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Abstract

This thesis proposes an evolutionary scheme for automatic design of feature extraction 
methods, tailored to a given classification problem. The main advantage of the proposed 
scheme is its capacity to formulate new models when the existing ones do not fit the 
problem at hand. The learning phase is expressed as a model selection problem, where 
the best performing model is selected among the genetic pool, assessed by an estimation 
of out-of-sample generalization error. Each individual in the genetic pool represents a 
potential model encoded into a hybrid genotype, specifically designed to hold a tree 
structure and an scalar array to represent both feature-extraction and classification 
stages. The role of the inducer is to automatically design a mapping function to be 
used as the core of the feature-extraction stage, as well as fine-tune the corresponding 
hyper-parameters for the feature-extraction/classification pair. Two paradigms are 
explored to express the feature-extraction stage, namely projection pursuit and spectral 
embedding methods.

Both paradigms can express several feature extraction algorithms under a common 
template. In the case of projection pursuit, such template consist on the optimisation 
of a cost function, also known as projection index, that can be specifically designed 
to highlight certain properties of the extracted features. While for spectral embedding 
methods, a suitable set of similarity metrics is needed to construct a weight matrix, 
which encodes the links between any two samples on the vertices of a graph. The 
eigendecomposition of such weight matrix represents the solution to an optimisation 
problem looking for a low-dimensional space, retaining the characteristics described by 
the original distance metric. The proposed inducer evolves an optimal projection index 
or a desired distance metric for the corresponding feature-extraction paradigm. Addi­
tionally, projection pursuit was extended to the nonlinear case by means of the kernel 
trick. The determination of a nonlinear residual subspace for sequential projection 
pursuit is reduced to the computation of an updated kernel matrix.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The importance of pattern classification and data analysis has been studied and under­
stood through the last few decades. R. Duda [1] in the introduction of his book offers a 
good example of how pattern classification can be applied to solve real-world problems, 
allowing the reader to distinguish the different levels in which he decomposes a full 
pattern recognition system following a bottom-up approach. Following his discussion, 
feature extraction is described as a searching process in order to find “... distinguishing 
features that are invariant to irrelevant transformations ...” [1].

According to this author, the distinction between feature extraction and classifica­
tion is somehow blurred by the fact that both stages in patter recognition systems tend 
to interact closely. Ideally a complex feature extractor would deliver a representation 
robust enough to simplify the classification task; on the contrary, a powerful classifier 
would not need the help of a feature extraction stage. In the real world, both stages 
are needed since there is not such a thing as an infallible classifier or a perfect feature 
extractor. Therefore the feature extraction task has been redefined as to search for a 
suitable transformations that allow redundancy reduction over the space spanned by 
the original features [2].

On the other hand, a simple phenomenon can be measured in several ways, which 
may lead to a multiple representation of the same phenomenon but in different domains, 
therefore multidimensional features vectors can be used to process such information. 
Two close related problems can be experienced when working with multivariate data: 
(1) the so-called Hughes phenomenon, that states a direct linear relation between the 
number of dimensions and the number of samples needed to achieve high classification 
accuracy [2]; and (2) the curse of dimensionality, saying that for nonparametric classi­
fiers based on density estimation, as the number of dimensions in the feature vectors 
increases, the sample size needs to increase exponentially to successfully obtain a good 
estimate.

As an example lets consider a k-nearest neighbours classifier in a A-dimensional
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space. To capture a fraction r of the unit volume around a specific point, we need a 
subcube with side-length given by ep(r) — r1//p. For 10 dimensions, to capture 1% of 
the data to perform the k-nearest neighbours procedure, we need to cover eio(O.Ol) = 

0.63 of the unit range of each input, turning out to be a non-so-local neighbourhood. 
Besides, the computational cost of handling high-dimensional data in common matrix 
operations frequently used in machine learning and pattern classification is extremely 
high. Therefore the interest in searching for new methods that allow us to transform 
high-dimensional spaces into low-dimensional ones but keeping the information needed 
to accomplish successfully our task.

The principal objective of feature extraction is to derive new features from the direct 
measurements of an experiment in order to boost classification accuracy and classifier 
efficiency. The problem of finding a suitable transform for the raw data able to de­
liver invariant features is not easy. The standard way to perform feature extraction is 
trough linear transformations, since they are easy to compute and exhibit useful prop­
erties such as statistical invariance, high information packing and redundancy removal. 
Among linear transformations in pattern classification, projection techniques such as 
principal component analysis (PCA), linear fisher discriminant (LFD), and independent 
component analysis (ICA) have been widely used in a variety of applications like brain 
imaging [3], telecommunications [4], audio separation and financial applications [5].

Despite the advances in pattern recognition and feature extraction, according to 
the no free lunch theorem [6], there is no single algorithm that can be optimal for 
every classification problem. In practice, two alternatives exist to propose adequate 
feature extraction and classification algorithms when facing a new classification prob­
lem. The first one is the selection of the best performing pair among the existing 
algorithms. Frequently, such selection process is modelled as a computationally expen­
sive grid search over all possible feature-extraction/classifier pairs, involving parameter 
fine-tuning for each algorithm [7]. Although better search techniques have been de­
veloped to tackle the computational burden of grid search [8-10], the resulting model 
may still be suboptimal as it makes strong assumptions about the characteristics of the 
problem and the data distribution. The second option is to specifically design a new 
feature-extraction/classification pair tailored to the problem at hand. Traditionally, 
this task involves human experts which analyse the data, characterise the problem and 
eventually propose a new mathematical model. The objective of this work is to pro­
pose a human-competitive alternative in the design of projection methods to extract 
discriminative features that will assist in the problem of classification.
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1.2 Scope and Contributions

The principal contribution of this work lies on the introduction of an evolutionary 
framework to solve the problem of tailoring a feature extraction method for a given 
classification problem. Three areas of feature extraction are explored: linear projection 
methods, kernel-induced spaces for nonlinear projection methods, and spectral embed­
ding methods. Among the existing evolutionary algorithms, genetic programming (GP) 
was selected to jointly perform model search and parameter optimisation of a feature- 
extraction/classifier pair. The flexible tree-based chromosome encoding in GP lends 
itself to the specific needs of the aforementioned feature extraction areas, allowing us 
to encode a feature-extraction/classifier pair into a single individual. Thus, represen­
tation is one of the key issues addressed in this work, and it will drive our discussion 
in the upcoming chapters.

Although heavily based on evolutionary algorithms, this work does not intend to 
explore new genetic operators, nor compare different fitness landscapes provided by 
different objective functions. Instead, experimental evidence is provided to support the 
idea that carefully designed evolutionary algorithms, when applied to a given classifica­
tion problem, possess enough expressive power to not only solve the problem of model 
selection, but to create new models when the existing ones perform poorly. The design 
of our evolutionary framework consists of three main components: a composite chromo­
some able to capture the main characteristics of the targeted feature extraction area; 
a fitness function to measure the performance of each potential model; and a function 
and terminal sets that provide the primitives or building blocks for the construction of 
potential models. A summary of the contributions of each chapter is provided in the 
remaining of this section, focusing on the mentioned components.

Chapter 4. This chapter introduces the proposed evolutionary inducer, posing the 
problem of model learning as a complex inference task, where a population of 
potential solutions are evolved by means of genetic operators. A novel solution 
encoding, regarded as an hybrid chromosome, was designed to hold a tree-based 
part representing the projection index, and a scalar part with the parameters 
needed by the tree-based part, and by the targeted classifier. Using the proposed 
inducer, the problems related to design of linear projection methods are tackled 
by developing a generalization framework based on projection pursuit. Sustained 
by a carefully designed set of function primitives, the proposed inducer creates a 
new projection pursuit index which delivers an optimal feature extraction stage 
for the problem at hand. Additionally, it overcomes the problem of manually 
characterising an interesting projection, when no information regarding the un­
derlying structure of the targeted dataset is available.
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Chapter 5. A sequential model for nonlinear projection pursuit is presented, which 
optimises an evolutionary index in a kernel-induced feature space. The evolution­
ary index is obtained through the evolutionary framework described in Chapter 4. 
Determination of a nonlinear residual subspace for sequential projection pursuit 
is reduced to the computation of an updated kernel matrix. Additionally, given 
the use of whitening as a preprocessing stage in sequential projection pursuit, this 
chapter provides a kernel extension for whitening in feature space.

Chapter 6. This chapter introduces a generalised model for supervised spectral em­
bedding, based on a heterogeneous proximity matrix, where the relations between 
enemies and friends are described through a set of different similarity metrics. Ad­
ditionally a matrix representation is proposed for each of the aforesaid similarity 
metrics, which besides providing a quick way of computing blocks of pairwise sim­
ilarities, promotes compactness and parsimony of the solutions. Different from 
the previously designed hybrid chromosomes, the proposed composite weight ma­
trix was encoded as a multi-gene chromosome, where each gene consists of a 
tree-based part and a scalar part representing a given similarity function and a 
neighbourhood size.

1.3 Published/Submitted Articles

In this section the articles published or submitted as a result of the work presented in
this thesis are listed.

1. Journal articles.

- E. Rodriguez-Martinez, J. Y. Goulermas, Tingting Mu, and J. F. Ralph, 
“Automatic Induction of Projection Pursuit Indices”, IEEE Transactions on 
Neural Networks, vol. 21, no. 8, pp. 1281-1295, 2010.

- E. Rodriguez, K. Nikolaidis, T. Mu, J. F. Ralph, and J. Y. Goulermas, 
“Towards Collaborative Feature Extraction for Face Recognition”, Natural 
Computing, DOI 10.1007/sll047-011-9285-6, in press.

- E. Rodriguez-Martinez, J. Y. Goulermas, Tingting Mu, and J. F. Ralph, 
“Evolutionary Kernel Projection Pursuit for Supervised Feature Extrac­
tion”, submitted to IEEE Transactions on Systems, Man, and Cybernetics, 
Part B.

- E. Rodriguez-Martinez, Tingting Mu, J. Jiang, and J. Y. Goulermas, “Evolu­
tionary Induction of Heterogeneous Proximities for Supervised Embedding”, 
submitted to IEEE Transactions on Pattern Analysis and Machine Learning.
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2. Conference articles.

- E. Rodriguez, K. Nikolaidis, T. Mu, J. F. Ralph, and J. Y. Goulermas, 
“Collaborative Projection Pursuit for Face Recognition,>, in Proc. IEEE 
5th Int. Conf. Bio-Inspired Computing: Theories and Applications, pp. 
1346-1350, Sept. 2010.
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Chapter 2

Machine Learning Methodologies

Artificial intelligence is a broad field of study that aims at developing intelligent agents 
capable of mimicking human reasoning and able to interact with their environment 
when performing a specific task. One characteristic such agents must posses is the abil­
ity to learn, understood as an adaptation mechanism that modifies a specific behaviour 
when performing a given task, that allows an increase in the agent’s performance on 
repetition of the same task. From this idea, machine learning (ML) sprang as the 
discipline concerned with the implementation and development of learning algorithms. 
Nevertheless, modelling the learning pi'ocess not only requires defining an action plan 
to modify an agent’s behaviour, known as learning strategy, but also needs to define 
source and representation of the training experience, and a measure of performance.

Being a multidisciplinary field, ML makes use of significant results and postu­
lates of a wide range of subjects such as philosophy, information theory, probability 
and statistics, control theory, optimisation theory, and computational complexity the­
ory. With such portfolio of subjects, ML features in a variety of applications such 
as natural language processing [11], handwriting recognition [12], face and fingerprint 
recognition [13-15], search engines [16], medical diagnosis [17,18], bioinformatics an 
cheminformatics [19-21], detecting credit card fraud [22], stock market analysis [23], 
classification of DNA sequences [24], object recognition in computer vision [25], image 
compression [26-28], game playing [29], robot locomotion [30], and machine condition 
monitoring [31,32].

2.1 Types of Algorithms

The representation of the training experience for a given learning problem indirectly 
defines the type of learning strategy that must be adopted. In ML, algorithms are 
cataloged according to the representation of the target function into supervised learning, 
unsupervised learning, reinforcement learning, and transduction.
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2.1.1 Supervised Learning

It is the most common type of learning algorithms, it is based on the assumption that 
training examples are given in the form of descriptive feature vectors paired with their 
desired outputs [33]. The target function is represented by a mapping from the feature 
space to the output domain. Supervised learning tries to reduce the error between the 
estimated target for a given training sample, and its desired output. Once the target 
function is learnt, it can be used to estimate the category of a previously unknown 
example. When the target is a continuous signal, the task is known as regression, and 
when it is a label describing the class to which the input vector belongs, it is called 
classification.

2.1.2 Unsupervised Learning

Unsupervised learning [34] is an inference process in which implicit relationships among 
training examples are uncovered. In unsupervised learning there is no a priori informa­
tion about the output. The input examples are grouped following a similarity criterion, 
which can be implicitly defined in the algorithm or explicitly given by a similarity func­
tion. Generally, the only a priori information an unsupervised algorithm needs is an 
estimate of the number of groups defining the data structure. Representative examples 
of unsupervised learning are clustering and dimensionality reduction.

2.1.3 Reinforcement Learning

Reinforcement learning [35] studies the interaction between the agent and its environ­
ment, in order to develop strategic plans such that any action performed by the agent 
to modify its environment contributes towards improving a long-term reward. Gener­
ally, a reinforcement learning problem is modelled as a Markov decision process (MDP) 
composed of four elements: a finite set of states, a finite set of actions, a probability 
transition matrix P, and a reward transition matrix R. Its solution involves maximising 
a weighted sum of rewards given by an optimal policy. A policy is a mapping from a 
given state to a specific action. A MDP is solved using dynamic programming assuming 
a priori knowledge of P and R by means of two variations: policy iteration which starts 
with a initial policy and iteratively improves it, and value iteration which is based on 
the convergence of a set of values known as values. When no a priori information is 
assumed, temporal difference methods are used to learn an optimal policy. There are 
two principal algorithms for temporal difference: actor-critic learning which parallels 
policy iteration, and ^-learning which parallels value iteration.

2.1.4 Transduction

Different from induction, where a general rule to classify future examples is learnt from 
training samples, transduction propose to directly predict the class label of a given sam-
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pie based only on the available training examples [36]. Since it lacks a predictive model, 
if a previously unknown sample is added to the problem, the whole algorithm would 
need to be run again to produce a label. On the other hand, transductive algorithms 
may be able to make better predictions with fewer points. When the objective is to 
assign a discrete label to unlabelled points, the design of a transducer involves adding 
partial-supervision to a clustering algorithm. According to the clustering technique, 
such algorithms can be further divided into partitioning transduction and agglomera- 
tive transduction. When the target is a continuous label, a transducer is designed by 
adding partial-supervision to a manifold learning algorithm.

2.2 Pattern Classification

Classification can be placed at the core of the decision process in an intelligent agent. 
It is the result of applying previously learned rules to sensory inputs. Typically, such 
rules are modelled as a classification function whose parameters are estimated using 
supervised learning. The classification task can be divided into two groups: binary 
classification when the task consists in discriminating among two groups, and multi­
class classification when there exists more than two categories. The binary classification 
framework can be extended to solve multi-class problems. Let the feature vectors be 
labelled with one of c class labels, thus the task can be broken into c one-against-all 
binary classification problems, each of which builds a classifier separating one class 
from the rest. Formally, binary classification can be defined as follows: Given a set of 
training examples {(x^, ?/i)}^=1 with n Tridimensional feature vetcors x* e paired 
to n corresponding class labels T/i £ Y = {—1, +1}, the task consists in approximating 
a unknown classification function ip : > Y that best predicts the label for an input
sample.

2.2.1 Linear Classifiers

Linear classifiers take their name from the linear function used to model the decision 
boundary, which is modelled as a hyperplane in the Tridimensional feature space as

t/?(x) — pTx + 6, (2.1)

where p € Rm is a weight vector and 5 £ R is a threshold weight or bias. These 
parameters are estimated from training examples using techniques such as maximum 
likelihood, maximum a posteriori probability, Bayesian inference, or expectation max­
imisation. Usually, when a Bayesian approach is used to model the decision process, 
Eq. (2.1) is given by the a posteriori probability p(y|x). Based on how such probability 
is estimated, linear classifiers are divided into generative and discriminative.



2.2.1.1 Generative classifiers

Generative classifiers [37,38] use Bayesian decision theory to guarantee optimality in the 
hyperplane parameters. They model a joint probability p(x, y) by means of Bayes rule 
as p(x|y)p(?y) and learn the model parameters through maximisation of the a posteriori 
probability. Their name conies from the fact new samples can be generated using 
the estimated a priori and class-conditional probabilities. The decision rule selects 
y = +1 if p(y — +l|x) > p(y — —l|x), otherwise y = —1. Such rule has been proven to 
minimise both average risk and classification error probability. From a mathematical 
point of view, sometimes it is better to work with a monotonically increasing function 
of the probabilities, such that hyperplane separating class +1 from class -1 can be 
modelled as

ini'?$fc+il1+ln p(y — +i)\
o.,p(xly — —i) J ' “ Vp(?/ =-!)>/ ^2’2)

Usually, the class-conditional probability is assumed to be Gaussian and independent. 
Hence, for class +1 we have p(x\y = +1) ~ JV(ju+ .S+), where S+) is a Gaussian
probability distribution with mean p+ and covariance matrix E+, and its respective 
discriminant function is

ip+ (x) - In p(x\y = +1) + In p(y — +1) (2.3)
= — ^(x — jU_|_)TEljl1(x — — ^l11 27T — -In |S+| -1- In p(y — +1).

In general, this is a nonlinear quadratic form and the resulting Bayesian classifier is 
known as quadratic classifier.

When the covariance matrix is the same in all classes, E+ — XL = E, the quadratic 
contribution of the term xt'Ex, as well as the constant term —yin 27r — ^ln |E| will be 
the same in all discriminant functions and eventually cancelled out in the hyperplane 
function. Thus the discriminant function can be expressed as

i>+(x) = p+x + 6 (2.4)

where p+ = E~V+ and b — — Jj/^E~1/i+ + In p(y — +1). From the structure of the 
covariance matrix, two cases can be separated:

• Assuming statistically independent features with the same variance er, the covari­
ance matrix takes the form E — o*2Im, with inverse E-1 = where Im is
a m x m identity matrix. The weight vector and bias in Eq. (2.4) simplify to 
p+ = -^y,+ and b = + In p(y = +1). As for the hyperplane, it can be
expressed as well as a linear function of the inputs as follows

PT(X — x0) = 0, (2.5)

where p = /i+ - /i_ and x0 = ±(p+ + pJ) - o2ln
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• A second case arises when the classes present the same arbitrary covariance ma­
trix. In this case the discriminant function is the same as in Eq. (2.4), and the 
hyperplane is described by Eq. (2.5) with parameters p = E“1(//+ — /Li_) and 
x0 = i(M+ + M-) - In (^=±g)

If the parameters of the normal distribution are unknown, they can be estimated 
from the training data using maximum likelihood (ML), maximum a posteriori proba­
bility (MAP), or Bayesian inference estimation. Examples of algorithms in this category 
are Naive Bayes classifier and Linear Discriminant Analysis.

2.2.1.2 Discriminative classifiers

Contrary to generative classifiers, that need the class conditional probability and the a 
priori probabilities to model the a posteriori probability, discriminative classifiers solve a 
more specific problem by directly estimating the a posteriori probability p(y\x) [37,38]. 
An advantage of discriminative classifiers is that the number of adaptive parameters 
to be determined is linearly dependent on the input space dimensionality, thus they 
perform better than generative classifiers for high dimensional datasets.

An example of discriminative classifiers is logistic regression, where the posterior 
probability is modelled as follows

and

p(y = -l|x) =

p(y = +l|x)

J. + exp(p:rx + b) 

exp(pTx + b)

(2.6)

(2.7)1 -I- exp(pJ'x + b) *

Thus, the decision rule can be expressed as the inequality > 1. Substituting
the definitions of the posterior probabilities and taking the natural logarithm of both 
sides of the inequality leads to Eq. (2.1), where the label y = +1 is assigned if ^(x) > 0, 
and y = — 1 otherwise.

A second subcategory of discriminant classifiers are those which use a geometric 
approach to directly estimates the unknown classification function i/>(x) such as the 
perceptron algorithm, or support vector machines (SVM). They do not provide poste­
rior probabilities, instead they pose the problem of learning the parameters in Eq. (2.1) 
as a convex optimisation problem which is solved by means of quadratic programming 
or Lagrange multipliers.

Support vector machines SVMs [39-41] construct a linear separating hyperplane 
in a given feature space that maximises the distance between itself and any training sam­
ple. When a perfect decision surface is assumed, the derived classifier is known as hard- 
margin SVM classifier, and the separating hyperplane, defined as ^(x) =< p,x > -\-b,
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can be built by minimising the following optimisation risk 

min 4lpl2,p,b 21 1
s.t. 2/i(< p,x >+£>)> 1, $ = 1,2,... ,7i} (2.8)

where l-j and < • >, correspondingly denote vector norm and dot product in the given
feature space. A solution to the above constrained optimisation problem is found with 
the help of Lagrange multipliers A = [Ai, A2,..., A;]r, which transform the referred 
problem into its dual

T ELl Ai “1 E?=1 E?=1 ''"'"'A;A:" Xi’Xj' >■

s.t. ELi = °>
Ai > 0, i = 1,2,... ,n. (2.9)

Thus, the solution vector is given by the linear combination of the training set p — 
Those samples with non-zero Ai are called support vectors (SVs).

For the case when an overlap between classes exists, there is no hard-margin defin­
ing an optimal decision surface. Introducing a loss term into the risk optimisation 
problem with the help of slack variables £ = [£i, £2 5 • • • ? £,ri]T■, allows samples violating 
the constraint yi(< p,x > +6) > 1 to be considered part of the SVs. In this case, the 
decision surface is built by solving the optimisation problem

min |(|p|2+ C,2]"=i&) ,
P,0

s.t. yi(< p,Xi >+&) > 1
&>0,z = l,2,...^, (2.10)

where C is a positive regularisation parameter set by the user. Again, using the La­
grange multipliers A = [Ai, A2,..., Ai]T, a dual version of Eq. (2.10) can be written 
as

max YJL\ A» - § EiLi E”=i ViVj^j < xj >>A
s.t. E?=i ViK = o,

0< Ai< C,i = l,2,...,n. (2.11)

This type of SVM is also known as soft-margin C-SVM or Xq-SVM. The C parameter 
in Eq. (2.10) controls the trade-off between two conflicting objectives: maximisation of 
the margin, and minimisation of the training error. An alternative soft-margin SVM, 
known as zaSVM, attempts to directly control the number of margin errors and SVs 
involved in the decision surface, which is determined by minimising the optimisation

11



risk

min i|p|2--i/p+££?=!&, 

s.t. yi(< p,Xi >+6) > p-&,

^ >, i =

p > 0, (2.12)

where p is a constant defining the margin size, and v G [0,1] is a user-defined regular- 
isation parameter, which sets an upper bound on the fraction of margin errors, and a 
lower bound on the fraction of SVs.

2.2.2 Nonlinear Classifiers

Different from linear classifiers, the decision boundary built by nonlinear classifiers 
is an arbitrary hypersurface different from a (in — l)-flat in the Mm feature space. 
Similarly to linear classifiers, nonlinear classifiers can also be divided into discriminant 
and generative classifiers. Examples of nonlinear discriminant classifiers are multilayer 
perceptrons, radial basis function (RBF) networks and self-organizing maps (SOMs). 
As for nonlinear generative classifiers, quadratic Bayesian and fc-nearest neighbours 
(kNNs) are considered representative examples.

2.2.2.1 Generative classifiers

The extension of a naive Bayes classifier for the case of an arbitrary covariance matrix 
for each class is a natural example for a nonlinear generative classifier [42]. As with the 
linear case, the class conditional probability is assumed to be Gaussian, but this time 
the quadratic term in the discriminant function can not be dropped, leading into the 
quadratic classifier

^i(x) = xTCiX + wfx + o/iO) £ = +,—, (2.13)

where i = +, — denotes class label, Q = W{ = and uJio = — —
iln|Sj| +ln p(y = £).

Other example of nonlinear generative classifier is given by the fc-nearest neigh­
bours classifier that is based on nonparametric pdf estimation methods [7]. Such 
methods are used to estimate the class-conditional probability p(x|y) when no assump­
tions about its structure are taken. They are based on an extension to multiple di­
mensions of the histogram estimation technique, and follow a common model given
by

p(x) = (2-14)

which represents the constant pdf value inside a hypercube of volume V holding kn 
out of n total samples. Specifically, the ^-nearest neighbours method fixes the number 
of samples to be contained within the hypercube. It works by placing an hypercube
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Figure 2.1: Artificial neural network represented as weighted graph.

centred at each training point, which volume is expanded until it covers kn points, that 
will be those closest to the centre. It follows the model

p(x) = ^vfe’ (2'15)

where the volume dependance on the training point x is made explicit by F(x). The 
optimal number of neighbours can be learnt from the training set. The pdf estimate 
computed by the /^nearest neighbours can be used within the Bayesian framework to 
produce the fc-nearest neighbours classifier, which labels a test point with the most 
frequent class label among its kNNs.

2.2.2.2 Discriminative classifiers

The mentioned examples are all based on a mathematical model known as artificial 
neural networks (ANN) [43]. Inspired by neurobiological analogies, ANN algorithms 
emulate the way human brains compute, offering highly nonlinear decision surfaces, 
direct input-output mapping and dynamic adaptive mechanisms. A typical ANN can 
be regarded as a weighted graph as shown in Fig. 2.1, where each node represents a 
mathematical model known as artificial neuron, which is defined as

^(fe+i) = fik

where Ujic is the jth input to the iih neurone on the kth layer, weighted by coefficient 
The function /$&(■) in the above expression is known as activation function, and 

its purpose is to fire or inhibit the action of the corresponding neurone. Common 
choices for are heaviside steps, sigmoids, linear functions, or Gaussians. There
are several variations to the structure shown in Fig. 2.1, but the basic directed acyclic 
graphic (also known as feedforward network) consists of an input layer, one or more 
(for multilayer perceptrons) hidden layers, and an output layer. When the activation 
functions in all nodes of the hidden layer depend on the distance to a given point, the
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resulting network is known as RBF network. SOMs are an entirely different approach 
where the weights have a spatial component attached to the weighting coefficients. 
Such component is used to locate them onto a two-dimensional lattice which produce 
a low-dimensional representation of the data.

The learning process in an ANN involves adjusting its weights to minimise a 
given cost function that depends on the available examples. The selection of a suit­
able cost function depends on the desired task, and on the properties of the learning 
algorithm, being the mean-squared error a popular choice for supervising learning. Sev­
eral learning algorithms have been used to train a neural network, ranging from the 
classical gradient descent algorithm [43] to more recent and sophisticated evolutionary 
algorithms [44-46].

2.3 Feature Extraction

Selection and design of an ad-hoc classification algorithm plays an important role in 
classifying an object. Nevertheless, few can be done if the feature vectors describing 
such object are noisy or present redundant information. Traditionally, in pattern clas­
sification systems, a feature extraction stage is used before classification in order to 
preprocess raw input data, and build representative features. Among feature extrac­
tion methods, projection methods are quite popular due to their low computational 
cost, statistical invariance, and high information packing ability. In the following, a 
brief description of different projection methods is offered.

2.3.1 Projection Methods

Let T — {(xi,pi)j , z = 1,..., n, be a given learning set containing n m-dimensional 
whitened samples Xj, arranged in a matrix X 6 MnXm, each one belonging to one of c 
classes, denoted by z/* being arranged in a corresponding class-vector Y G M". A linear 
projection technique generates a projection matrix P e Rmxb such that

Zi = PTXi, z = 1,2,... ,7i (2-17)

is a ^-dimensional representation of the ith sample, for b < m. When the columns 
of P are orthonormal, they represent the basis of a feature subspace, which can be 
designed using a given criterion such that the information embedded in each component 
decreases.

2.3.1.1 Principal component analysis

Principal component analysis (PCA) [47] generates an orthonormal basis spanning a 
subspace that maximises the total scatter of the projected samples across all categories.
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Such basis is obtained by solving the optimisation problem

Ppca = argmax Ip^StPI (2.18)
pgfl^mxb 1 I

where = Yaj=i total scatter matrix. The columns of the optimal basis
{pi|£ = 1,2,... can be estimated by the eigenvectors of St corresponding to its b 
largest eigenvalues.

For high-dimensional data (i.e. m » n), computing the eigenvectors of the total 
scatter is computationally expensive. In this case, an alternative method exist based 
on the singular value decomposition (SVD) of the data matrix X. Let

xt ^ psvt (2tl9)

be the SVD of the transpose version of X, where P is the matrix with columns the 
eigenvectors of XTX, V is the matrix with columns the eigenvectors of XX7'. Thus, 
the PC A projections of X can be obtained as

z = XP = VXT. (2.20)

Due to the projection matrix being computed by maximising the total scatter, the 
extracted features include information regarding the within-class scatter Sw Although 
such information may provide high compression rate, the resulting subspace does not 
always provide maximum class-separability as stated in [48],

2.3.1.2 Linear Fisher discriminant

In order to diminish the effects of the within-class scatter, and taking advantage of the 
class-information available to produce higher discriminative features, LFD [1] uses a 
direct measure of class separability to compute the projection matrix by solving the 
optimisation problem

Pi/rf = argmax PeMmx6

PTSjjP

PrSwP
(2.21)

where
c c

Sp = - M)T and = X] S (X _ (2-22)
i=l i=l x:yei

are the between- and within-class scatter matrices, m is the average of ni samples in the 
ith class, and fj, is the global mean. This time the columns of the optimal basis {pj|z = 
1,2, ...,6} are estimated by solving the eigenvalue problem AjS^pj = S^p^, i — 
1,2,..., & where the set of nonzero generalised eigenvalues {Ai|i — l,2,...,c—1} impose 
an upper bound to the number of extracted features.

Given the high-dimensionality of the data, where m » n, the small sample size 
problem is always present. A popular way to cope with such problem is to apply PC A
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in a first stage to reduce the dimensionality of the original space to n — c, and then 
applying LFD as defined in Eq. (2.21) to further reduce the dimensions to (c — 1). 
In this way, the resulting search space after PCA dimensionality reduction possesses a 
nonsingular within-class scatter matrix. Thus, the optimal basis P0/J£ is computed as 
follows

JPopf = ^pca^lfd (2.23)

where

Pi/d — argmax
peR(n-c)x6

pTpT a p p
x pco^-D-1- pcax

PTP^SH,PpcoP

and J?pea is defined as in Eq. (2.18). Note that in this case, the space search for Ppca 
consists of all the orthonormal matrices of size m x (n — c), whereas for P//d, it consists 
of all the orthonormal matrices of size (n — c) x b.

2.3.1.3 Independent component analysis

Contrary to PCA and LFD, ICA does not count with a close form solution but rather 
performs an iterative optimisation over a constrained space to maximise a given cost 
function [49], The resulting projection matrix maps the original features to a sub­
space where every component is independent of each other. The core of ICA is the 
assumption that each dimension of the observed samples is a linear combination of 
b low-dimensional sources z* given by x?: = MTzi; thus by estimating the components 
of the mixing matrix M = P-1 we could estimate every independent source z.p

Lets consider the linear combination z.j = Xpi = ZMpi = Zq;, which gives the 
jth coniponent of the projected samples onto a low-dimensional subspace. In order for 
the estimate z.^ to be exactly the correspondent i^1 independent component of Z, 
should be a column vector with its ith element equals to 1 and zeros elsewhere. Given 
the fact that any combination of the independent components in Z is more Gaussian 
that any of its columns z.j, we can find p?; by letting it vary until the distribution Xpj 
reach maximum nongaussianity; at that point q^ has only one nonzero component and 
z.j is equal to the corresponding ith column in Z. Therefore by looking at the degree of 
nongaussianity of the projected features distribution we can estimate the components 
of the transformation matrix as an optimisation process where the search is performed 
over the space spanned by all the Pi 6 IRm.

Several ways to measure the nongaussianity has been proposed such as kurtosis 
and negentropy. Using gradient based optimisation methods, a search algorithm was 
proposed in [50] where successive updates based on a contrast function are applied to 
a random starting point until convergence is met. Such algorithm is known as FastICA
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and the updating rules derived for kurtosis and negentropy are as follows

(2.24)

(2.25)

Pi^£;{Xr (X Pi)3}-3 Pi 
Pi <- .E{Xr ^Xpi) - £{S'(Xpi)} Pi}

When the distribution of the independent components is Gaussian, no matter how the 
observed features are projected, the evaluation of the contrast function for any given 
angle will be the same and FastICA will fail to converge. For a deeper exposition of 
ICA refer to [49].

FastICA is known as a one-unit algorithm since it estimates only one independent 
component, i.e. projection onto a one-dimensional space. The way to extend this 
algorithm to multiple dimensions is by exploiting the fact that the columns in the 
transformation matrix, corresponding to different transformed features, are orthogonal 
in the whitened space. Therefore, running a one-unit algorithm several times and ap­
plying orthogonalisation over the resulting transformation matrix after every iteration, 
we can prevent different vectors from converging to the same optimum.

Two major orthogonalisation methods have been developed so far based on Gram- 
Schmidt orthogonalisation. The first one is called deflationary orthogonalisation, where 
the components of the transformation matrix are found sequentially as follows:

1. Choose ft, the number of independent components to estimate. Set z *— 1.

2. Initialize

3. Do an iteration of a one-unit algorithm on pi

4. Do the following orthogonalisation:

i—l

V = Pi-Z)(pf Pj)Pj (2-26)
j=l

5. Normalize pi and v.

6. If p^v < 1, go back to step 3.

7. Set i i -f 1. If i is not greater than the desired number of independent compo­
nents, go back to step 2.

The second one is symmetric orthogonalisation, contrasting with the former one by 
computing in parallel all the components of the transformation matrix. This parallel 
processing consists of running b independent one-unit algorithms, follow by an orthog­
onalisation involving matrix square roots. Symmetric orthogonalisation consists of the 
following:

1. Choose b as the number of independent component to estimate.
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2. Initialize randomly the p*, i = 1,..., 6.

3. Do an iteration of a one-unit algorithm on every p, in parallel.

4. Do a symmetric orthogonalisation as

P=(PPT)-1/2P (2.27)

(P Prr1/2 =E diag(Ar1/2,..., 1/2) • Er

where E is the matrix formed with the corresponding b eigenvectors from the 
square matrix P P7.

5. If P P ^ Im, where Im is a m x m identity matrix, go back to step 3.

2.3.2 Projection Methods in Kernel-Induced Feature Space

The popularity of linear classifiers over nonlinear classifiers is due to their fast response, 
robustness in high-dimensional spaces, and minimal storage requirements. Neverthe­
less, in many real-world problems, a linear decision surface is not enough to distinguish 
among classes due to the underlying nonlinear data structure. In such cases, a nonlin­
ear mapping can be used to unfold any nonlinearity as can be seen in Fig. 2.2, and then 
any linear classifier can be used in the new feature space. Additionally, nonlinear pro­
jection methods can be used as dimensionality reduction techniques when the number 
of projection vectors are less than the dimensionality of the input space as described 
in Eq. (2.17).

2.3.2.1 Kernel principal component analysis

Classical nonlinear feature extraction has been inspired by kernel principal component 
analysis (KPCA) [51] and the use of the so-called kernel trick. KPCA assumes a non­
linear map (p : Rm —» TY to a non-observable high-dimensional space referred as feature 
space. In such space, bearing in mind centred data, i.e. 0(xj ) = 0> xj £
the principal components are computed by solving the eigenvalue problem

Ap = Cp, (2.28)

Figure 2.2: The idea of nonlinear mapping is to translate the original feature space into 
a non-observable feature space where the samples can be linearly separated.
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where C is the covariance matrix in feature space. As Cp = ^ jLi(^(xj)Tp)e/>(xj)5 
all solutions p must lie in the span of {^(xj)}^, therefore exist a set of coefficients 
7 e M71 such that p = <I?T7, where 3? = [0(xi), ^(x2), 0(x?l)]r is the matrix
representation of the mapped data in H. Using this expansion, the eigenproblem in 
Eq. (2.28) can be expressed as

nX'y = K7, (2.29)

where K is a kernel matrix which defines the dot-product among the samples in feature 
space as fcy = AT(xi, Xj) = ^T(xj)^)(xj). Thus, the coordinates of the embedded feature 
vectors are not needed, but only their pairwise inner product. Once the first nonzero 
eigenvalues 7^i = 1,... ,6 of the kernel matrix have been computed, the ith nonlinear 
principal components of a testing point x* G Rm can be obtained as

P?V(xt) = = K( 74, (2.30)

where K; is the ltl1 row vector of pairwise inner products between the testing point 
and the training samples. Then the m-dimensional testing point is mapped into a b~ 
dimensional space. When the assumption of centred data in feature space is not valid, 
the kernel matrix K can be replaced by K — K-InK—KHn+linKIn, where In = ^lnl^ 
is a x n matrix with all its elements equal to l/n, and ln is a column vector with n 
elements equal to one.

2.3.2.2 Kernel Fisher discriminant

Following KPCA approach of mapping the input data to a non-observable space 7i, 
kernel Fisher discriminant (KFD) maximises the Rayleigh’s ratio between the within- 
class and the between-class scatter [52], which can be defined in H as

c _ C

= S (^(x) " ^)(<£(x) _ ui)T and SB = (2.31)
i=l V0(x):y=i i—1

where Vi — ]Cv0(x):y=i 0(x) is the ith class mean. Given the only information regard­
ing 7i is the pairwise inner product among samples in the feature space, the Rayleigh’s 
ratio can be redefined as follows [53]

PTSbP 7TKIK7
(2.32)

PTSwP 7rKK7

where K — (K.rt)r,t=i,...,c is a ordered version of K composed of blocks Krt = (fey), i = 

1,... ,nrfj = 1.... ,rit holding the pairwise inner products between samples in class r 
and samples in class £, I = diag(Kni, lln2,..., Enc) is a block diagonal matrix, and 7 G 1R?1 
is a set of coefficients that describes p within the span of 3>. From Eq. (2.32) it is clear 
that the solution to the optimisation problem posed by Eq. (2.21) in the non-observable 
feature space is equivalent to the solution of the eigenvalue problem

AKK7 = KIK7, (2.33)
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and the ith nonlinear component of a test point x; 6 Km is obtained as in Eq. (2.30), 
but changing K/ by K/ = [< 0(xj), 0(xi) >iGind(y=j)] 7=1','.'.’"cb where Ind(y - j) returns 
the set of sample indices in the jih class.

2.3.3 Projection Pursuit

Linear transformations have been widely used as feature extraction methods to over­
come problems related to high-dimensional spaces. Recently a generalized linear pro­
jection method, known as (exploratory) projection pursuit (PP), has been applied as 
a preprocessing stage in high dimensional classification tasks dealing with face recog­
nition [54] and hyperspectral image analysis [26,27,55]. PP was defined as a technique 
for exploratory analysis of large multivariate datasets, aimed at unsupervised dimen­
sionality reduction and feature extraction [56]. Projection pursuit tackles the curse 
of dimensionality by means of projecting the whole dataset onto a low dimensional 
embedding, which should retain the same amount of useful information as the original 
dataset, and help to visualize the underlying data structure. The optimal projection 
coefficient set is found by looking at the data degree of interestingness, which is assessed 
by a predefined index function known as projection index.

The first work on projection pursuit was in 1969 by Kruskal [57], but was Friedman 
and Tukey [56] who introduced the term. Several developments were inspired after their 
work, extending the idea of projection pursuit (PP) to other contexts, like projection 
pursuit regression [58] and projection pursuit density estimation [59]. But it was until 
Jones and Sibson [60] established a framework based on information theory principles, 
when this methodology drew the attention of researches. In the following a descrip­
tion of the optimisation problem pose by PP and the characteristics of representative 
projection indices is provided.

2.3.3.1 The optimisation problem

Unlike PCA or LFD, PP does not count with a close solution. Instead, a suitable 
optimisation method must be applied to solve the optimisation problem pose as follows. 
Given the learning data defined in Section 2.3, and a projection pursuit index that 
measure the degree of interestingness in the projected data defined as in Eq. (2.17), 
we look for a projection matrix P* that maximises the criterion

P* = argmax 3(XP) (2.34)
peK,mx6
PrP=I6

2.3.3.2 Current projection indices

The selection of an adequate projection index plays an important part in PP, since 
it defines the properties one wants to highlight in the projected subspace. Generally
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Table 2.1: PDF-Based Indices.

Index Characteristics
Friedman-Tukey [60]

= f f2 dz
Minimised by a parabolic density 
function. Easy to compute. Not 
sensitive to outliers.

Fisher information criterion [61] 
S /(/')2//dZ

Represents a non-entropy based 
index, which is uniquely optimised 
by a normal pdf. Requires an 
approximation of the pdf 
derivative.

Jones-Sibson [60]
^3 = /-/log(/)dz

It is uniquely optimised by the 
normal pdf. Provides a natural 
location for the origin. It highly 
depends on selected pdf estimation 
method.

Information divergence [27]
^4 = / /log (//<?!>) dz 

+ /<£ log (</>//) dz

Allows the definition of 
uninteresting projections by means 
of their pdf. A reference pdf has to 
be computed.

Table 2.2: Moment-Based Indices.

Index Characteristics
Skewness [26]
O; — m3(z)

— 3/2 / ,
m2 (Z)

Interesting projections will exhibit 
negative skewness. Very sensitive 
to outliers.

Kurtosis [26]

6

Less prone to outlying projections. 
Interesting projections will exhibit 
uniform scatter. Supports ICA.

PCA
0:7 = m2(z)

Together with the residual 
subspace technique provides an 
estimation of PCA as described 
in [49].

Moments linear combination [60] 
= n (^Kz) + 1^4(z))

Provides an approximation to 
entropy. The balance between the 
forth and third moments may vary.
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Table 2.3: Class-Information-Based Indices.

Index
Lr-novm [62]

0=9 =
ELiEiiite-w)'

Characteristics
LDA is a special case for r = 2. Presents 
smoother versions of LDA for r equals to 
multiples of two. Sensitive to outliers as 
the parameter r increases. In [62] it was 
optimised using simulated annealing. In 
the equation n:j is the number of 
instances in class j, jij is the mean of 
class j, and fi is the global mean.

Bharracharya distance [63]
O* _ 1 (au-m.,)2 I llnn,(7i+0''

It is based on first and second order 
statistics, and is related with the 
Bayes-classification accuracy. When 
dealing with c > 2 classes, c(c — l)/2 
computations are needed.

speaking, PP indices can be classified into three categories: pdf-based indices, moment- 
based indices and class-information-based indices.

Among the most popular pdf-based indices are order-1 entropy [60], Fisher informa­
tion criterion [61], L2-metric [64], Hermitian index [65], and information divergence [27]. 
All this indices look for departure from Gaussian distributions, since they are considered 
uninteresting. Their design facilitate the discovery of clusters, typically characterised 
by multimodal distributions. A drawback in the optimisation of pdf-based indices is 
that their robustness against outlying projections highly depends on the selected pdf 
estimation technique.

Moment-based indices [26], like kurtosis, skewness, and the linear combination of 
central sample moments, have being used to approximate entropy and avoid probability 
density function (pdf) estimation. They have shown to be particularly useful in unsu­
pervised detection of small man-made targets distributed on an unknown image scene. 
This ability to detect outlying projections is as well a disadvantage for classification 
tasks, since the presence of outliers may hide projections that allow a clear cut between 
classes.

Indices computed with class information consider data structures of different classes 
as interesting, for which the frequent choice is linear discriminant analysis (LDA) based 
on different computations of distance, such as Lr-norm [62] and Bhattacharyya distance 
between two classes [63]. The Lr index offers a tradeoff between discrimination ability 
and robustness against outliers as its parameter r is varied. Increasing the numeric value 
of increases the ability of the index to detect outlying projections, while decreasing
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it improves its resilience against outliers. Like any LDA based technique, the Lr- 
norm index suffers from the small sample size problem; this problem has been recently 
discussed in [66] where regularisation is applied to the index proposed in [62] and the 
PP components are computed by means of simulating annealing.

2.3.3.3 Extension to multiple dimensions

Parallel projection pursuit. Although the classic formulation for PP optimises 
only a one-dimensional projection and then expands its definition to more than one 
projection, the final optimal projection matrix P* in Eq. (2.34) has been presented 
without further detail. However, it is needed to clarify that there are two different 
approaches in PP to build P*. The first approach is known as parallel projection 
pursuit (PPP) [56] and works by jointly optimising every component in the projection 
matrix by computational expensive methods. It uses symmetric orthogonalisation as 
described in Section 2.3.1.3, but on Step 3 of the algorithm the optimisation described 
by Eq. (2.34) is performed for 6=1.

Sequential projection pursuit. The second method is known as sequential pro­
jection pursuit (SPP), it finds the best one-dimensional projection p| corresponding 
to the jth column of P*, and then removes the contribution of such projection from 
the original feature space [67] by projecting it onto its residual subspace. Hence, the 
{j T l)Lh projection vector is given by the solution to

Pi+i = argmaxSfXS+p), (2.35)
peK™

where Sj- = Im — P|P]T is the orthogonal complement of P) = [p|, pg,..., p|], which 
is the optimal projection matrix for the first j projection vectors. Although PPP 
gives all the projections components in two steps of the algorithm, the symmetric 
orthogonalisation may disrupt the optimal solution for the cost function and not always 
converges. Thus SPP was adopted as the preferred method to build P*.

Stopping criterion for SPP. A recently proposed stopping criterion which relies on 
Bayesian model selection [21] was selected to automatically determine the number of 
projections in the SPP procedure. It is based on the fact that the remaining structure 
of the residual search space is decreased as the number of components increases. The 
stopping criterion is defined as

^ = ^2nx[Q:(x'pi-i)“3:(x'pi)]-(-1^ 1 (2.36)

and includes the ith projection component pf if B is bigger than a predefined threshold 
J, otherwise SPP stops with i-1 projection vectors in P*.
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2,3.4 Spectral Embedding Methods

Although nonlinear feature extraction in a kernel-induced feature space is successfully 
performed by the previously described algorithms, valuable information for the clas­
sification task may be lost together with the discarded eigenvectors when performing 
dimensionality reduction. Additionally, recent evidence suggests that high-dimensional 
spaces may allow a nonlinear embedding of data that originally could be lying in a 
lower-dimensional manifold [68]. Under this assumption, a number of unsupervised 
spectral embedding (USE) methods have been proposed [69-71], along with their linear 
out-of-sample extension [13,72—74]. They preserve certain characteristics of the original 
high-dimensional space, such as aggregate pairwise proximity information based on local 
neighbourhood graphs. Nevertheless, in a supervised classification task, neighbouring 
points near the class boundaries may get projected to the wrong class, damaging clas­
sification performance. Several supervised spectral embedding (SSE) alternatives have 
been proposed to alleviate this problem. Those closely related to LED [75-77] make 
use of the between- and within-class information to restrict the embeddings, whereas 
a second class of algorithms modify the proximity definition as to consider the label 
information [28,78-80].

The similarity in the optimisation problem pose by embedding methods has inspired 
several works to formulate an unification framework [13,77,81]. In this thesis, the 
dual formulation of the template proposed in [77] is adopted since it allow us a wider 
representation of embedding methods. Such dual formulation can be expressed as

max tr [z^AZl , (2.37)
ZeMJ1><\ L -1

ZtBZ=I(,

where A <G Mnx?l can be viewed as an arbitrary weight matrix, B <E MnXn' as a scale 
or label information constraint matrix, and I5 is a 6 x 5 identity matrix. Thus the 
optimal embedding is given by the eigenvectors of B-1A corresponding to its b largest 
eigenvalues. This template allow to express several embedding methods by changing the 
structure of A and B. In the following, a brief description of the existing unsupervised 
and supervised algorithms is provided under the foregoing unification framework.

To accommodate an out-of-sample extension, the definition of linear projection in 
Eq. (2.17) is used to rewrite the template in Eq. (2.37) as

max tr [ptApp1 , (2.38)
PtBpP=I()

where Ap = XTAX and Bp axe the objective and constraint matrices, respectively. 
This modification allows the projection matrix P to be computed directly, and through 
Eq. (2.17) a test point can be straightforward projected into the embedding.
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2.3.4.1 Unsupervised methods

Isomap [69] uses an estimation of geodesic distance among neighbouring points to 
build a similarity matrix W, then classical multidimensional scaling (MDS) [82] is 
applied to transform W into a Gram matrix A by means of the double centering 
transformation

A = - i (I„ - ln) W (I„ -1„). (2.39)

Thus, the optimal embedding is given by the solution to Eq. (2.37) with B = In.

Local linear embedding (LLE) [70] preserves the structure within a neighbour­
hood, regarding the manifold as a set of intersecting patches. Each patch is assumed 
to be linear and its structure is represented by a set of local predictive weights such 
that wij — 1> wu = 0, Wij = 0 if Xj is not within the neighbourhood of and 
llxi — ^ijXjll'2 is minimised. Thus, for each point x;, its corresponding local predic­
tive weights are computed as

Wi =
G"1!*

1ln (2.40)

where G is a local Gram matrix which depict the covariance in the neighbourhood
Vi °f xii with gij = (xj — Xj)T (xi — xj), if Xj E or g^j — 0 otherwise. To obtain
the embedding, each point in the lower-dimensional space is represented as well by a 
weighted sum of its neighbours and the error ||zj - Xj wijzj\\2 is minimised with 
respect to zi,... ,zn E M.b using the local predictive weights W previously computed. 
This quadratic form can be rewritten in terms of inner products as

y: [ Sij - Wij - Wji + y] wriwrj ) (zfzj'j . (2.41)
ij \ T J

This criterion can be rewritten in order to meet the template proposed in Eq. (2.37), 
such that the required matrices A and B are expressed as

A = W + WT - WTW and B = I?7 (2.42)

Laplacian eigenmaps (LE) [71] represents the dataset as a connected graph and 
uses its Laplacian to compute a low-dimensional embedding. First a matrix W of 
edge weights is built according to one of two criteria: 1) Wij — 1 if Xj is one of the 
^-nearest neighbours of X*, and 0 otherwise. 2) = exp (~l|xi~x^ j if x^ and Xj are
connected nodes, 0 otherwise. Then the Laplacian matrix given by L — D(W) — W 
is computed, where D = D(W) = diag(Wln) is a diagonal matrix indicating the 
degree of each node. Under the assumption that connected points remain as close as 
possible in the new subspace, the solution to the following optimisation problem gives 
the low-dimensional embedding

min tr [zrLZl , (2.43)
zeir1*1’, L 1 
ztdz
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which can be formulated in terms of Eq. (2.37) with matrices A — W and B = D.

Locality preserving projections (LPP) [13] is a direct linearization of LE, where 
the connected graph representation and the definition of the Laplacian matrix are 
kept. Thus, LPP is formulated under Eq. (2.38) using matrices A = W — D and Bp = 
XtDX. It is worth to notice that the extracted features using LPP are not longer 
orthogonal.

Orthogonal neighbourhood preserving projections (ONPP) [72] seeks for an 
orthogonal mapping that best preserves local connectivity among neighbours in the 
graph. Similar to LLE, ONPP builds a weighting matrix W according to Eq. (2.40) to 
describe the local structure to be preserved. It also imposes the same reconstruction 
error constraint over each point on the reduced space, but the orthogonality constraint 
is imposed over the projection matrix rather than over the projected points. Hence, 
ONPP is defined under the proposed template by the matrices A = W+W7"—WTW— 
In and Bp = Im

2.3.4.2 Supervised methods

Local Fisher discriminant analysis (LEDA) [76] combines the ideas behind LPP 
and FDA by incorporating local information in the definition of the within-class and 
between-class scatters. The local counterparts of Eq. (2.22), as well as the original 
matrices, can be written as weighted sums of pairwise distances as follows

1 n
- xj-)(xi - xi)T and Ss = - Mxi ~ xi)(xi “ *-j)T, (2.44)

where

Vfij/na if Vi = Vj = a, ailci _ [wii0-/n 
0 otherwise. 13 |l/?z

I/na) it Vi = Vi = a, (2 46) 
otherwise.

Note the use of the affinity matrix W to weight the pairwise distance between samples 
in the same class. Such matrix can be computed using several pairwise functions such 
as the Gaussian kernel, the cosine norm, Person’s, Spearman’s or Kendall’s correlation 
coefficients, or any user-defined similarity function. If the weights w^- are removed from 
Eq. (2.45), the definitions in Eq. (2.44) and (2.22) are equivalent. From Eq. (2.44) 
it can be shown that each scatter matrix can be expressed as the Laplacian matrix of 
a connected graph with weights H and H, respectively. Thus, the optimal, discrimi­
native, projection basis can be computed using the proposed template with matrices 
A - H — D(H) and Bp = Xr(D(H) - H)X.
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Maximum margin criterion (MMC) [75] uses the summation of all pair inter-class 
margins as feature extraction criterion, which is defined as

1 cJ = 2 ^ PiPi (^’ ^ _ tr(S^ _ tr(Si)) > (2-46)
i,J=l

where = (//^ — fj,j)T— /a^) is the distance between class mean vectors. It
can be shown such criterion reduces to

J = tr(S# — Sw), (2.47)

thus the optimal projection basis can be computed through Eq. (2.38) with matrices 
Ap = Sj3 ~ Sty and Bp = Im. MMC overcomes the small sample size problem by not 
needing to compute the inverse of the within-class scatter matrix.

Discriminant neighbourhood embedding (DNE) [83] incorporates class infor­
mation into the affinity matrix definition under the framework pose by LPP. This 
refinement in the algorithm result in a criterion based on a not positive-semidefinite 
matrix D(W) — W, where

(+1 if Xf and Xj are intra-class kNNs,
—1 if x; and Xj are inter-class kNNs, (2.48)

0 otherwise.

is the modified affinity matrix with label information. A sample x/. is considered the 
inter-class nearest neighbour of Xf if |xj - x/, < [xf - x^ |, V;</j : yj = yk A y5 ^ y^ 
In terms of the adopted template, DNE can be expressed in terms of matrices A = 
W — D(W) and Bp = Im.

Supervised orthogonal neighbourhood preserving projections (SONPP) [72] 
modifies ONPP to take into account only intra-class examples as connected compo­
nents in the graph, eliminating the need to define the number of nearest neighbours 
k involved in the optimal reconstruction process. In consequence, after sorting its 
rows and columns using the class label of each sample, the predictive weights take 
the form of a block diagonal matrix W = diag(Wi, W2,..., Wc), where each block 
Wj = [wi]^!,...^ is computed as in Eq. (2.40) with samples of the jth class. Being a di­
rect modification of ONPP, the optimal projection matrix in SONPP can be computed 
using the selected template with matrices A = W + WT - WT W - I„ and Bp = Im

Repulsion Laplaceans [78] established the concept of repulsion graph, defined as 
a undirected graph where a node i is connected only to its ^-nearest enemies, which 
are the nodes corresponding to the k-nearest samples not in the same class as x^. The 
weighting matrix of the repulsion graph Wr is built using the heat kernel as in LE,
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the regression coefficients as in LLE, or an alternative weight function proposed in [78]. 
The aim of the repulsion graph is to create repulsion forces that will separate points 
from different classes that were originally close. Two methods were derived in [78] 
from the introduction of the repulsion graph to classic graph embedding methods. 
The first one, named OLPP-R, is a direct modification to LPP formulation, where 
the laplacian matrix in Eq. (2.43) is replaced by a linear combination of a repulsion 
laplacian Lr = D(Wr) — Wr and a class laplacian Ls = D(WS) — W6, where wfj — 
l/na if yi — yj = a, 0 otherwise. The final laplacian for OLPP-R is L = Ls — /?Lr, 
where /? > 0 is a user-defined parameter. OLPP-R can be expressed under Eq. (2.38) 
using matrices A — H - D(H) and Bp ~ Im, where

hij '— <

Xna
-Pwh

if Vi = Vj = a,

if Xj and xy are inter-class kNNs, 
otherwise.

(2.49)

Discriminative orthogonal neighbourhood preserving projections (DONPP) 
[84] keeps the intra-class structure by minimising the reconstruction error in the low­
dimensional embedding using the predictive weights trained as in Eq. (2.40). Addition­
ally, DONPP maximises the distances between each sample and its inter-class kNNs to 
keep a neat separation among classes. This process is modelled as a repulsion graph [78] 
where only inter-class kNNs are made adjacent. Using a binary adjacency matrix

, f 1 if Xi and x7- are inter-class kNNs w - ■ ~ J
lJ [0 otherwise

to incorporate inter-class information to the optimisation problem stated by SONPP, 
DONPP is formulated under Eq. (2.38) with the aid of matrices A = W + WT — 

W W - In + ^(D(W;) - W' ) and Bp = Im, where /3 is a constant controlling the 
contribution of the penalty term.

2.3.5 Feature Extraction for High-Dimensional Spaces

The problem of extracting compact, highly informative features to improve computa­
tional efficiency for the classification task of high-dimensional data has received a lot 
of attention in the last couple of years. The difficulty in directly applying machine 
learning algorithms to high-dimensional data lie on the curse of dimensionality [85]. 
Usually, feature extraction methods are employed as a preprocessing stage to tackle 
this problem, mapping the original input space At to a lower-dimensional one B. Ac­
cording to the mapping structure, feature extraction methods can be categorised as 
linear or nonlinear.

Linear feature extraction techniques improve the discriminatory characteristics of 
the data, translating the original samples to a lower-dimensional representation using
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a linear projection matrix. The commonly used linear methods include PC A [47], 
ICA [49], and LFD [42], PC A can dramatically reduce the dimensions of the input space 
by providing an orthonormal basis where the total scatter of the projected samples 
is maximised, nevertheless it can discard useful information for classification. LFD 
produces highly discriminatory features by directly maximising an explicit measure of 
class separability (i.e., Rayleigh quotient). One of the drawbacks of LFD is present 
when the dimensionality of the data exceeds the sample size. Under this situation, 
known as the singularity or undersampled problem, all the scatter matrices in LFD 
become singular and classical LFD cannot be applied. Several techniques have been 
proposed to alleviate this problem [86-91]. Contrary to PCA and LFD, ICA generates 
non-orthogonal, highly independent features by iteratively optimising a measure of 
nongaussianity. Thus, impeding its use when the original feature space presents normal 
distributions.

Linear projection techniques have been successfully applied to a broad diversity 
of tasks, however in many real-world problems, a linear mapping is not enough to 
model the underlying nonlinear data structure. Different research has been developed 
for nonlinear feature extraction, and can be roughly classified into spectral embedding 
methods and kernel-induced feature space methods. Spectral embedding methods [13, 
72-74] are based on the assumption that the underlying structure of a high-dimensional 
dataset can be embedded into a low-dimensional subspace, where a measure of similarity 
between neighbours must be preserved. They have shown good performance on artificial 
datasets. A popular method in this category is LPP [74], it works by providing a low­
dimensional embedding retaining the distance among samples in a local neighbourhood. 
Kernel-induced feature space methods make use of the kernel trick [52] to project 
the original input space to a non-observable feature space, accessible only through its 
dot product given by a kernel function evaluated at those points. The core idea is 
that the projection to the non-observable feature space will unfold any nonlinearity 
and will make possible to apply the linear projection techniques in the non-observable 
space. Under this assumption, extensions of the most popular linear feature extraction 
methods have been proposed such as KPCA [51], and KFD [53,92]. Similarly to its 
linear counterpart, KFD presents the singularity problem which have been solved by 
means of regularisation [93,94].
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Chapter 3

Optimisation Techniques in 
Machine Learning

Optimisation, also known as mathematical programming (MP) is a broad subfield in 
operations research that deals with the selection of a best element from some set of 
available alternatives. Since the cost of a potential solution can be expressed as a func­
tion of some decision variables, optimisation can be formulated as well as the process 
of finding the minimum of the cost function, within a constraint domain. ML and 
MP present an intrinsic relationship that has been studied and exposed in [95,96]. 
Understanding the common grounds between ML and MP has allowed improvement 
and development of existing and new learning models, respectively, based on popular 
optimisation methods. In ML, optimisation methods are used in three different prob­
lems namely classification, parameter estimation and model selection. The last two 
problems often are presented as nested optimisation problems, where several instances 
of parameter estimation have to be solved in the process of model selection.

Formally speaking, an optimisation problem can be stated as

Find x = [xi,X2,. ■ ■, xn]T which minimises /(x)

s.t. ^-(x) < 0, j =

Ji(x) =0, i —(3.1)

where the minimum of the objective function /(x) is reached at some values of the 
tv dimensional design vector x that meet the equality constraints Z$(x) and inequality 
constrains ^(x). From the above formulation, MP problems can be categorised into two 
wide and general classes based on the absence or existence of both type of constrains, 
namely unconstrained or constrained problems. A more convenient and commonly used 
classification is based on the structure of the objective function and constraint equa­
tions, grouping MP problems into nonlinear, linear, geometric and quadratic program­
ming problems. For every of the aforementioned categories exist specific optimisation 
algorithms for their efficient solution. In the remaining of this section a brief description 
of the relevant optimisation algorithms used in this work is provided.
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3.1 Standard Optimisation Techniques
3.1.1 Linear Programming

Linear programming [97-99] is applicable to optimisation problems in which the objec­
tive function and the constrains are formulated as linear combinations of the decision 
variables. Thus, the general structure presented in Eq. (3.1) takes the matrix form

min/(x) ~ c^x 

s.t. Ax = b

x > 0 (3.2)

where A = is a mixing matrix, b = is a bias column vector,
and c = [ci}J=i^..,n is a weighting column vector. It is assumed that m < n such 
that the linear system Ax — b has an infinite number of solutions from which the 
one minimising /(x) is selected, or it has no solution at all. The other two cases 
when m > n and m = n are of no interest since either the problem is overspecified 
or has a unique solution. When the optimisation problem is properly formulated, the 
feasible region (region defined by the intersection of the constrains domain) is a convex 
polyhedron, and the optimum value occurs at an extreme point or vertex of the feasible 
region.

Since the possible number of potential solutions on the feasible region increases 
with the number of design variables, searching for the optimal solution becomes a 
cumbersome task. An iterative method known as simplex algorithm provides an efficient 
searching strategy consisting of two phases. Phase I constructs an auxiliary problem by 
the introduction of artificial variables, then its optimal solution is found by a sequence 
of pivotal operations. The optimal solution to the auxiliary problem coincides with a 
basic feasible solution of the original problem. If such solution is no optimal, Phase II 
delivers a neighbouring feasible solution with a lower or equal value of /(x) by means of 
a second sequence of pivotal operations. This step is repeated until an optimal solution 
is found.

3.1.2 Quadratic Programming

A quadratic programming problem [100, 101] is the simplest nonlinear’ programming 
case, with a quadratic objective functions and linear constrains. Different from more 
complex nonlinear programming cases, where the derivatives of the objective functions 
can not be obtained, a quadratic programming problem can be solved by transform­
ing the problem into a linear programming problem through the use of the Lagrange 
multipliers and the Kulm-Tucker conditions [102], The formulation of a quadratic pro-
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gramming with linear constrains can be stated as follows
min/(x) = cTx+ixTUx

s.t. Ax < b

x > 0 (3.3)

where the term xrUx/2 is the quadratic part of the objective function with U = 
being a symmetric positive-definite matrix. By using surplus variables 

3 = 1,2}..., n and slack variables i — 1,2,..., ?n, the above optimisation prob­
lem can be pose in standard form

min/(a) = cTx4-^xT’Ux

s.t. Afx + sf = bi, i = l,2, ...,m

-Xj+t] = 0, j = (3.4)
where Aj = [a;i, , ain}T is the ith column of the mixing matrix. Using Lagrange
multipliers and 0j, the Kuhn-Tucker conditions for the stationariness of the Lagrange
function for the optimisation problem are given as

n m

cj ~ uijxj T o>ijXi = 0, / = 1,2,..., n (3.5a)
i=l z=l

Afx + li = 6i, i = (3.5b)
x>0, Y>0, A>0, 0>O (3.5c)

Aili = 0, i = 1,2,... ,?7i (3.5d)
Qjxj ~ 0, j = (3.5e)

where Y = [Yi], Y* = s? > 0, A = [A*], and G = [Qj], for i = 1,2,... ,m, and j = 
1,2,..., n. In the above formulation, all but the last two equations are linear functions 
of the variables Xj,Yi,\i and 0j. Hence, the optimal solution for Eq. (3.4) is given by 
the feasible solution for the 2(n + m) simultaneous system described by Eqs. (3.5a)- 
(3.5e). Although a basic feasible solution can be a local minimum, global optimality 
is guaranteed as convexity of /(x) in Eq. (3.4) is granted by the positive-definitive 
matrix U. The required basic feasible solution can be obtained by Phase I of the 
simplex method on the system described by Eqs. (3.5a) and (3.5b), reformulated as 
the linear problem

n
min F= Zj 

j=i
n m

s.t. Cj — 6j -j- UijXj 4- aijXi -f- zj — 0, j~ 1,2,..., n
Z=1 Z=1

~ TAix + li = 6i, 2=1,2,... ,?n
x>0, Y>0, A>0, 0>O (3.6)

where Zj are artificial variables. When performing the sequence of pivoting operations 
to reach the feasible solution, one must make sure the additional constraints Eqs. (3.5d) 
and (3.5e) are satisfied by keeping into the basic solution either Y or A*, but not both. 
Similar care has to be taken for variables 0j and Xj.
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3.1.3 Nonlinear Unconstrained Programming

A nonlinear programming problem (NLP) is the most generic type of optimisation 
problems, where any of the functions among the objective and constrains is nonlinear. 
Although nonlinear unconstrained problems are rare, their study is important as it 
provides the basis for most of the powerful methods for solving constraint nonlinear 
problems [103]. Given an unconstraint minimisation problem with objective function 
/(x), a local minimum exist at point x* if the necessary conditions

Q f
^i-(x = x*) = 0, i = l,2,...,7i (3.7)

are satisfied, along with the sufficient condition restricting the Hessian

Jx* — [*^]x’ d2f
dxidxj (3.8)

to be positive semidefinite. When the objective function is not differentiable in every 
point of its domain, the above equations cannot be used to find a minimum, and 
analytical methods can not be used to derive a close form solution. However, numerical 
methods provide suitable approximations to the minimum, under certain conditions 
[104,105]. They can be divided into tow broad categories as direct search methods and 
gradient methods. Direct search methods overcome this problem by not requiring the 
computation of partial derivatives, nevertheless these methods only give satisfactory 
results for problems of low dimensionality.

Gradient Descent Methods

Gradient methods are a powerful alternative for the solution of nonlinear unconstrained 
minimisation problems. They are based on the concept of steepest descent motion, 
which states the objective function will decrease at the fastest rate in the opposite 
direction of the gradient vector V/(x) = [df/dx1)df/dx2,...,df/dxn\T. Although 
theoretical sound, gradient methods are restricted to problems where the objective 
function is differentiable, but its gradient is either impractical or impossible to derive, 
or computationally expensive. In such cases, approximations to the gradient at a given 
point Xfc are computed using the forward finite-differences formula

9f _ /(x* + AxiUi) ~ /(xfc)
Axi ’ <3-9)

where a small quantity Axi is added in the direction given by the unitary vector 
parallel to the ith axis. Selection of Axi plays an important role in the accuracy of the 
approximation. A extremely small value in Axi may lead to round-off errors, while a 
large one can cause truncation errors.

Given a starting point xi, gradient methods gradually approach the minimum of 
/(x) by moving from point xj to point xi+1 in the direction -V/. An iterative sequence 
of approximations to the minimum can be expressed as
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1. Start with an initial position xi

2. Find the displacement direction S* = —V/; = — V/(xi)

3. Determine the optimal displacement amount zuf in direction S; and compute

Xi+i = + ci7*Si (3.10)

4. Stop if any of the following:
I /(Xt+l)-/(Xi) I ^
I /(xd = or

\9L\

I \i=l,2. < ^2)

otherwise, go to step 2.

or |xi+i -Xi| < e3,

Such iterative algorithm is known as Cauchy method [106]. Parameter w't in step 3 can 
be found by minimising the rate of change of /(x*+1) along direction Si with respect 
to parameter rui, given by

df  df dxj
dzui dxj dzui

71
E df_

dxj
sd = V/rS (3.11)

Thus, the condition df/dzui = 0 must hold for tui to be a minimum, and the opti­
mal displacement amount w* in direction Si is obtained by finding the roots of the 
characteristic polynomial d/(xi -f WiSi)/dzui — 0.

Newton’s method. Since the steepest descend direction is a local property, Cauchy 
method can be sub optimal for most problems. By the incorporation of second deriva­
tives of the objective function, second-order methods improve efficiency. A well known 
second-order method is Newton’s method [103-105], which is based on the Taylor’s series 
expansion of /(x) at point x = x^

/(x) = /(*() + V/i(x-Xi) + i(x-Xi)TJi(x-Xi) (3.12)

where = JX£ and V/) are the Hessian matrix and the gradient of /(x) evaluated at 
point Xi. The minimum of /(x) is found by setting df/dxt — 0, thus Eq. (3.12) leads 
to V/ = V/i-|-Ji(x — Xi) =0. Assuming a nonsingular Hessian, an improved version 
of Eq. (3.10) can be expressed as

— Xi V/i. (3.13)

To guarantee convergence to a minimum for a non-quadratic objective function, New­
ton’s method is modified by including an optimal displacement amount zd* in di­
rection Si = -J^V/i, reformulating Eq. (3.13) to match Eq. (3.10), leading to 
Xi+1 = Xi - ruf Jj^V/i = Xi + t^Si.
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Quasi-newton methods. Although the improved Newton’s method is a powerful 
minimisation method, it requires computation, and inversion of the Hessian at every 
iteration of the steepest descendent procedure. When the objective function involves 
high-dimensional and intricate terms, Newton’s method turns to be computationally 
expensive. A practical alternative to avoid computing the Hessian is to provide a 
suitable approximation by means of matrix A;, similarly Jcan be approximate by 
a symmetric and positive definite matrix B^. Quasi-newton methods [107] find matrix 
Bj (and therefore matrix = B^1) in an iterative manner as

Bi+1 = Bi + ABh (3.14)

where AB^ can be considered as a correction matrix that is added at each iteration 
of the Newton’s method. According to the rank of the correction term, Quasi-newton 
methods are classified into rank 1 or rank 2 updates. Rank 2 updates are preferred over 
rank 1 as they guarantee to keep symmetry and positive-definiteness on matrix B^+1 at 
every iteration. Popular rank 2 choices are Davidon-Fletcher-Powell (DFP) [108,109] 
and Broydon-Fletcher-Goldfarb-Shanno (BFGS) [109-112] updates. Contrary to DFP 
formula, where the update is stated in terms of the inverse of the Hessian, BFGS 
provides a direct approximation to the Hessian by means of matrix Ap Talcing as 
starting point the Newton’s method update in Eq. (3.13) at iteration i, BFGS update 
consists on the following steps

1. Find the displacement direction S* by solving A^S* = — V/i

2. Determine the optimal displacement amount zuf in direction and compute 
Xt+l = *4 + rfSi

3. Stop if |V/i+i| < £, where £ is a tolerance threshold. Otherwise proceed with 
next step.

4. Update the Hessian with the formula

A-i+i — Aj + Sigf
sFdi

Ajdjdf A; 
dfAidi ’ (3.15)

where vectors cb = ro*Si and gj = V/i+i — V/i enforce the Newton’s methods 
assumption of approximating the gradient through the Taylor’s series expansion 
up to second order.

Once the Hessian is updated, a new iteration is started on Step 1. Since A/1 is required 
to determine the optimal displacement direction, Eq. (3.15) can be reformulated in 
terms of Bi as

■D _-D , didT f, , gT^igi\ Bigidf digfBi
B,+1 “ Bi + df^ ( + ~dfiirj ” “dfa dfiT
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3.2 Evolutionary Optimisation Techniques

Frequently, in many real-world optimisation problems we face situations where the 
objective function and/or the constraints are not analytically tractable or lack a close 
form representation, e.g. if measuring an agent’s performance in a game [113]. A 
common way to address such cases is to develop a close form approximation to the 
original problem that can be solved by classical MP methods. Nevertheless, there is 
a potential risk of oversimplifying the original problem, thus we could end up with 
a completely different problem. Evolutionary algorithms (EAs) are stochastic search 
techniques inspired by the process of evolution in living organisms [114-117]. They 
start with a initial set of potential solutions, known as population, randomly distributed 
in the solution space. Each potential solution in the population, called individual, is 
associated with a fitness value which measure its quality in solving the current problem. 
The population iteratively evolves into better solutions, close to the optimal, with the 
help of genetic operators. At each iteration, an offspring population is generated by 
recombination and/or mutation of the characteristics of the best individuals in the 
current population. Replacement of genetic material is performed over copies of the 
selected parents to avoid any disruption in their phenotype, in case they are selected 
again for mating. Then the offsprings fitness value is computed and only the best 
ones are allowed into the next generation. Sometimes the best performing parents are 
allowed to compete against the offsprings for selection into the next generation [118].

One of the key aspects in evolutionary algorithms is how to represent a solution that 
optimally fits the problem at hand. Generally, each individual is associated with a dual 
representation consisting of: (1) its genotype, interpreted as the container structure of 
its genetic material, and (2) its phenotype, understood as the actual expression of the 
characteristics as dictated by its genetic material. Usually a specific chromosome is 
designed to encode the characteristics of each problem, the population genotype, along 
with matching genetic operands. Often the mapping between an individual’s phenotype 
and the numeric variables used by the objective function is not straightforward and an 
encoding function needs to be implemented. This mapping may introduce undesir­
able effects, such as unexpected nonlinearities, thus a representation design as close as 
possible to the numerical representation is strongly suggested [119]. Another relevant 
design component in EAs is the fitness function, which is responsible of assessing the 
performance of each individual. Frequently, the fitness function is closely related to, 
if not the same as, the objective function to be optimised. Variants to the aforesaid 
components give rise to multiple techniques, nevertheless, genetic algorithms, particle 
swarm optimisation and genetic programming are popular EAs among ML practitioners 
and will be briefly overview in the next sections.
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Figure 3.1: Main genetic algorithm loop, where a strong elitism policy is adopted by 
retaining half of the population.

3.2.1 Genetic Algorithms

With a sound theoretical basis developed by Holland [120], genetic algorithms (GA) 
are possible the most popular EA so far. They can be seen as stochastic directed 
search algorithms which use a binary alphabet to directly encode optimisation variables 
into a linear chromosome. The popularity of such representation is derived from the 
analysis proposed by the schema theorem. It states that GAs are near-optimal sampling 
strategies which increase the number of well-performing, short and low-order schemata 
(i.e. similarity templates that represent a subset of strings) as the population evolves. 
Nevertheless, a binary chromosome suffers an exponential growth with the increase 
in design variables. In this case, non-binary alphabets can be used with a slightly 
complexity increase in the genetic operations. A graphic representation of the main 
GA routine is depicted in Fig. 3.1

Mutation and crossover are the two genetic operations used by GAs to generate off­
springs at each iteration of the algorithm. Crossover enables exploitation of the solution 
space by passing onto the next generation the characteristics of the best performing 
solutions. On the other hand, mutation makes possible to explore new solutions not 
contemplated in the current population by introducing controlled perturbations into 
the genetic material of selected individuals. Usually, a balance between mutation and 
crossover is desirable to efficiently explore the solution space. Such balance is controlled 
by means of a crossover probability Pc, that states the number of times crossover is 
selected over mutation whenever an offspring needs to be generated. Although, in the 
majority of implementations Pc is fixed, adaptive mutation rates can be used to pro­
mote high exploration at the start of a GA by setting a low Pc value, and gradually 
increasing it with the number of generations so that exploitation of good solutions is 
encouraged [121].

Several implementations of genetic operators have been developed to suit spe­
cific applications and/or problems [122]. A popular crossover implementation is 
point crossover for discrete representations, which splits each parental chromosome at
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X e {2/c; Vfc G Z} randomly selected points, and the genetic material is swapped corre­
spondingly to generate two children. This type of crossover permits a trade-off control 
between distributional bias (i.e. production of offsprings with phenotype completely 
different from their parents by selecting a high y value), and positional bias (i.e. inter­
change of only distant alleles in a chromosome as a consequence of low y values). For 
real-valued representations, a widespread crossover known as intermediate arithmetical 
crossover constructs each allele in the offsprings following the formula

Vi+iiiik) = rkPtihk) + (1 - rk)Vt(j,k), f
'Pt+i&k) = (l-rtiVtfrQ+rkPtfrk), [6-U)

where rk G [0,1] is a random uniform number, Vt(i, k) is the kth allele of the ith member 
of the population at generation t.

Every time mutation takes place, an allele is considered for replacement with prob­
ability Pm — 1 — Pc. For discrete representations, mutation replaces each allele with a 
random element from the given alphabet. While for real-valued representations, three 
classic mutation schemes are reported in the literature. Uniform mutation substitutes 
the kth allele with a uniformly distributed random value between the interval [Lk) Uk]. 
Gaussian mutation adds a normally distributed random number N^^rkPra) with zero 
mean and variance proportional to the mutation rate to each genome in the parental 
chromosome. Adaptive non-uniform mutation is based on a Bernoulli trial r, with 
ps = 0.5 probability of success. It decides to replace the k^1 allele following the rule

Pt+i{i,k) — Pt{i, k) + 0(£, Uk — Vt{h k)) iir<pat 
Vt(i, k) — £L(t, Pt(i, k) — Lk) otherwise (3.18)

where 0.(t,a) = a — rj* }s a mapping delivering a value in the range [0, o]

at generation £, closing towards zero as we reach the final generation Ngen.
Being a stochastic search, convergence can not be guaranteed in a fixed number of 

steps, therefore a topping criterion needs to be defined. As with the majority of the EAs, 
three possible heuristics can be implemented as stopping criterion: (1) Stop when the 
maximum number of generations Ngen has been reached. (2) Run the algorithm until 
there is no significant difference between the best fitness value Fbest and the average 
population fitness FaVg, i.e. \Fbest — Favg < £• (3) Stop if the average cumulative change 
in fitness function values over Nstau generations is less or equal than a given tolerance
3dsEti-Ar^-flb+i|<«.

In summary, a GA can be described by the following iterative sequence

1. Start with a random initial population TA|/—o with number of individuals.

2. Evaluate the performance of each individual by computing its fitness function
f(Pt(i))-
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3. Rank each individual according to its fitness value and applied a selection scheme 
to get a set of stallions S GVt for breeding.

4. For k from 1 to M = gNin(i, build a new individual based on a Bernoulli trial r 
with Pc probability of success, following the rule

if r < Pc then
generate Pt+i(k) and Vt+i(k + 1) from CrossOver(<S(&), S(k + 1)); 
k ~ k ‘2) 

else
generate Vt+i(k) from Mutate(<S(A;)); 
k = k

end if

where Crossover and Mutate are the corresponding crossover and mutation op­
erators, and £ < 1 is a scalar known as the generational gap ratio, which indicates 
the amount of elite individuals that will be passed unaltered to the next genera­
tion.

5. For k from M -b 1 to iV^, insert = Sbest(k), where Sbest(k) is the set of
(1 — e)Nind fittest individuals.

6. Set £ — t + 1, and evaluate the performance of each individual in population Vt 
by computing its fitness function

7. If the selected stopping conditions are met, return 5^(1) as the approximate 
solution to the optimisation problem encoded in the fitness function, otherwise 
go to step 3.

3.2.2 Genetic Programming

Initially developed by Koza [123] with the propose of evolving computer programs, ge­
netic programming (GP) is a strong and popular variation of GAs which employs parse 
trees as genotype structures. The flexibility of such representation formalism makes 
possible to evolve different knowledge abstractions, such as mathematical expressions, 
rule-based systems, finite-state machines, or regular expressions. Additionally to the 
genetic container, two more components need to be specified to completely define a 
population’s genotype: a terminal set consisting of all the symbols leaf nodes will be 
allowed to take; a function set, which includes nonterminal symbols associated with 
functions and operators, that will interact with the input symbols. Two important 
conditions are imposed on the design of function and terminal sets, namely sufficiency 
and closure. Sufficiency states that together, function and terminal sets, must be able 
to generate a solution to the specific problem. Closure, guarantees a free interaction

39



^Start^

Seed population: 
Generate n individuals

"Genesis"

Scoring:
Assign fitness to each individual

Select two individuals 
(Mother, Father) "Natural Selection"

Use crossover operator 
to produce two offsprings

"Sexual
Reproduction"

Scoring:
Assign fitness to offsprings

No

sCrossover'i,

"Natural Selection"
Select one individual 

(Mother)

"Asexual
Reproduction"

Apply mutation operator 
to produce one offspring

Scoring:
Assign fitness to offspring

'Survival of the fittest"

Apply replacement operator 
to incorporate new individuals 

into population

Figure 3.2: Flowchart representation of a GA with crossover and mutation operators.
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between leafs and internal nodes by requiring that any member in the function set must 
be able to accept as input arguments any terminal, or output value from any function 
composition of other members in the function set. The number of input arguments 
a given member in the function set accepts is called arity, and it is reflected in the 
number of branches the corresponding internal node can grow.

The complex representation adopted by GP demands specific changes to the build­
ing process of the initial population, and also to the mutation and crossover behaviour. 
Given an initial maximum depth drnax, an initial population can be constructed follow­
ing one of three available methods [124]

Full method generates balanced trees with branches with equal depth. Starting from 
the root node d — 1, it adds a randomly selected function node until it reaches 
d = drnax — 1. At depth d ~ dmax, a terminal node is randomly selected. The 
nodes are added in the same order they would be visited by a depth-first search.

Grow method randomly selects each new node from the union of the function and ter­
minal sets, except at depth d — dmax where only terminal nodes are allowed. This 
method generates highly unbalance trees with variable depth between [1, dmax}.

Ramped half-and-half builds half of the total number of individuals Ninci using the 
grow method, and the other half using the full method. For each half, the depth 
of each individual is linearly increased, with the first individual having depth 
d — 2, and the last one with depth d — dmax. The result is a diverse population 
with trees of different shapes and depths.

Once an initial population has been created, each individual is decoded and eval­
uated according to the fitness function. Following, a population subset for mating is 
defined with the help of selection mechanism used in others EAs. Nevertheless, off­
springs generation in GP differs significantly from others EAs. Typically, crossover is 
performed via subtree crossover as shown in Fig. 3.3a. Given two parents, it randomly 
selects a node as crossover point in each parent, and then the corresponding subtrees at 
those points are swapped. Figure 3.3b shows an example of subtree mutation operator, 
where a subtree rooted at a randomly selected mutation point is replaced with a newly 
generated tree. This mutation operator is also known as ’’headless chicken” crossover, 
because it can be implemented as a subtree crossover between the selected individual 
and a random generated tree.

An interesting side effect of unrestricted subtree mutation and crossover is their 
ability to produce extremely large individuals without a considerable increase in their 
fitness value. This phenomenon is known as bloat and several strategies have been 
proposed [125] to alleviate this problem. A wide spread technique restricts the size or 
depth of generated offsprings to an upper limit [123]. Once an offspring is generated, 
its size or depth is measured, if the offspring is within the set limits, it is pass onto the
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parent 1 parent 2

child 1 child 2

(a) Subtree crossover

parent child

(b) Subtree mutation

Figure 3.3: Basic subtree genetic operators for genetic programming using the ter­
minal set {x,y,z}, and the function set , x,sin,exp} with corresponding arities 
[2,2,2,1,1]. Crossover and mutation points are indicated by a V on the selected branch.

next generation, otherwise one of its parents is returned. Unfortunately this technique 
tends to favour parents prone to violate the imposed restrictions, by copying them 
unaltered into the next generation. Two alternatives exist to mitigate the adverse 
effects of size and depth limits. The first option is to let the evolution process eliminate 
an overgrown offspring by assigning it a low fitness value, close to — oo if we are dealing 
with a maximisation problem. The second one is to try the corresponding genetic 
operator again with the same parents, but different mutation or crossover points, or 
with new selected parents. Other option for bloat control is the use of dynamic depth 
or size limits [126], where every time an overgrown offspring is generated, if its fitness 
value is better than the best solution found so far, the dynamic limit is set to the size 
or depth of the offspring.

3.2.3 Particle Swarm Optimisation

Particle swarm optimisation (PSO) represents a different paradigm to the Darwinian 
survival of the fittest advocated by GA and GP. It is inspired by the social interactions 
present in groups of animals, moving or migrating in some direction. The algorithm 
assumes a set of 7n-dimensional points, also known as the swarm, which explore the 
solution space by iteratively adjusting the position of each point, referred as a particle, 
towards the position of its own best and the best particle in the swarm. Besides its
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position Xj, each particle is associated with a velocity Vj which indicates how far the 
particle is allowed to travel. Given a maximum number of particles N, and assuming 
the quality of a solution encoded in particle x^ can be directly assessed by /(x*), where 
/ is the function to be optimized, PSO starts by creating randomly distributed particles 
with aleatory velocities. The personal best position of the it!l particle is kept in variable 
Pi, whereas the global best position is stored in p5. The iterative process in PSO can 
be described as follows

For each particle x*, i = 1,..., iV in the swarm:

1. Evaluate the objective function /(xi)

2. If /(xi) < /(pi), then Pi = x4

3. Get the global best as p3 = argmmi=1 ^ /(Pi)

4. Update every component of the velocity vector v^ = [r?ii,..., Vim} as 
follows

Vij = wvij + C!Z (Pij - Xij) + c2 2 (Pgj - Xij), j = 1,..., m (3.19)

where C\ and c2 are constant coefficients controlling how far the parti­
cle will travel every time its position is updated, z £ [0,1] is a random 
positive number, drawn from a uniform distribution, and w £ [0,1] is 
an inertia weight.

5. Update the position vector x^ = [a^i,... ,Xim] employing

Xij — Xij -f- Vij: j — 1, . . . , 771 (3.20)

Once every particle has been updated, if a given termination criterion is 
met, return the global best, otherwise repeat the above process.

An additional variation to the standard PSO algorithm is given by time varying inertia 
weights (TVIW-PSO) where the inertia weight w in Eq. 3.19 is replaced by a time 
dependant version described as

w - (wq — Wt)
T-t

rp + wt (3.21)

where wq is the initial value of the inertia weight, wt is a desired upper-bound to be 
reach at the final generation T. Thus for each iteration £, the value of the inertia weight 
is linearly decreased.
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3.3 Evolutionary Optimisation in Pattern Recognition

Over more than a decade, evolutionary algorithms (EAs) have been studied and ap­
plied as powerful design, search and optimisation techniques. Despite their differences, 
all evolutionary algorithms are heuristic population-based search procedures that in­
corporate random variation and selection. They have been applied to diverse areas 
such as biology [127-129], medicine [130-132], finance [133-135], law [136-138], en­
gineering [139-141], software engineering [142-144], oceanography [145], communica­
tions [146-148], and pharmacology [149-151], among others. In the field of machine 
learning, EAs have been employed as designing tool, to perform system identification 
for the tasks of classification, regression, feature extraction, feature selection, and clus­
tering. An extensive amount of research has been devoted to the previously mentioned 
tasks, and has been thoroughly summarised in corresponding surveys [152-155]. In 
most of the works, EAs employ a grey-box approach to system identification, where 
a structure is assumed for a generic model, given by the targeted pattern recognition 
algorithm. The free parameters of the model are encoded and estimated by the selected 
EA. The term genetic-based machine learning (GBML) algorithms was coined in [156] 
referring to applications of EAs to machine learning tasks, and will be adopted for the 
remainder of this section.

For the problem of classification, three types of representations are regularly used 
by GBMLs: decision trees [7], classification rules [157], and discriminant functions [1], 
They often are encoded into tree-based chromosomes related to GP, or fixed-length 
string chromosomes (also known as linear chromosomes) required by GAs. Although lin­
ear chromosomes have been used to encode all the aforesaid representations [158-160], 
they have proven to be a more suitable formalism for classification rules. While tree- 
based chromosomes are more popular among evolution of decision trees and discrimi­
nant functions. The variable nature of each individual under the tree-based represen­
tation implicitly defines a feature selection process, where only some of the original 
features will be present in each individual. For instance, the number of features to be 
tested will depend on the number of internal nodes when evolving axis-parallel decision 
trees (e.g. [155,161-163]), while the hyperplane at each node in an oblique decision tree 
will be a function of only a few input features (e.g. [164-167]).

Independently of the encoding scheme selected, GBMLs can be classified accord­
ing to two types of architectures [169]. Pittsburgh architecture encodes a full solution 
(classifier) into a single chromosome, evolving a population of potential solutions which 
delivers the best individual in the final population as output of the algorithm (Fig. 3.4 
right). In Michigan architecture, the solution is encoded into the whole population, 
where each individual, besides competing for reproduction, also complements and co­
operates with the rest of the population (Fig. 3.4 left). When a predefined number of 
generations elapses or when some other termination criterion is met, the final popula-
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Michigan Pittsburgh

Figure 3.4: Michigan and Pittsburgh architectures for rule-based systems. F:x indicates 
the fitness for each individual. (Adapted from [168])

tion is decoded to build a single classifier which is delivered as output of the GBLM. 
The design of a fitness function is more complex for Michigan than for Pittsburgh ar­
chitectures, since it must measure the degree to which one individual contributes to the 
solution, but as well how it interacts with the rest of the population. On the other hand, 
Pittsburgh architectures often need more elaborate genetic operators and chromosome 
structures. Besides solution encoding, both architectures differ in the style of learning 
adopted. While Pittsburgh systems operate in batch mode, processing at once all the 
available data, Michigan systems perform incremental learning, updating the popula­
tion every time a new example is presented. Thus, the former strategy is commonly 
used for offline learning, whereas the latter is more popular for online learning.

Leaving aside the previously described architectures, [154] proposed three addi­
tional categories to classify GBMLs for rule induction. Iterative rule learning (IRL) 
algorithms build an ordered list of rules. The ith rule is evolved using the training 
examples not covered by the previous rules. After evolution, the examples covered by 
the current rule are removed and the EA is called again to generate a new rule. This 
process stops when there is no more training examples. Representative algorithms in 
this category comprise supervised inductive algorithm [170], and hierarchical decision 
rules [171]. Genetic cooperative competitive learning (GCCL) algorithms differ from 
Michigan style systems in that they use a generational GA to evolve a set of rules en­
coded into the population, but retain the incremental learning and solution encoding. 
Also, they make use variable length individuals, avoiding ”don’t care” conditions, and 
allow for nominal feature representation. GCCL examples include co-evolutionary rule 
extractor [172], organizational co-evolutionary algorithm for classification [173], and 
coverage-based genetic induction [174]. Hybrid evolutionary decision trees (HEDT) are 
hybrid approaches that represent a rule set as a decision tree, which is evolved by 
means of generational GAs, using linear chromosomes. They inherit the batch mode
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learning from Pittsburgh architectures, and the use of oblique decision rules from its 
tree representation. Although in general XCS exhibits high generalisation performance 
when comparing to other algorithms because its solution encoding allows a compound 
interaction between diverse rules, it is prone to deliver less interpretable solutions.

Other than decision trees and discriminant functions, GBMLs have been used to 
evolve more complex classifiers. In [175] an hybrid classifier, consisting of a classi­
fication rule set and a discriminant function, is evolved using a two-stages GBML 
algorithm. First a classification rule set is evolved using a Michigan architecture in 
the first phase, which reduces the training set to examples not covered by the current 
population. Second, a single-threshold discriminant function is evolved using the re­
duced training set. In this way, when a test instance is not covered by the evolved rule 
set, the discriminant function is set a default rule. Evolutionary approaches have also 
been applied to the induction of support vector machines (SVM) [176-180], where each 
individual in the population encodes a kernel function, and their fitness is measured by 
the classification performance of the SVM each one builds. Another classifier represen­
tation for GBMLs is the k-nearest neighbour classifier. In this case, EAs are designed 
to optimised specific components of the classifier, such as weighting functions to scale 
class counts [181], distance functions to compute the neighbours of a sample [182], or 
the prototypes in their training set [183]. Other examples of evolved classifiers are 
kernel nearest neighbour [184], and variable predictive models [185]. A more sophisti­
cated Michigan architecture, employing other classifiers representation, has been used 
by GBMLs evolving ensemble classifiers [19,186-188]. An ensemble classifier combines 
a set of week models in order to produce a strong model, thus each individual in the 
population encodes a full classifier which cooperates with the rest of the population to 
build the ensemble.

Evolutionary Optimisation for Feature Processing

As previously mentioned, the induction of classifiers by means of evolutionary ap­
proaches implicitly defines a feature selection process. Additionally, when the selected 
chromosome encoding combines input features through arithmetic operators, an under­
lying feature construction process is suggested. Following this simple ideas, induction 
of preprocessing methods by means of evolutionary algorithms can be defined as a spe­
cial category of GBMLs where a subset of the original features is selected/constructed 
to boost a targeted classification algorithm. A vast amount of work has been dedicated 
to this task [153], and can be grouped into two categories, namely wrapper and filter 
systems. Wrapper systems make use of the subsequent classifier algorithm to evaluate 
potential solutions within the evolution process. While filter systems employ some other 
statistical information criterion to measure the quality of the subset, such as mutual 
information, cosine norm, Pearson’s, Spearman’s or Kendall’s correlation [42], Usually
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the number of selected/constructed features is predetermined by the user, which are 
employed alone [32,189,190] or in combination with the original feature set [191] to 
train a given classifier.

The preferred encoding scheme for feature extraction in GBMLs is the tree-based 
chromosome because its flexibility and straight function evaluation. However, a few 
works using linear chromosomes have been proposed [26,54,192,193]. For example, [54] 
encodes into a linear chromosome the angles of a affine transformation that projects 
input features into a subspace of low dimensionality. Often, in GBMLs for feature 
extraction, the fitness function is implemented with the help of ROC-related concepts 
such as sensitivity, accuracy, precision, hit rate, or a linear combination of them, es­
timated via cross validation. On the other hand, various fitness functions have been 
proposed for filter approaches, such as information gain, the gini index, the chi-square 
index [191], between-class scatter [32,189], and information entropy [190]. In order to 
evolved a determined number of features, the selected GBML is run several times or a 
multiple gene chromosome is adopted, where each gene represents a different feature. 
A number of different classifiers have been applied as the core of wrapper approaches 
such as k-NN, generalized linear machine [194], maximum likelihood, C4.5, and naive 
Bayes.

In contrast, GBMLs for feature selection favour the use of fixed-length string chro­
mosomes. The common genotype-phenotype mapping for a binary alphabet consist on 
selecting the ith feature whenever the corresponding bit is on (e.g. [17]). More complex 
mappings exist for integer alphabets, for instance in [186] the chromosome is divided 
in two parts, the first part corresponds to the feature encoding where each character 
is in base-8, interpreted as three binary flags indicating the classifiers using the corre­
sponding feature (e.g. the character 5 in the third position indicates classifiers 1 and 3 
use the third input feature); the last three characters denote the type of classifier, se­
lected from linear discriminant, quadratic discriminant, or logistic regression classifier. 
Even though linear chromosomes are easier to implement and provide a straightfor­
ward genotype-phenotype mapping, for high-dimensional data they may require large 
amount of memory. Tree-based chromosomes provide a more compact structure and 
constitute a good alternative for such cases [195]. However, alternative representations 
such as axis-parallel decision trees and univariate rule encodings need to be adopted, 
forcing the genotype-phenotype to ignore any node different from the original set of 
attributes. Although GBMLs for feature selection are time-consuming compared to 
non-evolutionary ML methods, a better classification performance has been reported 
in most of their applications [196-199].
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Chapter 4

Automated Induction of 
Projection Pursuit Indices

4.1 Introduction

In general, it is known that the performance of an entire pattern recognition system be­
comes affected by the interactions between the feature extraction and the classification 
stages [1]. Thus, the overall design becomes a complex model selection problem where 
a suitable feature extraction/classification pair needs to be found. The complexity of 
this optimisation problem in [19] was tackled with a GA used to build an optimal en­
semble classifier. Other relevant work on feature extraction/classification pair selection 
was described in [186] where an ensemble of three classifiers was used in conjunction 
with a subset of features selected by a GA. A robust technique to synthesize a complete 
recognition system was also proposed in [187] where GP built the structure of several 
feature detectors and then a GA was applied to select a subset of them, followed by a 
perceptron classifier performing multiclass recognition. Cooperative evolution of artifi­
cial neural networks ensembles was used to improve the generalization performance of 
classification systems and avoid long training times overfitting in [45].

This chapter introduces a GP-based framework for automatic induction of projec­
tion pursuit indices. The referred framework optimises a set of hyperparameters for 
a given classifier, and simultaneously obtains an optimal feature extraction/classifier 
pair for a given classification problem. A complex set of function and terminal nodes 
was designed based on robust high-order statistics and shape-shifting approximations 
to divergence and entropy, in order to grant the GP search high expressive power and 
generate new PP indices not previously considered in the field. Its search space is broad 
enough to include the most popular indices among the existing literature. Although 
the proposed algorithm has the ability to combine existing indices, it is not restricted 
to a simple linear combination of them, but is capable of building any complex and 
arbitrary but meaningful function composition of the members from the function set. 
The targeted index function is used in PP to get a transform matrix that serves the
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Figure 4.1: Evolutionary model selection. The learning set T is fed into the GP module 
to get an optimal model that suits the problem at hand. This module realises
the model selection procedure where the search is guided by the fitness function.

feature extraction stage. Because the projection index ^ delivers a linear transform, 
we can think of it as a way of modelling or compacting the type of information the fea­
tures carry. The number of dimensions of the extracted feature space is automatically 
estimated by a Bayesian criterion.

Once dimensionality reduction has been performed, classification is applied in the 
reduced subspace by employing a k-nearest neighbours (kNN) classifier based on a 
Minkowski distance. Therefore a two-level optimisation problem needs to be solved. 
The first level consists on the selection of an optimal projection index & and optimal 
hyperparameters for the selected classifier by means of GP. The second level corresponds 
to the optimisation of the basis vectors of the transform P* in Eq. (2.34), by a simple 
gradient descent algorithm.

4.2 Proposed Evolutionary Learning System

Ideally, in order to efficiently design an projection index that best suits the application 
at hand, a guided search would be performed over all possible function compositions 
of a basic set of functional primitives. In the current literature [7,10,200], the search 
for an optimal feature extraction/classifier pair is often performed over a grid defined 
by all possible combinations of the available methods for each application, driven by 
an estimation of misclassification error. In addition to the complexity of the grid 
search, one needs to consider the hyperparameters related to the classifier itself (such 
as number of hidden nodes for multilayer perceptrons, covariance mixing parameters 
for discriminant analysis, or regularizes for support vector machines). It is desirable 
to fine-tune those parameters to suit the selected feature extraction method, and hence 
they have to be included as part of the model [201], but this adds further complexity to 
the search space. In order to avoid the computational burden involved in grid search, 
evolutionary methodologies have been successfully applied to address automatic design 
of classification systems [44,46,186,187,202]. GP, for instance, has proven to be a
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suitable tool for feature generation [32,203], evolution of polynomial feedforward neural 
networks [204], and feature selection [205].

This work proposes a novel framework based on GP which performs model selection 
driven by an estimation of out-of-sample generalization error. In the following the 
proposed evolutionary framework will be labelled as evolutionary projection pursuit 
(EPP). The proposed framework follows a Pittsburg architecture to facilitate the design 
of the fitness function. The population in the GP algorithm consists of potential models 
that through evolution will be modified to increase their classification accuracy. Each 
model is encoded as a pair {£y, 9}, where Q1 is a potential index function represented as 
a tree structure, and 0 is a set of hyperparameters for a given classifier. Fig. 4.1 shows 
a graphic representation of the proposed model selection algorithm.

A simple kNN classifier was selected as part of the evolved system in order to 
highlight the feature selection part, since a more elaborate classifier may not benefit 
from the complex feature extraction stage considered in this work. Nevertheless, EPP is 
not restricted to the use of a specific classifier, and a more powerful one could be used 
with the corresponding modifications in the fitness function. The referred classifier 
is instantiated for each potential model as the number of nearest neighbours k and 
the coefficient for the Minkowski metric A used to locate the neighbours are evolved 
concurrently with the projection index, therefore 6 = {k} A}.

4.2.1 Fitness Function

Since the evolutionary system selects the best model, a suitable way for comparing 
the different potential models in the GP population needs to be provided. The chosen 
model selection criterion was the out-of-sample estimation error via cross-validation 
(CV); thus the evolution process can be modelled as follows:

h
min F(3,0;T) = £; £ L(^, (xi; P*, 0))

s.t. P* = argmin
pGK<ixmj J

PTP=I
A > 0

keN+ (4.1)

where T = is a given learning set, L(-) is the 0-1 loss function between the
label yi and the prediction made by the classifier (x^; P*, 0) using sample xj <E Hi, 
parameters 0 = {k, A}, and trained with prototypes in fV The imposed constraints in 
Eq. (4.1) were designed to restrict the Minkowski distance coefficient to the positive 
reals, and the number of neighbours k to the positive integers N"1". The projection index 
A' and the optimal projection matrix P* were placed as inputs to the classification stage,
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Figure 4.2: GP fitness function involving 3-CV and induction of the feature extraction 
stage.

since previous to the prediction process, the sample Xj G and the training prototypes 
in Q; must be projected onto the subspace spanned by P*.

In order to obtain the out-of-sample estimation error for each individual, first the 
given points T are divided into training and testing set f2j. The training set is 
used to find the optimal projection matrix P*, which in turn is used to project both 
Qi and Qj. Then, fjj is used to evaluate the performance of the potential feature 
extraction/classification pair, using Q* as the prototypes of kNN and the k and A as 
the kNN parameters. This process is repeated over each fold of a h-CV (a fix ft = 3 
was set for all experiments) in Eq. (4.1), and the performance over the testing sets 
averaged to form the estimated error. The reason behind the use of ft-CV as a way to 
estimate the out-of-sample generalization error is to avoid overfitting [7].

Fig. 4.2 gives a system overview of Eq. (4.1). The block named “Induction” 
performs PP using as projection index the function associated with the feature extrac­
tion part of the ith individual (i.e., S function). When using a non-prototype based 
classifier, it is at this level where the training of the classifier will take place, as the 
optimisation of k and A in this case, which are the hyperparameters related with the 
classification part in each ith individual. Subsequently, the out-of- sample classification 
error is estimated via CV and returned as a fitness measure to the GP module, which 
selects the optimal tree and classifier parameters using this fitness measure.

4.2.2 Index Optimisation

Equation (4.1) can be interpreted as a bilevel optimisation problem [206] which is 
solved by two optimisers. The first level minimisation problem is accomplished with 
a GP algorithm, which searches for the optimal PP index and kNN parameters given 
a training set. The second level minimisation problem is carried out with a gradient 
algorithm, which finds the optimal basis vectors P* given the corresponding PP index
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^ as in Eq. (2.34). Several optimisation methods have been used in PP to optimise
including hybrid GAs [67], simulating annealing [62] and PSO [26]. Nevertheless, 

hill-climbing algorithms remain as the most popular methods used in PP. In this thesis, 
the BEGS variant of the Quasi-Newton algorithm was selected to optimise the index 
function in each potential model because it converges relatively fast, it uses finite- 
differences to compute the derivative of the objective function, and avoids inversion of 
the Hessian. Additionally, BEGS was also used satisfactorily for probability density 
function (pdf)-based indices in [27].

It has to be noted that because gradient algorithms can be prone to local optima and 
are often sensitive to steep nonlinearities of the objective function, an individual index 
9? may not be optimised effectively, producing projections P* that are suboptimal and 
do not illustrate the capacity of 9? realistically, yielding thus a weak fitness response. 
Because of this, the proposed two level optimisation design not only searches for an 
index able to minimise the classification error, but also an index easily optimizable by 
a gradient method. The latter can be seen as an implicit optimisation objective of the 
first level optimisation process.

4.2.3 Dimensionality Control

The number of columns in the matrix P* defines the dimensionality of the extracted 
features. When using PP as feature extraction, there are two ways to build matrix 
P*, by means of parallel projection pursuit (PPP) or using sequential projection pur­
suit (SPP). Parallel projection pursuit attempts to jointly optimise every component 
in the projection matrix. Although PPP was defined earlier than SPP [56], the ex­
pensive computation of multivariate integrals implicitly defined in the projection index 
restricted its use.

SPP finds the best 1-D projection (corresponding to the jth column of P*) 
measured by a given projection index, and then removes the contribution of such pro­
jection from the original feature space [67]. This removal procedure can be carried by 
projecting the original space onto the orthogonal complement of the projections found 
so far [50], and then the index is optimised again over the residual space to get the next 
column Pj+1 of P*. This process is iterated until a predefined number of factors are 
found or the rank of the new data matrix approaches zero. Given its well established 
use in the current literature, this thesis opts for the SPP style for constructing the 
projections one dimension at a time.

Regarding the orthogonality restriction imposed over the components of the pro­
jection matrix, the method proposed in [84] is adopted to implement an efficient de­
flation scheme. It is based on the assumption that once the ith projection vector 
P?) — \Pi,i! • ■ ■ {j ~ d — i+1 and i— 1,..., ?n) has been found then, there is at
least one component pi^q ^ 0 such that any vector v; = [ui,..., Vj-i]T with vi = 1{1 ^
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q), vq = —Pij/piyq, and V[: = 0(k q, l), is orthogonal to pp\ The set of vectors {vj} 
for l — 1,..., 5 — 1, g + 1,..., j form a basis defining the orthogonal space of as

0(9-1) xfj'-g)
Pi,l
Pi,q

Pi,<7+1
Pi,q

__Pi, 3
Pi,q

^(j-g)x(g-i) IJ\7—9

(4.2)

Its orthonormal version is computed by means of the Gram-Schmidt process and de­
noted as Qj^. Such transform is used to compute the reduced search space for p^ as 
follows

Zi+1 = xqf Q^-1'... = X n Qi■ (4.3)
k=d

As can be seen, the search space Z^+i for the next projection vector is one dimension 
lower than Zj, therefore p-^\ will be one component shorter than p^ as indicated by 
j. To recover each p* from its deflated version pp^, we have

j+i
Pi = II Qi-P? * = 2,..., m. (4.4)

k=d

The use of this method has the advantages of being faster than Gram-Schmidt based 
deflation scheme [84], reducing the computation and guaranteeing uncorrelatedness. A 
disadvantage is the need to store every Q^, so that the projection matrix P* can be 
built.

To automatically determine the number of projections in the SPP procedure, a 
recently proposed stopping criterion is employed, which relies on Bayesian model se­
lection [21]. It is based on the fact that the remaining structure of the residual search 
space is decreased as the number of components increases. The stopping criterion is 
defined as

B = (2”*[3(x'P.*-.)"3(x-p.!)] + l)_1 (4.5)

and includes the ith projection component a* if B is bigger than a predefined threshold 
5, otherwise SPP stops with i-1 projection vectors in P*.

4.3 Evolutionary Framework Language Definition

This section elaborates on the definition of a set of words and its formation rules to 
build finite strings that will be treated as potential projection indices. An extremely 
important characteristic of the proposed system is its expressive power, understood 
as the ability to generate most of the existing indices. This depends on the proposed 
function and terminal sets, since they will hold the building blocks available to the GP.

To make the present approach as general as possible, the GP module should have 
adequately high expressive power to be capable of discovering the definition of any of 
the aforementioned PP indices. Therefore, two very flexible function and terminal sets
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Table 4.1: Language Definition.

(a) Function Set.

Functions Arity Description Parameters
+ > *> 2 Addition, subtraction, multiplication,
/, pow division and exponentiation
ms 2 s sample moment z,s
D 5 Renyi divergence z, p, r, v, £
H 2 Renyi generalized entropy z, p
Sb 2 Between-class scatter matrix Y, z
Sw 2 Within-class scatter matrix Y, z
fJ'C 3 Mean of the cth class Y, z, c
Vc 3 Variance of the cth class Y, z, c
Qn 4 nth quartile of the c class Y, z, c, n

(b) Terminal Set.

Terminals Description
z Vector of projected data
Y Vector of class labels
9 Ephemeral random

constant (e.g. /?, r, z/, £,
s, c, n)

are provided. First of all, basic arithmetic operands are needed in order to provide 
the GP with the basic tools to combine more complex functions. These are included 
in the function set, as displayed in the first row of Table 4.1a. To facilitate pdf-based 
indices, two functions are considered to construct valid approximations. The first one 
is Renyi’s generalized divergence of order-/?

D(/’s;d = vrTlog(it-^t) p>0 (4-6)

where fi = f(zi) is the projected data probability estimate evaluated at Zj and gi = 
<?(xi) is the reference pdf evaluated at x^. This function measures divergence from 
a reference density while displaying interesting properties when p is varied [207]. It 
can potentially deliver the Kullback-Leibler divergence when /?—>!, thus allowing to 
approximate 0=4 in Table 2.1.

The flexibility embedded into Renyi divergence allows to define what it is considered 
as an uninteresting projection by means of the reference pdf. In [208] arguments were 
given for the use of Student-t distribution as another uninteresting pdf when robustness 
against outliers is required. Following a similar reasoning, divergence from a generalized 
extreme value (GEV) distribution is considered in this work, since its shape parameter

54



£ governs the tail behaviour of the distribution. This property is highly suitable for the 
proposed evolutionary system, as distribution specific parameters are included into the 
evolution process. In this way, it is possible to discover the ideal distribution density 
shape that will define what is considered as interesting or uninteresting projections.

Considering entropy as an efficient way to approximate divergence from gaussianity 
[60], the second function adopted to approximate pdf-based indices is Renyi order-p 
entropy defined as

H (/; p) = iv7los (E //);/>> o- (4.7)

This function acts as a generalization of Shannon entropy. Due to its morphing char­
acteristics conferred by the p coefficient, it can potentially deliver as p —► 1, and 
allows us to appi'oximate when p = 2 (see Table 2.1). As an example of pdf-based 
index construction, Fig. 4.3(e) and (d) shows the tree representation of Qi and the 
first term in A4 built with the proposed function and terminal sets.

To build moment-based indices, the sth sample central moment defined as

??xs(z) = £7 [(z - £[z])s] (4.8)

where F7[-] is the expectation operator, is included as another member of the function 
set. Together with the arithmetic operands and the terminal set, it allows the GP to 
come up with the definition of the indices in Table 2.2. In Fig. 4.3(b) and (c), the tree 
representation for indices £>6 and A5 can be observed in terms of the proposed function 
and terminal sets so far.

As for the class-information-based indices, class means and variance, defined as 
pc = p(c, Y,z) = E[{zi : yi — c}] and ac = cr(c, Y,z) = E[{(zi - pc)2 : yi — c}], 
where c is a given class label, were considered as fundamental building blocks to model 
the general Tr-norm. Since mean and variance are sensitive to outliers, quartiles were 
added, defined as

Qn = Q(j, n,Y,z) =zL: L = [0.25 nn^] (4.9)

where represents the nLh quartile of class j, nj is the number of projected samples 
with class label j, and Z£, is the Lth sample in the ordered set, as a robust alternative 
to get a summary of the dispersion and overall central tendency within each class [209], 
A second element of importance for the class-information-based indices is the Rayleigh 
quotient, which was approximated for the 1-D case using between-class scatter Sb = 
Sb(Y, z) = - p)2 and within-class scatter Sw =■ z) — Y%=i YnLiizi ~
Pj)2) appropriately included as members in the function set, where pj is the mean of 
class j, and p is the global mean. An example of such class- information-based indices 
in terms of the proposed function and terminal sets is displayed in Fig. 4.3(a). Table 
4.1a summarises the proposed set of functionals.

Three parameters are needed to fully define Renyi divergence: an estimation of 
the projected data pdf, the p coefficient and the reference pdf. To allow the evolution

55



(a) (b)

A,(Y,z) = —
nu

(c) (d)

Figure 4.3: Possible evolved trees, (a) Interaction between supervised and unsupervised 
functions; a member of the function set is used instead of an ephemeral constant as input 
to another function, and it needs to be rounded by means of the floor function, (b) Pure 
supervised index; four supervised nodes resembling a linear combination of supervised 
projection indices, (c) Reference density dependant on moments; the p coefficient 
depends on the moments ratio, (d) Segregated supervised and unsupervised branches; 
the supervised branch (left) and the unsupervised branch (right) are independent of 
each other but combined through a binary operator.

process to select the right reference pdf, three additional scalar arguments for Renyi 
divergence are included. The first argument (r) selects among the three different pdfs 
(i.e., Gaussian, Student-t or GEV); the second one specifies the degrees of freedom (v) 
for the Student-t distribution; and the last one is the shape parameter (£) for the GEV 
distribution. These arguments along with the p coefficient are implemented by means 
of the terminal //, which takes a random value when the potential index function is 
built, and then remains constant for purposes of index evaluation unless the genetic 
operators changed it (i.e., mutation can change the values of this ephemeral constants). 
The order s of the moment m5, the quartile number n, and the class index c in the mean 
Pc variance ac and quartile Q£ were implemented in a similar way. The remaining of 
the terminal set, summarised in Table 4.1b, was built up to accommodate the arguments 
needed by members of the function set. For instance, most of the functions in Table 
4.1a receive as arguments the projected data z with exception of arithmetic operators. 
For function members using class information the class labels Y are required.
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As was explained earlier, the genetic library defined above is adequately expressive 
to create most PP indices presented in Section 2.3.3.2, but also create many new ones 
not considered before. Figure 4.3 displays a number of examples of hypothetical but 
valid new indices. It includes simple cases (e.g., Fig. 4.3(d)) where the unsupervised 
and supervised part are clearly identifiable, as well as complex relations where the 
supervised part defines parameters governing the behaviour of the unsupervised part 
(e.g., Fig. 4.3(c), where the ratio of sample central moments defines the coefficient p 
of the Renyi divergence). This type of dependency is translated into a composition 
of functions, where some of the index’s parameters are functions of other projection 
quantities. In such case, the variable parameters precede the labels and projected data 
in the arguments of the projection index.

4.4 Experimental Results

4.4.1 Datasets

In order to assess the generalization performance of EPP, a total of five datasets ob­
tained from the UCI Machine Learning Repository were tested: breast cancer Wisconsin 
dataset (cancer) in its diagnostic variation, statlog heart dataset (heart), Pima Indi­
ans diabetes dataset (diabetes), wine dataset (wine), and glass identification dataset 
(glass). Categorical features were replaced with binary variables. A summary of the 
datasets can be found in Table 4.2.

Table 4.2: Datasets Summary.

Dataset Features Classes Samples
Cancer 30 2 568
Wine 13 3 178
Heart 13 2 270
Glass 9 3 214
Diabetes 8 2 768

4.4.2 Evolution Process

The GP algorithm was run over 50 generations with 60 individuals in the population; 
the crossover and mutation rate were managed dynamically by GPLAB [210], which 
was also the library used to implement the GP algorithm. Controls against bloat (e.g. 
dynamic depth/size on the individual trees) were also activated at the beginning of 
each GP trial. All experiments were run on a PC with CPU Intel Pentium 4 at 3.08 
GHz, 1.00 GB in RAM and with Microsoft Windows XP Professional SP2 as operating 
system; MATLAB 2009a was used to implement the required algorithms.

57



Generation 1 Generation 5

Fitness: 0.2063
Generation 15 Generation 20

Fitness: 0.1037 Fitness: 0.0809

Figure 4.4: Induction process for wine dataset. Selected generations showing the best 
individual, along with its parents and the genetic operator selected to build it. Its 
fitness function is given at the bottom of each best individual.

Figure 4.5 shows a sample of the fitness function minimisation carried out by the 
proposed evolution process. Best so far, population fitness average and standard devi­
ation are displayed. It can be seen that convergence is reached after generation 30. An 
example of the induction process modelled by Eq. (4.1) can be observed in Fig. 4.4, 
where the best individual in the population is displayed as a tree representation, along 
with its corresponding fitness value. To illustrate how the evolution process helps to 
infer a suitable projection index, four different generations were selected from the whole 
evolution process. In each case, the parents of the best member in the population and 
the genetic operator involved in its making are shown. When crossover is selected as 
genetic operator, the crossover point in every parent is highlighted, when mutation is 
selected, the mutation point is signalled by an arrow, indicating the fraction of the tree 
to be removed.
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Table 4.3: Comparison of the proposed algorithm including median values and in­
terquartile ranges of error assessed with 10-CV, optimal classifier parameters for exist­
ing indices, average times taken for feature extraction and classification of a single fold 
(Ti in seconds), and times taken to evolve a single index (T2 in hours).

Friedman & Tukey 711 Jones & Sibson 7?3
Problem Median IQR [*. A] Nfeat Ti Median IQR [ft, A] Nfeat Ti
Cancer 6.14 7.17 [4.4, 4.8] 4.0 3.60 5.26 7.02 [3.4, 5.6] 4.0 3.56
Wine 19.44 11.11 [5.4, 5.9] 3.0 1.99 22.22 16.67 [6.5, 3.9] 2.9 1.04
Heart 48.15 22.22 [5.5, 5.7] 11.0 0.99 31.48 22.22 [7.6, 6.1] 7.1 1.45
Glass 35.71 20.56 [3.0, 3.8] 5.4 2.91 37.23 7.58 [3.2, 5.4] 5.3 3.92
Diabetes 31.37 8.22 [7.6, 5.5] 5.6 4.80 36.61 7.79 [7.2, 5.1] 4.6 5.67

Information Divergence Tq Fisher Information 7?2
Problem Median IQR [ft, A] Nfeat Ti Median IQR [ft, A] Nfeat li
Cancer 5.51 7.02 [4.8, 5.1] 4.0 2.54 5.51 8.96 [5.2, 4.4] 4.0 3.76
Wine 16.67 5.56 [6.9, 3.7] 2.9 1.08 25.00 22.22 [5.2, 4.7] 2.5 1.29
Heart 33.33 11.11 [5.7, 5.3] 5.4 1.44 29.63 11.11 [6.9, 5.4] 4.2 1.68
Glass 30.19 19.05 [3.0, 5.5] 4.7 2.88 38.10 22.73 [4.0, 5.4] 5.6 4.71
Diabetes 32.47 8.24 [8.7, 6.6] 5.0 3.57 30.72 9.09 [7.5, 6.4] 4.1 5.98

Skewness TIq Kurtosis Q?g
Problem Median IQR [ft, A] A/eat Ti Median IQR [ft, A] Nfeat 2i
Cancer 7.06 7.02 [4.4, 2.7] 4.0 1.06 5.26 7.17 [4.0, 2.5] 4.0 0.93
Wine 27.78 16.67 [5.2, 8.7] 2.9 0.13 22.22 11.11 [6.3, 4.1] 3.0 0.14
Heart 40.74 14.81 [6.1, 5.0] 6.3 0.24 33.33 11.11 [6.1, 6.1] 10.3 0.22
Glass 39.50 9.52 [3.2, 4.8] 5.8 0.38 39.50 19.05 [3.8, 3.4] 5.5 0.19
Diabetes 32.02 7.79 [7.6, 3.8] 5.4 0.99 32.47 4.82 [8.5, 3.8] 5.5 1.48

Moment Linear Combination Sg Evolved Index
Problem Median IQR [ft, A] AW Ti Median IQR [ft, A] Nfeat Ti 72
Cancer 7.02 5.26 [4.2, 5.0] 4.0 1.12 4.39 1.75 [6.0, 4.90] 4.0 6.30 10.12
Wine 33.33 27.78 [6.4, 3.7] 2.7 0.16 5.56 11.11 [6.9, 5.42] 3.2 1.72 7.82
Heart 29.63 11.11 [6.6, 4.3] 7.8 0.27 18.52 11.11 [7.9, 5.72] 9.7 0.55 2.61
Glass 36.36 9.52 [2.7, 3.5] 4.9 0.31 16.67 9.52 [2.3, 5.47] 5.0 9.55 22.39
Diabetes 33.12 11.31 [6.8, 4.1] 5.3 1.55 27.92 7.36 [7.4, 5.98] 4.0 2.70 7.34

ICA PCA
Problem Median IQR [ft, A] Nfeat Ti Median IQR [ft, A] Nfeat Ti
Cancer 6.14 5.20 [4.3, 2.8] 4.0 1.54 6.14 5.26 [4.0, 2.9] 6.14 1.37
Wine 16.67 11.11 [7.3, 2.6] 3.0 0.75 22.22 27.45 [4.9, 3.0] 22.22 0.14
Heart 20.37 3.70 [5.8, 4.0] 9.1 0.29 19.58 14.81 [6.5, 2.6] 19.58 0.28
Glass 31.82 9.52 [2.4, 2.6] 7.0 0.28 25.54 9.52 [2.7, 1.3] 25.54 0.25
Diabetes 30.07 6.49 [6.8, 3.8] 6.0 2.49 28.27 22.81 [7.1, 4.3] 28.27 2.46

Fisher Linear Discriminant Tbj Bhattacharyya Distance 71 jq
Problem Median IQR [ft, A] Afeat Ti Median IQR [ft, A] Nfeat Ti
Cancer 4.51 8.96 [4.4, 3.2] 4.0 0.88 4.51 7.17 [4.2, 4.5] 4.0 0.99
Wine 19.44 6.86 [5.5, 2.4] 3.0 0.29 19.44 16.67 [6.3, 4.9] 2.7 0.51
Heart 19.54 11.11 [7.0, 4.9] 11.0 0.23 20.37 14.81 [6.0, 4.0] 11.0 0.31
Glass 32.58 9.52 [3.5, 4.9] 7.0 0.30 31.82 14.29 [2.3, 7.5] 6.1 0.43
Diabetes 28.62 5.19 [7.6, 5.8] 6.0 1.44 28.62 3.90 [8.5, 7.1] 6.0 1.52
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generation generation

Figure 4.5: Minimisation of fitness function by the proposed evolution process for (a) 
cancer and (b) heart.

4.4.3 Training and Testing Set Design

To objectively evaluate the performance of the proposed system, and at the same time 
optimise the best feature extraction/classification pair, a 10-CV partition scheme was 
used for final model assessment. Specifically, in each fold, 90% of the dataset was used 
for the learning phase (i.e. the input data T = to the proposed system), and
the remaining 10% samples T were used to test the generalization performance of the 
proposed system. Only the data within the learning phase is used to perform the model 
selection, via the 3-CV and the genetic search, which returns the optimal index (tree) 
and kNN parameters k and A. The entire model selection is repeated within each fold 
of the model assessment 10CV procedure. Descriptive statistics over the ten folds are 
reported in Table 4.4.

4.4.4 Baseline Projection Pursuit Comparison

This section compares the accuracy of the features extracted using the proposed evolu­
tionary framework with the ones obtained from existing indices used in PP, including 
Friedman and Tukey (F&T) Jones and Sibson (J&S) S3, Fisher information S2, 
information divergence S4, skewness S5, kurtosis Se, moments linear combination Sg, 
Tr-norm S9 with r = 2 (FLD), and Bhattacharyya distance Siq. Additionally, this com­
parison includes the features extracted with standard unsupervised feature extraction 
methods like PC A and ICA, as given in [50] and [49], respectively.

To make this comparison fair, the same partitioning scheme was used. For indices 
using the projected data pdf, an estimation was provided by means of a normal kernel 
using a window parameter that is a function of the number of points. Since 3 was given, 
the remaining unknown parameter in the proposed model 0 = {k, A} was selected by 
performing a grid search using T to train the classifier. After the optimal 0 was found,

60



ncJ
Pi
0

.O

a3
,a>

?—I
CP

l
S
o>

Fh

1

faO
Pi

£h
o
Pi

>
o

CD
rd

t3
CD

<D
rCf

'H.
CQ

^3

CD
CD

'S
c3
CD
CD
fH
CD

&
faJO
d

° ft 
>> &

a I

CO ® 
fti ^

3 ra
0)

^ -d
^ -p>
& &

CQ o {^3 co CO o rH lO co o o q
cd CO id d5 LQ LO id 1.0 cd cd

ci; *s--^
rOl t- ft ft rH ft (M CM ft CM CM CM <M

o3 o c-t CO CO ft O rH CO co 05
Q o GO T-- 1 cd CM cd CM CM CO oo od ft

(NCO CM CO CO CO CO CO CO CO CM CM

CQ
<Di o O CO ft co 00 lO 05 o rH o
d CO ft ft lO id H id id id 'C^l ft cd id

-C-3
o3 «^3 (M rH co 05 o o o CO 00 (M ftd oo lO ft CM T—H rH lO LO CO lO GO co

t—5 id id ft o od 05 05 cd CM 1“1 CO
iHCO CM CO CO CO co co co co CO CO

p
o T—\ o o 1—\ cM CO CO oo o o ft
Pi
Pi
CD

4^>
U

oi 1—1 rH ft id H cd o
rH ft T-- 1

1---1
r-H
i—1 05

PI CD
K

ft
CO go'

lO
10'
rH

CXJ CO
CO

CO
CO ft

co"
CO

cotp 'd'
lO

ft"
co

(M
Id

T3
CD

o
CN| Oi

r™H
00
d1 CO

cd
co

05
CM

cd
'Cf

cd
co

05
CM s cd

CM
00
rH

o o o 05 05 lO 05 o ft o ft (M
"5 CD

.a
CO CO cd CM CM CM CM cd CM cd cd cd
ft" cm" CM" ft" o" orT cm" cd" xtc"

co
q■+f CO CM CM CO o ft CM CO

TO
Q CO CM 05 CM CD Id ft CM cd 05 05

t-H CM i—i CM rH CM CM CM co T---1 T---1 id

p o O o O o o O o o O O o
CD
CD

d d d H H H 'd ■d ■d ft
g

o
'd" co" rH i—1 co" co" cm" i—1 rH 05"
rH rH i—1 CM lO lO o (M o lO LO CO
cd cd cd id id lO ft id ft 'd

ft

d
o

• rH

Cl)
a> Ph C3 CD
CD d Pj
d ft »rH c3
CD d Pj 4-3

ft bJU
p
CD

d
o 8

* rH
fH
CJ

TO

0^

d
o
m

>
Q

d
a
p

3
CD

_d

TO
^3 o3

d
d
d

03
=<3

a« l“d
TO

43
.a CO

TO
CP

TO TO
"S

CD
d■ r-H

ft
CD
d CDft

R
r‘d m

CD
d

a
p

c2

p
CD

rd
to

d
1

b
4-3

PhH

CDa
o

p
CD
ft

13
rb

.a
ft

x
CD

tJ

IC
A c

o

d o
l—o

CO

Ph1—i
» rH
ft CO

lO

W

CO

§

00

ft

<3)

ffl

o
rH

£
1

ft e? 61 61 61 61 61 61 61 61 ft

61



PPC2 PPC1PPC1

(a) (b) (c)

*CA PCA Evo(v«d

(d) (e) (0

Figure 4.6: 2D scatter plots of the best two projected features for wine data using 
(a) skewness, (b) FDA and (c) F&T projection indices for feature extraction; contrast­
ing with scatter plots using (d) ICA, (e) PCA and (f) EPP

o 'fj;.

(a) (b)
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•s- . 8

(c)

[m [m
f*° a ft % Ip “

(d) (e) (0

Figure 4.7: 2D scatter plots of the best two projected features for heart data using 
(a) skewness, (b) FDA and (c) F&T projection indices for feature extraction; contrast­
ing with scatter plots using (d) ICA, (e) PCA and (f) EPP



Figure 4.8: 2D scatter plots of the best two projected features for cancer data using 
(a) skewness, (b) FDA and (c) F&T projection indices for feature extraction; contrast­
ing with scatter plots using (d) ICA, (e) PCA and (f) EPP

the projected samples in T were classified and the median of the classification errors 
over the ten folds is reported as the generalization performance in Table 4.3, along 
with the interquartile range (IQR), the average of the optimal classifier parameters, 
the average number of dimensions and the time taken to perform feature extraction 
and classification with the corresponding projection index for a single fold.

Table 4.4 summarizes and compares the 10-CV performance for the evolved index 
and those eleven existing indices, from which it can be seen the evolved index performed 
the best. As it was expected, classical supervised indices performed better, on average, 
than unsupervised indices, frequently ranking in second or third place. Among the 
two supervised indices, Bhattacharyya distance showed to be more consistent, as it was 
ranked on third place for most of the classification problems considered on Table 4.3. As 
for the unsupervised indices, PCA performed on average equally good as Bhattacharyya 
distance, although PCA showed to be less consistent as it showed a variance of almost 
double than Siq. Surprisingly, a big difference can be observed between the performance 
of ICA and indices based on high-order statistics, such as kurtosis, skewness, and 
moments linear combination. Finally, the reader can observe that the worst possible 
choice of projection index for the selected problems is Se because, although it is not 
ranked last in every problem, it does not exhibit a consistent behaviour.

Besides classification error, Table 4.3 also displays the average number of dimensions 
induced for each feature-extraction/classifier pair. Although the evolved indices did 
not always deliver the minimum number of extracted features, for example in the wine
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dataset the evolved index extracted the maximum number of features when compared to 
the others, they do extract informative features as it is confirmed by their classification 
performance. As for the classifier hyperparameters, also showed in Table 4.3 for each 
index in this comparison, the number of nearest neighbours induced by EPP is within 
one and a half standard deviations from the mean of the distribution formed by this 
same parameter induced for the rest of the indices. This could indicate the parameters 
induced by the proposed evolutionary system could be trusted at 95% of confidence. 
The compression power of PCA can also be observed in Table 4.3, where on average 
PC A ranked first among the selected indices when measuring the optimal induced 
number of neighbours needed for classification. This characteristic together with the 
low dimensionality of the extracted features show why PCA is highly prone to loss 
of discriminatory information. On the contrary, although the evolved indices can not 
extract such low dimensional spaces, they provide reliable and optimal spaces with 
maximum class separability.

To illustrate the classification ability of the extracted features with EPP, 2-D scatter 
plots of selected features are compared for six different indices (i.e., skewness, FLD, 
F&T, ICA, PCA, and evolved index), for wine, heart, and cancer datasets in Figs. 
4.6-4.8. It can be seen the evolved index present better class separability, as can be 
confirmed from the results displayed in Table 4.3. Additionally, a sensitivity analysis 
over the extracted features is presented for the heart dataset using the tools provided 
by Cardillo [211]. Receiver operating characteristic (ROC) curves [42] were computed 
for both features used to build the scatter plots in Fig. 4.7, and the ROC curve for 
the dominant feature for each index is displayed in Fig. 4.10 along with the area 
under ROC curves (Az). From this figure it is clear the extracted features using the 
evolutionary approach (and also the FDA for this dataset) have superior discrimination 
power. As expected, the features extracted with the indices involving entropy and 
its approximation displayed lower class discrimination, being overcome by supervised 
indices.

Considering that GP produces trees that are often difficult to intuitively interpret, 
a simple synthetic dataset is used to demonstrate the generation of a simple tree and 
contrast it with the intuitively defined PCA and ICA indices. The synthetic dataset 
was built from two 2-D elongated Gaussians of identical covariances, and positioned as 
shown in Fig. 4.9. To provide a fair comparison with ICA and PCA, the supervised 
members of the function set were removed. The smallest evolved tree/index, shown in 
Fig. 4.9.d, is an instance of the Renyi entropy for a specific p and some offset. This 
is expected as the maximum value for Renyi entropy is achieved when the projected 
data distribution deviates from a Gaussian. This is quantitatively confirmed by the 1-D 
projection axis, which matches closely the one by ICA, while PCA as expected fails to 
locate a discriminatory projection. Fig. 4.9.b and 4.9.c summarize the differences of
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Figure 4.9: Synthetic dataset analysis, (a) Projected vectors extracted using PCA, 
ICA, and the proposed method, labeled as PP. (b) Boxplots and (c) distance matrix 
showing the angle distribution between the axis of every compared method, (d) Smallest 
optimal generated tree.

ROC curv*: Heart data act

False positive rate (1-Specificity)

Figure 4.10: Examples of ROC curves using the best projection methods for heart 
dataset.
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the axes between all pairs of methods for each model generated in each 10-CV fold. As 
can be seen, the PP generated axes are close with those generated by ICA but are at 
near 90° to those generated by PCA. Interestingly, as shown in Fig. 4.9.b and 4.9.c, PP 
proved to be more stable than ICA, when both methods are compared against PCA as 
ground truth.

4.4.5 Comparison of EPP with Collaborative Methods

Given the ability of the proposed system to generate a complex composition of func­
tionals, and thus a combination of the existing indices, it is natural to compare its 
performance against other methods for combining projection based classifiers. Three 
methods were selected to compete against the inferred indices, namely linear weighted 
sum, majority vote [212] and projection onto convex sets [213]. The first method was 
selected to demonstrate the difference between the evolution of projection indices, and 
a simple linear combination of the six most common indices from Tables 2.1 and 2.2, 
described by

6
&L = 5>fc9*(X-Pi)- (4.10)

fc=l
Each weight in Eq. (4.10) is learnt from the data and modelled as a system hy­

perparameter. This process was implemented following the same partition framework 
as described in Section 4.4.3. The performance of a kNN classifier using the extracted 
features resulting from projection pursuit with as projection index, is reported in 
Table 4.5. Clearly, although A/, is capable of varying the contribution of each projec­
tion index through its corresponding weight, it is not flexible enough to explain the 
underlying structure in the data as well as the newly evolved projection indices.

Majority vote was selected because of the advantages of the classifier ensembles 
[212]. It is well known that an ensemble method can improve the performance of 
otherwise weak set of classifiers, therefore the evolved indices are compared against 
a classifier ensemble composed of six individual projection indices, Sq-O'e in Tables 
2.1-2.2, each one concatenated with a single kNN classifier, thus giving a ensemble 
of six classifiers. The parameters of each individual classifier are considered system 
hyperparameters using the training, testing, and validation scheme proposed in Section 
4.4.3. The out-of- sample classification error estimated with 10-CV is reported in 
Table 4.5 along with the mean of the estimated classifier parameters. Surprisingly, the 
ensemble performance is not always better than the linear weighted sum index, although 
the low IQR values indicate congruency among the individual classifiers, making the 
ensemble robust to sampling of the training set.

Projection onto convex sets (POCS) is an iterative algorithm aimed at solving 
optimisation problems whose solution lies in the intersection of spaces defined by the 
problem constraints. These sets are required to be convex so that the method converges.
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POCS makes use of predefined projection operators on a single set to successively 
project a starting point from one convex set to another until it falls inside the solution 
area. The most frequent applications of POCS are image restoration, denoising and 
recently super-resolution (SR) image reconstruction from low-resolution (LR) samples 
[7], For the purpose of comparison, POCS was implemented as in [214] assuming each 
sample was a LR sample image of an unknown high resolution version. Taking each 
sample as the reference image and its nearest neighbors within the same class as LR 
versions, POCS is applied to construct a SR image for each sample in the dataset. 
This process embeds the dataset into a high-dimensional space where each point is 
representative of its within-class nearest neighbors in the original feature space. Then 
PC A is applied to reduce the number of dimensions and facilitate the classifier task. 
After this preprocessing stage, the extracted features are used to infer the parameters 
of a kNN classifier using the proposed partition scheme in Section 4.4.3. The out-of- 
sample estimation error of a 10-CV is reported in Table 4.5 along with the mean of 
the inferred classifier parameters and the number of used features. In general, POCS 
performs better than the other two collaborated schemes, nevertheless the results show 
the evolved indices outperform any of the collaborated schemes considered.

4.4.6 Evolved Indices as a Tree Representation

Finally, Fig. 4.11 presents the best evolved index for each dataset. It is worthy to 
highlight from this figure the fact that in each of the evolved indices at least one term 
considers class information, which suggests that, as expected, that class information 
plays an important part in feature extraction for classification. Additionally, Renyi 
entropy and Renyi divergence did not appear in the same tree for all the datasets, 
which indicates they may have overlapping information extraction properties.

The most complex index obtained was the one for the glass dataset, Fig. 4.11(e), 
which exhibits a highly unbalanced structure with the highest number of unsupervised 
nodes and a depth of nine levels. Contrastingly, the evolved index for the cancer 
dataset, Fig. 4.11(a), presents a fairly balanced structure and a depth of four levels. 
Despite the inclusion of unsupervised nodes in the structure of all the evolved indices, 
the ratio between supervised and unsupervised nodes leans toward the supervised side 
for most of the indices. The advantage of a highly supervised index, like the one in 
Fig. 4.11(b), can be seen from Fig. 4.11(f) where the evolved index presented the best 
class separability among the compared indices.
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(a)
Figure 4.11: Best evolved trees for different datasets, (a) Cancer: a highly symmetric 
tree where the parameters of the unsupervised functions are defined by supervised 
nodes, (b) Wine: a highly unbalanced tree mainly built with supervised nodes, (c) 
Heart: a compact tree with redundant branches (Renyi entropy on the left and right of 
the first division node), but good generalization performance, (d) Diabetes: unbalanced 
and highly supervised tree where within-class scatter plays an important role, (e) Glass: 
very complex and unbalanced tree with equal number of supervised and unsupervised 
nodes.
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4.5 Summary

In this chapter an evolutionary framework for automatic design of classification systems 
was introduced. It poses the learning problem as a model selection problem, consisting 
of two stages. In the first stage, a set of potential models is built with the help of 
genetic operators, then in a second stage they are evaluated using a wrapper approach, 
where cross-validation is used to estimate the out-of-sample classification error of each 
potential model. After a given number of generations, the fittest individual is chosen 
as the desired model, guaranteeing optimal classification performance. In this work, 
a classification system is modelled as a pair consisting of a feature extraction stage 
and a classification stage. Due to the strong interactions between classifier and fea­
ture extraction, both stages need to be jointly optimised, thus this work proposes to 
encode the feature-extraction/classifier pair into a single hybrid chromosome designed 
specifically to hold a tree structure.

As a starting point and due to its simple, yet powerful, formulation, this chapter 
also discussed the advantages of the proposed evolutionary framework when the feature 
extraction stage is modelled as a linear projection method. It was showed that the pro­
posed inducer evolves ad-hoc PP indices which extract highly discriminative features, 
out performing those extracted with several existing indices and popular linear feature 
extraction methods with close analytical solutions, such as PCA, ICA and FLD. A sec­
ond advantage of the proposed system is its degree of precision, which was measured 
via the IQR of the 10 folds used for final model assessment. Such range showed to 
be minimum for the evolved indices when compared to other projection indices for five 
given classification problems as can be seen in Table 4.3. Additionally to measuring the 
precision of the evolutionary framework in producing accurate classifiers, the accuracy 
of the extracted features via PP was measured in the experiment illustrated in Figure 
4.9. It was showed that an evolved index produces consistent features more frequent 
than ICA, which also uses an iterative method to compute independent features.

Additionally, this chapter presented a comparison between EPP and three collab­
orative feature extraction methods. The first collaborative method was a PP index 
designed to be the weighted sum of six existing projection indices, which weights were 
jointly optimised with a GA. The second collaborative method was POCS [214], which 
represents a different paradigm of projection methods to solve optimisation problems. 
Finally, the same PP indices used in the weighted sum were combined using majority 
vote, which individually trains each classifier and then assigns the most frequent label 
predicted by the individual classifiers. Although POCS exhibited on average the low­
est classification error among the collaborative methods, it could not outperform EPP. 
Linear* weighted sum came second, showing lower dimensionality spaces.

As with all the evolutionary optimisers, the proposed system exhibit long learning 
curves, therefore it can not be used for online learning. Nevertheless, once the proposed
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evolutionary framework produces an evolved index, it is guaranteed to deliver accurate 
and precise features with high discriminative capabilities. Additionally, It has been 
experimentally illustrated that EPP successfully performs model selection in the space 
of potential indices to be used in SPP for optimal feature selection. Finally, it is 
worth to mention that if the data is not linearly separable in the original feature space, 
neither will be in the space described by the features extracted using linear projection 
techniques. This situation is commonly faced for classification problems involving real- 
world, high-dimensional datasets as discussed in Section 2.3.5. Classical linear feature 
extraction methods are extended to tackle nonlinearities in the dataset by projecting 
the data into a non-observable feature space to unfold undesired nonlinearities, as 
explained in Sections 2.3.2. In the next chapter we elaborate on such extension for 
EPP.
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Chapter 5

Nonlinear Projection Pursuit via 
Kernel-Induced Spaces

5.1 Introduction

The previous chapter explored PP as a generalization of linear projection techniques, 
and developed a evolutionary framework that delivers a feature-extraction/classifier 
pair modelled as a projection index 9? and a set of hyperparameters 6 = {k, A}, tailored 
to a given classification problem. A natural enhancement to the generalization abilities 
of PP is its extension to the nonlinear case. The first reference to such idea can be 
traced back to [215] where a exploratory method was proposed to investigate nonlinear 
structure based on Hebbian learning applied to train a neural network. Later on, Smola 
et al. [216] proposed to learn a set of projections by optimising a constant function 
(index) in a kernel-induced feature space, chosen from variance, Fisher information, 
negative Shannon entropy, or other quantities of interests, called kernel PP. Following 
the guidelines listed by Friedman [217] for PP, kernel PP also discusses two main 
possible choices on structure removal process: (1) by removing from the search space 
the previously obtained projections; (2) by applying Gram-Schmidt orthonormalization 
in the kernel-induced feature space.

Facing a specific classification problem, prior information and specific data distri­
butions have to be considered in the index selection for PP. However, it is not easy 
to achieve this in the non-observable kernel space, where the data distribution may be 
distorted and is untraceable. To overcome these problems, a variation of the evolution­
ary framework previously presented is introduced in this chapter, aiming at extraction 
of nonlinear features in the kernel-induced feature space. The development of a struc­
ture removal process can be found among the main contributions of this chapter. Such 
removal process is different from those used in [216], since it reduces the determination 
of the nonlinear residual subspace to the computation of an updated kernel matrix. 
Additionally, analysis on the kernel-based whitening process is also provided. To test 
the effectiveness of the proposed approach, final model assessment is performed over
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six different high-dimensional datasets via 10-fold cross-validation (10-CV).

5.2 Problem Formulation in Kernel-Induced Spaces

Based on the Mercer’s theorem [218], a kernel function defines the dot product in an 
non-observable feature space Ti, which is called kernel-induced feature space. Letting 
0 : Rm —> H denote the nonlinear mapping to 7i, and K = [kij] denote the kernel matrix 
between the data points, the entry ij of K is known as ki:j = /L(xj, Xj) — 0(xj)</>T(xj). 
Working in this new space, a projection vector in 7i is sought so that the projected 
features possess the maximum degree of interestingness:

v* = argmax (5.1)
v&i.

where = [</>(xi), 0(x2), ..., 0(xi), ■ ■ ■ j7" represents the mapped data in TL Since 
the mapping 4> is unknown, it is impossible to directly compute such projection vector. 
However, by approximating this non-observable kernel space H by a subspace spanned 
by a set of data points from the training set, the projection vector can be expressed as

v = $T7, (5.2)

where 7 e is a set of coefficients defining the basis of the subspace. Thus, in the 
kernel-induced feature space, the projected features of the mapped data $ onto v 
can be computed by

Z(7) - K7. (5.3)

and the constraint in Eq. (2.34) turns into rTKF = I.
Hence, for the standard PP optimisation, the optimal coefficient vector is com­

puted, instead of the optimal projection vector in Eq. (5.1), by solving the following 
optimisation problem:

7* : argmax ^(K/y). (5.4)
-yeR71

Consequently, to obtain an optimal index/classifier pair in the kernel-induced feature 
space, the following bi-level optimisation problem is solved:

h
min F(3,A:,A;K) = ^ ^ L(^, (^7*, 0))

1 jelnd(fii)
s.t. 7* = argmax {^(K^)}

7eR"
(5.5)

where Ind(fih) denotes the sample indices in the validation set Hi, Kj denotes the 
kernel matrix between samples from the training set flj, denotes the kernel matrix 
between the jth sample from the validation set fb and all the samples from the training 
set Cli, and K here denotes the kernel matrix between samples from Y ~ fh U It
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can be seen from Eq. (5.5), the used evolutionary framework in the kernel-induced 
feature space are expressed only in terms of the kernel matrix.

5.3 Nonlinear Sequential Removal Process

Often, a single direction is not enough to represent the underlying data structure, thus 
PP needs to be iterated to obtain a projection matrix that will form the basis of a new 
coordinate system, such iterative process is called sequential projection pursuit (SPP) 
[67]. To avoid a degenerated solution where all the directions in the projection matrix 
are equal, orthogonality is imposed as constraint in the optimisation problem of Eq. 
(2.34) and Eq. (4.1), corresponding to ArA — I. This section studies how to impose 
the orthogonality on multiple projections V = • • • ,^6] in the kernel-induced
feature space by sequentially computing the coefficient matrix T = [7i,72j • • ■ j7&]- 

Different from the structure removal process used in [216], which kernelizes the 
Gram-Schmidt orthogonalisation procedure in each iteration to obtain the new projec­
tion vectors, the discussion in this section starts from the analysis of the variance in the 
residual subspace at iteration j. Given the first j optimal projection vectors 
let us search for the (j + l)th projection vector that maximises the variance of the 
projected residual 1 as follows [49]

-

which corresponds to searching in the orthogonal complement of the subspace 
spanned by the j previously-obtained projection vectors. Equation (5.6) can be rewrit­
ten in matrix form as follows:

max z/r(I - (5.7)

where V* - [i/[, ... , isj] is the optimal projection matrix for the first j projection
vectors. Following the definition of Sj- = I-V]VJT as the residual subspace to simplify 
notation, the solution to he constrained optimisation problem in Eq. (5.7) can be pose 
in terms of the Lagragian

F(u, a) - - a(vTv - 1), (5.8)

where a is the used Lagrange multiplier. Consequently, the stationary points of Eq. 
(5.7) need to satisfy

dF
~ = — guv = 0. (5.9)

1To facilitate notation, a centred feature space is assumed. Otherwise, apply Eq. (5.19) to centre 
the data.

JZ

3 = 1
(5.6)

1 n
u*Hl - argmax -

IMM t=i
v
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This leads to the eigenvalue problem of the matrix Incidentally, Sj- matches
the definition of the orthogonal complement of Vf, this projector maps $ into the 
subspace orthogonal to Vf, thus by using 3>Sj- to replace the original feature matrix 
5b orthogonality can be kept when computing the new (j + l)th projection vector in 
the kernel-induced feature space.

Thus, to impose the orthogonality to the proposed nonlinear evolutionary system, 
the projected features onto the (j + l)th projection vector are computed by modifying 
Eq. (5.3) as

z(T/+i) = 'l>SJl'y>+J (5.10)

= *s+$r7j.+1

= *(I - VJVjb^j+i

= (K - Kr*rf k)7j.+1,

where Tj = [7|,72> • • * >7^] is the optimal coefficient matrix already obtained for the 
first j projection vectors. Consequently, the determination of the nonlinear residual 
subspace for the (j + l)th projection vector has been successfully reduced to the update 
of the kernel matrix at the (j + l)th iteration:

K(j+i) _ K _ KIbTfK. (5.11)

Then, the optimisation problem in Eq. (5.4) for the (j + l)th projection vector can be 
written as

7j+i = argmax ^(K^+^7). (5.12)
-7eMn

This process is repeated until the 7j+i does not contribute any more to explain the 
underlying data structure. Such assessment is carried by a criterion which relies on 
Bayesian model selection [21], and it is based on the fact that the remaining structure 
on the residual subspace is decreased as the number of projections increases. The 
Bayesian stopping criterion (BSC) is defined as

0 = (2"xNk0>-V)-o<k<j+i)-7)+1)] + ly\ (5.13)

The (j+l)th projection is included if /3 is bigger than a predefined threshold S, otherwise 
SPP stops with j obtained projections.

5.4 Whitening in Feature Space

As it is known, the whitening process is required to decorrelate the data previous to 
the sequential induction process [60]. To whiten the data in the non-observable feature 
space, let C<j, denote the covariance matrix for the training samples calculated in the
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kernel space 1i,. By applying the standard whitening technique, the whitening matrix 
in the non-observable feature space is

W - L-^2Mt (5.14)

where L is a diagonal matrix with the jth largest eigenvalue of C$ as its jth diagonal 
element, and M = [mi, m2,..., mj,... ] with the jth eigenvector of C# corresponding 
to the jth largest eigenvalue as its jth column. Since C$ is calculated in 7i and thus 
possesses an infinite size, it is not straightforward to directly obtain L and M. Scholkopf 
et al [51] show that both L and M can be approximated by computing the eigen- 
decomposition of the kernel matrix K between the training samples, given as

L = —A, (5.15)n v 7

M - (5.16)

where A is a diagonal matrix with the jth largest eigenvalue of K as its jth diagonal 
element, and ^ — ['0i)'l/,2 5 • • ■,...] with the jt!l eigenvector of K corresponding to 
the jth largest eigenvalue as its jih column. Since the orthogonality condition between 
the eigenvectors of the covariance matrix is required, matrix M is further scaled by 
A2, as

M = $Tq>A2, (5.17)

so that MrM = I. By incorporating both Eq. (5.14) and Eq. (5.17), the dot product 
of the whitened data in feature space can be expressed as

K = $WTW# = n^T. (5.18)

To facilitate the notation, the learning data was assumed to be centered in the 
feature space. When such assumption is not valid, the previous results still hold but 
the kernel matrix K need to be replaced by

K = K — lnK - Kl„ + lnKln (5.19)

where ln is a x n matrix with all its elements equal to 1/n.
In the following, two modalities of the proposed extension of PP to a kernel-induced 

feature space will be distinguished. The first modality will be referred as kernel pro­
jection pursuit (KPP), where the projection index ^ in Eq. (5.4) can be any of the 
existing indices introduced in Section 2.3.3.2. The second modality will be referred 
as evolutionary kernel projection pursuit (EKPP), where the evolutionary framework 
described in Section 4.2 is used to infer an optimal projection index. This distinction 
will help us to highlight the advantages of an evolved PP index against its non-optimal 
counterpart.
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5.5 Experimental Results

5.5.1 Datasets

Six datasets were used to benchmark the proposed algorithm for nonlinear feature 
extraction, including arcene, dexter, dorothea, madelon, duke and PIE. The first four 
datasets were from the NIPS’03 challenge [219], of which each is provided as three 
separate splits, one for training, one for validation and one for testing. However, only 
the labels corresponding to the training and validation sets are publicly available, the 
labels for the testing split have been retained by the challenge’s organisers to encourage 
post-challenge submissions. So the provided training and validation sets were merged 
into a single dataset for experiments. Among the rest two datasets, duke was taken 
from the work presented in [220] and PIE is a modified subset of the CMU PIE database 
as used in [13].

In order to provide a fair comparison between different feature extraction methods, 
a 10-CV partition scheme for final model assessment was implemented. Specifically, 
each dataset D is divided into two mutually exclusive sets D — Y[JT. The learning 
set T is used within the induction process to derive an optimal model, performing model 
selection via the h-CV (further splitting T into training and validation sets) and the 
genetic search. Once the optimal model is known, the testing set T is processed with 
the fine tuned feature extraction algorithm and classified using the optimal classifier 
parameters, then its balanced error rate (BER) is accumulated. This process is repeated 
over each fold of the 10-CV for final model assessment. In Table 5.1, the size of the 
testing, training and validation partitions can be observed for each dataset as used 
in the present work, as well as the number of features in the original feature set, the 
total number of classes and the ratio of the number of in-class samples to the number 
of out-class samples, named as class imbalanced ratio. A low ratio value represents a 
highly imbalanced dataset.

To investigate the potential separability of the used datasets in advance and assess 
their suitability for nonlinear feature extraction, a preliminary study was performed 
using the popular classifier SVM in two modalities. The first modality consisted in a 
linear SVM (/-SVM), where no feature extraction was applied to the data. The second 
modality was the SVM with Gaussian kernel (y-SVM) without feature extraction, that 
performs nonlinear classification by translating the maximum-margin hyperplane to 
a transformed feature space by means of the kernel trick. Since previous research 
has shown the effectiveness of feature selection algorithms for classifying the NIPS’03 
datasets, feature selection by sequential forward selection was carried using mutual 
information as cost function followed by y-SVM (MI+^-SVM) as a comparison point. 
The BER obtained by these three classifiers are shown in Table 5.1, from which it can be 
observed (1) the nonlinear classifier outperforms its linear version, which indicates the
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classification task could benefit from nonlinear feature extraction, (2) the classification 
task does not always benefit from feature selection, specially when features apparently 
meaningless by their own are discarded but when combined with others boost the 
classification performance.

5.5.2 Experimental Setup

This section elaborates on the comparison between EKPP and three existing nonlinear 
feature extraction techniques that also employ the kernel trick to achieve nonlinearity, 
namely KLPP [74], KFD [92] and KPCA [51], as well as KPP with predetermined index, 
and two linear feature extraction methods. The first linear extraction method is EPP 
[221] and the other is PCA. The comparison was based on the model assessment scheme 
described in Section 5.5.1. An LDA classifier was used to compute the class labels of the 
testing samples. It assumes equal prior probabilities for all classes and fits a multivariate 
normal density to each group, with a pooled estimate of the covariance. Different from 
the kNN classifier used in the previous chapter, the use of an LDA classifier obeys the 
fact that kNN may diminish the effect of the extracted features by building nonlinear 
class-boundaries. Therefore, to favour the effects of the feature extraction stage, LDA 
was selected as classification algorithm, which generates linear decision boundaries. The 
kernel function used by the nonlinear extraction methods follows the recommendations 
in [222], and was designed to be a mix between the gaussian and the polynomial kernel, 
defined as

hj = (#i + 2 exp (-||xi - Xj||2/03) , (5.20)

where ffi, #2, and 9% allow the selection of the optimal type of kernel to be used in each 
method.

The scalar part of the hybrid chromosome in EKPP and the chromosome used 
to fine-tune the hyper-parameters in the competing methods share the same structure. 
Such structure was designed to represent the parameters of each model (i.e., coefficients 

°f ffie kernel function, and a scalar b representing the number of retained eigen­
vectors tjjj from the kernel matrix) as binary words. The widths for each variable {#*} 
are 4 bits, 4 bits, and 8 bits respectively, while the width for b depends on the number of 
training samples, and was determined according to the formula f'log2 (2|jInd(fL)||/3)], 
where j|Ind(ff j) || is the number of samples in the training set, and [•] rounds its argu­
ment to the nearest upper integer.

EKPP was implemented with the help of GPLAB [210] library for MATLAB. The 
GP algorithm was run over 100 generations with a population of 20 individuals, with 
a fix cross-over and mutation rate of 90% and 10% respectively. The number of folds 
defining Eq. (5.5) was fixed to /z = 3 for all experiments with EKPP, and the threshold 5 
used in the stopping criterion was set to 0.35, as suggested in [21]. The number b of 
eigenvectors ipj from the kernel matrix used to compute K was restricted to be less
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than the rank of K to avoid singularity problems, thus the final number of projections, 
although determined by the BSC in the scheme described in Section 5.3, can not be 
more than b.

For KPP, KLPP, KFD and KPCA, parameter fine-tuning was implemented by 
means of a GA, which was favoured over typical grid search based on the results of 
preliminary trials, that reported a considerable saving in computational time. Addi­
tional experiments were carried to determine the optimal crossover and mutation rate 
such that the local optima problem was avoided. The best performing combination, 
out of four empirical setups, resulted in probabilities of 10% and 90% for mutation 
and crossover. In KPCA b is the final number of projections; the genetic search im­
plemented for KFD ignore the variable b since this method computes at most (c — 1) 
number of projection components; while for KLPP, an extra valuable was added to 
encode the number of neighbours used to compute the affinity matrix. To compare 
the advantages of an optimal evolved index over its non-optimal counterpart, Lr-norm 
index was used with ?' = 2 as projection index in the scheme described in Section 5.3, 
this setup was labeled as KPP. The same restrictions on b as in EKPP are followed 
here to avoid singularity problems.

Considering the selection of the classification algorithm could impact the perfor­
mance of the proposed method, experiments using EKPP followed by the kNN classifier 
were also performed, referred as EKPP/0. The changes are mainly reflected on the struc­
ture of the scalar part in the hybrid chromosome, including the hyper-parameters of the 
classifier (i.e., the coefficient for the Minkowsky distance, and the number of nearest 
neighbours), and the width for a gaussian kernel. The classifier hyper-parameters were 
encoded as 4-bit binary words, while an 8-bit binary word was reserved for the width 
of the gaussian kernel. The number of eigenvectors ipj used to compute K was fixed to 
ten, and then SPP was used on these feature space to extract relevant features.

5.5.3 Experimental Results and Analysis

The median and IQR of the balanced error rate over a 10-CV are provided in Table 5.2. 
Such statistics were obtained from the classification tasks of the six datasets, using the 
features extracted with EKPP, KPP, KPCA, KFD, KLPP, EPP and PCA in combina­
tion with an LDA classifier. The number of extracted features and relevant statistics 
regarding computational time can be observed in Table 5.3.

Performance of a feature extraction algorithm is not only characterised by the clas­
sification error they present, but also by the compression rate achieved. Similarly, the 
information embedded in the extracted features is not always optimal for the classifica­
tion task at hand, thus facing an intrinsic multi-objective optimisation problem in the 
design, training and selection of such algorithms. By considering both the classification 
error and compression ability of a feature extraction algorithm, a fair comparison is
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3(c1,»„Y,z)*5fl/^+^+5B)
,7,(Y,z) = \h(/, //(/, //(/,0.78) + //(/,0.42)))1 
c,(c2,Y,z) = fo- I c2(Y,z) = [S(f.]

C)

d)

3(Y,z)^5fi

3(Y, z) = Sw+ //(/,0.81)+ Sh ! 0.77

Figure 5.2: Evolved trees for different datasets, (a) arcene, (b) madelon, (c) dexter, 
(d) dorothea, (e) PIE, and (f) duke datasets
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achieved where all the algorithms have been fine-tuned by an evolutionary framework, 
thus comparing them at their Pareto optimal point.

As can be seen in Table 5.2, EKPP achieves the lowest classification error for most 
of the datasets as compared to not only the four nonlinear and two linear feature 
extraction methods but also the three linear/nonlinear SVM classifiers with/without 
feature selection (see Table 5.1). In general, it is expected that nonlinear extraction 
algorithms would perform better than linear ones. This fact is corroborated for the 
proposed evolutionary method in Table 5.2, where EPP shows a lower classification 
performance than EKPP.

Considering both the classification accuracy shown in Table 5.2 and the compression 
rate indicated by the number of extracted features in Table 5.3, on average EKPP 
outperforms most of the algorithms in all datasets, being close-followed by KFD and 
much better than KPP, KPCA and KLPP. Although the compression rate of EKPP is 
not always the best, as compared with KFD, the information embedded in the extracted 
features helped to improve the classification performance.

The performance of KLPP among the kernel methods is not as good as expected. 
In the existing literature, LPP has been reported to have an outstanding performance 
for face recognition problems [13], nevertheless since LPP effectively unfolds the non­
linear structure of the manifold, applying a second nonlinear mapping by means of the 
kernel trick may degrade the discriminatory information. A similar deterioration can 
be observed in the classification performance of EKPP/C. Although in this case there 
are several possible reasons that could have caused such low performance, the burden 
in selecting a classifier with higher number of parameters does not show a considerable 
improvement over the simpler EKPP setup.

In order to provide a sense of the complexity of EKPP compared to the competing 
methods, relevant computational times are provided in Table 5.3. Timel is the time 
taken for the evolutionary search to evolve an optimal model in one of the folds of the 
10-CV. Time2 is the time taken by the optimal model to perform feature extraction and 
classification of the testing set. EKPP shows better compression rate and classification 
accuracy in Table 5.2. Although this improvement is at expense of an increase in 
the induction and classification time, the overall computation time (Timel+Time2) is 
comparable to that of the competing feature extraction algorithms fine-tuned by a GA.

Additionally to the classification accuracy analysis, a sensitivity analysis was also 
performed over the extracted features for the three best feature extraction methods for 
the binary classification problems. Every extracted feature was ranked using its class 
scatter ratio [42], and the receiver operating characteristic (ROC) curve was computed 
for the dominant feature. Figure 5.1 display such curves for each dataset along with the 
area under ROC curves (Az). The features found by EKPP work much better together 
than individually (see Table 5.2 and Figure 5.1), nevertheless the best ranked feature
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managed to perform better than the competing methods (see Figure 5.1).
The inferred PP indices are showed as a tree representation along with their corre­

sponding equations in Fig. 5.2. All the presented trees are highly supervised, with the 
tree corresponding to dexter dataset being only the definition of the between-class scat­
ter. It can be seen that trees for highly imbalanced datasets strongly depend on Renyi 
entropy, while those trees for balanced datasets depend on functions of the within-class 
and between-class scatters.

5.6 Summary

In this chapter we have discussed a nonlinear extension of the proposed evolutionary 
framework by means of a kernel-induced feature space. Its main advantage, compared 
to the method proposed in [216], is the determination of the nonlinear residual subspace 
in SPP via a simple matrix updating formula (given in Section 5.3) which speeds up 
computation of the projection matrix. Additionally, whitening in feature space was 
expressed in terms of the eigenvectors corresponding to the largest eigenvalues of the 
kernel matrix (Section 5.4). It was experimentally shown that EKPP outperforms 
existing kernel methods, as well as its lineal’ version EPP, for most of the selected 
high-dimensional classification problems (see Table 5.2).

Besides inducing an optimal projection index, the proposed evolutionary frame­
work also optimises the type of kernel function suited to the application at hand. The 
selection of the kernel function is controlled by the parameters of Eq. (5.20), which 
effectively combine two popular’ kernel functions, namely Gaussian and polynomial ker­
nel. Four other kernel methods were compared against EKPP (i.e. KPP, KPCA, KFD, 
and KLPP), which parameters were also optimised with an evolutionary algorithm to 
provide a fair comparison. Among them, KLPP exhibited the worst compression rate, 
while EKPP showed high compression rates, ranging from 98.79% to 99.99%, without 
sacrificing accuracy.

Selection of the classifier plays an important role in the performance of the evolved 
classification system. Two classifiers were tested as part of the fitness function showed 
in Eq. (5.5), an LDA and a kNN. Classification systems evolved using an LDA out­
performed those evolved with a kNN, this could be attributed to the fact that kNN 
builds nonlinear classification boundaries that diminish the effect of the kernel-induced 
nonlinear extracted features. Thus, in order to take the very best out of EKPP, it 
is recommended to only use linear classifiers when inducing classifier systems via the 
proposed evolutionary framework. As with its predecessor, EKPP suffers from large 
induction times, thus it can not be used for online applications.
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Chapter 6

Evolutionary Induction of 
Heterogeneous Proximities 
for Supervised Embeddings

The discussion so far has been centred on a generalization of linear projection tech­
niques. An evolutionary framework has been described, able to automatically design a 
projection index to be used as feature extraction stage for a given classification prob­
lem. Additionally, the original projection pursuit problem has been mapped to a kernel- 
induced feature space with help of Mercer’s theorem, unfolding any nonlinearities and 
improving classification accuracy for nonlinear datasets. As result of using a kernel- 
induced feature space, the small sample size problem for high-dimensional datasets is 
avoided. However, recent evidence suggest that non-observable spaces allow nonlinear 
embeddings of data originally laying in a low-dimensional manifold [68]. When this as­
sumption holds, a linear projection, or nonlinear projection via kernel-induced spaces, 
fails to unveil the true low-dimensionality of the embedded manifold. Spectral embed­
ding methods, described in Section 2.3.4, have been successfully used to extract features 
able to describe nonlinear manifolds embedded into non-observable spaces. Their de­
sign is based on correctly modelling the local geometry for each sample, which will be 
retained in the resulting low-dimensional space. The present chapter seeks to address 
the problems related to the automatic design of supervised spectral embedding (SSE) 
methods. First an alternative formulation to the classic trace optimisation problem, 
used by spectral embedding methods, is proposed. Then, the design process is modelled 
as a complex learning task, where an optimal model is induced from a set of training 
data. The inducer engine was implemented using an evolutionary search, capable of 
building not only a family of existing spectral embedding methods, but also create new 
models as a result of its powerful syntax and high expressive lexicon. The performance 
of several human-engineered SSE methods is compared with these automatically gen­
erated embeddings for the task of classification, and results show a decrease in the 
classification error.
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★class 1 
A class 2 
■ class 3

Figure 6.1: An example of a possible SSE configuration of the original space (left) to 
the embedding one (right), where the three friends of xi are pulled closer, while its 
four enemies are pushed afar.

6.1 Model Definition

If we assume a set {x* 6 Rm}”=1 of training samples corresponding to discrete labels 
yi G {l,...,c}, an SSE algorithm generates n embeddings {zf e of 6 < m
dimensions each. These two sets can also be conveniently denoted through the original 
n x m feature matrix X = [x^] and the n x b embedding matrix Z = [zij], with row 
vectors the original samples x* and the embeddings z*, respectively.

The supervised character of an SSE method implies that its objective is the creation 
of a new configuration in the embedding space, where the class structures and separa­
bilities existing in the original space are not only maintained, but also reinforced. As 
it is demonstrated in Fig. 6.1, this is achievable by increasing the similarities between 
friends (samples from the same class), while making enemies (samples from different 
classes) more distant. A straightforward way of implementing this behaviour, is to 
minimise the weighted sum of all the pairwise embedding distances, as in the standard 
unsupervised embedding, according to

min 1
2 H Wtj||zi -ZjlH, 

ij=l
(6.1)

or equivalently
min trace \zTLZ] , (6.2)

ZeRn*b L J v 7

but with the similarity weights Wij corresponding to enemy pairs (i, j) treated differ­
ently than the friend ones. In Eq. (6.2), W = [tCy] is the overall similarity matrix, 
and L = D(W) — W is the standard Laplacian matrix, where D(W) gives a diagonal 
matrix with elements da =

Below, a few examples are given on how different SSE methods use W to directly 
control and differentiate the friend and enemy vicinities. For comparison purposes,
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all methods are re-express in terms of their weights Wij. The first of these methods, 
the discriminant neighbourhood embedding (DNE) [83] is based on a sample weighting 
defined as

{+1 if Xj € A:) V Xi G N£r(xj,k),
-1 if Xj G Ne(xj, A:) V X£ G iVjs(xj, k), (6.3)

0 otherwise,

where NF(xi, k) represents the ^-nearest friends of x^, and iV/^Xj, A:) its A;-nearest 
enemies. The supervised optimal LPP (SOLPP) method [223], integrates class prior 
probabilities into the weighting matrix as

f + sij) if e A;) V Xi G ATf(xj, k)

wij = S PvtPviSijO- ~ sij) if Xj- G NE(xh A;) V Xi G NE{^j,k), (6.4)
I 0 otherwise,

where — exp ^ 1Ix^xj1I2^ js a Gaussian-based similarity controlled by the parameter 

r, and pk (k — 1,2, ..., c) is the A/;/l class prior probability. Another method is the 
repulsion OLPP (OLPP-R) [78], based on a Lapiacian L = Lc — /?Lr, defined as the 
linear combination of a class Le and a repulsion Lapiacian Lr, for some user-defined 
parameter /3 > 0. This is equivalent to the calculation of the weights according to

Wij -

- tfyi = yj = li
-Psij if [xj G i\r(xi, A;) V Xi G iV(xj-, A:)] A ^ yjt 
0 otherwise,

(6.5)

where the alternative weight = (r + ||^ is used to define the repulsion 
Lapiacian, m is the number of samples in class Z, and Ar(xi,/c) represents the fe-nearest 
neighbors of Xj. Supervised ONPP (SONPP) [72] is a method that attempts to recon­
struct each sample by a linear combination of its friends, thus, only takes into account 
similarities between friends based on

Wij —
Wij if ip = yj,
0 otherwise, (6.6)

where Wij — rriij + niji — mkimkj is computed from the reconstruction coefficient 
matrix M = [rriij], &nd M is obtained by minimising the reconstruction error as follows

min E x;-Em«xJ
j=l 2

(6.7)

n
s.t. rriij = 0 if Yi 7^ Yj) ^ ^ rriij ~ 1 •

j=i

The matrix M will have a block diagonal form M = diag(Mi, M2, ..., Mc) after a 
simultaneous re-ordering of the rows and columns to keep intra-class samples together, 
where the Ith block corresponds to the Ith class. The repulsion ONPP (ONPP-R) [78]

89



amplifies neighboring enemy dissimilarities by incorporating the repulsion Laplacian 
into SONPP using

Wij =
Wij if Vi = yj,

if [xj G A^(x£,/c) V Xf G iV(xj,fc)] Ayt ^ yj, (d-8)
0 otherwise,

where Sij is the alternative weight as used by OLPP-R. Finally, the discriminant ONPP 
(DONPP) [80] is very similar to ONPP-R, but defines the neighboring enemies and their 
corresponding weights differently as

(6.9)

Although the aforementioned SSE methods are based on different ways of control­
ling the friend and enemy vicinities, they are all relying of a uniform treatment of the 
weights between friends, and between enemies. In this way, all friends regardless of the 
class they belong to, are assigned weights calculated via a common metric. Similarly, 
the weights for the enemy pairs are homogeneously calculated, regardless of the class 
pairs containing them. The underlying assumption is that samples from each class lie on 
manifolds having similar geometrical configurations and densities. However, real world 
datasets may contain multiple, intersecting or partially overlapped manifolds with dif­
ferent orientations and densities [224,225]. Additionally, the inter-class configurations 
may also vary, so that the enemy dissimilarities cannot be treated in a homogeneous 
manner for all class pairs. Fig. 6.2 exemplifies such a possible scenario.

-1-

-2-

Figure 6.2: Synthetic 3D dataset (based on [224]) composed of three classes (the ’|’ 
and S’ parts in the dollar shape and the Swiss roll) with samples lying on different 
manifolds.
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In such cases, an SSE algorithm based on standard weight calculations, may display 
poor class separability and fail to generate embeddings that appropriately maintain or 
reinforce friend proximity and enemy remoteness. Fig. 6.3 provides a representative 
demonstration of this situation for the dataset of Fig. 6.2. Figs. 6.3(a-c) display the 
similarity matrices W using three popular homogeneous proximity measures. Using 
negatively weighted enemy similarities to obtain dissimilarities, the three corresponding 
two-dimensional embeddings in Figs. 6.3(e-g) were generated. It can be seen that 
the separability in the embedding spaces is not enforced for all three classes. In Fig. 
6.3(d) the similarity matrix W is a heterogeneous block composition of the other three 
matrices, where the different friend (diagonal) and enemy (off-diagonal) blocks are 
calculated using different proximity measures. In the corresponding embeddings of 
Fig. 6.3(h), it can be seen that all three classes are sufficiently separated, leading 
potentially to more discriminant embeddings.

The objective of this work is to address the above issues, by allowing the proximity 
information stored in W to accommodate the geometric characteristics of the mani­
folds, the differing class distributions and their interrelationships. This is possible by 
incorporating heterogeneously calculated proximity information for the different blocks 
of W. A fairly general model definition for such a composite weight matrix is

Wij — i

/z(xt, Xj-) if iji = yj = Z A Xj- e IV>(xi, ki) A
xf e ivXxj-jfo),

-9pq{xi>Xj) if Vi = P A Xj £ NE(xi,kpq, q) A 
Vj = q A Xi £ NE(Xj, kpq,p),

0 otherwise.

(S.10)

In Eq. (6.10), the weight w^j for friends is controlled independently for each l^1 diagonal 
block by a different similarity measure /) (x^, ). To selectively enforce neighborhood 
localization, friendship is restricted to pairs of x* and Xj that are mutually the ki~ 
nearest friends of each other. The model allows for a different /)(•, •) and Jq for each 
class l e {1,..., c}. For the enemies, an individual similarity measure gpq{-r) is defined 
for each class pair (p,q) £ ,c}2 with p q. For simplicity here symmetry is
assumed, that is gpq = qqp. For neighborhood control, pairwise enmity between Xj and 
xj is defined only for samples mutually appearing within the A^-nearest enemies of 
each other. The set ArE(x^, kpq, q) denotes the /^-nearest enemies of xi from class g, 
and its formation is based on a search with the proximity function gpq{-, •).

Using this model definition, the similarity matrix W can now be expressed (as­
suming a simultaneous re-ordering of its rows and columns, to keep intra-class samples
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together in the form of blocks), as

- Fj G12 — Gis . . —Gic
rT"^12 f2 — G23 • • • -g2c

W=F-G= — ^13 -^23 F3 .. • -g3c

l -Gl ■ Fc

Each block Fj € ]RniXn; contains the pairwise similarities between samples from the 
Ith class, and each off-diagonal block Gpq G llnPXn'i holds the pairwise similarities of 
samples from the pth and the qth classes. F and G are the overall friend and enemy 
matrices. All F; and GPq blocks can be sparse depending on ki and kpq, and are 
symmetric as mutual friends and enemies are considered.

The identification of this model requires the fine-timing of the positive integer pa­
rameters ki, kpq, and the similarity functions //(■,*) and gPq(-, •)• In the form proposed 
by Eq. (6.10), there are c ki and /;(•, •) parameters, while c(c—1)/2 kpQ and gpq(’, *) ones 
for the enemy weights. For problems with very large number of classes, the model can 
be restricted to the use of c enemy blocks, by having gpq = gpr and kpq = kpr, Vr -/- q. 
In this case, only c integer kpq and function gIJq(■, ■) parameters are needed. The form of 
Eqs. (6.10), (6.11) is generic and can represent a large type of heterogeneous proximity 
models. For example, assuming a single ki and //(•, •) for all c classes and a single kpq 
and gpq{-,-) for all enemy pairs, other existing homogeneous proximity models can be 
obtained (with comparable neighborhood control), such as DNE, OLPP-R, SONPP, 
etc. The mechanism proposed for the identification of the model of Eq. (6.10), is 
described in detail in Section 6.2.

To generate the optimal embeddings Z, Eq. (6.2) is solved subject to different 
orthogonality constraints on Z, in order to keep the embedding coordinates different. 
In this work, the embeddings are expressed as linear combinations of the input features 
X, following [74], via the transformation Z = XP, where P is the m x b projection 
matrix. Finally, to flexibly utilize the proximity information stored in W = F — G, 
the distances between friends are minimised, while the distances between enemies are 
maximised in the embedding space, by obtaining the optimal projections

P* = argmin tr fpTX:rFXPl , (6.12)

PT(xTGX+AIm)P=r6

where F = D(F) — F and G — D(G) — G are the Laplacian forms of the friend 
and enemy proximity matrices. The parameter A is a regularization parameter acting 
as a mechanism for controlling the degree of importance of the enemy information. 
For example, for A — 0, the constraint of Eq. (6.12) assumes the standard form 
ZtGZ — Ifcxb [77], which enforces orthogonality of Z with respect to G. When A —> co
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the constraint becomes PTP = [72], which enforces orthogonality of the pro­
jections. The above optimization can be directly solved using generalized eigenvalue 
decomposition involving the two matrix expressions in the objective and the constraint 
of Eq. (6.12).

6.2 Evolutionary Induction

The proposed composite weighting matrix reduces the design of an SSE method to the 
modelling of a set of suitable similarity functions that correctly describe the underlying 
data structure. With no prior knowledge of the data distribution, and due to the dimen­
sionality of the problem, it is hard to suggest an adequate metric set. However, such 
similarity functions can be inferred from the dataset itself. A simple approach to model 
learning is given by grid search, where for a given set of N(i similarity metrics, and a clas­
sification problem with c class labels, jv^c+1)/2 p0SSjp]e combinations need to be tested 
as building blocks of the composite weighting matrix. Additionally, parameter fine- 
tuning needs to be done for each possible combination. Such process turns intractable 
as the number of classes and available similarity metrics increase. Evolutionary algo­
rithms have been used as a way to avoid the computationally burden of direct linear 
search for automatic design of classification systems [54,187,194,203,205,226-228]. In 
particular, GP has proven to be a suitable tool for classifier induction [229-232], feature 
extraction [191,233,234], and feature selection [205]. The powerful expressive ability 
of GP allows it to represent different classification models such as decision trees [235], 
classification rules [236], artificial neural networks [237] and many more. In the present 
work, GP is used to encode potential SSE methods into a hybrid chromosome, designed 
to mimic the structure of the composite weighting matrix proposed in the previous sec­
tion. Beside providing a suitable representation mechanism, GP is used to pose the 
problem of automatic design of SSE methods as an inference task, where potential 
models are proposed, evaluated and systematically modified to improve their quality. 
This work refers to the foregoing inference process as model induction. It resembles 
model selection in the sense that it picks the best performing model out of a set of po­
tential candidates, however model induction has the ability to generate new models if 
the existing ones perform poorly. This flexibility is granted by the breeding mechanism 
implemented through the genetic operators.

6.2.1 Chromosome Encoding

As previously mentioned, the constitution of each individual in the genetic population 
is given by a hybrid chromosome designed to accommodate the structure of the matrix 
shown in Eq. (6.11), which allows each block to be computed separately. Taking ad­
vantage of the class information the learning set can be split into c mutually exclusive
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Table 6.1: Example of the pairwise and matrix forms for various existing distance 
metrics (where o denotes the Hadamard product). The tp and tM columns are the 
corresponding times (seconds) taken to calculate all n x n distances of all sample pairs 
from a dataset with n = 1,000 samples and m = 20 features.

Metric definition tp tM
Pairwise Matrix

Cosine norm llxtlhllxjlk A(XXr)A
A = (I o (XXT))~2

17.60 0.06

Correlation |[CmXi||2||Cm,Xj||2 A(XCmXr)A
A = (Io(XCmXr))~5
C — T — h-1 1T

21.51 0.05

Kullback-Leibler (x* - Xj)Tlog2(Xi) A + At — (B + Br), 39.59 0.15
divergence ~l-(xj-xi)Tlog2(xJ) A = (BoI)l„g,

B = Xlog2(X:r)

Euclidean squared llXi-Xjlll A + At - 2XXr
A = (XXr o 1)1^1^

12.28 0.08

sets Xj = {xj : yj = 0/=i,2,...,c- Given the set X; with ni points, the block Fj can 
be computed using two mapping functions. The first one, which it is called pairwise 
representation, uses the mapping fi : Wn x —» M. The second mapping takes the
form Fi : WllXm x Mni><m —> En(Xn!, and will be called matrix representation. Pairwise 
representation is simple to define, but needs to be evaluated m x m times to compute 
its corresponding block matrix F/, while matrix representation requires only one evalu­
ation. Additionally, as can be seen from Table 6.1, the proposed matrix representation 
allows the expression of classic similarity metrics with only a few functions. Thus, 
beside speeding up computations, it simplifies the function set design as explained in 
the next section.

Although computationally faster, the use of matrix representation in GP involves 
the inclusion of syntactic rules governing the construction of potential models [238]. 
Strongly typed GP (STGP) is a GP variation where each terminal has an assigned 
data type, and every function has a return type determined by its arguments. To ben­
efit from the advantages of matrix representation, STGP is used to impose syntactic 
constraints to the learning problem through a robust function and terminal sets, which 
were specifically designed to grant the inductive engine with a powerful lexicon, able to 
not only express any existing SSE, but to create new ones. Hence, under the proposed 
representation, each individual in the GP population is encoded by an hybrid chromo-
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some [{J^u ki}, {QPq, kpq}, A], which comprises of two sets of parse-tree/scalar pairs, and 
a independent scalar A. Each pair encodes a similarity metric in matrix representation, 
and its corresponding neighbourhood size. The set {.^z, related to friends
connectivity for each class, is evaluated to build the on-diagonal blocks in Eq. (6.11), 
while the set {Qpq,kpq} consists of c(c— l)/2 pairs defining the off-diagonal blocks.

The selected hybrid chromosome required the design of suitable crossover and mu­
tation operators. Two types of crossover were designed to keep model coherence. 
QnePointXover is a simple one point crossover, where the trees representing each ma­
trix function in the sets {!F{\ and {Qpq} are treated as indivisible units, thus all the 
trees beyond the crossover point in either parent are swapped. SelectiveXover ran­
domly selects a tree in the same category for each parent, then it swaps randomly 
selected branches with the same return type. The corresponding scalars for each tree 
are swapped accordingly for both crossover operators. Mutation randomly selects a 
tree from any category and then it replaces an aleatory branch with a newly generated 
tree with the same return type. The scalar part of the selected pair is replaced by a 
random integer bounded between [1, min(n?, ng)] or between [l,ni - 1], if the tree is in 
the set {QPq} or in the set The optimization of the regularization parameter A
is performed as well by the evolutionary process by randomly changing its value every 
time a tree mutation is performed.

6.2.2 Fitness Function

The evolutionary nature of the proposed inducer requires a suitable mechanism to asses 
the quality of the individuals in the population. In this work, out-of-sample estimation 
error via cross-validation (CV) is adopted as fitness function, consequently the fittest 
individual will exhibit high classification performance. Thus the induction process 
can be modelled as follows. Given a family of potential models, a classifier ip, and a 
finite amount of learning data T = U split into training and validation fb 
sets, the optimal model [{Tf, &*}, {Gpq, kpq}, A*] is given by the solution to the bi-level 
optimisation problem

h
min J([{JT;, A:/}, {Gpq, kpq}, A]; T) = X] XJ ^ (XJP*))

i:=1 j'eUi

s.t. P = argmin tr [PTXTFXPl
x={Xfc|feeni}, L J

PeKmxb, Pr(XTGX-)-AIm)P=Ib

kpq,ki G N+, A > 0 (6.13)

where L(-) is the binary loss function between the label ?y7; and the prediction made by 
the classifier .

For the jth individual [{^/'^, /cp')}, {Qpq , kpq}Q^, A^] in the GP population, Eq. 
(6.13) computes the corresponding fitness function J(-) step by step as follows: (1) 
Determine the optimal projection matrix P* for the jth individual by solving the trace 
optimisation problem described Eq. (6.12), using the training set (2) Compute
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the projected features for both the training and validation sets and Of with the 
obtained projection matrix P*. (3) Perform classification using the projected features. 
(4) Repeat the process (1) to (3) over each split of a /i-fold cross validation (h-CV) 
scheme (i = 1, 2, h), and the averaged classification error over the h groups of
validation sets is used as the fitness function for the jth individual.

6.2.3 Function and Terminals

In order to perform a fair model selection, the proposed evolutionary inducer must 
have the capacity to generate any of the existing SSE methods. This depends on the 
proposed function and terminal sets, as they define the syntactic rules and vocabulary 
available to the genetic search. As previously mentioned, one of the reasons for adopting 
a matrix representation is that it considerable simplify the function set design, as only 
a few functions are needed to express classic similarity metrics. Let A and B be input 
matrices to any member of the function set, and C its output matrix. The basic 
function set needed to express all the similarity metrics in Table 6.1 is composed of 
arithmetic functions like addition, subtraction and multiplication, plus five specialised 
functions: Hadamard product defined as C = A o B <-+ cy = Oijbij] function centre, 
which generates a m x m centring matrix for a given n x m input matrix; function 
invsqrt, which delivers a diagonal matrix with ca = a^1^2 on its diagonal; function 
ones, which allows to create variable size matrices with all their elements equal to 
one; and function plog2, which transforms each m-dimensional sample vector Xj into a 
discrete probability vector c,;. To complement the set of arithmetic functions, left and 
right division were added, which implement right and left multiplication by the inverse 
(or pseudo-inverse) of its first and second argument, respectively; Hadamard division, 
defined as C = A 0 B ^ qj = ciij/biji and matrix transpose.

As most of the SSE methods are based on laplacian eigenmaps (LE) [71] or on 
locality linear embedding (LLE) [70], three more specialised functions were considered: 
function sdiag generates a diagonal matrix with its ith element equal to cu = J2j (Hj, 
thus providing a mechanism to create Laplacian style matrices; function recoef uses 
its input argument to generate LLE style regression coefficient matrices; and function 
exp provides a way to generate matrices with the same properties as the Gaussian 
kernel. The terminal set (Table 6.3) was indirectly defined by the function set, and 
consists of the training data X plus a few numeric constants. The complete function 
set, along with the symbol representing each member can be found in Table 6.2. The 
expressive power of the proposed function set is showed in Table 6.4, where selected 
SSE methods are expressed as similarities/dissimilarities matrix functions, using the 
proposed function and terminal sets. With this representation, similarities between the 
different methods can be drawn easily. For instance SONPP, DONPP and ONPP share 
the same expression to characterise similarities between friends, while they differ in the
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Table 6.2: Function set. The last column indicates the grammar for each member, 
where each rule is given as [argj : outi] for a one-input/one-output function, and as 
[(arg1,arg2) : outi] for a two-input/one-output function. C is an output matrix built 
with the evaluation of a given function member with A and/or B as input matrices. 
In refers to the column vector of size n with all its elements equal to one. refers to 
the pseudo-inverse of matrix A.

Symbol Arity Description Input/Output type

+, —,o,0 2 Matrix addition and 
subtraction, Hadamard 
product and division

[(g,g):g]> [(li,h):h], 
[(0>0):°]> [(rA):i’]i [(s,s):s], 
[(t,t):tj, [(u,u):u]

X 2 Matrix multiplication [{(hjf), (f,o), (r ,u)} :f],
[{(g?h) ? (°?g) 5 (s,t)} :g],

[{(g»f)»(s,u)}:o],
[{(f,s),(h,r)}:r],
[{(g,r),(o,s)}:s]

/ 2 Right matrix division. If B is 
square
C = A/B = AB1
C = AB^, otherwise

[(f,o):f], [(g,h):g],
[{(f >f) j(h,b), (h,c)}:h],
[(g>g):°]> [{(f»u),(h,t)}:r],
[{(gjt).^^)}:^

\ 2 Left matrix division. If A is 
square
C = A\B - A"1B
C = A^B, otherwise

[(h,f):f], [(o,g):g], [(g,g):h], 
[(f,f),(o,d):o], [{(g,s),(h,r)}:r], 
[{(f,r),(o,s)}:s]

('f 1 Matrix transpose [g:f], [f:g], [h:h], [o:o], [r:t],
M

ones 2 Variable size all-one matrix
P — 1 1 ^V-/ _L 72 -1- 772 j
C 6 Mnxm

[(a,d):u], [(b,b):h], [(d,d):o], 
[(b,a):r], [(d,a):s]

sdiag 1 If A e K" x R”\
C = Io(AlmlJ'), 
if A 6 *'*,
C = Io(AlJ)

[{f,h,r}:h], [|g,o,s}:o]

pdiag 1 Extracts the diagonal of a 
given square matrix.
C = (I o A)lm

[h:r],[o:s]
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Table 6.2: (continued)

Symbol Arity Description Input/Output type

recoef 1 Regression coeff. matrix [70] [f:h]

invsqrt 1 C = (I o A)-1/2 [h:h],[o:o]

centre 1 Centring matrix
f"1 — T It -i T ^ A mXmXm

[f:h],[g:o]

exp 1 Matrix exponential function
Cij — e(lij

[h:h],[o:o]

plog2 1 Cij =

log2f, i

Table 6.3: Terminal set indicating symbol and type used for each terminal along with 
its description.

Symbol Type Description
1 a Constant one

ni b Number of points in the block data
n c Number of points in the training data
m d Number of dimensions of the training data
X f Block data
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Table 6.4: Existing homogeneous SSE methods expressed using the employed ma­
trix notation, with single Fi and single Gpq (M; corresponds to the Ith block of 
the reconstruction coefficient matrix M in Eq. (6.7), also A = lnp^nq
B = (l o XjXp) l„5q?, C = 2XpXg ).

Method Fi Gpq

DNE [83] 1 -[T

MMC [75] J-1 iT _ li iT
m ni ni n^ni^ni lln Up-^Tlq

OLPP-R [78] Al tT
71; 0 (<7 + (A + B - 2C) 0 (A + B))

SONPP [72] Mi + Mf-M?Mi 0

DONPP [80] Mi + Mf - MfMi /^nplnq

ONPP-R [78] Mi+Mf -MfMi /51n.pln, 0 (CT + (A + B — 2C) 0 (A + B))

way they characterise the similarities among enemies.
The aforementioned function and terminal sets need a control mechanism to govern 

the way they are combined when generating new parse trees. Such mechanism is 
provided by a set of data types, along with a grammar which provides syntactic rules for 
the generation of trees to ensure they meet appropriate type constraints. The devised 
grammar can be found in Table 6.2, along with the proposed function set. To avoid 
overloading each function with argument parsing, it was decided to let STOP manage 
the problem by defining apparent data type duplicates, as can be seen in Table 6.5. 
Those apparent type duplicates differ in size, and are used to define a syntactic rule 
for each case. For instance, the type matrix has four apparent duplicates, allowing 
to express the behaviour of all the functions for different matrix sizes. Although the 
function set is mainly compose of simple arithmetic functions, its true power lies in 
the syntactic rules defined for each member. STGP requires that each terminal has its 
own data type, so that only certain functions are allowed to receive terminal nodes as 
arguments. Such data types can be found along the terminal set definition in Table 
6.3.

6.3 Experimental Results

6.3.1 Datasets

The proposed evolutionary framework, that for propose of brevity will be called Evo­
lutionary Embedding Analysis (EEA), was compared against the SSE methods shown 
in Table 6.4 in the classification task of six, real world datasets summarised in Table 
6.6. Such benchmark datasets were downloaded from [239], and partitioned for final 
model assesment with the help of 10-CV. Specifically, in each fold for each dataset, a
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Table 6.5: Types definition along with the symbol used for each type in the grammatical 
rules.

Symbol Type
a Scalar 1
b Scalar ni
c Scalar n
d Scalar m
f Matrix n x m
g Matrix m x n
h Matrix n x n
0 Matrix m x m
r Column n-dimensional vector
s Column m-dimensional vector
t Row n-dimensional vector
u Row Tridimensional vector

Table 6.6: Dataset summary

Dataset Features Samples
cancer 9 277
diabetes 8 768
flare-solar 9 1066
german 20 1000
heart 13 270
thyroid 5 215

90% split was used for the learning phase (i.e. learning data T = available
to the inducer) and the remaining 10% samples f were used to test the generalization 
performance of the porposed system. The entire inference task was repeated within 
each fold of the 10-CV model assessment. All mentioned datastes are benchmark, 
binary classification problems from application fileds such as medical diagnosis (e.g. 
cancer, diabetes, heart and thyroid), astronomy (e.g. flare-solar), and credit 
assignement (e.g. german). Among them, flare-solar and german are computation­
ally expensive problems due to its high number of instances, while german and heart 
can be benefited the most of dimensionality reduction.

6.3.2 Experimental Setup

All the experiments were run on an iMac with CPU Intel Core 2 Duo at 2.66 GHz, 4 GB 
RAM, OS X 10.6.4, and MATLAB 2009b. The GP algorithm was implemented using 
a modified version of GPTIPS [240]. For the competing SSE methods that require
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the definition of a inter- and intra-class neighbourhood, their respective number of 
neighbours were optimised by a simple evolutionary search implemented with help of 
a genetic algorithm (GA) run over 30 generations with a population of 10 individuals, 
cross-over rate of 70% and mutation rate of 30%. Each variable was encoded as a 
variable-length binary word. The intra-class neighbours were bounded within the range 
[1, rik — 1], thus the number of bits reserved were |_l°g2(nA;)J* Likewise, the inter-class 
neighbours between class p and class q were bounded within the range [1, min(??7J, nq) — 
1], giving a word length of |_log2(<rn/m(?r?,, bits. The number of extracted features 
b for the competing algorithms was encoded as well into the chromosome as a four-bit 
word. Since the objective of the evolutionary search for the competing algorithms is to 
perform model selection, the selected fitness function for the GA was cross-validation. 
To perform a fair comparison, parameter fine-tuning was conducted using the same 
partition scheme as previously described to perform final model assessment. Descriptive 
statistics for final model assessment are reported in Table 6.7.

6.3.3 Experimental Results and Analysis

Table 6.7 presents the performance of each selected SSE method and compares them 
with EEA. As can be seen, EEA presents better generalization performance in all 
the compared classification tasks. As expected, the classification performance for each 
benchmark problem varies depending on the competing SSE method. A measure of such 
variability is given by the average deviation from the ground truth for each competing 
method, taking EEA misclassification error as ground truth. Using this measure of devi­
ation, the benchmark problems can be ranked in decreasing order as follows: thyroid, 
flare-solar, diabetes, german, heart, and cancer. Nevertheless, since there is 
a trade-off between the number of reduced dimensions and classification performance, 
it is only fair to produce as well an analysis of the predicted number of dimensions 
for each competing method to completely characterise each problem. In Table 6.7 the 
optimal number of reduced dimensions learned for each competing SSE problem is also 
given.

A clear example of the interdependence between dimensionality reduction and clas­
sification performance is illustrated by the cancer dataset, which ranked last due to the 
high variability in the classification performance reported by the competing methods, 
however they agreed most of the time in the number of reduced dimensions, generating 
an average deviation of ±2.16 from the ground truth (i.e. d = 2 predicted by EEA). 
If the average deviation from the true estimate in the number of reduced dimensions 
is taken as a measure of the problem complexity, all the selected benchmark problems 
can be listed in decreasing order of complexity as follows: flare-solar, diabetes, 
german, thyroid, heart, and cancer. This apparent contradiction, where cancer 
problem can not be correctly classified in the subspace produced by all the competing
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Table 6.8: Best evolved models for each classification problem, along with its tree 
representation.

diabetes

Tx = XXr Ti = XXr Qxi = XXr

flare-solar

T\ = ones(n/,n/) T2 = ones(n(,ni) Q\2 = sdiag(ones(7i/, 1))

german

= ones(r?j,nj) = sdiag(X)

heart

•T7! = sdiag(X/ones(l,m)) JF2 = (Xr. * XT)\ones(7n,r)/) 4/12 = sdiag(X/ones(l,m)) 
+sdiag(X) 4-sdiag(X. * X)

thyroid

= ones(ni,nj) ^2 = ones(ni,nj)
./sdiag(ones(n/, n/))./sdiag(X)

4/12 = ones(n/,nj)
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SSE methods even though its deviation from ground truth in the number of reduced 
dimensions is low, can be easily explained by the no free lunch theorem. Clearly MMC, 
DNE, and DONPP are more suitable for this problem than the rest of the competing 
SSE methods.

Although most of the time the competing methods do not agree on the number 
of reduced dimensions, this situation is completely different for diabetes dataset, as 
all the selected SSE methods produce the same value for d. This could mislead the 
reader to think d = 5 is the true value for such quantity, however this hypothesis can 
be easily discarded by noting that EEA exhibits the lowest classification error among 
the competing methods. Besides showing the lowest misclassification error, EEA also 
shows the lowest number of reduced dimensions for all the benchmark problems. Thus, 
EEA effectively finds an optimal pareto point where both objectives, misclassification 
error and number of reduced dimensions, are jointly minimised.

Table 6.8 shows the best evolved models, as tree representation, in EEA for each 
classification problem. In general a correlation can observed between the complexity 
of the model and the number of original features, with german dataset being the only 
exception. Additionally, most of the evolved models make use of the term ones(?2p, np), 
which represents the binary adjacency matrix, indicating it plays a central role for SSE 
methods. Bear in mind that every time the term sdiag is used as the root node of 
trees in the set {Gpq}, a zero weight matrix is effectively used since only the off-diagonal 
elements of matrix Gvq are needed. For cancer dataset, EEA evolves a model that 
heavily weighs euclidean norm within the benign class (class label 2), as can be seen in 
Table 6.8, first row, second column.

On the other hand, although it uses a binary adjacency matrix to describe the 
relationships among enemies, the size of the neighbourhood considered is significant. 
Another example of complex data structure is given by heart dataset, where a dif­
ferent metric is used to weight the euclidean norm in the embedding subspace, but 
this time for the class label 1 (absence of heart disease). Contrary to cancer dataset, 
the neighbourhood considered is relatively small which indicates great overlapping be­
tween classes. The evolved model for diabetes highlights the use of the dot product 
to describe intra-class and inter-class relationships, suggesting both classes reside on 
the same manifold.
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6.4 Summary

This chapter introduced a paradigm for feature extraction with a closed analytical 
solution. Different from projection pursuit, spectral embedding methods find a pro­
jection matrix to a subspace where the distances among friends are minimised, while 
distances among enemies are maximised. The main contribution of this chapter is the 
definition of a heterogeneous proximity matrix, where the relations between enemies 
and friends are described through a set of different similarity metrics. Additionally, 
the evolutionary framework proposed in the last chapters is used as inducer engine to 
learn the desired set of similarity metrics. Thus, the proposed method finds an ad-hoc 
definition of similarities for the classification problem at hand such that the misclassifi- 
cation error is minimized in the projected subspace. Thus, the proposed EEA method 
effectively finds an optimal pareto point, where two apparent contradicting objectives, 
misclassification error and number of reduced dimensions, are jointly optimised.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

A human-competitive alternative in the design of projection methods has been pre­
sented in this work. The proposed technique extracts discriminative features that 
successfully assist in the problem of classification. Two representation formalisms for 
feature extraction have been studied, namely PP and SE methods. For each case, the 
problem of tailoring a feature extraction method to a given classification problem was 
modelled as a black-box approach to system identification, where learning of the model 
structure and estimation of its parameters were tackled by an evolutionary search im­
plemented via genetic programming.

Interesting dynamics were observed within the evolution process as result of the 
proposed hybrid chromosome. Although diversity in the initial population encouraged 
a deeper search of the solution space, seeding the population with known solutions, 
available from the literature, allowed the evolutionary search to converge faster. Once a 
good structure wan discovered (i.e. a projection index leading to discriminative features 
for PP, or a combination of similarity metrics inducing discriminative subspaces in the 
case of SE), its phenotype was spread among the population with variations only on the 
scalar part, controlled by mutation. It was observed that gaussian mutation performed 
a local search in the vicinity of potential solutions, while uniform mutation promoted 
a more global search to avoid local minima.

The final outcome of PP is a set of projection basis that maps the original input 
space into a lower-dimensional feature space, where the information described by the 
projection index is highlighted. Although previous research has employed genetic algo­
rithms to search for an optimal projection matrix instead of looking for the structure 
of a projection index [54], such formulation lacks information as why specific features 
were selected or combined in a determined manner. The proposed method indirectly 
conducts an exploratory analysis of the data, as individual models are evolved, and 
yields a model that best describes the information needed to be preserved into the new 
feature space as to improve classification, giving in this way a new insight to the user.
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For the case of linear projections, the proposed evolutionary framework was able to 
learn an optimal projection index which delivered useful features for classification. The 
inclusion of a stopping criterion in sequential PP allowed us to determine the number 
of latent variables in an automated way. For the evolved index, the number of latent 
variables identified by the stopping criterion was not always lower than those for the 
standard indices. Nevertheless, experiments confirmed the proposed evolutionary pro­
jection pursuit system helps to capture as much structure as possible when performing 
dimensionality reduction. Additionally, with the proposed function and terminal sets 
a hybridisation of supervised and unsupervised feature extraction was achieved in the 
context of projection pursuit, boosting in this way the classification abilities of the 
proposed system.

It was observed that for the nonlinear extension of PP, the nonlinear classification 
boundaries a kNN classifier implicitly builds, diminish the effect of the kernel-induced 
nonlinear extracted features. The proposed method searches for an optimal feature 
kernel-based projector, which needs to separate the nonlinearly separable data in a 
way to comply optimally with the classifiers boundaries. It seems that using the kNN, 
the PP optimisation was not pushed or forced adequately to take the very best out 
of the ability of the kernel-based PP feature extraction stage. After spending some­
time experimenting with different classifiers, it was found that the best choice for the 
powerful kernel-based PP was the simplest classifier, that is an LDA which bears no 
hyperparameters and is very easy to train. The rationale is that the linear decision 
boundaries seemed to encourage better the induction of highly discriminant features in 
the kernel-induced space. Additionally, although a more complex classifier bears more 
computational burden, this burden does not guarantee a better performance, as shown 
in the case of EKPP+kNN and EKPP+LDA. The claim that combining two stages 
of nonlinearity discrimination is detrimental to classification was further supported by 
experiments with KLPP. This time LPP provided the first layer of nonlinear discrimina­
tion, on top of that the data is previously preprocessed with a kernel mapping function, 
providing the second layer.

Regarding spectral embedding methods, it was detected that a correlation exist 
between the complexity of the optimal evolved model and the number of original fea­
tures, indicating more work needs to be done to reduce high-dimensional datasets. 
Additionally, it was discovered that binary adjacency matrices play an important role 
in the performance of SSE methods, as most of the evolved models included at least 
one such term. The proposed hypothesis of heterogenous manifolds residing in the 
non-observable space was ratified by experimental results, where only one out of six 
tested datasets resulted in a homogeneous similarity metric measuring both inter-class 
and intra-class relationships. Furthermore, with this results it was shown that the 
proposed evolutionary framework can select when to use single or multiple similarity
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metrics.
Although the present work showed to be a human-competitive alternative in the 

design of projection methods for feature extraction, its greatest drawback, inherited 
from the use of evolutionary methodologies, is the large learning time taken to induce 
the desired model. Different techniques such as seeding of the initial population, early 
stoping, and adaptive mutation rate were successfully implemented, showing a consid­
erable reduction of the learning curve without sacrificing classification performance. 
For the case of spectral embedding methods, besides applying the aforementioned tech­
niques to the evolutionary loop, employing matrix notation in the evolved similarity 
metrics represented a considerable saving in processing time. Although a direct imple­
mentation in C/C++ could have speeded up the evolutionary process, developing of a 
robust library in C/C++ with reliable algorithms commonly used in machine learning 
would have taken more time than available, thus the option to implement and reuse 
MATLAB code was justified for a better development time.

7.2 Future Work

One of the aspects that motivated the present work is the ability of feature extraction 
to compact information into a set of meaningful features. The framework exposed in 
this thesis can be adapted to explore instance reduction and prototype abstraction for 
instance-based learning algorithms. In this case, instead of embedding important infor­
mation into the feature space, it is the number of samples that will be reduced, trying 
to preserve the local structure of the data. This work may be useful to reduce the large 
computational complexity and long response times affecting instance-based learning al­
gorithms such as the nearest neighbour rule. Additionally, since feature extraction and 
prototype reductions could be explained by the same approach. Simultaneous feature 
and prototype abstraction could be another interesting topic to explore.

As GP lies at the heart of the present thesis, a number of possible future stud­
ies can be carried to improve the training time by developing new genetic operators. 
Additionally, further information regarding the targeted problem can be encoded into 
the foregoing operators. For example, in the case of spectral embedding, topological- 
oriented genetic operators could be designed to enforce evolution of homeomorphic 
functions that could guarantee preservation of certain geometrical properties in the 
embedding space. Regarding implementation, further experiments can be carried to 
explore an efficient genetic programming implementation in a parallel computer or 
cluster, providing a framework to investigate island models, and interaction of different 
species with techniques such as migration and selective pressure.

Although the impact of the classifier choice for EKPP was studied, further experi­
ments need to be done to completely characterise the performance of several classifiers 
with the proposed evolutionary framework. Even better, jointly identification of the
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structure not only of the feature extraction stage, but also of the classifier, could be 
performed by introducing a multigene chromosome, encoding in one or more genes the 
targeted classifier structure. Nevertheless, one must proceed with caution as the rep­
resentation formalism of GP restrict the classifier to take one of three models: decision 
tree, discriminant function, or classification rules. A single instance of these models 
can discriminate between two classes, but an extra parameter may be needed to control 
the number of instances needed for a multiclass classification problem. Which lead us 
to another interesting topic for future research, that is the study of classifier ensem­
bles. With the ability of evolving optimal individual classifiers to tackle a multiclass 
classification problem, an interesting question to consider would be whether a set of 
also optimal instances would perform better in combination than that single multiclass 
classifier.

The present work uses classification accuracy as performance measure to select an 
optimal model, however a different objective functions could also be used, focusing in 
other aspects of the model, such as minimum description length or Akaike information 
criterion. Furthermore, a composite metric could be designed to cover model complex­
ity and classification accuracy such that the evolved model not only presents optimal 
performance for the selected classification task, but also low complexity in its structure 
to allow the user better interpretation of the results. Different techniques developed to 
design and assess classifier ensembles could be extended to help drafting a new fitness 
function for the proposed evolutionary inducer, focusing in the aforementioned aspects 
of the model.

Since the current implementation was carried using MATLAB, problems related 
with memory allocation and computing time can be overcome by using other program­
ming tools such as 0/C++ in combination with the aforesaid parallel implementation. 
The only disadvantage C/C-H- programming presents is the lack of a reliable imple­
mentation of common linear algebra algorithms. Although projects such as CLAPACK, 
PLASMA, ScaLAPACK and MAGMA have been recently supported by a herd of devel­
opers and increasingly popular among programmers, they still need considerable work 
to fine tune them to application specific tasks. The same story goes for an out-of-the- 
shelf GP implementation, where it is difficult to exploit the flexible representation due to 
C/C++ rigid programming structures. Therefore, it is suggested to approach C/C++ 
development with caution, as the reader will need to invest a considerable amount of 
time developing a robust library with reliable algorithms instead of researching the 
aforementioned topics.
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