3,701 research outputs found

    GPPE: a method to generate ad-hoc feature extractors for prediction in financial domains

    Get PDF
    When dealing with classification and regression problems, there is a strong need for high-quality attributes. This is a capital issue not only in financial problems, but in many Data Mining domains. Constructive Induction methods help to overcome this problem by mapping the original representation into a new one, where prediction becomes easier. In this work we present GPPE: a GP-based method that projects data from an original data space into another one where data approaches linear behavior (linear separability or linear regression). Also, GPPE is able to reduce the dimensionality of the problem by recombining related attributes and discarding irrelevant ones. We have applied GPPE to two financial domains: Bankruptcy prediction and IPO Underpricing prediction. In both cases GPPE automatically generated a new data representation that obtained competitive prediction rates and drastically reduced the dimensionality of the problem.Publicad

    Rough sets, their extensions and applications

    Get PDF
    Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use of imperfect knowledge. Despite its recency, the theory and its extensions have been widely applied to many problems, including decision analysis, data-mining, intelligent control and pattern recognition. This paper presents an outline of the basic concepts of rough sets and their major extensions, covering variable precision, tolerance and fuzzy rough sets. It also shows the diversity of successful applications these theories have entailed, ranging from financial and business, through biological and medicine, to physical, art, and meteorological

    Categorical Ontology of Complex Systems, Meta-Systems and Theory of Levels: The Emergence of Life, Human Consciousness and Society

    Get PDF
    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quantum states emerging from complex quantum dynamics of interacting networks of biomolecules, such as proteins and nucleic acids that are now collectively defined as quantum interactomics. On the other hand, the time dependent evolution over several generations of cancer cells --that are generally known to undergo frequent and extensive genetic mutations and, indeed, suffer genomic transformations at the chromosome level (such as extensive chromosomal aberrations found in many colon cancers)-- cannot be correctly represented in the ‘standard’ terms of quantum automaton modules, as the normal somatic cells can. This significant difference at the cancer cell genomic level is therefore reflected in major changes in cancer cell interactomics often from one cancer cell ‘cycle’ to the next, and thus it requires substantial changes in the modeling strategies, mathematical tools and experimental designs aimed at understanding cancer mechanisms. Novel solutions to this important problem in carcinogenesis are proposed and experimental validation procedures are suggested. From a medical research and clinical standpoint, this approach has important consequences for addressing and preventing the development of cancer resistance to medical therapy in ongoing clinical trials involving stage III cancer patients, as well as improving the designs of future clinical trials for cancer treatments.\ud \ud \ud KEYWORDS: Emergence of Life and Human Consciousness;\ud Proteomics; Artificial Intelligence; Complex Systems Dynamics; Quantum Automata models and Quantum Interactomics; quantum-weave dynamic patterns underlying human consciousness; specific molecular processes underlying extensive memory, learning, anticipation mechanisms and human consciousness; emergence of human consciousness during the early brain development in children; Cancer cell ‘cycling’; interacting networks of proteins and nucleic acids; genetic mutations and chromosomal aberrations in cancers, such as colon cancer; development of cancer resistance to therapy; ongoing clinical trials involving stage III cancer patients’ possible improvements of the designs for future clinical trials and cancer treatments. \ud \u

    Late-Breaking Papers of EuroGP-99

    Get PDF
    This booklet contains the late-breaking papers of the Second European Workshop on Genetic Programming (EuroGP’99) held in G"oteborg Sweden 26–27 May 1999. EuroGP’99 was one of the EvoNet workshops on evolutionary computing, EvoWorkshops’99. The purpose of the late-breaking papers was to provide attendees with information about research that was initiated, enhanced, improved, or completed after the original paper submission deadline in December 1998. To ensure coverage of the most up-to-date research, the deadline for submission was set only a month before the workshop. Late-breaking papers were examined for relevance and quality by the organisers of the EuroGP’99, but no formal review process took place. The 3 late-breaking papers in this booklet (which was distributed at the workshop) were presented during a poster session held on Thursday 27 May 1999 during EuroGP’99. Authors individually retain copyright (and all other rights) to their late-breaking papers. This booklet is available as a technical report SEN-R9913 from Centrum voor Wiskunde en Informatica, Kruislaan 413, NL-1098 SJ Amsterdam http://www.cwi.nl/static/publications/reports/reports.htm
    • …
    corecore