-validation is used to estimate the out-of-sample classification error of each
potential model. After a given number of generations, the fittest individual is chosen
as the desired model, guaranteeing optimal classification performance. In this work,
a classification system is modelled as a pair consisting of a feature extraction stage
and a classification stage. Due to the strong interactions between classifier and fea­
ture extraction, both stages need to be jointly optimised, thus this work proposes to
encode the feature-extraction/classifier pair into a single hybrid chromosome designed
specifically to hold a tree structure.

As a starting point and due to its simple, yet powerful, formulation, this chapter
also discussed the advantages of the proposed evolutionary framework when the feature
extraction stage is modelled as a linear projection method. It was showed that the pro­
posed inducer evolves ad-hoc PP indices which extract highly discriminative features,
out performing those extracted with several existing indices and popular linear feature
extraction methods with close analytical solutions, such as PCA, ICA and FLD. A sec­
ond advantage of the proposed system is its degree of precision, which was measured
via the IQR of the 10 folds used for final model assessment. Such range showed to
be minimum for the evolved indices when compared to other projection indices for five
given classification problems as can be seen in Table 4.3. Additionally to measuring the
precision of the evolutionary framework in producing accurate classifiers, the accuracy
of the extracted features via PP was measured in the experiment illustrated in Figure
4.9. It was showed that an evolved index produces consistent features more frequent
than ICA, which also uses an iterative method to compute independent features.

Additionally, this chapter presented a comparison between EPP and three collab­
orative feature extraction methods. The first collaborative method was a PP index
designed to be the weighted sum of six existing projection indices, which weights were
jointly optimised with a GA. The second collaborative method was POCS [214], which
represents a different paradigm of projection methods to solve optimisation problems.
Finally, the same PP indices used in the weighted sum were combined using majority
vote, which individually trains each classifier and then assigns the most frequent label
predicted by the individual classifiers. Although POCS exhibited on average the low­
est classification error among the collaborative methods, it could not outperform EPP.
Linear* weighted sum came second, showing lower dimensionality spaces.

As with all the evolutionary optimisers, the proposed system exhibit long learning
curves, therefore it can not be used for online learning. Nevertheless, once the proposed

70

evolutionary framework produces an evolved index, it is guaranteed to deliver accurate
and precise features with high discriminative capabilities. Additionally, It has been
experimentally illustrated that EPP successfully performs model selection in the space
of potential indices to be used in SPP for optimal feature selection. Finally, it is
worth to mention that if the data is not linearly separable in the original feature space,
neither will be in the space described by the features extracted using linear projection
techniques. This situation is commonly faced for classification problems involving real-
world, high-dimensional datasets as discussed in Section 2.3.5. Classical linear feature
extraction methods are extended to tackle nonlinearities in the dataset by projecting
the data into a non-observable feature space to unfold undesired nonlinearities, as
explained in Sections 2.3.2. In the next chapter we elaborate on such extension for
EPP.

71

Chapter 5

Nonlinear Projection Pursuit via
Kernel-Induced Spaces

5.1 Introduction

The previous chapter explored PP as a generalization of linear projection techniques,
and developed a evolutionary framework that delivers a feature-extraction/classifier
pair modelled as a projection index 9? and a set of hyperparameters 6 = {k, A}, tailored
to a given classification problem. A natural enhancement to the generalization abilities
of PP is its extension to the nonlinear case. The first reference to such idea can be
traced back to [215] where a exploratory method was proposed to investigate nonlinear
structure based on Hebbian learning applied to train a neural network. Later on, Smola
et al. [216] proposed to learn a set of projections by optimising a constant function
(index) in a kernel-induced feature space, chosen from variance, Fisher information,
negative Shannon entropy, or other quantities of interests, called kernel PP. Following
the guidelines listed by Friedman [217] for PP, kernel PP also discusses two main
possible choices on structure removal process: (1) by removing from the search space
the previously obtained projections; (2) by applying Gram-Schmidt orthonormalization
in the kernel-induced feature space.

Facing a specific classification problem, prior information and specific data distri­
butions have to be considered in the index selection for PP. However, it is not easy
to achieve this in the non-observable kernel space, where the data distribution may be
distorted and is untraceable. To overcome these problems, a variation of the evolution­
ary framework previously presented is introduced in this chapter, aiming at extraction
of nonlinear features in the kernel-induced feature space. The development of a struc­
ture removal process can be found among the main contributions of this chapter. Such
removal process is different from those used in [216], since it reduces the determination
of the nonlinear residual subspace to the computation of an updated kernel matrix.
Additionally, analysis on the kernel-based whitening process is also provided. To test
the effectiveness of the proposed approach, final model assessment is performed over

72

six different high-dimensional datasets via 10-fold cross-validation (10-CV).

5.2 Problem Formulation in Kernel-Induced Spaces

Based on the Mercer’s theorem [218], a kernel function defines the dot product in an
non-observable feature space Ti, which is called kernel-induced feature space. Letting
0 : Rm —> H denote the nonlinear mapping to 7i, and K = [kij] denote the kernel matrix
between the data points, the entry ij of K is known as ki:j = /L(xj, Xj) — 0(xj)</>T(xj).
Working in this new space, a projection vector in 7i is sought so that the projected
features possess the maximum degree of interestingness:

v* = argmax (5.1)
v&i.

where = [</>(xi), 0(x2), ..., 0(xi), ■ ■ ■ j7" represents the mapped data in TL Since
the mapping 4> is unknown, it is impossible to directly compute such projection vector.
However, by approximating this non-observable kernel space H by a subspace spanned
by a set of data points from the training set, the projection vector can be expressed as

v = $T7, (5.2)

where 7 e is a set of coefficients defining the basis of the subspace. Thus, in the
kernel-induced feature space, the projected features of the mapped data $ onto v
can be computed by

Z(7) - K7. (5.3)

and the constraint in Eq. (2.34) turns into rTKF = I.
Hence, for the standard PP optimisation, the optimal coefficient vector is com­

puted, instead of the optimal projection vector in Eq. (5.1), by solving the following
optimisation problem:

7* : argmax ^(K/y). (5.4)
-yeR71

Consequently, to obtain an optimal index/classifier pair in the kernel-induced feature
space, the following bi-level optimisation problem is solved:

h
min F(3,A:,A;K) = ^ ^ L(^, (^7*, 0))

1 jelnd(fii)
s.t. 7* = argmax {^(K^)}

7eR"
(5.5)

where Ind(fih) denotes the sample indices in the validation set Hi, Kj denotes the
kernel matrix between samples from the training set flj, denotes the kernel matrix
between the jth sample from the validation set fb and all the samples from the training
set Cli, and K here denotes the kernel matrix between samples from Y ~ fh U It

73

can be seen from Eq. (5.5), the used evolutionary framework in the kernel-induced
feature space are expressed only in terms of the kernel matrix.

5.3 Nonlinear Sequential Removal Process

Often, a single direction is not enough to represent the underlying data structure, thus
PP needs to be iterated to obtain a projection matrix that will form the basis of a new
coordinate system, such iterative process is called sequential projection pursuit (SPP)
[67]. To avoid a degenerated solution where all the directions in the projection matrix
are equal, orthogonality is imposed as constraint in the optimisation problem of Eq.
(2.34) and Eq. (4.1), corresponding to ArA — I. This section studies how to impose
the orthogonality on multiple projections V = • • • ,^6] in the kernel-induced
feature space by sequentially computing the coefficient matrix T = [7i,72j • • ■ j7&]-

Different from the structure removal process used in [216], which kernelizes the
Gram-Schmidt orthogonalisation procedure in each iteration to obtain the new projec­
tion vectors, the discussion in this section starts from the analysis of the variance in the
residual subspace at iteration j. Given the first j optimal projection vectors
let us search for the (j + l)th projection vector that maximises the variance of the
projected residual 1 as follows [49]

-

which corresponds to searching in the orthogonal complement of the subspace
spanned by the j previously-obtained projection vectors. Equation (5.6) can be rewrit­
ten in matrix form as follows:

max z/r(I - (5.7)

where V* - [i/[, ... , isj] is the optimal projection matrix for the first j projection
vectors. Following the definition of Sj- = I-V]VJT as the residual subspace to simplify
notation, the solution to he constrained optimisation problem in Eq. (5.7) can be pose
in terms of the Lagragian

F(u, a) - - a(vTv - 1), (5.8)

where a is the used Lagrange multiplier. Consequently, the stationary points of Eq.
(5.7) need to satisfy

dF
~ = — guv = 0. (5.9)

1To facilitate notation, a centred feature space is assumed. Otherwise, apply Eq. (5.19) to centre
the data.

JZ

3 = 1
(5.6)

1 n
u*Hl - argmax -

IMM t=i
v

74

This leads to the eigenvalue problem of the matrix Incidentally, Sj- matches
the definition of the orthogonal complement of Vf, this projector maps $ into the
subspace orthogonal to Vf, thus by using 3>Sj- to replace the original feature matrix
5b orthogonality can be kept when computing the new (j + l)th projection vector in
the kernel-induced feature space.

Thus, to impose the orthogonality to the proposed nonlinear evolutionary system,
the projected features onto the (j + l)th projection vector are computed by modifying
Eq. (5.3) as

z(T/+i) = 'l>SJl'y>+J (5.10)

= *s+$r7j.+1

= *(I - VJVjb^j+i

= (K - Kr*rf k)7j.+1,

where Tj = [7|,72> • • * >7^] is the optimal coefficient matrix already obtained for the
first j projection vectors. Consequently, the determination of the nonlinear residual
subspace for the (j + l)th projection vector has been successfully reduced to the update
of the kernel matrix at the (j + l)th iteration:

K(j+i) _ K _ KIbTfK. (5.11)

Then, the optimisation problem in Eq. (5.4) for the (j + l)th projection vector can be
written as

7j+i = argmax ^(K^+^7). (5.12)
-7eMn

This process is repeated until the 7j+i does not contribute any more to explain the
underlying data structure. Such assessment is carried by a criterion which relies on
Bayesian model selection [21], and it is based on the fact that the remaining structure
on the residual subspace is decreased as the number of projections increases. The
Bayesian stopping criterion (BSC) is defined as

0 = (2"xNk0>-V)-o<k<j+i)-7)+1)] + ly\ (5.13)

The (j+l)th projection is included if /3 is bigger than a predefined threshold S, otherwise
SPP stops with j obtained projections.

5.4 Whitening in Feature Space

As it is known, the whitening process is required to decorrelate the data previous to
the sequential induction process [60]. To whiten the data in the non-observable feature
space, let C<j, denote the covariance matrix for the training samples calculated in the

75

kernel space 1i,. By applying the standard whitening technique, the whitening matrix
in the non-observable feature space is

W - L-^2Mt (5.14)

where L is a diagonal matrix with the jth largest eigenvalue of C$ as its jth diagonal
element, and M = [mi, m2,..., mj,...] with the jth eigenvector of C# corresponding
to the jth largest eigenvalue as its jth column. Since C$ is calculated in 7i and thus
possesses an infinite size, it is not straightforward to directly obtain L and M. Scholkopf
et al [51] show that both L and M can be approximated by computing the eigen-
decomposition of the kernel matrix K between the training samples, given as

L = —A, (5.15)n v 7

M - (5.16)

where A is a diagonal matrix with the jth largest eigenvalue of K as its jth diagonal
element, and ^ — ['0i)'l/,2 5 • • ■,...] with the jt!l eigenvector of K corresponding to
the jth largest eigenvalue as its jih column. Since the orthogonality condition between
the eigenvectors of the covariance matrix is required, matrix M is further scaled by
A2, as

M = $Tq>A2, (5.17)

so that MrM = I. By incorporating both Eq. (5.14) and Eq. (5.17), the dot product
of the whitened data in feature space can be expressed as

K = $WTW# = n^T. (5.18)

To facilitate the notation, the learning data was assumed to be centered in the
feature space. When such assumption is not valid, the previous results still hold but
the kernel matrix K need to be replaced by

K = K — lnK - Kl„ + lnKln (5.19)

where ln is a x n matrix with all its elements equal to 1/n.
In the following, two modalities of the proposed extension of PP to a kernel-induced

feature space will be distinguished. The first modality will be referred as kernel pro­
jection pursuit (KPP), where the projection index ^ in Eq. (5.4) can be any of the
existing indices introduced in Section 2.3.3.2. The second modality will be referred
as evolutionary kernel projection pursuit (EKPP), where the evolutionary framework
described in Section 4.2 is used to infer an optimal projection index. This distinction
will help us to highlight the advantages of an evolved PP index against its non-optimal
counterpart.

76

5.5 Experimental Results

5.5.1 Datasets

Six datasets were used to benchmark the proposed algorithm for nonlinear feature
extraction, including arcene, dexter, dorothea, madelon, duke and PIE. The first four
datasets were from the NIPS’03 challenge [219], of which each is provided as three
separate splits, one for training, one for validation and one for testing. However, only
the labels corresponding to the training and validation sets are publicly available, the
labels for the testing split have been retained by the challenge’s organisers to encourage
post-challenge submissions. So the provided training and validation sets were merged
into a single dataset for experiments. Among the rest two datasets, duke was taken
from the work presented in [220] and PIE is a modified subset of the CMU PIE database
as used in [13].

In order to provide a fair comparison between different feature extraction methods,
a 10-CV partition scheme for final model assessment was implemented. Specifically,
each dataset D is divided into two mutually exclusive sets D — Y[JT. The learning
set T is used within the induction process to derive an optimal model, performing model
selection via the h-CV (further splitting T into training and validation sets) and the
genetic search. Once the optimal model is known, the testing set T is processed with
the fine tuned feature extraction algorithm and classified using the optimal classifier
parameters, then its balanced error rate (BER) is accumulated. This process is repeated
over each fold of the 10-CV for final model assessment. In Table 5.1, the size of the
testing, training and validation partitions can be observed for each dataset as used
in the present work, as well as the number of features in the original feature set, the
total number of classes and the ratio of the number of in-class samples to the number
of out-class samples, named as class imbalanced ratio. A low ratio value represents a
highly imbalanced dataset.

To investigate the potential separability of the used datasets in advance and assess
their suitability for nonlinear feature extraction, a preliminary study was performed
using the popular classifier SVM in two modalities. The first modality consisted in a
linear SVM (/-SVM), where no feature extraction was applied to the data. The second
modality was the SVM with Gaussian kernel (y-SVM) without feature extraction, that
performs nonlinear classification by translating the maximum-margin hyperplane to
a transformed feature space by means of the kernel trick. Since previous research
has shown the effectiveness of feature selection algorithms for classifying the NIPS’03
datasets, feature selection by sequential forward selection was carried using mutual
information as cost function followed by y-SVM (MI+^-SVM) as a comparison point.
The BER obtained by these three classifiers are shown in Table 5.1, from which it can be
observed (1) the nonlinear classifier outperforms its linear version, which indicates the

77

CD

o3
T30)o9
'a

o
T3

CD
'a
r!
p!

CD
'a
3

pi.sn
XJ
g ^
X3 ro Pi f-io3 ft
b0a 13

’3 o‘3 f-H
U ^
b0 -2s
a cs

Eh

■ xtLO CDoa^9 -S
rcc3 ceEh .q

o3Q

CO O CO CO IMCM b— 00 CM V—J co
CM IM 00 c oS CO
t-H T—1 \—\ lO 'CM

CO CM t- CO CM05 r—H oo CO rH
CO co CO ry^i COCM T-i CM CM

CO CO o to CO05 cM rH C<J O
1M GO 1M i—1 c4 T-1
CM i—1 CO rH LQ

GO Ot- o o <y> cmO O 1-H
O t-H O t-H 1-H O

CM 0-1 CM CN CM

o o o o
o
o

O CD ^ o
O O
i-H CM

O
o lO

05 ^ CM (Mi—I oIM- i—I

O lO o h< oo ^ CX5
1—I CO 1M

CO
^ CO \—I xjc

CO

CO CO o< CO CO CO ^ ^ g .O CM 05

° ° S ^ S

cc3CDft!-mOf-toce x) tzs

ao3 05
^ Ha o Ha x) p-<

78

classification task could benefit from nonlinear feature extraction, (2) the classification
task does not always benefit from feature selection, specially when features apparently
meaningless by their own are discarded but when combined with others boost the
classification performance.

5.5.2 Experimental Setup

This section elaborates on the comparison between EKPP and three existing nonlinear
feature extraction techniques that also employ the kernel trick to achieve nonlinearity,
namely KLPP [74], KFD [92] and KPCA [51], as well as KPP with predetermined index,
and two linear feature extraction methods. The first linear extraction method is EPP
[221] and the other is PCA. The comparison was based on the model assessment scheme
described in Section 5.5.1. An LDA classifier was used to compute the class labels of the
testing samples. It assumes equal prior probabilities for all classes and fits a multivariate
normal density to each group, with a pooled estimate of the covariance. Different from
the kNN classifier used in the previous chapter, the use of an LDA classifier obeys the
fact that kNN may diminish the effect of the extracted features by building nonlinear
class-boundaries. Therefore, to favour the effects of the feature extraction stage, LDA
was selected as classification algorithm, which generates linear decision boundaries. The
kernel function used by the nonlinear extraction methods follows the recommendations
in [222], and was designed to be a mix between the gaussian and the polynomial kernel,
defined as

hj = (#i + 2 exp (-||xi - Xj||2/03) , (5.20)

where ffi, #2, and 9% allow the selection of the optimal type of kernel to be used in each
method.

The scalar part of the hybrid chromosome in EKPP and the chromosome used
to fine-tune the hyper-parameters in the competing methods share the same structure.
Such structure was designed to represent the parameters of each model (i.e., coefficients

°f ffie kernel function, and a scalar b representing the number of retained eigen­
vectors tjjj from the kernel matrix) as binary words. The widths for each variable {#*}
are 4 bits, 4 bits, and 8 bits respectively, while the width for b depends on the number of
training samples, and was determined according to the formula f'log2 (2|jInd(fL)||/3)],
where j|Ind(ff j) || is the number of samples in the training set, and [•] rounds its argu­
ment to the nearest upper integer.

EKPP was implemented with the help of GPLAB [210] library for MATLAB. The
GP algorithm was run over 100 generations with a population of 20 individuals, with
a fix cross-over and mutation rate of 90% and 10% respectively. The number of folds
defining Eq. (5.5) was fixed to /z = 3 for all experiments with EKPP, and the threshold 5
used in the stopping criterion was set to 0.35, as suggested in [21]. The number b of
eigenvectors ipj from the kernel matrix used to compute K was restricted to be less

79

than the rank of K to avoid singularity problems, thus the final number of projections,
although determined by the BSC in the scheme described in Section 5.3, can not be
more than b.

For KPP, KLPP, KFD and KPCA, parameter fine-tuning was implemented by
means of a GA, which was favoured over typical grid search based on the results of
preliminary trials, that reported a considerable saving in computational time. Addi­
tional experiments were carried to determine the optimal crossover and mutation rate
such that the local optima problem was avoided. The best performing combination,
out of four empirical setups, resulted in probabilities of 10% and 90% for mutation
and crossover. In KPCA b is the final number of projections; the genetic search im­
plemented for KFD ignore the variable b since this method computes at most (c — 1)
number of projection components; while for KLPP, an extra valuable was added to
encode the number of neighbours used to compute the affinity matrix. To compare
the advantages of an optimal evolved index over its non-optimal counterpart, Lr-norm
index was used with ?' = 2 as projection index in the scheme described in Section 5.3,
this setup was labeled as KPP. The same restrictions on b as in EKPP are followed
here to avoid singularity problems.

Considering the selection of the classification algorithm could impact the perfor­
mance of the proposed method, experiments using EKPP followed by the kNN classifier
were also performed, referred as EKPP/0. The changes are mainly reflected on the struc­
ture of the scalar part in the hybrid chromosome, including the hyper-parameters of the
classifier (i.e., the coefficient for the Minkowsky distance, and the number of nearest
neighbours), and the width for a gaussian kernel. The classifier hyper-parameters were
encoded as 4-bit binary words, while an 8-bit binary word was reserved for the width
of the gaussian kernel. The number of eigenvectors ipj used to compute K was fixed to
ten, and then SPP was used on these feature space to extract relevant features.

5.5.3 Experimental Results and Analysis

The median and IQR of the balanced error rate over a 10-CV are provided in Table 5.2.
Such statistics were obtained from the classification tasks of the six datasets, using the
features extracted with EKPP, KPP, KPCA, KFD, KLPP, EPP and PCA in combina­
tion with an LDA classifier. The number of extracted features and relevant statistics
regarding computational time can be observed in Table 5.3.

Performance of a feature extraction algorithm is not only characterised by the clas­
sification error they present, but also by the compression rate achieved. Similarly, the
information embedded in the extracted features is not always optimal for the classifica­
tion task at hand, thus facing an intrinsic multi-objective optimisation problem in the
design, training and selection of such algorithms. By considering both the classification
error and compression ability of a feature extraction algorithm, a fair comparison is

80

QJ

cu

fH
o
bO

d
OJ J—f

,a>
tH
• r*H
X)

>
O

X
CD
O
d
d

13
x
(D
X

O*
t—ix
d
c3

X
CD
a
CD
X

X
o

X
o .a

d x

I ^
53 I
g. 0

lO 3
^ o
X tJ

E-i a

O’
i—i

CO CO X X b
X

to
CO X o

x CO b- 1—1 o o
CO GO X tp CO

i—i
cd
i—i bP GO

w
1—1
Ph d

d X X 00 CO X T-- 1 b o
X

CP
X lO b- 00 X GO r-! X
to o X ud bp cd b b
CO X CO CO CO X CO X

Ph CO 1—1 1—1 o X 00 1—1 CO
o*
t—1

t- CO 1—I 1—1 GO 05 b o
X cd X cd cd cd CO cd

d
x a CO i—i CO T—1 b- CO X 05

X X o 1—1 CO 00 X X X
D cd 00 X 05 X cd

Ph t- CO o X CO 1—[CO o
a

1—1
X X t-H X rH 1—I 05 X

d CO X 1—1 cd 1-- 1 cd X bP

X
c3 d

.a b- oo CO i—i X CO o
CO co

B X 05 X CO b OO rH
o> cd CO X t-H X X cd cd

CO CO CO CO CO CO CO co

IQ
R o

1—1
CO
X

CO
CO X

rH
b-
co

X
CO X

CO
X
oq

d
CD X o b X rH

i—l oo od
i—i

X-t-i
o d COJ-lOi d b- 05 1—1 o OO o X
X

«1“^
X
D

co r—1 CO o o rH 05 b
00 i—1 X cd cd bP T-1 cd
1—1 X co X CO i“H X Cl

p^
a
i—i

1'—
X

CO
X

05
X

X
CO

OO
X 00

o
CO
00

o
o

cd X 05 i—!
t-H

CO
CO bP X X

<D
S
X

d
.a b- 00 05 X X x o CO
X
D

X 05 X 1—1 00 05 X CO
X CO t-p cd 00 05 X cd

£ CO CO t-H CO 1—1 i—1 rH

P4
cy
]—i

X
X

X
X

b-
X

oo
CO

05
X CO

X
CO
CO

O
o

ar
ce

ne

CO
T—1

00
r-H

cd
rH

oo
CO

05
i-H cd X X

b- b- 05 CO 00 X o o
• t—H
X
D

X CO X GO CO X X X
X cd X cd cd cd { 1 CO
rH CO CO X 1—1 CO X rH

X -!£
o pp pp PP

X-f-g Ph <J pp O Q Ph Ph Ph
D Ph O Ph Ph Ph hPj

W PP ^h w W

81

Ta
bl

e 5
.3

: Th
e n

um
be

r o
f e

xt
ra

ct
ed

 fe
at

ur
es

, th
e t

im
e n

ee
de

d t
o p

er
fo

rm
 m

od
el

 se
le

ct
io

n T
im

el
 (in

 hr
s.)

, an
d t

he
 tim

e n
ee

de
d t

o e
xt

ra
ct

fe

at
ur

es
 w

ith
 th

e o
pt

im
al

 m
od

el
 T

im
e2

 (in
 se

c.
) fo

r d
iff

er
en

t a
lg

or
ith

m
s.

EH

CO L- CO 00 lO
C<] CO co 1—1 co CO p b-
^—1 cd d i—i • cd cd r-HCO i—i CO CI rH Cl

00 Cl
i-H CO Cl rH coGO to co t—i CJ

CO o1—1 id iH 00 00 00

00 o oO o o o o p o oO cd Cl d pcl o cd 'st1 t—1 CM cd cilO co

<
<! Ph Ph -££

Ph
Ph Ph O Q Ph Ph Ph
Ph o Ph Ph Ph P «
W Ph hd td W P pq

CO Cl Cl rH b- OiCj L 3 rH p o Cl rH
lO cd rd 7h id t- cd d

T-1 lO CO i—i o Cl OOCj p oo co r-H Cl 05
r—i i—i T-1 d cl cd cd cd

o o o o o CO o oo o Cl o o p o
c4 cd cd 1—1 cd00 cd di—i

C Ph Ph
HaPh

P-I Ph O Q Ph Ph Ph
Ph O Ph Ph P P Ph
W Ph hd W H pq

o co o O o O o oo p o p Cl p p
CO Cl C 3 cd d ci d d
rH i-H Cl T—1 Cl rH Cl

o CO lO :—1 Cl b- rH i-HCO r-H Y—1 b-- rH OO coo d cd cd 1—1 cd cd id

ooCl op op ob- op rH oo ob-dCl dlO cd 'd
r-H T-1 co

rH
rH

cd d

<1 <n Ph Ph Ph
Ph P^ o p Ph Ph Ph
Ph O Ph Ph Ph P P WH W Ph H pq

05 lOto i—l b- CM COCO t-H rH oo
CO cl'sf< d d d od

05 CO00 co t-H to coco CO p CJ
rH dr—1 b— cd b— id

05 o 05O
co ClO CO Cj COo pI-1 d cdCO
ci b-co

id
rH lOCl COCO coCl

<1 P
Ph Ph o P P
Ph o p p P P
W Ph w Ph W P

rH 1—\ cq b- 00o 1—1 Cl rH O CJ
H t-H rH r-H id

o t-H lO CO coo CM °q 1—H CJ cq
cd H i—i ci ci H

05 CM o 05 o opp p pcd cd dCl t—i cdCl

<J P
Ph <1 P O p PPh O P P p P
pq Ph W w P

7h 05lO cop Clr—1 COCJ
b-rHd 1—1 odi—i id d t—H rH

lO CO co b- LO Clco 1—1 o p i—iod id H od H od

05 o op p Cl t-H o b-cd od p t—1 p cdco b- cd tP x—1 Cli—i Cl t—\

<: P
Ph C P o p P
Ph o P p p P
pq Ph Ph w p P

82

EK
PP

2.

60

10
.1

3
1.

43

EK
PP

7.

60

2.
33

5.

23

EK
PP

12

.4
3

11
.4

0
20

.5
3

EK
PP

fc

1.
30

4.

81

1.
37

EK

PP
fc

10
.0

0
2.

69

6.
07

EK

PP
/,

10
.0

0
6.

84

10
.1

4

R
O

C
 c

ur
ve

: a
rc

en
e

da
ta

se
t

R
O

C
 cu

rv
e:

 de
xt

er
 d

at
as

et

R
O

C
 cu

rv
e:

 d
or

ot
he

a
da

ta
se

t

CO o

CO I

(AiiAUjsues) s;ej eA^jsod arui

(AjiAuisues) 9;bj aAUjsod anji

(AijADjsuag) ajej aAjtisod ami

(AjiAijjsuas) ajej aAjijSod arux

(AiiAjjjsuas) ojbj aAjtisod ami

o>
a

•rs
cci
oi
<u

o

<v
X £

'O 1

S .S
8 eg

C3
33

“3
O

43
o 33
fcj ^

3 ^
3
2 2O ^3
C-i <V)a S a, s
.u a>
o
^ 33
CD a
£ ^

43 a;

o
43

O
8 3> .5

° C3
o -
cd 33
, c.

CO r2 o C3
C- .so
1 (X

W «
.. H

oH33_hp

83

wi (-^i > Y, z) = \mSt [s,,, + nfa •,)"|
c,(c2,«2,Y,z)=[^; -^rvl]

i',(Y,z)=f'^11l
«2(Y,z) = Z)(/;,/,(z,5(r),5/i)
c2(Y,z)=D(/,/c£r(z,5r),5B)

b)

(Sb)

(SJ I

|0.78| |z| [0.42|

3(c1,»„Y,z)*5fl/^+^+5B)
,7,(Y,z) = \h(/, //(/, //(/,0.78) + //(/,0.42)))1
c,(c2,Y,z) = fo- I c2(Y,z) = [S(f.]

C)

d)

3(Y,z)^5fi

3(Y, z) = Sw+ //(/,0.81)+ Sh ! 0.77

Figure 5.2: Evolved trees for different datasets, (a) arcene, (b) madelon, (c) dexter,
(d) dorothea, (e) PIE, and (f) duke datasets

84

achieved where all the algorithms have been fine-tuned by an evolutionary framework,
thus comparing them at their Pareto optimal point.

As can be seen in Table 5.2, EKPP achieves the lowest classification error for most
of the datasets as compared to not only the four nonlinear and two linear feature
extraction methods but also the three linear/nonlinear SVM classifiers with/without
feature selection (see Table 5.1). In general, it is expected that nonlinear extraction
algorithms would perform better than linear ones. This fact is corroborated for the
proposed evolutionary method in Table 5.2, where EPP shows a lower classification
performance than EKPP.

Considering both the classification accuracy shown in Table 5.2 and the compression
rate indicated by the number of extracted features in Table 5.3, on average EKPP
outperforms most of the algorithms in all datasets, being close-followed by KFD and
much better than KPP, KPCA and KLPP. Although the compression rate of EKPP is
not always the best, as compared with KFD, the information embedded in the extracted
features helped to improve the classification performance.

The performance of KLPP among the kernel methods is not as good as expected.
In the existing literature, LPP has been reported to have an outstanding performance
for face recognition problems [13], nevertheless since LPP effectively unfolds the non­
linear structure of the manifold, applying a second nonlinear mapping by means of the
kernel trick may degrade the discriminatory information. A similar deterioration can
be observed in the classification performance of EKPP/C. Although in this case there
are several possible reasons that could have caused such low performance, the burden
in selecting a classifier with higher number of parameters does not show a considerable
improvement over the simpler EKPP setup.

In order to provide a sense of the complexity of EKPP compared to the competing
methods, relevant computational times are provided in Table 5.3. Timel is the time
taken for the evolutionary search to evolve an optimal model in one of the folds of the
10-CV. Time2 is the time taken by the optimal model to perform feature extraction and
classification of the testing set. EKPP shows better compression rate and classification
accuracy in Table 5.2. Although this improvement is at expense of an increase in
the induction and classification time, the overall computation time (Timel+Time2) is
comparable to that of the competing feature extraction algorithms fine-tuned by a GA.

Additionally to the classification accuracy analysis, a sensitivity analysis was also
performed over the extracted features for the three best feature extraction methods for
the binary classification problems. Every extracted feature was ranked using its class
scatter ratio [42], and the receiver operating characteristic (ROC) curve was computed
for the dominant feature. Figure 5.1 display such curves for each dataset along with the
area under ROC curves (Az). The features found by EKPP work much better together
than individually (see Table 5.2 and Figure 5.1), nevertheless the best ranked feature

85

managed to perform better than the competing methods (see Figure 5.1).
The inferred PP indices are showed as a tree representation along with their corre­

sponding equations in Fig. 5.2. All the presented trees are highly supervised, with the
tree corresponding to dexter dataset being only the definition of the between-class scat­
ter. It can be seen that trees for highly imbalanced datasets strongly depend on Renyi
entropy, while those trees for balanced datasets depend on functions of the within-class
and between-class scatters.

5.6 Summary

In this chapter we have discussed a nonlinear extension of the proposed evolutionary
framework by means of a kernel-induced feature space. Its main advantage, compared
to the method proposed in [216], is the determination of the nonlinear residual subspace
in SPP via a simple matrix updating formula (given in Section 5.3) which speeds up
computation of the projection matrix. Additionally, whitening in feature space was
expressed in terms of the eigenvectors corresponding to the largest eigenvalues of the
kernel matrix (Section 5.4). It was experimentally shown that EKPP outperforms
existing kernel methods, as well as its lineal’ version EPP, for most of the selected
high-dimensional classification problems (see Table 5.2).

Besides inducing an optimal projection index, the proposed evolutionary frame­
work also optimises the type of kernel function suited to the application at hand. The
selection of the kernel function is controlled by the parameters of Eq. (5.20), which
effectively combine two popular’ kernel functions, namely Gaussian and polynomial ker­
nel. Four other kernel methods were compared against EKPP (i.e. KPP, KPCA, KFD,
and KLPP), which parameters were also optimised with an evolutionary algorithm to
provide a fair comparison. Among them, KLPP exhibited the worst compression rate,
while EKPP showed high compression rates, ranging from 98.79% to 99.99%, without
sacrificing accuracy.

Selection of the classifier plays an important role in the performance of the evolved
classification system. Two classifiers were tested as part of the fitness function showed
in Eq. (5.5), an LDA and a kNN. Classification systems evolved using an LDA out­
performed those evolved with a kNN, this could be attributed to the fact that kNN
builds nonlinear classification boundaries that diminish the effect of the kernel-induced
nonlinear extracted features. Thus, in order to take the very best out of EKPP, it
is recommended to only use linear classifiers when inducing classifier systems via the
proposed evolutionary framework. As with its predecessor, EKPP suffers from large
induction times, thus it can not be used for online applications.

86

Chapter 6

Evolutionary Induction of
Heterogeneous Proximities
for Supervised Embeddings

The discussion so far has been centred on a generalization of linear projection tech­
niques. An evolutionary framework has been described, able to automatically design a
projection index to be used as feature extraction stage for a given classification prob­
lem. Additionally, the original projection pursuit problem has been mapped to a kernel-
induced feature space with help of Mercer’s theorem, unfolding any nonlinearities and
improving classification accuracy for nonlinear datasets. As result of using a kernel-
induced feature space, the small sample size problem for high-dimensional datasets is
avoided. However, recent evidence suggest that non-observable spaces allow nonlinear
embeddings of data originally laying in a low-dimensional manifold [68]. When this as­
sumption holds, a linear projection, or nonlinear projection via kernel-induced spaces,
fails to unveil the true low-dimensionality of the embedded manifold. Spectral embed­
ding methods, described in Section 2.3.4, have been successfully used to extract features
able to describe nonlinear manifolds embedded into non-observable spaces. Their de­
sign is based on correctly modelling the local geometry for each sample, which will be
retained in the resulting low-dimensional space. The present chapter seeks to address
the problems related to the automatic design of supervised spectral embedding (SSE)
methods. First an alternative formulation to the classic trace optimisation problem,
used by spectral embedding methods, is proposed. Then, the design process is modelled
as a complex learning task, where an optimal model is induced from a set of training
data. The inducer engine was implemented using an evolutionary search, capable of
building not only a family of existing spectral embedding methods, but also create new
models as a result of its powerful syntax and high expressive lexicon. The performance
of several human-engineered SSE methods is compared with these automatically gen­
erated embeddings for the task of classification, and results show a decrease in the
classification error.

87

★class 1
A class 2
■ class 3

Figure 6.1: An example of a possible SSE configuration of the original space (left) to
the embedding one (right), where the three friends of xi are pulled closer, while its
four enemies are pushed afar.

6.1 Model Definition

If we assume a set {x* 6 Rm}”=1 of training samples corresponding to discrete labels
yi G {l,...,c}, an SSE algorithm generates n embeddings {zf e of 6 < m
dimensions each. These two sets can also be conveniently denoted through the original
n x m feature matrix X = [x^] and the n x b embedding matrix Z = [zij], with row
vectors the original samples x* and the embeddings z*, respectively.

The supervised character of an SSE method implies that its objective is the creation
of a new configuration in the embedding space, where the class structures and separa­
bilities existing in the original space are not only maintained, but also reinforced. As
it is demonstrated in Fig. 6.1, this is achievable by increasing the similarities between
friends (samples from the same class), while making enemies (samples from different
classes) more distant. A straightforward way of implementing this behaviour, is to
minimise the weighted sum of all the pairwise embedding distances, as in the standard
unsupervised embedding, according to

min 1
2 H Wtj||zi -ZjlH,

ij=l
(6.1)

or equivalently
min trace \zTLZ] , (6.2)

ZeRn*b L J v 7

but with the similarity weights Wij corresponding to enemy pairs (i, j) treated differ­
ently than the friend ones. In Eq. (6.2), W = [tCy] is the overall similarity matrix,
and L = D(W) — W is the standard Laplacian matrix, where D(W) gives a diagonal
matrix with elements da =

Below, a few examples are given on how different SSE methods use W to directly
control and differentiate the friend and enemy vicinities. For comparison purposes,

88

all methods are re-express in terms of their weights Wij. The first of these methods,
the discriminant neighbourhood embedding (DNE) [83] is based on a sample weighting
defined as

{+1 if Xj € A:) V Xi G N£r(xj,k),
-1 if Xj G Ne(xj, A:) V X£ G iVjs(xj, k), (6.3)

0 otherwise,

where NF(xi, k) represents the ^-nearest friends of x^, and iV/^Xj, A:) its A;-nearest
enemies. The supervised optimal LPP (SOLPP) method [223], integrates class prior
probabilities into the weighting matrix as

f + sij) if e A;) V Xi G ATf(xj, k)

wij = S PvtPviSijO- ~ sij) if Xj- G NE(xh A;) V Xi G NE{^j,k), (6.4)
I 0 otherwise,

where — exp ^ 1Ix^xj1I2^ js a Gaussian-based similarity controlled by the parameter

r, and pk (k — 1,2, ..., c) is the A/;/l class prior probability. Another method is the
repulsion OLPP (OLPP-R) [78], based on a Lapiacian L = Lc — /?Lr, defined as the
linear combination of a class Le and a repulsion Lapiacian Lr, for some user-defined
parameter /3 > 0. This is equivalent to the calculation of the weights according to

Wij -

- tfyi = yj = li
-Psij if [xj G i\r(xi, A;) V Xi G iV(xj-, A:)] A ^ yjt
0 otherwise,

(6.5)

where the alternative weight = (r + ||^ is used to define the repulsion
Lapiacian, m is the number of samples in class Z, and Ar(xi,/c) represents the fe-nearest
neighbors of Xj. Supervised ONPP (SONPP) [72] is a method that attempts to recon­
struct each sample by a linear combination of its friends, thus, only takes into account
similarities between friends based on

Wij —
Wij if ip = yj,
0 otherwise, (6.6)

where Wij — rriij + niji — mkimkj is computed from the reconstruction coefficient
matrix M = [rriij], &nd M is obtained by minimising the reconstruction error as follows

min E x;-Em«xJ
j=l 2

(6.7)

n
s.t. rriij = 0 if Yi 7^ Yj) ^ ^ rriij ~ 1 •

j=i

The matrix M will have a block diagonal form M = diag(Mi, M2, ..., Mc) after a
simultaneous re-ordering of the rows and columns to keep intra-class samples together,
where the Ith block corresponds to the Ith class. The repulsion ONPP (ONPP-R) [78]

89

amplifies neighboring enemy dissimilarities by incorporating the repulsion Laplacian
into SONPP using

Wij =
Wij if Vi = yj,

if [xj G A^(x£,/c) V Xf G iV(xj,fc)] Ayt ^ yj, (d-8)
0 otherwise,

where Sij is the alternative weight as used by OLPP-R. Finally, the discriminant ONPP
(DONPP) [80] is very similar to ONPP-R, but defines the neighboring enemies and their
corresponding weights differently as

(6.9)

Although the aforementioned SSE methods are based on different ways of control­
ling the friend and enemy vicinities, they are all relying of a uniform treatment of the
weights between friends, and between enemies. In this way, all friends regardless of the
class they belong to, are assigned weights calculated via a common metric. Similarly,
the weights for the enemy pairs are homogeneously calculated, regardless of the class
pairs containing them. The underlying assumption is that samples from each class lie on
manifolds having similar geometrical configurations and densities. However, real world
datasets may contain multiple, intersecting or partially overlapped manifolds with dif­
ferent orientations and densities [224,225]. Additionally, the inter-class configurations
may also vary, so that the enemy dissimilarities cannot be treated in a homogeneous
manner for all class pairs. Fig. 6.2 exemplifies such a possible scenario.

-1-

-2-

Figure 6.2: Synthetic 3D dataset (based on [224]) composed of three classes (the ’|’
and S’ parts in the dollar shape and the Swiss roll) with samples lying on different
manifolds.

90

bO

m tH CD CJ
03•4-5

cR 03+4> .2*
C^j 0

*coXId' 'o 4-)
'—■' CO o3
>1-4-i

oj
co

CD
C3
O

O
o>

s .§

oi

a>

bJO
a

D
ooi-i
Oh

8
o

o
w
H

-m 7^3

e
<u
oa;

R ^CJ 4J
a> o

bO
'—' 'V h
^ O
lo y

a>
o

'O
' s
i

bC
•S
'S
'OOJ
hO
a
CD
Q
CN
bO

_0
"3
oo
Oh
co
<y

-O
^ £

4»
^ fe
° 5

O i2
O 5°
Co CJ

'S 'T'
S

o o-*-s
, CO'■d a;

« .a
O l->
OhCO ^
2 a

• S >->

i2 cc3^ a

^ 03
QJ <|

j=i
oj
a

o
03

Of
03

d ^
u ^

•a §
^ .H
a a

•c ^
w-i +o

co ^

co a
V °X chCO
£

c^ o.1 |
o cc

Td CD S3 y CO
' os h—v g ^

«3 3 3 S ^

lO
CO

CO o

T3 °
a) ^ fl 1^o ^
S .a

'C ^ n
Is .2 "
a ^ ^

t
’§ 1 -I

y -sd, g o

a
Oh

CD
a

co o
co y

CD

CD
03

-d H
£

“is
co CJ
(D OCO —.O 02 Oh _

cS

>5 cS
O a ^

ty <1 13

o
Oh

Oh "V

-d o

91

sim
ila

rit
ie

s fr
om

 (a)
, W

n,
 W

33
 ar

e c
os

in
e f

ro
m

 (b
), a

nd
 W

13
, W

23
 alt

er
na

tiv
e w

ei
gh

ts f
ro

m
 (c)

. Em
be

dd
in

g g
en

er
at

io
n w

as
 ba

se
d o

n a

su
pe

rv
ise

d v
er

sio
n o

f L
PP

 w
ith

 al
l e

dg
es

 co
nn

ec
tin

g e
ne

m
ie

s a
ss

ig
ne

d n
eg

at
iv

e s
im

ila
rit

ie
s.

In such cases, an SSE algorithm based on standard weight calculations, may display
poor class separability and fail to generate embeddings that appropriately maintain or
reinforce friend proximity and enemy remoteness. Fig. 6.3 provides a representative
demonstration of this situation for the dataset of Fig. 6.2. Figs. 6.3(a-c) display the
similarity matrices W using three popular homogeneous proximity measures. Using
negatively weighted enemy similarities to obtain dissimilarities, the three corresponding
two-dimensional embeddings in Figs. 6.3(e-g) were generated. It can be seen that
the separability in the embedding spaces is not enforced for all three classes. In Fig.
6.3(d) the similarity matrix W is a heterogeneous block composition of the other three
matrices, where the different friend (diagonal) and enemy (off-diagonal) blocks are
calculated using different proximity measures. In the corresponding embeddings of
Fig. 6.3(h), it can be seen that all three classes are sufficiently separated, leading
potentially to more discriminant embeddings.

The objective of this work is to address the above issues, by allowing the proximity
information stored in W to accommodate the geometric characteristics of the mani­
folds, the differing class distributions and their interrelationships. This is possible by
incorporating heterogeneously calculated proximity information for the different blocks
of W. A fairly general model definition for such a composite weight matrix is

Wij — i

/z(xt, Xj-) if iji = yj = Z A Xj- e IV>(xi, ki) A
xf e ivXxj-jfo),

-9pq{xi>Xj) if Vi = P A Xj £ NE(xi,kpq, q) A
Vj = q A Xi £ NE(Xj, kpq,p),

0 otherwise.

(S.10)

In Eq. (6.10), the weight w^j for friends is controlled independently for each l^1 diagonal
block by a different similarity measure /) (x^,). To selectively enforce neighborhood
localization, friendship is restricted to pairs of x* and Xj that are mutually the ki~
nearest friends of each other. The model allows for a different /)(•, •) and Jq for each
class l e {1,..., c}. For the enemies, an individual similarity measure gpq{-r) is defined
for each class pair (p,q) £ ,c}2 with p q. For simplicity here symmetry is
assumed, that is gpq = qqp. For neighborhood control, pairwise enmity between Xj and
xj is defined only for samples mutually appearing within the A^-nearest enemies of
each other. The set ArE(x^, kpq, q) denotes the /^-nearest enemies of xi from class g,
and its formation is based on a search with the proximity function gpq{-, •).

Using this model definition, the similarity matrix W can now be expressed (as­
suming a simultaneous re-ordering of its rows and columns, to keep intra-class samples

92

together in the form of blocks), as

- Fj G12 — Gis . . —Gic
rT"^12 f2 — G23 • • • -g2c

W=F-G= — ^13 -^23 F3 .. • -g3c

l -Gl ■ Fc

Each block Fj €]RniXn; contains the pairwise similarities between samples from the
Ith class, and each off-diagonal block Gpq G llnPXn'i holds the pairwise similarities of
samples from the pth and the qth classes. F and G are the overall friend and enemy
matrices. All F; and GPq blocks can be sparse depending on ki and kpq, and are
symmetric as mutual friends and enemies are considered.

The identification of this model requires the fine-timing of the positive integer pa­
rameters ki, kpq, and the similarity functions //(■,*) and gPq(-, •)• In the form proposed
by Eq. (6.10), there are c ki and /;(•, •) parameters, while c(c—1)/2 kpQ and gpq(’, *) ones
for the enemy weights. For problems with very large number of classes, the model can
be restricted to the use of c enemy blocks, by having gpq = gpr and kpq = kpr, Vr -/- q.
In this case, only c integer kpq and function gIJq(■, ■) parameters are needed. The form of
Eqs. (6.10), (6.11) is generic and can represent a large type of heterogeneous proximity
models. For example, assuming a single ki and //(•, •) for all c classes and a single kpq
and gpq{-,-) for all enemy pairs, other existing homogeneous proximity models can be
obtained (with comparable neighborhood control), such as DNE, OLPP-R, SONPP,
etc. The mechanism proposed for the identification of the model of Eq. (6.10), is
described in detail in Section 6.2.

To generate the optimal embeddings Z, Eq. (6.2) is solved subject to different
orthogonality constraints on Z, in order to keep the embedding coordinates different.
In this work, the embeddings are expressed as linear combinations of the input features
X, following [74], via the transformation Z = XP, where P is the m x b projection
matrix. Finally, to flexibly utilize the proximity information stored in W = F — G,
the distances between friends are minimised, while the distances between enemies are
maximised in the embedding space, by obtaining the optimal projections

P* = argmin tr fpTX:rFXPl , (6.12)

PT(xTGX+AIm)P=r6

where F = D(F) — F and G — D(G) — G are the Laplacian forms of the friend
and enemy proximity matrices. The parameter A is a regularization parameter acting
as a mechanism for controlling the degree of importance of the enemy information.
For example, for A — 0, the constraint of Eq. (6.12) assumes the standard form
ZtGZ — Ifcxb [77], which enforces orthogonality of Z with respect to G. When A —> co

93

the constraint becomes PTP = [72], which enforces orthogonality of the pro­
jections. The above optimization can be directly solved using generalized eigenvalue
decomposition involving the two matrix expressions in the objective and the constraint
of Eq. (6.12).

6.2 Evolutionary Induction

The proposed composite weighting matrix reduces the design of an SSE method to the
modelling of a set of suitable similarity functions that correctly describe the underlying
data structure. With no prior knowledge of the data distribution, and due to the dimen­
sionality of the problem, it is hard to suggest an adequate metric set. However, such
similarity functions can be inferred from the dataset itself. A simple approach to model
learning is given by grid search, where for a given set of N(i similarity metrics, and a clas­
sification problem with c class labels, jv^c+1)/2 p0SSjp]e combinations need to be tested
as building blocks of the composite weighting matrix. Additionally, parameter fine-
tuning needs to be done for each possible combination. Such process turns intractable
as the number of classes and available similarity metrics increase. Evolutionary algo­
rithms have been used as a way to avoid the computationally burden of direct linear
search for automatic design of classification systems [54,187,194,203,205,226-228]. In
particular, GP has proven to be a suitable tool for classifier induction [229-232], feature
extraction [191,233,234], and feature selection [205]. The powerful expressive ability
of GP allows it to represent different classification models such as decision trees [235],
classification rules [236], artificial neural networks [237] and many more. In the present
work, GP is used to encode potential SSE methods into a hybrid chromosome, designed
to mimic the structure of the composite weighting matrix proposed in the previous sec­
tion. Beside providing a suitable representation mechanism, GP is used to pose the
problem of automatic design of SSE methods as an inference task, where potential
models are proposed, evaluated and systematically modified to improve their quality.
This work refers to the foregoing inference process as model induction. It resembles
model selection in the sense that it picks the best performing model out of a set of po­
tential candidates, however model induction has the ability to generate new models if
the existing ones perform poorly. This flexibility is granted by the breeding mechanism
implemented through the genetic operators.

6.2.1 Chromosome Encoding

As previously mentioned, the constitution of each individual in the genetic population
is given by a hybrid chromosome designed to accommodate the structure of the matrix
shown in Eq. (6.11), which allows each block to be computed separately. Taking ad­
vantage of the class information the learning set can be split into c mutually exclusive

94

Table 6.1: Example of the pairwise and matrix forms for various existing distance
metrics (where o denotes the Hadamard product). The tp and tM columns are the
corresponding times (seconds) taken to calculate all n x n distances of all sample pairs
from a dataset with n = 1,000 samples and m = 20 features.

Metric definition tp tM
Pairwise Matrix

Cosine norm llxtlhllxjlk A(XXr)A
A = (I o (XXT))~2

17.60 0.06

Correlation |[CmXi||2||Cm,Xj||2 A(XCmXr)A
A = (Io(XCmXr))~5
C — T — h-1 1T

21.51 0.05

Kullback-Leibler (x* - Xj)Tlog2(Xi) A + At — (B + Br), 39.59 0.15
divergence ~l-(xj-xi)Tlog2(xJ) A = (BoI)l„g,

B = Xlog2(X:r)

Euclidean squared llXi-Xjlll A + At - 2XXr
A = (XXr o 1)1^1^

12.28 0.08

sets Xj = {xj : yj = 0/=i,2,...,c- Given the set X; with ni points, the block Fj can
be computed using two mapping functions. The first one, which it is called pairwise
representation, uses the mapping fi : Wn x —» M. The second mapping takes the
form Fi : WllXm x Mni><m —> En(Xn!, and will be called matrix representation. Pairwise
representation is simple to define, but needs to be evaluated m x m times to compute
its corresponding block matrix F/, while matrix representation requires only one evalu­
ation. Additionally, as can be seen from Table 6.1, the proposed matrix representation
allows the expression of classic similarity metrics with only a few functions. Thus,
beside speeding up computations, it simplifies the function set design as explained in
the next section.

Although computationally faster, the use of matrix representation in GP involves
the inclusion of syntactic rules governing the construction of potential models [238].
Strongly typed GP (STGP) is a GP variation where each terminal has an assigned
data type, and every function has a return type determined by its arguments. To ben­
efit from the advantages of matrix representation, STGP is used to impose syntactic
constraints to the learning problem through a robust function and terminal sets, which
were specifically designed to grant the inductive engine with a powerful lexicon, able to
not only express any existing SSE, but to create new ones. Hence, under the proposed
representation, each individual in the GP population is encoded by an hybrid chromo-

95

some [{J^u ki}, {QPq, kpq}, A], which comprises of two sets of parse-tree/scalar pairs, and
a independent scalar A. Each pair encodes a similarity metric in matrix representation,
and its corresponding neighbourhood size. The set {.^z, related to friends
connectivity for each class, is evaluated to build the on-diagonal blocks in Eq. (6.11),
while the set {Qpq,kpq} consists of c(c— l)/2 pairs defining the off-diagonal blocks.

The selected hybrid chromosome required the design of suitable crossover and mu­
tation operators. Two types of crossover were designed to keep model coherence.
QnePointXover is a simple one point crossover, where the trees representing each ma­
trix function in the sets {!F{\ and {Qpq} are treated as indivisible units, thus all the
trees beyond the crossover point in either parent are swapped. SelectiveXover ran­
domly selects a tree in the same category for each parent, then it swaps randomly
selected branches with the same return type. The corresponding scalars for each tree
are swapped accordingly for both crossover operators. Mutation randomly selects a
tree from any category and then it replaces an aleatory branch with a newly generated
tree with the same return type. The scalar part of the selected pair is replaced by a
random integer bounded between [1, min(n?, ng)] or between [l,ni - 1], if the tree is in
the set {QPq} or in the set The optimization of the regularization parameter A
is performed as well by the evolutionary process by randomly changing its value every
time a tree mutation is performed.

6.2.2 Fitness Function

The evolutionary nature of the proposed inducer requires a suitable mechanism to asses
the quality of the individuals in the population. In this work, out-of-sample estimation
error via cross-validation (CV) is adopted as fitness function, consequently the fittest
individual will exhibit high classification performance. Thus the induction process
can be modelled as follows. Given a family of potential models, a classifier ip, and a
finite amount of learning data T = U split into training and validation fb
sets, the optimal model [{Tf, &*}, {Gpq, kpq}, A*] is given by the solution to the bi-level
optimisation problem

h
min J([{JT;, A:/}, {Gpq, kpq}, A]; T) = X] XJ ^ (XJP*))

i:=1 j'eUi

s.t. P = argmin tr [PTXTFXPl
x={Xfc|feeni}, L J

PeKmxb, Pr(XTGX-)-AIm)P=Ib

kpq,ki G N+, A > 0 (6.13)

where L(-) is the binary loss function between the label ?y7; and the prediction made by
the classifier .

For the jth individual [{^/'^, /cp')}, {Qpq , kpq}Q^, A^] in the GP population, Eq.
(6.13) computes the corresponding fitness function J(-) step by step as follows: (1)
Determine the optimal projection matrix P* for the jth individual by solving the trace
optimisation problem described Eq. (6.12), using the training set (2) Compute

96

the projected features for both the training and validation sets and Of with the
obtained projection matrix P*. (3) Perform classification using the projected features.
(4) Repeat the process (1) to (3) over each split of a /i-fold cross validation (h-CV)
scheme (i = 1, 2, h), and the averaged classification error over the h groups of
validation sets is used as the fitness function for the jth individual.

6.2.3 Function and Terminals

In order to perform a fair model selection, the proposed evolutionary inducer must
have the capacity to generate any of the existing SSE methods. This depends on the
proposed function and terminal sets, as they define the syntactic rules and vocabulary
available to the genetic search. As previously mentioned, one of the reasons for adopting
a matrix representation is that it considerable simplify the function set design, as only
a few functions are needed to express classic similarity metrics. Let A and B be input
matrices to any member of the function set, and C its output matrix. The basic
function set needed to express all the similarity metrics in Table 6.1 is composed of
arithmetic functions like addition, subtraction and multiplication, plus five specialised
functions: Hadamard product defined as C = A o B <-+ cy = Oijbij] function centre,
which generates a m x m centring matrix for a given n x m input matrix; function
invsqrt, which delivers a diagonal matrix with ca = a^1^2 on its diagonal; function
ones, which allows to create variable size matrices with all their elements equal to
one; and function plog2, which transforms each m-dimensional sample vector Xj into a
discrete probability vector c,;. To complement the set of arithmetic functions, left and
right division were added, which implement right and left multiplication by the inverse
(or pseudo-inverse) of its first and second argument, respectively; Hadamard division,
defined as C = A 0 B ^ qj = ciij/biji and matrix transpose.

As most of the SSE methods are based on laplacian eigenmaps (LE) [71] or on
locality linear embedding (LLE) [70], three more specialised functions were considered:
function sdiag generates a diagonal matrix with its ith element equal to cu = J2j (Hj,
thus providing a mechanism to create Laplacian style matrices; function recoef uses
its input argument to generate LLE style regression coefficient matrices; and function
exp provides a way to generate matrices with the same properties as the Gaussian
kernel. The terminal set (Table 6.3) was indirectly defined by the function set, and
consists of the training data X plus a few numeric constants. The complete function
set, along with the symbol representing each member can be found in Table 6.2. The
expressive power of the proposed function set is showed in Table 6.4, where selected
SSE methods are expressed as similarities/dissimilarities matrix functions, using the
proposed function and terminal sets. With this representation, similarities between the
different methods can be drawn easily. For instance SONPP, DONPP and ONPP share
the same expression to characterise similarities between friends, while they differ in the

97

Table 6.2: Function set. The last column indicates the grammar for each member,
where each rule is given as [argj : outi] for a one-input/one-output function, and as
[(arg1,arg2) : outi] for a two-input/one-output function. C is an output matrix built
with the evaluation of a given function member with A and/or B as input matrices.
In refers to the column vector of size n with all its elements equal to one. refers to
the pseudo-inverse of matrix A.

Symbol Arity Description Input/Output type

+, —,o,0 2 Matrix addition and
subtraction, Hadamard
product and division

[(g,g):g]> [(li,h):h],
[(0>0):°]> [(rA):i’]i [(s,s):s],
[(t,t):tj, [(u,u):u]

X 2 Matrix multiplication [{(hjf), (f,o), (r ,u)} :f],
[{(g?h) ? (°?g) 5 (s,t)} :g],

[{(g»f)»(s,u)}:o],
[{(f,s),(h,r)}:r],
[{(g,r),(o,s)}:s]

/ 2 Right matrix division. If B is
square
C = A/B = AB1
C = AB^, otherwise

[(f,o):f], [(g,h):g],
[{(f >f) j(h,b), (h,c)}:h],
[(g>g):°]> [{(f»u),(h,t)}:r],
[{(gjt).^^)}:^

\ 2 Left matrix division. If A is
square
C = A\B - A"1B
C = A^B, otherwise

[(h,f):f], [(o,g):g], [(g,g):h],
[(f,f),(o,d):o], [{(g,s),(h,r)}:r],
[{(f,r),(o,s)}:s]

('f 1 Matrix transpose [g:f], [f:g], [h:h], [o:o], [r:t],
M

ones 2 Variable size all-one matrix
P — 1 1 ^V-/ _L 72 -1- 772 j
C 6 Mnxm

[(a,d):u], [(b,b):h], [(d,d):o],
[(b,a):r], [(d,a):s]

sdiag 1 If A e K" x R”\
C = Io(AlmlJ'),
if A 6 *'*,
C = Io(AlJ)

[{f,h,r}:h], [|g,o,s}:o]

pdiag 1 Extracts the diagonal of a
given square matrix.
C = (I o A)lm

[h:r],[o:s]

98

Table 6.2: (continued)

Symbol Arity Description Input/Output type

recoef 1 Regression coeff. matrix [70] [f:h]

invsqrt 1 C = (I o A)-1/2 [h:h],[o:o]

centre 1 Centring matrix
f"1 — T It -i T ^ A mXmXm

[f:h],[g:o]

exp 1 Matrix exponential function
Cij — e(lij

[h:h],[o:o]

plog2 1 Cij =

log2f, i

Table 6.3: Terminal set indicating symbol and type used for each terminal along with
its description.

Symbol Type Description
1 a Constant one

ni b Number of points in the block data
n c Number of points in the training data
m d Number of dimensions of the training data
X f Block data

99

Table 6.4: Existing homogeneous SSE methods expressed using the employed ma­
trix notation, with single Fi and single Gpq (M; corresponds to the Ith block of
the reconstruction coefficient matrix M in Eq. (6.7), also A = lnp^nq
B = (l o XjXp) l„5q?, C = 2XpXg).

Method Fi Gpq

DNE [83] 1 -[T

MMC [75] J-1 iT _ li iT
m ni ni n^ni^ni lln Up-^Tlq

OLPP-R [78] Al tT
71; 0 (<7 + (A + B - 2C) 0 (A + B))

SONPP [72] Mi + Mf-M?Mi 0

DONPP [80] Mi + Mf - MfMi /^nplnq

ONPP-R [78] Mi+Mf -MfMi /51n.pln, 0 (CT + (A + B — 2C) 0 (A + B))

way they characterise the similarities among enemies.
The aforementioned function and terminal sets need a control mechanism to govern

the way they are combined when generating new parse trees. Such mechanism is
provided by a set of data types, along with a grammar which provides syntactic rules for
the generation of trees to ensure they meet appropriate type constraints. The devised
grammar can be found in Table 6.2, along with the proposed function set. To avoid
overloading each function with argument parsing, it was decided to let STOP manage
the problem by defining apparent data type duplicates, as can be seen in Table 6.5.
Those apparent type duplicates differ in size, and are used to define a syntactic rule
for each case. For instance, the type matrix has four apparent duplicates, allowing
to express the behaviour of all the functions for different matrix sizes. Although the
function set is mainly compose of simple arithmetic functions, its true power lies in
the syntactic rules defined for each member. STGP requires that each terminal has its
own data type, so that only certain functions are allowed to receive terminal nodes as
arguments. Such data types can be found along the terminal set definition in Table
6.3.

6.3 Experimental Results

6.3.1 Datasets

The proposed evolutionary framework, that for propose of brevity will be called Evo­
lutionary Embedding Analysis (EEA), was compared against the SSE methods shown
in Table 6.4 in the classification task of six, real world datasets summarised in Table
6.6. Such benchmark datasets were downloaded from [239], and partitioned for final
model assesment with the help of 10-CV. Specifically, in each fold for each dataset, a

100

Table 6.5: Types definition along with the symbol used for each type in the grammatical
rules.

Symbol Type
a Scalar 1
b Scalar ni
c Scalar n
d Scalar m
f Matrix n x m
g Matrix m x n
h Matrix n x n
0 Matrix m x m
r Column n-dimensional vector
s Column m-dimensional vector
t Row n-dimensional vector
u Row Tridimensional vector

Table 6.6: Dataset summary

Dataset Features Samples
cancer 9 277
diabetes 8 768
flare-solar 9 1066
german 20 1000
heart 13 270
thyroid 5 215

90% split was used for the learning phase (i.e. learning data T = available
to the inducer) and the remaining 10% samples f were used to test the generalization
performance of the porposed system. The entire inference task was repeated within
each fold of the 10-CV model assessment. All mentioned datastes are benchmark,
binary classification problems from application fileds such as medical diagnosis (e.g.
cancer, diabetes, heart and thyroid), astronomy (e.g. flare-solar), and credit
assignement (e.g. german). Among them, flare-solar and german are computation­
ally expensive problems due to its high number of instances, while german and heart
can be benefited the most of dimensionality reduction.

6.3.2 Experimental Setup

All the experiments were run on an iMac with CPU Intel Core 2 Duo at 2.66 GHz, 4 GB
RAM, OS X 10.6.4, and MATLAB 2009b. The GP algorithm was implemented using
a modified version of GPTIPS [240]. For the competing SSE methods that require

101

the definition of a inter- and intra-class neighbourhood, their respective number of
neighbours were optimised by a simple evolutionary search implemented with help of
a genetic algorithm (GA) run over 30 generations with a population of 10 individuals,
cross-over rate of 70% and mutation rate of 30%. Each variable was encoded as a
variable-length binary word. The intra-class neighbours were bounded within the range
[1, rik — 1], thus the number of bits reserved were |_l°g2(nA;)J* Likewise, the inter-class
neighbours between class p and class q were bounded within the range [1, min(??7J, nq) —
1], giving a word length of |_log2(<rn/m(?r?,, bits. The number of extracted features
b for the competing algorithms was encoded as well into the chromosome as a four-bit
word. Since the objective of the evolutionary search for the competing algorithms is to
perform model selection, the selected fitness function for the GA was cross-validation.
To perform a fair comparison, parameter fine-tuning was conducted using the same
partition scheme as previously described to perform final model assessment. Descriptive
statistics for final model assessment are reported in Table 6.7.

6.3.3 Experimental Results and Analysis

Table 6.7 presents the performance of each selected SSE method and compares them
with EEA. As can be seen, EEA presents better generalization performance in all
the compared classification tasks. As expected, the classification performance for each
benchmark problem varies depending on the competing SSE method. A measure of such
variability is given by the average deviation from the ground truth for each competing
method, taking EEA misclassification error as ground truth. Using this measure of devi­
ation, the benchmark problems can be ranked in decreasing order as follows: thyroid,
flare-solar, diabetes, german, heart, and cancer. Nevertheless, since there is
a trade-off between the number of reduced dimensions and classification performance,
it is only fair to produce as well an analysis of the predicted number of dimensions
for each competing method to completely characterise each problem. In Table 6.7 the
optimal number of reduced dimensions learned for each competing SSE problem is also
given.

A clear example of the interdependence between dimensionality reduction and clas­
sification performance is illustrated by the cancer dataset, which ranked last due to the
high variability in the classification performance reported by the competing methods,
however they agreed most of the time in the number of reduced dimensions, generating
an average deviation of ±2.16 from the ground truth (i.e. d = 2 predicted by EEA).
If the average deviation from the true estimate in the number of reduced dimensions
is taken as a measure of the problem complexity, all the selected benchmark problems
can be listed in decreasing order of complexity as follows: flare-solar, diabetes,
german, thyroid, heart, and cancer. This apparent contradiction, where cancer
problem can not be correctly classified in the subspace produced by all the competing

102

03 CD

ft c3o a
Vi ^

4-2

g §
if-rH T3

-d p
qj b
CO p
CO -*jd) d
CO Q

O
N

PP
-R 2/

2.
0

5/
0.

2
4/

1.
5

5/
1.

6
1/

1.
0

5/
0.

2

Er
ro

r
44

.9
3

37
.1

1
44

.5
0

42
.0

2
43

.7
0

12
.8

7

D
O

N
PP rO 5/

1.
10

5/
1.

50
2/

0.
80

5/
0.

70
5/

1.
80

5/
0.

30

Er
ro

r
5.

43
27

.4
9

32
.6

5
31

.6
6

20
.7

4
12

.7
8

SO
N

PP
03 lO Ol lO rH -b*

Er
ro

r ;
45

.2
1 ;

37
.5

1
34

.2
9

43
.1

1
44

.8
5

I 12.
91

O
LP

P-
R SCL

^C3 5/
2.

0
5/

0.
7

4/
1.

7
5/

1.
6

1/
0.

2
5/

0.
1

Er
ro

r
30

.6
5

31
.1

0
38

.8
8

40
.2

5
40

.8
9

12
.8

3

D
N

E b/
k

5/
48 5/
9

5/
36

3/
29 5/
1

4/
2

Er
ro

r ;
4.

92
24

.6
2

35
.7

5
31

.0
0

18
.5

2
11

.5
6

M
M

C

rO CO lO ''P LO LO CM

Er
ro

r
4.

90
24

.6
0

37
.3

6
36

.6
2

15
.8

0
13

.0
1

EE
A

b/
k C'O CD I | 1 |

CN 00 \\\\
^^03 03 03 03

Er
ro

r
2.

99
 |

24
.4

8
32

.2
2

29
.1

0
14

.0
7

11
.1

6

D
at

as
et

ca
nc

er
di

ab
et

es
fla

re
-s

ol
ar

ge
rm

an
he

ar
t

th
yr

oi
d

103

Table 6.8: Best evolved models for each classification problem, along with its tree
representation.

diabetes

Tx = XXr Ti = XXr Qxi = XXr

flare-solar

T\ = ones(n/,n/) T2 = ones(n(,ni) Q\2 = sdiag(ones(7i/, 1))

german

= ones(r?j,nj) = sdiag(X)

heart

•T7! = sdiag(X/ones(l,m)) JF2 = (Xr. * XT)\ones(7n,r)/) 4/12 = sdiag(X/ones(l,m))
+sdiag(X) 4-sdiag(X. * X)

thyroid

= ones(ni,nj) ^2 = ones(ni,nj)
./sdiag(ones(n/, n/))./sdiag(X)

4/12 = ones(n/,nj)

104

SSE methods even though its deviation from ground truth in the number of reduced
dimensions is low, can be easily explained by the no free lunch theorem. Clearly MMC,
DNE, and DONPP are more suitable for this problem than the rest of the competing
SSE methods.

Although most of the time the competing methods do not agree on the number
of reduced dimensions, this situation is completely different for diabetes dataset, as
all the selected SSE methods produce the same value for d. This could mislead the
reader to think d = 5 is the true value for such quantity, however this hypothesis can
be easily discarded by noting that EEA exhibits the lowest classification error among
the competing methods. Besides showing the lowest misclassification error, EEA also
shows the lowest number of reduced dimensions for all the benchmark problems. Thus,
EEA effectively finds an optimal pareto point where both objectives, misclassification
error and number of reduced dimensions, are jointly minimised.

Table 6.8 shows the best evolved models, as tree representation, in EEA for each
classification problem. In general a correlation can observed between the complexity
of the model and the number of original features, with german dataset being the only
exception. Additionally, most of the evolved models make use of the term ones(?2p, np),
which represents the binary adjacency matrix, indicating it plays a central role for SSE
methods. Bear in mind that every time the term sdiag is used as the root node of
trees in the set {Gpq}, a zero weight matrix is effectively used since only the off-diagonal
elements of matrix Gvq are needed. For cancer dataset, EEA evolves a model that
heavily weighs euclidean norm within the benign class (class label 2), as can be seen in
Table 6.8, first row, second column.

On the other hand, although it uses a binary adjacency matrix to describe the
relationships among enemies, the size of the neighbourhood considered is significant.
Another example of complex data structure is given by heart dataset, where a dif­
ferent metric is used to weight the euclidean norm in the embedding subspace, but
this time for the class label 1 (absence of heart disease). Contrary to cancer dataset,
the neighbourhood considered is relatively small which indicates great overlapping be­
tween classes. The evolved model for diabetes highlights the use of the dot product
to describe intra-class and inter-class relationships, suggesting both classes reside on
the same manifold.

105

6.4 Summary

This chapter introduced a paradigm for feature extraction with a closed analytical
solution. Different from projection pursuit, spectral embedding methods find a pro­
jection matrix to a subspace where the distances among friends are minimised, while
distances among enemies are maximised. The main contribution of this chapter is the
definition of a heterogeneous proximity matrix, where the relations between enemies
and friends are described through a set of different similarity metrics. Additionally,
the evolutionary framework proposed in the last chapters is used as inducer engine to
learn the desired set of similarity metrics. Thus, the proposed method finds an ad-hoc
definition of similarities for the classification problem at hand such that the misclassifi-
cation error is minimized in the projected subspace. Thus, the proposed EEA method
effectively finds an optimal pareto point, where two apparent contradicting objectives,
misclassification error and number of reduced dimensions, are jointly optimised.

106

Chapter 7

Conclusions and Future Work

7.1 Conclusions

A human-competitive alternative in the design of projection methods has been pre­
sented in this work. The proposed technique extracts discriminative features that
successfully assist in the problem of classification. Two representation formalisms for
feature extraction have been studied, namely PP and SE methods. For each case, the
problem of tailoring a feature extraction method to a given classification problem was
modelled as a black-box approach to system identification, where learning of the model
structure and estimation of its parameters were tackled by an evolutionary search im­
plemented via genetic programming.

Interesting dynamics were observed within the evolution process as result of the
proposed hybrid chromosome. Although diversity in the initial population encouraged
a deeper search of the solution space, seeding the population with known solutions,
available from the literature, allowed the evolutionary search to converge faster. Once a
good structure wan discovered (i.e. a projection index leading to discriminative features
for PP, or a combination of similarity metrics inducing discriminative subspaces in the
case of SE), its phenotype was spread among the population with variations only on the
scalar part, controlled by mutation. It was observed that gaussian mutation performed
a local search in the vicinity of potential solutions, while uniform mutation promoted
a more global search to avoid local minima.

The final outcome of PP is a set of projection basis that maps the original input
space into a lower-dimensional feature space, where the information described by the
projection index is highlighted. Although previous research has employed genetic algo­
rithms to search for an optimal projection matrix instead of looking for the structure
of a projection index [54], such formulation lacks information as why specific features
were selected or combined in a determined manner. The proposed method indirectly
conducts an exploratory analysis of the data, as individual models are evolved, and
yields a model that best describes the information needed to be preserved into the new
feature space as to improve classification, giving in this way a new insight to the user.

107

For the case of linear projections, the proposed evolutionary framework was able to
learn an optimal projection index which delivered useful features for classification. The
inclusion of a stopping criterion in sequential PP allowed us to determine the number
of latent variables in an automated way. For the evolved index, the number of latent
variables identified by the stopping criterion was not always lower than those for the
standard indices. Nevertheless, experiments confirmed the proposed evolutionary pro­
jection pursuit system helps to capture as much structure as possible when performing
dimensionality reduction. Additionally, with the proposed function and terminal sets
a hybridisation of supervised and unsupervised feature extraction was achieved in the
context of projection pursuit, boosting in this way the classification abilities of the
proposed system.

It was observed that for the nonlinear extension of PP, the nonlinear classification
boundaries a kNN classifier implicitly builds, diminish the effect of the kernel-induced
nonlinear extracted features. The proposed method searches for an optimal feature
kernel-based projector, which needs to separate the nonlinearly separable data in a
way to comply optimally with the classifiers boundaries. It seems that using the kNN,
the PP optimisation was not pushed or forced adequately to take the very best out
of the ability of the kernel-based PP feature extraction stage. After spending some­
time experimenting with different classifiers, it was found that the best choice for the
powerful kernel-based PP was the simplest classifier, that is an LDA which bears no
hyperparameters and is very easy to train. The rationale is that the linear decision
boundaries seemed to encourage better the induction of highly discriminant features in
the kernel-induced space. Additionally, although a more complex classifier bears more
computational burden, this burden does not guarantee a better performance, as shown
in the case of EKPP+kNN and EKPP+LDA. The claim that combining two stages
of nonlinearity discrimination is detrimental to classification was further supported by
experiments with KLPP. This time LPP provided the first layer of nonlinear discrimina­
tion, on top of that the data is previously preprocessed with a kernel mapping function,
providing the second layer.

Regarding spectral embedding methods, it was detected that a correlation exist
between the complexity of the optimal evolved model and the number of original fea­
tures, indicating more work needs to be done to reduce high-dimensional datasets.
Additionally, it was discovered that binary adjacency matrices play an important role
in the performance of SSE methods, as most of the evolved models included at least
one such term. The proposed hypothesis of heterogenous manifolds residing in the
non-observable space was ratified by experimental results, where only one out of six
tested datasets resulted in a homogeneous similarity metric measuring both inter-class
and intra-class relationships. Furthermore, with this results it was shown that the
proposed evolutionary framework can select when to use single or multiple similarity

108

metrics.
Although the present work showed to be a human-competitive alternative in the

design of projection methods for feature extraction, its greatest drawback, inherited
from the use of evolutionary methodologies, is the large learning time taken to induce
the desired model. Different techniques such as seeding of the initial population, early
stoping, and adaptive mutation rate were successfully implemented, showing a consid­
erable reduction of the learning curve without sacrificing classification performance.
For the case of spectral embedding methods, besides applying the aforementioned tech­
niques to the evolutionary loop, employing matrix notation in the evolved similarity
metrics represented a considerable saving in processing time. Although a direct imple­
mentation in C/C++ could have speeded up the evolutionary process, developing of a
robust library in C/C++ with reliable algorithms commonly used in machine learning
would have taken more time than available, thus the option to implement and reuse
MATLAB code was justified for a better development time.

7.2 Future Work

One of the aspects that motivated the present work is the ability of feature extraction
to compact information into a set of meaningful features. The framework exposed in
this thesis can be adapted to explore instance reduction and prototype abstraction for
instance-based learning algorithms. In this case, instead of embedding important infor­
mation into the feature space, it is the number of samples that will be reduced, trying
to preserve the local structure of the data. This work may be useful to reduce the large
computational complexity and long response times affecting instance-based learning al­
gorithms such as the nearest neighbour rule. Additionally, since feature extraction and
prototype reductions could be explained by the same approach. Simultaneous feature
and prototype abstraction could be another interesting topic to explore.

As GP lies at the heart of the present thesis, a number of possible future stud­
ies can be carried to improve the training time by developing new genetic operators.
Additionally, further information regarding the targeted problem can be encoded into
the foregoing operators. For example, in the case of spectral embedding, topological-
oriented genetic operators could be designed to enforce evolution of homeomorphic
functions that could guarantee preservation of certain geometrical properties in the
embedding space. Regarding implementation, further experiments can be carried to
explore an efficient genetic programming implementation in a parallel computer or
cluster, providing a framework to investigate island models, and interaction of different
species with techniques such as migration and selective pressure.

Although the impact of the classifier choice for EKPP was studied, further experi­
ments need to be done to completely characterise the performance of several classifiers
with the proposed evolutionary framework. Even better, jointly identification of the

109

structure not only of the feature extraction stage, but also of the classifier, could be
performed by introducing a multigene chromosome, encoding in one or more genes the
targeted classifier structure. Nevertheless, one must proceed with caution as the rep­
resentation formalism of GP restrict the classifier to take one of three models: decision
tree, discriminant function, or classification rules. A single instance of these models
can discriminate between two classes, but an extra parameter may be needed to control
the number of instances needed for a multiclass classification problem. Which lead us
to another interesting topic for future research, that is the study of classifier ensem­
bles. With the ability of evolving optimal individual classifiers to tackle a multiclass
classification problem, an interesting question to consider would be whether a set of
also optimal instances would perform better in combination than that single multiclass
classifier.

The present work uses classification accuracy as performance measure to select an
optimal model, however a different objective functions could also be used, focusing in
other aspects of the model, such as minimum description length or Akaike information
criterion. Furthermore, a composite metric could be designed to cover model complex­
ity and classification accuracy such that the evolved model not only presents optimal
performance for the selected classification task, but also low complexity in its structure
to allow the user better interpretation of the results. Different techniques developed to
design and assess classifier ensembles could be extended to help drafting a new fitness
function for the proposed evolutionary inducer, focusing in the aforementioned aspects
of the model.

Since the current implementation was carried using MATLAB, problems related
with memory allocation and computing time can be overcome by using other program­
ming tools such as 0/C++ in combination with the aforesaid parallel implementation.
The only disadvantage C/C-H- programming presents is the lack of a reliable imple­
mentation of common linear algebra algorithms. Although projects such as CLAPACK,
PLASMA, ScaLAPACK and MAGMA have been recently supported by a herd of devel­
opers and increasingly popular among programmers, they still need considerable work
to fine tune them to application specific tasks. The same story goes for an out-of-the-
shelf GP implementation, where it is difficult to exploit the flexible representation due to
C/C++ rigid programming structures. Therefore, it is suggested to approach C/C++
development with caution, as the reader will need to invest a considerable amount of
time developing a robust library with reliable algorithms instead of researching the
aforementioned topics.

110

Bibliography

[1] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley, 2001.

[2] K. Fakimaga, Introduction to statistical pattern recognition. San Diego, CA:
Academic, 1990.

[3] R. Vigario, J. Sarela, V. Jousmaki, M. Hamalainen, and E. Oja, “Independent
component approach to the analysis of eeg and meg recordings,” IEEE Transac­
tions on Biomedical Engineering^ vol. 47, no. 5, pp. 589-593, 2000.

[4] U. Madhow, “Blind adaptive interference supression for direct-sequence cdma,”
in Proc. of the IEEE, vol. 86, no. 10, 1998, pp. 2049-2069.

[5] A. D. Back and A. S. Weigend, “A first aplication of independent component
analysis to extracting structures from stock returns,” International Journal of
Neural Systems, vol. 8, no. 4, pp. 473-484, 1997.

[6] D. H. Wolpert and W.- G. Macready, “No free lunch theorems for optimization,”
IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67 -82, Apr.
1997.

[7] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning:
Data Minig, Inference and Prediction. London, U.K.: Springer, 2001.

[8] N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evo­
lution strategies,” Evolutionary Computation, vol. 9, no. 2, pp. 159-195, 2001.

[9] A. Auger and N. Hansen, “Performance evaluation of an advanced local search
evolutionary algorithm,” in Proc. IEEE Congress on Evolutionary Computation,
vol. 2, Sep. 2005, pp. 1777 - 1784.

[10] A. B. Jimenez, J. L. Lazaro, and J. R. Dorronsoro, “Finding optimal model
parameters by deterministic and annealed focused grid search,” Neurocomputing,
vol. 72, no. 13-15, pp. 2824-2832, 2009.

[11] C. D. Manning and H. Schutze, Foundations of statistical natural language pro­
cessing. Cambridge, Mass: MIT Press, 1999.

Ill

[12] R. Plamondon and S. Srihari, “Online and off-line handwriting recognition: a
comprehensive survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 1, pp. 63 -84, Jan. 2000.

[13] X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang, “Face recognition using lapla-
cianfaces,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 27, no. 3, pp. 328 -340, Mar. 2005.

[14] M. Turk and A. Pentland, “Eigenfaces for recognition,” Jurnal of Cognitive Neu­
roscience, vol. 3, no. 1, 1991.

[15] A. Jain, S. Prabhakar, L. Hong, and S. Pankanti, “Filterbank-based fingerprint
matching,” IEEE Transactions on Image Processing, vol. 9, no. 5, pp. 846 -859,
May 2000.

[16] A. N. Langville, Google’s PageRank and beyond: the science of search engine
rankings. Princeton, NJ: Princeton Univ. Press, 2006.

[17] J. Goulermas, A. Findlow, C. Nester, D. Howard, and P. Bowker, “Automated
design of robust discriminant analysis classifier for foot pressure lesions using
kinematic data,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 9,
pp. 1549 -1562, Sep. 2005.

[18] M. Aung, J. Goulermas, S. Hamdy, and M. Power, “Spatiotemporal visualizations
for the measurement of oropharyngeal transit time from videofluoroscopy,” IEEE
Transactions on Biomedical Engineering, vol. 57, no. 2, pp. 432 -441, Feb. 2010.

[19] K.-J. Kim and S.-B. Cho, “An evolutionary algorithm approach to optimal en­
semble classifiers for dna microarray data analysis,” IEEE Transactions on Evo­
lutionary Computation, vol. 12, no. 3, pp. 377-388, Jun. 2008.

[20] Q. Guo, W. Wu, D. Massart, C. Boucon, and S. de Jong, “Feature selection in
principal component analysis of analytical data,” Chemometrics and Intelligent
Laboratory Systems, vol. 61, no. 1-2, pp. 123-132, Feb. 2002.

[21] B. J. M. Webb-Robertson, K. H. Jarman, S. D. Harvey, C. Posse, and B. W.
Wright, “An improved optimization algorithm and a bayes termination criterion
for sequential projection pursuit,” Chemometrics and Intelligent Laboratory Sys­
tems, vol. 77, no. 1-2, pp. 149-160, 2005.

[22] Z. Huang, H. C. Chen, C. J. Hsu, W. H. Chen, and S. S. Wu, “Credit analysis
with support vector machines and neural networks: A market comparative study,”
Desicion Support Systems, vol. 37, no. 4, pp. 543-558, Sep. 2004.

112

[23] W. Huang, Y. Nakamori, and S. Y. Wang, “Forecasting stock market move­
ment direction with support vector machine,” Computers & Operations Research,
vol. 32, no. 10, pp. 2513-2522, Oct. 2005.

[24] J. T. L. Wang, S. Rozen, B. A. Shapiro, D. Shasha, Z. Y. Wang, and M. S.
Yin, “New techniques for dna sequence classification,” Journal of Computationa
Biology, vol. 6, no. 2, pp. 209-218, 1999.

[25] L. Shapiro and M. Costa, “Appearance-based 3d object recognition, object rep­
resentation in computer vision,” in Proc. Int. NSF-ARPA Workshop, vol. 1, New
York, USA, 1994, pp. 51-64.

[26] S.-S. Chiang, C.-I. Chang, and I. Ginsberg, “Unsupervised target detection in hy-
perspectral images using projection pursuit,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 39, no. 7, pp. 1380-1391, Jul. 2001.

[27] A. Ifarraguerri and C.-L Chang, “Unsupervised hyperspectral image analysis
with projection pursuit,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 38, no. 6, pp. 2529-2538, Nov. 2000.

[28] J. Yang, D. Zhang, J. yu Yang, and B. Niu, “Globally maximizing, locally mini­
mizing: Unsupervised discriminant projection with applications to face and palm
biometrics,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 29, no. 4, pp. 650 -664, Apr. 2007.

[29] W. Jaskowski, K. Krawiec, and B. Wieloch, “Evolving startegy for a probabilistic
game of imperfect information using genetic programming,” Genetic Program­
ming and Evolvable Machines, vol. 9, no. 4, pp. 281-294, Dec. 2008.

[30] P. Stone, Intelligent autonomous robots: A robot soccer case study. San Rafael,
CA: Morgan k, Claypool, 2007.

[31] R. Sun, F. Tsung, and L. Qu, “Evolving kernel principal component analysis for
fault diagnosis,” Computers & Industrial Engineering, vol. 53, no. 2, pp. 361-371,
Sep. 2007.

[32] H. Guo, L. Jack, and A. Nandi, “Feature generation using genetic programming
with application to fault classification,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, vol. 35, no. 1, pp. 89-99, Feb. 2005.

[33] T. M. Mitchell, Machine Learning. McGraw Hill, 1997.

[34] G. Hinton and T. J. Sejnowski, Unsupervised learning and map formation: Foun­
dations of neural computation. Cambridge, MA, USA: MIT Press, 1999.

113

[35] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
Press, 1998.

[36] V. Vapnik, Statistical learning theory. New York, USA: Wiley, 1998.

[37] A. Y. Ng and M. Jordan, “On discriminative vs. generative classifiers: A com­
parison of logistic regression and naive bayes,” in Proc. Conf. Advances in Neural
Information Processing Systems, 2002.

[38] J. H. Xue and M. Titterington, “Comment on ”on discriminative vs. genera­
tive classifiers: A comparisson of logistic regression and naive bayes”Neural
Processing Letters, vol. 28, no. 3, pp. 169-187, 2008.

[39] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines
and other kernel-based learning methods. Cambridge, UK: Cambridge University
Press, 2000.

[40] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for opti­
mal margin classifiers,” in Proc. 5th Annual ACM Workshop on Computational
Learning Theory, 1992, pp. 144-152.

[41] B. Scholkopf, A. J. Smola, R. Williamson, and P. Bartlett, “New support vector
algorithms,” Neural Computation, vol. 12, pp. 1207-1245, 2000.

[42] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 2nd ed. New York,
USA: Academic, 2003.

[43] C. M. Bishop, Neural Networks for Pattern Recognition. Clarendon Press, 1995.

[44] H. F. Leung, H. K. Lam, S. H. Ling, and K. S. Tam, “Tuning of the structure
and parameters of a neural network using an improved genetic algorithm,” IEEE
Transactions on Neural Networks, vol. 14, no. 1, pp. 79-88, Jan. 2003.

[45] N. Garcia-Pedrajas, C. Hervas-Martinez, and J. Munoz-Perez, “Covnet: a co­
operative coevolutionary model for evolving artificial neural networks,” IEEE
Transactions on Neural Networks, vol. 14, no. 3, pp. 575 - 596, May 2003.

[46] P. Palmes, T. Hayasaka, and S. Usui, “Mutation-based genetic neural network,”
IEEE Transactions on Neural Networks, vol. 16, no. 3, pp. 587-600, May 2005.

[47] I. T. Jolliffe, Principal Component Analysis. New York, USA: Springer-Verlag,
2002.

[48] Y. Moses, Y. Adini, and S. Ulman, “Face recognition: The problem of compen­
sating for changes in illumination direction,” in Proc. Eur. Conf. on Computer
Vision, no. 286-296, 1994.

114

[49] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis. New
York, USA: Wiley, 2001.

[50] A. Hyvarinen, “Survey on independent component analysis,” Neural Computation
Surveys, vol. 2, no. 1, pp. 94-128, 1999.

[51] B. Scholkopf, A. Smola, and K. R. Muller, “Nonlinear component analysis as a
kernel eigenvalue problem,” Neural Computation, vol. 10, no. 5, pp. 1299-1319,
Jul. 1998.

[52] B. Scholkopf and A. Smola, Learning with kernels: Support vector machines,
regularization, optimisation, and beyond. Cambridge, Mass: MIT Press, 2002.

[53] G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel
approach,” Neural Computation, vol. 12, no. 10, pp. 2385-2404, 2000.

[54] C. Liu and H. Wechsler, “Evolutionary pursuit and its application to face recogni­
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 6, pp. 570-582, Jun. 2000.

[55] L. O. Jimenez-Rodriguez, E. Arzuaga-Cruz, and M. Velez-Reyes, “Unsuper­
vised linear feature-extraction methods and their effects in the classification of
high-dimensional data,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 45, no. 2, pp. 469-483, Feb. 2007.

[56] H. Friedman and J. Tukey, “A projection pursuit algorithm for exploratory data
analysis,” IEEE Transactions on Computers, vol. 23, pp. 881-889, 1974.

[57] J. Kruskal, “Toward a practical method which helps uncover the structure for a set
of multivariate observations by finding the linear transformation which optimize a
new index of condensation,” in Statistical Computation, R. Milton and J. Nelder,
Eds. New York, USA: Academic, 1969, pp. 427-440.

[58] H. Friedman and W. Stuetzie, “Projection pursuit regression,” Journal of the
American Statistical Association, vol. 79, pp. 817-823, 1981.

[59] H. Friedman, W. Stuetzie, and A. Schroeder, “Projection pursuit density esti­
mation,” Journal of the American Statistical Association, vol. 79, pp. 599-608,
1984.

[60] M. Jones and R. Sibson, “What is projection pursuit?” Journal of the Royal
Statistical Society, vol. 150, no. 1, pp. 1-37, 1987.

[61] P. Huber, “Projection pursuit,” Annals of Statistics, vol. 13, no. 2, pp. 435-475,
1985.

115

[62] E. Lee, D. Cook, S. Klinke, and T. Lumley, “Projection pursuit for exploratory
supervised classification,” Journal of Computational and Graphical Statistics,
vol. 14, no. 4, pp. 831-846, Dec. 2005.

[63] L. Jimenez and D. Landgrebe, “Hyperspectral data analysis and supervised fea­
ture reduction via projection pursuit,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 37, no. 6, pp. 2653-2667, Nov. 1999.

[64] P. Hall, “On polynomial-based projections indices for exploratory projection pur­
suit,” Annals of Statistics, vol. 17, pp. 589-605, 1989.

[65] D. Cook, A. Buja, and J. Cabrera, “Projection pursuit indices based on ex­
pansions with orthonormal functions,” Journal of Computational and Graphical
Statistics, vol. 2, pp. 225-250, 1993.

[66] E. Lee and D. Cook, “A projection pursuit index for large p small n data,”
Statistics and Computing, vol. 20, no. 3, pp. 381-392, 2010.

[67] Q. Guo, W. Wu, D. Massart, C. Boucon, and S. de Jong, “Sequential projection
pursuit using genetic algorithms for data mining of analytical data,” Analytical
Chemistry, vol. 72, no. 13, pp. 2846-2855, Jul. 2000.

[68] H. S. Seung and D. D. Lee, “The manifold ways of perception,” Science, vol. 290,
no. 5500, pp. 2268-2269, 2000.

[69] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework
for nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, pp. 2319-
2323, 2000.

[70] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” Science, vol. 290, no. 5500, pp. 2323-2326, 2000.

[71] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and
data representation,” Neural Computation, vol. 15, no. 6, pp. 1373-1396, Jun.
2003.

[72] E. Kokiopoulou and Y. Saadb, “Orthogonal neighborhood preserving projections:
A projection-based dimensionality reduction technique,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 29, no. 12, pp. 2143 -2156, Dec.
2007.

[73] D. Cai, X. He, J. Han, and H.-J. Zhang, “Orthogonal laplacianfaces for face
recognition,” IEEE Transactions on Image Processing, vol. 15, no. 11, pp. 3608
-3614, Nov. 2006.

116

[74] X. He and P. Niyogi, “Locality preserving projections,” in Proc. Conf. Advances
in Neural Information Processing Systems. MIT Press, 2003.

[75] H. Li, T. Jiang, and K. Zhang, “Efficient and robust feature extraction by max­
imum margin criterion,” IEEE Transactions on Neural Networks, vol. 17, no. 1,
pp. 157 -165, Jan. 2006.

[76] M. Sugiyama, “Dimensionality reduction of multimodal labeled data by local
fisher discriminant analysis,” Journal of Machine Learning Research, vol. 8, pp.
1027-1061, 2007.

[77] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph embedding
and extensions: A general framework for dimensionality reduction,” IEEE Trans­
actions on Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 40 —51,
Jan. 2007.

[78] E. Koldopoulou and Y. Saadb, “Enhanced graph-based dimensionality reduction
with repulsion laplaceans,” Pattern Recognition, vol. 42, pp. 2392-2402, 2009.

[79] S. Zhang, “Enhanced supervised locally linear embedding,” Pattern Recognition
Letters, vol. 30, no. 13, pp. 1208-1218, 2009.

[80] T. Zhang, K. Huang, X. Li, J. Yang, and D. Tao, “Discriminative orthogonal
neighborhood-preserving projections for classification,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 40, no. 1, pp. 253
-263, Feb. 2010.

[81] T. Zhang, D. Tao, X. Li, and J. Yang, “Patch alignment for dimensionality re­
duction,” IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 9,
pp. 1299 -1313, Sep. 2009.

[82] T. Cox and M., Cox, Multidimensional scaling. London, U.K.: Chapman & Hall,
1994.

[83] W. Zhang, X. Xue, Z. Sun, Y. Guo, and H. Lu, “Optimal dimensionality of metric
space for classification,” in Proc. Int. Conf. on Machine Learning, ACM. New
York, USA: ACM, 2007.

[84] K. Zhang and L.-W. Chan, “Dimension reduction as a deflation method in ICA,”
IEEE Signal Processing Letters, vol. 13, no. 1, pp. 45-48, Jan. 2006.

[85] R. Bellman, Adaptive Control Processes: A Guided Tour. Princeton Univ. Press,
1961.

117

[86] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. fisherfaces: recog­
nition using class specific linear projection,” IEEE Transactions on Pattern Anal­
ysis and Machine Intelligence, vol. 19, no. 7, pp. 711 -720, Jul. 1997.

[87] L. F. Chen, H. Y. M. Liao, M. T. Ko, J. C. Lin, and G. J. Yu, “A new Ida-based
face recognition system which can solve the small sample size problem,” Pattern
Recognition, vol. 33, no. 10, pp. 1713-1726, Oct. 2000.

[88] P. Howland, M. Jeon, and H. Park, “Structure preserving dimension reduction
for clustered text data based on the generalized singular value decomposition,”
SIAM Journal on Matrix Analysis and Applications, vol. 25, no. 1, pp. 165-179,
2003.

[89] D. L. Swets and J. J. Weng, “Using discriminant eigenfeatures for image re­
trieval,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 18, no. 8, pp. 831 -836, Aug. 1996.

[90] J. Ye, “Characterization of a family of algorithms for generalized discriminant
analysis on undersample problems,” Journal of Machine Learning Research,
vol. 6, pp. 483-502, 2005.

[91] H. Yu and J. Yang, “A direct Ida algorithm for high-dimensional data with ap­
plications to face recognition,” Pattern Recognition, vol. 34, pp. 206-2070, 2001.

[92] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. Mullers, “Fisher discriminant
analysis with kernels,” in Proc. IEEE Signal Processing Society Workshop Neural
Networks for Signal Processing IX, Aug. 1999, pp. 41 -48.

[93] H. Friedman, “Regularized discriminant analysis,” Journal of the American Sta­
tistical Association, vol. 84, no. 405, pp. 165-175, 1981.

[94] T. Hastie, A. Buja, and R. Tibshirani, “Penalized discriminant analysis,” Annals
of Statistics, vol. 23, no. 1, pp. 73-102, Feb. 1995.

[95] K. Bennett and E. Parrado-Hernandez, “The interplay of optimization and ma­
chine learning research,” Journal of Machine Learning Research, vol. 7, pp. 1265-
1281, 2006.

[96] L. Xu, “Machine learning problems from optimization perspective,” Journal of
Global Optimization, vol. 47, no. 3, pp. 369-401, 2010.

[97] G. B. Dantzig, Linear programming and extensions. Princeton Univ. Press, 1963.

[98] S. I. Gass, Linear programming: Methods and applications. New York, USA:
McGraw Hill, 1960.

118

[99] H. A. Taha, Operation research: An introduction. New York, USA: Macmillan,
1992.

[100] J. C. G. Boot, Quadratic programming. North-Holland, Amsterdam: North-
Holland Pub. Co., 1964.

[101] G. M. Lee, Quadratic programming and affine variational inequalities: A quali­
tative study. Boston, MA: Springer Science+Business Media Inc., 2005.

[102] H. W. Kuhn and A. Tucker, “Nonlinear programming,” in Proc. Berkeley Symp.
on Math. Stats, and Prob. Berkeley: University of California Press, 1951.

[103] J. E. Dennis and R. B. Schnabel, Numerical methods for unconstrained optimiza­
tion and nonlinear equations. Englewood Cliffs, NJ: Prentice Hall, 1983.

[104] D. J. Wilde, Optimum seeking methods. Englewood Cliffs, NJ: Prentice Hall,
1964.

[105] R. P. Brent, Algorithms for minimization without derivatives. Englewood Cliffs,
NJ: Prentice Hall, 1983.

[106] A. L. Cauchy, “Methode generale pur la resolution des systemes d5equations si-
multanees,” Comptes Rendus de VAcademie de Sciences, Paris, vol. 25, 1847.

[107] C. G. Broyden, “Quasi-newton methods and their application to function mini­
mization,” Mathematics of Computation, vol. 11, no. 2, pp. 431-441, 1967.

[108] W. C. Davidon, “Variable metric method of minimization,” Argonne National
Laboratory, Argonne, IL, Report ANL-5990, 1959.

[109] R. Fletcher, “A new approach to variable metric algorithms,” Computer Journal,
vol. 13, pp. 163-168, 1970.

[110] G. G. Broyden, “The convergence of a class of double-rank minimization algo­
rithms,” Journal of the Institute of Mathematics and Its Applications, vol. 6, pp.
76-90, 1970.

[111] D. Goldfarb, “A family of variable metric methods derived by varational means,”
Mathematics of Computation, vol. 24, pp. 23-26, 1970.

[112] D. F. Shanno, “Conditioning of quasi-newton methods for function minimiza­
tion,” Mathematics of Computation, vol. 24, no. 647-656, 1970.

[113] M. Tambe, W. L. Johnson, R. M. Jones, F. Koss, J. E. Laird, P. S. Rosenbloom,
and K. Schwamb, “Intelligent agents for interactive simulation environments,” AI
Magazine, vol. 16, no. 1, pp. 15-39, 1995.

119

[114] J. H. Holland, “Outline for a logical theory of adaptive systems,” Journal of the
Association for Computing Machinary, vol. 3, pp. 297-314, 1962.

[115] I. Rechenberg, Cybernetic solution path of an experimental problem. Farnbor-
ough, Hants., U.K.: Royal Aircraft Establishment, Aug. 1965, vol. Library trans­
lation No. 1122.

[116] H. P. Schwefel, “Projekt mhd-stausrahlrohr: Experimentelle optimierung einer
zweiphasendiise, teil i,” AEG Forschungsinstitut, Berlin, Germany, Tech. Rep.
Technischer Bericht 11.034/68,35, Oct. 1968.

[117] L. J. Fogel, “Autonomus automata,” Industrial Research, vol. 4, pp. 14-19, 1962.

[118] T. Back, Evolutionary Algorithms in Theory and Practice. New York: Oxford
University Press, 1996.

[119] Z. Michaelwicz, Genetic Algorithms + Data Structures = Evolution Programs.
Berlin, Germany: Springer, 1996.

[120] J. Holland, Adaptation in Natural and Artificial Systems: An Introductory Anal­
ysis with Applications to Biology, Control and Artificial Intelligence. Ann Arbor,
MI: The University of Michigan Press, 1975.

[121] T. Back, D. B. Fogel, and Z. Michalewiz, Eds., Evolutionary Computation 2.
Bristol: Institute of Physics Publishing, 2000.

[122] K. D. Jong, Evolutionary computation: A unified approach. Cambridge, Mass:
MIT Press, 2006.

[123] J. R. Koza, Genetic Programming: On the Programming of Computers by Means
of Nature Selection. Cambridge, MA, USA: MIT Press, 1992.

[124] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic Program­
ming. UK: Lulu Enterprises, 2008.

[125] W. B. Langdon, T. Soule, R. Poli, and J. A. Foster, Advances in Genetic Program­
ming 3. Cambridge, MA, USA: MIT Press, Jun. 1999, no. 8, ch. The evolution
of size and shape, pp. 163-190.

[126] S. Silva and E. Costa, “Dynamic limits for bloat control - variations on size
and depth,” Proc. Genetic and Evolutionary Computation Conf., vol. 3103, pp.
666-677, 2004.

[127] S. Pal, S. Bandyopadhyay, and S. Ray, “Evolutionary computation in bioinfor­
matics: a review,” IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, vol. 36, no. 5, pp. 601 -615, Sep. 2006.

120

[128] P. Ma, K. Chan, X. Yao, and D. Chiu, “An evolutionary clustering algorithm for
gene expression microarray data analysis,” IEEE Transactions on Evolutionary
Computation, vol. 10, no. 3, pp. 296 - 314, Jun. 2006.

[129] A. M. Tyrrell and Y. Jin, “Guest editorial: Special issue on evolving developmen­
tal systems,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 3,
pp. 285 -286, Jun. 2011.

[130] F. Neri, J. Toivanen, G. Cascella, and Y.-S. Ong, “An adaptive multimeme al­
gorithm for designing hiv multidrug therapies,” IEEE Transactions on Compu­
tational Biology and Bioinformatics, vol. 4, no. 2, pp. 264 -278, Apr. 2007.

[131] T. Paul and H. Iba, “Prediction of cancer class with majority voting genetic
programming classifier using gene expression data,” IEEE Transactions on Com­
putational Biology and Bioinformatics, vol. 6, no. 2, pp. 353 -367, Apr. 2009.

[132] K.-S. Leung, K. H. Lee, J.-F. Wang, E. Ng, H. Chan, S. Tsui, T. Mok, P.-H.
Tse, and J.-Y. Sung, “Data mining on dna sequences of hepatitis b virus,” IEEE
Transactions on Computational Biology and Bioinformatics, vol. 8, no. 2, pp. 428
-440, Mai*. 2011.

[133] A. Brabazon, M. O’Neill, and I. Dempsey, “An introduction to evolutionary com­
putation in finance,” IEEE Computational Intelligence Magazine, vol. 3, no. 4,
pp. 42 -55, Nov. 2008.

[134] S. Martinez-Jaramillo and E. Tsang, “An heterogeneous, endogenous and coevo­
lutionary gp-based financial market,” IEEE Transactions on Evolutionary Com­
putation, vol. 13, no. 1, pp. 33 -55, Feb. 2009.

[135] R. Ruiz-Torrubiano and A. Suarez, “Hybrid approaches and dimensionality re­
duction for portfolio selection with cardinality constraints,” IEEE Computational
Intelligence Magazine, vol. 5, no. 2, pp. 92 -107, May 2010.

[136] M. Sternberg and R. Reynolds, “Using cultural algorithms to support re­
engineering of rule-based expert systems in dynamic performance environments:
a case study in fraud detection,” IEEE Transactions on Evolutionary Computa­
tion, vol. 1, no. 4, pp. 225 -243, Nov. 1997.

[137] W. Sheng, G. Howells, M. Fairhurst, and F. Deravi, “A memetic fingerprint
matching algorithm,” IEEE Transactions on Information Forensics and Security,
vol. 2, no. 3, pp. 402 -412, Sep. 2007.

[138] V. Valsalam, J. Bednar, and R. Miikkulainen, “Developing complex systems using
evolved pattern generators,” IEEE Transactions on Evolutionary Computation,
vol. 11, no. 2, pp. 181 -198, Apr. 2007.

121

[139] P. Menon, J. Kim, D. Bates, and I. Postlethwaite, “Clearance of nonlinear flight
control laws using hybrid evolutionary optimization,” IEEE Transactions on Evo­
lutionary Computation, vol. 10, no. 6, pp. 689 -699, Dec. 2006.

[140] M.-H. Hung, L.-S. Shu, S.-J. Ho, S.-F. Hwang, and S.-Y. Ho, “A novel intelli­
gent multiobjective simulated annealing algorithm for designing robust pid con­
trollers,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, vol. 38, no. 2, pp. 319 -330, Mar. 2008.

[141] Z. Ma and A. Krings, “Dynamic hybrid fault modeling and extended evolution­
ary game theory for reliability, survivability and fault tolerance analyses,” IEEE
Transactions on Reliability, vol. 60, no. 1, pp. 180 -196, Mar. 2011.

[142] H. Topcuoglu, B. Demiroz, and M. Kandemir, “Solving the register allocation
problem for embedded systems using a hybrid evolutionary algorithm,” IEEE
Transactions on Evolutionary Computation, vol. 11, no. 5, pp. 620 -634, Oct.
2007.

[143] C. Simons, I. Parmee, and R. Gwynllyw, “Interactive, evolutionary search in
upstream object-oriented class design,” IEEE Transactions on Software Engi­
neering, vol. 36, no. 6, pp. 798 -816, Nov. 2010.

[144] D. White, A. Arcuri, and J. Clark, “Evolutionary improvement of programs,”
IEEE Transactions on Evolutionary Computation, vol. 15, no. 4, pp. 515 -538,
Aug. 2011.

[145] D. Fogel, “Using evolutionary programming for modeling: an ocean acoustic
example,” IEEE Journal of Oceanic Engineering, vol. 17, no. 4, pp. 333 -340,
Oct. 1992.

[146] B. Natarajan, S. Das, and D. Stevens, “An evolutionary approach to designing
complex spreading codes for ds-cdma,” IEEE Transactions on Wireless Commu­
nications, vol. 4, no. 5, pp. 2051 - 2056, Sep. 2005.

[147] K. Zielinski, P. Weitkemper, R. Laur, and K.-D. Kammeyer, “Optimization of
power allocation for interference cancellation with particle swarm optimization,”
IEEE Transactions on Evolutionary Computation, vol. 13, no. 1, pp. 128 -150,
Feb. 2009.

[148] L.-Y. Tseng and T.-Y. Han, “An evolutionary design method using genetic local
search algorithm to obtain broad/dual-band characteristics for circular polariza­
tion slot antennas,” IEEE Transactions on Antennas and Propagation, vol. 58,
no. 5, pp. 1449 -1456, May 2010.

122

[149] M. EcemiSj J. Wikel, C. Bingham, and E. Bonabeau, “A drug candidate design
environment using evolutionary computation,” IEEE Transactions on Evolution­
ary Computation, vol. 12, no. 5, pp. 591 -603, Oct. 2008.

[150] J. Knowles, “Closed-loop evolutionary multiobjective optimization,” IEEE Com­
putational Intelligence Magazine, vol. 4, no. 3, pp. 77 -91, Aug. 2009.

[151] S. Wong, W. Luo, and K. Chan, “EvoMD: An algorithm for evolutionary molec­
ular design,” IEEE Transactions on Computational Biology and Bioinformatics,
vol. 8, no. 4, pp. 987 -1003, Jul. 2011.

[152] E. Hruschka, R. Campello, A. Freitas, and A. de Carvalho, “A survey of evo­
lutionary algorithms for clustering,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol. 39, no. 2, pp. 133 -155, Mar.
2009.

[153] P. Espejo, S. Ventura, and F. Herrera, “A survey on the application of genetic
programming to classification,” IEEE Transactions on Systems, Man, and Cy­
bernetics, Part C: Applications and Reviews, vol. 40, no. 2, pp. 121 -144, Mar.
2010.

[154] A. Fernandez, S. Garcia, J. Luengo, E. Bernado-Mansilla, and F. Herrera,
“Genetics-based machine learning for rule induction: State of the art, taxon­
omy, and comparative study,” IEEE Transactions on Evolutionary Computation,
vol. 14, no. 6, pp. 913 -941, Dec. 2010.

[155] R. C. Barros, M. P. Basgalupp, A. C. P. L. F. de Carvalho, and A. A. Freitas, “A
survey of evolutionary algorithms for decision-tree induction,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. PP,
no. 99, pp. 1 -10, 2011.

[156] K. A. de Jong, W. M. Spears, and D. F. Gordon, “Using genetic algorithms for
concept learning,” Machine Learning, vol. 13, pp. 161-188, 1993.

[157] J. Furnkranz, “Separate-and-conquer rule learning,” Artificial Intelligence Re­
view, vol. 13, no. 1, pp. 3-54, Feb. 1999.

[158] M. Kotani, M. Ochi, S. Ozawa, and K. Akazawa, “Evolutionary discriminant
functions using genetic algorithms with variable-length chromosome,” in Proc.
Int Joint Conf. on Neural Networks, vol. 1, 2001, pp. 761 -766 vol.l.

[159] S. Smith, “Rna search acceleration with genetic algorithm generated decision
trees,” in Proc. Int. Conf. on Machine Learning and Applications, Dec. 2008, pp.
565 -570.

123

[160] S.-U. Gttan and F. Zhu, “An incremental approach to genetic-algorithms-based
classification,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 35, no. 2, pp. 227 --239, Apr. 2005.

[161] Y. Zhang and H. Li, “Linear and nonlinear ica based on mutual information,”
in Proc. Int. Sym. on Intelligent Signal Processing and Communication Systems,
2007, pp. 794-797.

[162] M. J. Aitkenhead, “A co-evolving decision tree classification method,” Expert
Systems With Applications, vol. 34, no. 1, pp. 18-25, Jan. 2008.

[163] U. Johansson and L. Niklasson, “Evolving decision trees using oracle guides,” in
Proc. IEEE Symp. on Computational Intelligence and Data Mining, Apr. 2009,
pp. 238 -244.

[164] B. Chai, T. Huang, X. Zhuang, Y. Zhao, and J. Sklansky, “Piecewise linear
classifiers using binary tree structure and genetic algorithm,” Pattern Recognition,
vol. 29, no. 11, pp. 1905-1917, Nov. 1996.

[165] K. Palaniappan, F. Zhu, X. Zhuang, Y. Zhao, and A. Blanchard, “Enhanced
binary tree genetic algorithm for automatic land cover classification,” in Proc.
IEEE Int. Symp. on Geoscience and Remote Sensing, vol. 2, 2000, pp. 688 -692
vol.2.

[166] M. Bot and W. Langdon, “Application of genetic programming to induction of
linear classification trees,” Lecture Notes in Computer Science, vol. 1802, pp.
247-258, 2000.

[167] M. Kretowski and M. Grzes, “Global induction of oblique decision trees: An
evolutionary approach,” in Intelligent Information Processing and Web Mining,
ser. Advances in Soft Computing, vol. 31, 2005, pp. 309-318.

[168] T. Kovacs, “Genetics-based machine learning,” in Handbook of Natural Comput­
ing: Theory, Experiments and Applications. Springer-Verlag, 2011.

[169] A. A. Freitas, Data Mining and Knowledge Discovery with Evolutionary Algo­
rithms. Berlin, Germany: Springer-Verlag, 2002.

[170] G. Venturini, “Sia: A supervised inductive algorithm with genetic search for
learning attributes based concepts,” in Proc. Eur. Conf. on Machine Learning,
vol. 667, Berlin, Germany, 1993, pp. 280-296.

[171] J. Aguilar-Ruiz, R. Giraldez, and J. Riquelme, “Natural encoding for evolutionary
supervised learning,” IEEE Transactions on Evolutionary Computation, vol. 11,
no. 4, pp. 466 -479, Aug. 2007.

124

[172] K. C. Tan, Q. Yu, and J. H. Ang, aA coevolutionary algorithm for rules discovery
in data mining,” International Journal of Systems Science, vol. 37, no. 12, pp.
835-864, Oct. 2006.

[173] L. Jiao, J. Liu, and W. Zhong, “An organizational coevolutionary algorithm for
classification,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 1,
pp. 67-80, Feb. 2006.

[174] D. P. Greene and S. F. Smith, “Competition-based induction of decision models
from examples,” Machine Learning, vol. 13, pp. 229-257, 1993.

[175] J.-J. Huang, G.-H. Tzeng, and C.-S. Ong, “Two-stage genetic programming
(2SGP) for the credit scoring model,” Applied Mathematics and Computation,
vol. 174, no. 2, pp. 1039-1053, March 2006.

[176] L. Diosan, A. Rogozan, and J.-P. Pecuchet, “Optimising multiple kernels for SVM
by genetic programming,” in Proc. 8th Eur. Conf. on Evolutionary Computation
in Combinatorial Optimization, ser. Lecture Notes in Computer Science, J. I. van
Hemert and C. Cotta, Eds., vol. 4972. Naples, Italy: Springer, March 2008, pp.
230-241.

[177] T. Howley and M. G. Madden, “The genetic kernel support vector machine:
description and evaluation,” Artificial Intelligence Review, vol. 24, no. 3-4, pp.
379-395, November 2005.

[178] K. Sullivan and S. Luke, “Evolving kernels for support vector machine classi­
fication,” in Proc. Conf. on Genetic and Evolutionary Computation, 2007, pp.
1702-1707.

[179] T. Phienthrakul and B. Kijsirikul, “GPES: an algorithm for evolving hybrid ker­
nel functions of support vector machines,” in Proc. IEEE Conf. on Evolution­
ary Computation, D. Srinivasan and L. Wang, Eds., IEEE. Singapore: IEEE,
September 2007, pp. 2636-2643.

[180] M. Girdea and L. Ciortuz, “A hybrid genetic programming and boosting tech­
nique for learning kernel functions from training data,” in Proc. 9th Int. Symp.
on Symbolic and Numeric Algorithms for Scientific Computing, V. Negru, T. Je-
belean, D. Petcu, and D. Zaharie, Eds. Timisoara, Romania: IEEE, September
2007, pp. 395-402.

[181] A. Majid, A. Khan, and A. Mirza, “Intelligent combination of kernels informa­
tion for improved classification,” in Proc. Int. Conf. on Machine Learning and
Applications, Dec. 2005.

125

[182] C. Gagne and M. Parizeau, “Coevolution of nearest neighbor classifiers,5’ Inter­
national Journal of Pattern Recognition and Artificial Intelligence, vol. 21, no. 5,
pp. 921-946, 2007.

[183] J. Cano, F. Herrera, and M. Lozano, “Using evolutionary algorithms as instance
selection for data reduction in kdd: an experimental study,” IEEE Transactions
on Evolutionary Computation, vol. 7, no. 6, pp. 561-575, Dec. 2003.

[184] K. Yu, L. Ji, and X. Zhang, “Kernel nearest neighbor algorithm,” Neural Pro­
cessing Letters, vol. 15, no. 2, pp. 147-156, 2002.

[185] K. Rao Raghuraj, S. Lakshminarayanan, and K. Tun, “Genetic programming
models for classification of data from biological systems,” in Proc. IEEE Congress
on Evolutionary Computation, Sep. 2007, pp. 4154 -4161.

[186] L. Kuncheva and L. Jain, “Designing classifier fusion systems by genetic algo­
rithms,” IEEE Transactions on Evolutionary Computation, vol. 4, no. 4, pp.
327-336, Nov. 2000.

[187] M. Rizki, M. Zmuda, and L. Tamburino, “Evolving pattern recognition systems,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 6, pp. 594-609, Dec.
2002.

[188] N. Garcia-Pedrajas, C. Hervas-Martinez, and D. Ortiz-Boyer, “Cooperative co­
evolution of artificial neural network ensembles for pattern classification,” IEEE
Transactions on Evolutionary Computation, vol. 9, no. 3, pp. 271-302, Jun. 2005.

[189] H. Guo and A. Nandi, “Breast cancer diagnosis using genetic programming gen­
erated feature,” Pattern Recognition, vol. 39, no. 5, pp. 980-987, May 2006.

[190] K. Neshatian and M. Zhang, “Genetic programming and class-wise orthogonal
transformation for dimension reduction in classification problems,” in Proc. 11th
Eur. Conf. on Genetic Programming, ser. Lecture Notes in Computer Science,
M. O’Neill, L. Vanneschi, S. Gustafson, A. Esparcia-Alcazar, I. D. Falco, A. D.
Cioppa, and E. Tarantino, Eds., vol. 4971. Naples, Italy: Springer, March 2008,
pp. 242-253.

[191] M. Muharram and G. Smith, “Evolutionary constructive induction,” IEEE Trans­
actions on Knowledge and Data Engineering, vol. 17, no. 11, pp. 1518 - 1528,
Nov. 2005.

[192] C.-H. Lin and J.-L. Wu, “Automatic facial feature extraction by genetic algo­
rithms,” IEEE Transactions on Image Processing, vol. 8, no. 6, pp. 834 -845,
Jun. 1999.

126

[193] A. J. Perez-Jimenez and J. C. Perez-Cortes, “Genetic algorithms for linear feature
extraction/5 Pattern Recognition Letters, vol. 27, no. 13, pp. 1508-1514, Oct.
2006.

[194] J. Sherrah, R. Bogner, and B. Bouzerdoum, “Automatic selection of features for
classification using genetic programming,55 in Proc. Australian and New Zealand
Conf. on Intelligent Information Systems, Nov. 1996, pp. 284 -287.

[195] R. A. Davis, A. J. Charlton, S. Oehlschlager, and J. C. Wilson, “Novel feature
selection method for genetic programming using metabolomic :lH NMR data,”
Chemometrics and Intelligent Laboratory Systems, vol. 81, no. 1, pp. 50-59,
March 2006.

[196] R. Kohavi and G. John, “Wrappers for feature subset selection,” Artificial Intel­
ligence, vol. 97, no. 1-2, pp. 273-324, Dec. 1997.

[197] M. G. Smith and L. Bull, “Genetic programming with a genetic algorithm for fea­
ture construction and selection,” Genetic Programming and Evolvable Machines,
vol. 6, no. 3, pp. 265-281, September 2005.

[198] R. Ramirez and M. Puiggros, “A genetic programming approach to feature se­
lection and classification of instantaneous cognitive states,” in Proceedings of
the 2007 EvoWorkshop on Applications of Evolutinary Computing, ser. Lecture
Notes in Computer Science, M. Giacobini, A. Brabazon, S. Cagnoni, G. D. Caro,
R. Drechsler, M. Farooq, A. Fink, E. Button, P. Machado, S. Minner, M. O’Neill,
J. Romero, F. Rothlauf, G. Squillero, H. Takagi, S. Uyar, and S. Yang, Eds., vol.
4448. Springer, April 2007, pp. 311-319.

[199] R. Sikora and S. Piramuthu, “Framework for efficient feature selection in genetic
algorithm based data mining,” European Journal of Operational Research, vol.
180, no. 2, pp. 723-737, July 2007.

[200] F. Javed, G. S. H. Chan, A. V. Savkin, P. M. Middleton, P. Malouf, E. Steel,
J. Mackie, and N. H. Lovell, “Rbf kernel based support vector regression to
estimate the blood volume and heart rate responses during hemodialysis,” in
Proc. Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Sep.
2009, pp. 4352-4355.

[201] M. Raymer, W. Punch, E. Goodman, L. Kuhn, and A. Jain, “Dimensionality
reduction using genetic algorithms,” IEEE Transactions on Evolutionary Com­
putation, vol. 4, no. 2, pp. 164-171, Jul. 2000.

127

[202] J. T. Tsai, J. H. Chou, and T. K. Liu, “Tuning the structure and parameters of
a neural network by using hybrid taguchi-genetic algorithm,” IEEE Transactions
on Neural Networks, vol. 17, no. 1, pp. 69-80, Jan. 2006.

[203] D. Muni, N. Pal, and J. Das, “A novel approach to design classifiers using genetic
programming,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 2,
pp. 183-196, Apr. 2004.

[204] N. Y. Nikolaev and H. Iba, “Learning polynomial feedforward neural networks
by genetic programming and backpropagation,” IEEE Transactions on Neural
Networks, vol. 14, no. 2, pp. 337-350, Mar. 2003.

[205] D. Muni, N. Pal, and J. Das, “Genetic programming for simultaneous feature
selection and classifier design,” IEEE Transactions on Systems, Man, and Cyber­
netics, Part B: Cybernetics, vol. 36, no. 1, pp. 106-117, Feb. 2006.

[206] K. Bennett, J. Hu, G. Kunapuli, and J. Pang, “Model selection via bilevel op­
timization,” in Proc. IEEE Ink Joint Conf. on Neural Networks, Vancouver,
Canada, Jul. 2006, pp. 1922-1929.

[207] A. Renyi, “On measures of information and entropy,” in Proc. Berkeley Symp.
on Math. Stats, and Prob., Jun. 1961, pp. 547-561.

[208] G. Nason, “Robust projection indices,” Journal of the Royal Statistical Society,
vol. 63, no. 3, pp. 551-567, 2001.

[209] W. Mendenhall and T. L. Sincich, Statistics for Engineering and the Sience.
Upper Saddle River, NJ: Pearson Prentice Hall, 2007.

[210] S. Silva and J. Almeida, “Gplab: A genetic programming toolbox for matlab,”
in Proc. Nordic MATLAB Conference, 2003, pp. 273-278.

[211] G. Cardillo. (2008) Roc curve: Compute a re­
ceiver operating characteristics curve. [Online]. Available:
http: / / www. mathworks. com / matlab centr al/fileexchange /19950

[212] L. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. Hoboken,
NJ: Wiley, 2004.

[213] D. C. Youla and H. Webb, “Image restoration by the method of convex projec­
tions: Part 1 theory,” IEEE Transactions on Medical Imagining, vol. 1, no. 2, pp.
81-94, Oct. 1982.

[214] A. M. Tekalp, M. K. Ozkan, and M. I. Sezan, “High-resolution image reconstruc­
tion from lower-resolution image sequence and space-varying image restoration,”

128

in Proc. IEEE Int. Conf.- on Acoustics, Speech and Signal Processing, 1992, pp.
169-172.

[215] C. Fyfe and R. Baddeley, “Non-linear data structure extraction using simple
hebbian networks,” Biological Cybernetics, vol. 72, no. 6, pp. 533-541, 1995.

[216] A. Smola, O. Mangasarian, and B. Scliolkopf, “Sparse kernel feature analysis,”
University of Wiscosin Madison, Technical report 99-04, 1999.

[217] H. Friedman, “Exploratory projection pursuit,” Journal of the American Statis­
tical Association, vol. 82, no. 397, pp. 249-266, Mar. 1987.

[218] J. Mercer, “Functions of positive and negative type and their connection with the
theory of integral equations,” Philosophical Transactions of the Royal Society of
London, vol. 7, pp. 415-446, 1909.

[219] Nips’03 feature selection challenge, december 8-13, 2003. [Online]. Available:
http: / / www. nipsfsc .ecs. s oton. ac. uk

[220] M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan,
J. A. Olson, J, R. Marks, and J. R. Nevins, “Predicting the clinical status of hu­
man breast cancer by using gene expression profiles,” in Proc. National Academy
of Sciences, vol. 98, 2001, pp. 11462-11467.

[221] E. Rodriguez-Martinez, J. Goulermas, T. Mu, and J. Ralph, “Automatic in­
duction of projection pursuit indices,” IEEE Transactions on Neural Networks,
vol. 21, no. 8, pp. 1281 -1295, Aug. 2010.

[222] I. Guyon, J. Li, T. Mader, P. A. Pletscher, G. Schneider, and M. Uhr, “Com­
petitive baseline methods set new standards for the nips 2003 feature selection
benchmark,” Pattern Recognition Letters, vol. 28, no. 12, pp. 1438-1444, Sep.
2007.

[223] W. K. Wong and H. T. Zhao, “Supervised optimal locallity preserving projec­
tion,” Pattern Recognition, vol. 45, no. 1, pp. 186-197, Jan. 2012.

[224] Y. Wang, Y. Jiang, Y. Wu, and Z. Zhou, “Spectral clustering on multiple man­
ifolds,” IEEE Transactions on Neural Networks, vol. 22, no. 7, pp. 1149 - 1161,
Jul. 2011.

[225] A. Goldberg, X. Zhu, A. Singh, Z. Xu, and R. Nowak, “Multi-manifold semi-
supervised learning,” Journal of Machine Learning Research W&CP, vol. 5, pp.
169-176, 2009.

129

[226] E. Jones, P. Runkle, N. Dasgupta, L. Couchman, and L. Garin, “Genetic al­
gorithm wavelet design for signal classification,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 23, no. 8, pp. 890 -895, Aug. 2001.

[227] M. Mignotte, C. Collet, P. Perez, and P. Bouthemy, “Hybrid genetic optimiza­
tion and statistical model based approach for the classification of shadow shapes
in sonar imagery,” IEEE Transactions on Pattern Analysis and Machine Intelli­
gence, vol. 22, no. 2, pp. 129 -141, Feb. 2000.

[228] H. Escalante, M. Montes, and L. Sucar, “Particle swarm model selection,” Journal
of Machine Learning Research, vol. 10, pp. 405-440, Feb. 2009.

[229] C.-S. Kuo, T.-P. Hong, and C.-L. Chen, “Applying genetic programming tech­
nique in classification trees,” Soft Computing, vol. 11, no. 12, pp. 1165-1172,
2007.

[230] M. Zhang, X. Gao, and W. Lou, “A new crossover operator in genetic program­
ming for object classification,” IEEE Transactions on Systems, Man, and Cyber­
netics, Part B: Cybernetics, vol. 37, no. 5, pp. 1332 -1343, Oct. 2007.

[231] A. L. Garcia-Almanza and E. P. K. Tsang, “Evolving decision rules to predict
investment opportunities,” International Journal of Automation and Computing,
vol. 5, no. 1, pp. 22-31, 2008.

[232] G. Folino, C. Pizzuti, and G. Spezzano, “Training distributed gp ensemble with
a selective algorithm based on clustering and pruning for pattern classification,”
IEEE Transactions on Evolutionary Computation, vol. 12, no. 4, pp. 458 -468,
Aug. 2008.

[233] Y. Lin and B. Bhanu, “Evolutionary feature synthesis for object recognition,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, vol. 35, no. 2, pp. 156 -171, May 2005.

[234] L. Guo, D. Rivero, J. Dorado, C. R. Munteanu, and A. Pazos, “Automatic feature
extraction using genetic programming: An application to epileptic EEG classifi­
cation,” Expert Systems With Applications, vol. 38, no. 8, pp. 10425-10 436, Aug.
2011.

[235] H. Zhao, “A multi-objective genetic programming approach to developing pareto
optimal decision trees,” Decision Support Systems, vol. 43, no. 3, pp. 809-826,
Apr. 2007.

[236] C. Bojarczuk, H. Lopes, and A. Freitas, “Genetic programming for knowledge
discovery in chest-pain diagnosis,” IEEE Engineering in Medicine and Biology
Magazine, vol. 19, no. 4, pp. 38 -44, Jul. 2000.

130

[237] M. D. Ritchie, A. A. Motsinger, W. S. Bush, C. S. Coffey, and J. H. Moore,
“Genetic programming neural networks: Apowerful bioinformatic tool for human
genetics,” Applied Soft Computing, vol. 7, no. 1, pp. 471-479, Jan. 2007.

[238] D. J. Montana, “Strongly typed genetic programming,” Evolutionary Computa­
tion, vol. 3, pp. 199-230, 1995.

[239] Friedrich miescher laboratory, max-plank institute. [Online]. Available:
http: / / www.fml.tuebingen.mpg.de/Memb ers/raetsch/benchmark

[240] D. P. Searson, D. E. Leahy, and M. J. Willis, “Gptips: An open source genetic
programming tool for multigene symbolic regression,” in Proc. Int Multi Conf.
of Engineers and Computer Scientists, ser. Lecture Notes in Engineering and
Computer Science, Hong Kong, Mar. 2010.

131

http://www.fml.tuebingen.mpg.de/Memb

