18 research outputs found

    Genetic algorithms with elitism-based immigrants for changing optimization problems

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2007.Addressing dynamic optimization problems has been a challenging task for the genetic algorithm community. Over the years, several approaches have been developed into genetic algorithms to enhance their performance in dynamic environments. One major approach is to maintain the diversity of the population, e.g., via random immigrants. This paper proposes an elitism-based immigrants scheme for genetic algorithms in dynamic environments. In the scheme, the elite from previous generation is used as the base to create immigrants via mutation to replace the worst individuals in the current population. This way, the introduced immigrants are more adapted to the changing environment. This paper also proposes a hybrid scheme that combines the elitism-based immigrants scheme with traditional random immigrants scheme to deal with significant changes. The experimental results show that the proposed elitism-based and hybrid immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments

    Genetic algorithms with elitism-based immigrants for dynamic shortest path problem in mobile ad hoc networks

    Get PDF
    This article is posted here with permission from the IEEE - Copyright @ 2009 IEEEIn recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks (ANNs), genetic algorithms (GAs), particle swarm optimization (PSO), etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile ad hoc network (MANET), wireless sensor network (WSN), etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, that is, the network topology changes over time due to energy conservation or node mobility. Therefore, the SP problem turns out to be a dynamic optimization problem (DOP) in MANETs. In this paper, we propose to use elitism-based immigrants GA (EIGA) to solve the dynamic SP problem in MANETs. We consider MANETs as target systems because they represent new generation wireless networks. The experimental results show that the EIGA can quickly adapt to the environmental changes (i.e., the network topology change) and produce good solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Genetic algorithms with elitism-based immigrants for dynamic load balanced clustering problem in mobile ad hoc networks

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2011 IEEEIn recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile networks [mobile ad hoc networks (MANETs)], wireless sensor networks, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, i.e., the network topology changes over time due to energy conservation or node mobility. Therefore, the SP routing problem in MANETs turns out to be a dynamic optimization problem. In this paper, we propose to use GAs with immigrants and memory schemes to solve the dynamic SP routing problem in MANETs. We consider MANETs as target systems because they represent new-generation wireless networks. The experimental results show that these immigrants and memory-based GAs can quickly adapt to environmental changes (i.e., the network topology changes) and produce high-quality solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1 and Grant EP/E060722/2

    Decision-based genetic algorithms for solving multi-period project scheduling with dynamically experienced workforce

    Get PDF
    The importance of the flexibility of resources increased rapidly with the turbulent changes in the industrial context, to meet the customers’ requirements. Among all resources, the most important and considered as the hardest to manage are human resources, in reasons of availability and/or conventions. In this article, we present an approach to solve project scheduling with multi-period human resources allocation taking into account two flexibility levers. The first is the annual hours and working time regulation, and the second is the actors’ multi-skills. The productivity of each operator was considered as dynamic, developing or degrading depending on the prior allocation decisions. The solving approach mainly uses decision-based genetic algorithms, in which, chromosomes don’t represent directly the problem solution; they simply present three decisions: tasks’ priorities for execution, actors’ priorities for carrying out these tasks, and finally the priority of working time strategy that can be considered during the specified working period. Also the principle of critical skill was taken into account. Based on these decisions and during a serial scheduling generating scheme, one can in a sequential manner introduce the project scheduling and the corresponding workforce allocations

    Adaptive primal-dual genetic algorithms in dynamic environments

    Get PDF
    This article is placed here with permission of IEEE - Copyright @ 2010 IEEERecently, there has been an increasing interest in applying genetic algorithms (GAs) in dynamic environments. Inspired by the complementary and dominance mechanisms in nature, a primal-dual GA (PDGA) has been proposed for dynamic optimization problems (DOPs). In this paper, an important operator in PDGA, i.e., the primal-dual mapping (PDM) scheme, is further investigated to improve the robustness and adaptability of PDGA in dynamic environments. In the improved scheme, two different probability-based PDM operators, where the mapping probability of each allele in the chromosome string is calculated through the statistical information of the distribution of alleles in the corresponding gene locus over the population, are effectively combined according to an adaptive Lamarckian learning mechanism. In addition, an adaptive dominant replacement scheme, which can probabilistically accept inferior chromosomes, is also introduced into the proposed algorithm to enhance the diversity level of the population. Experimental results on a series of dynamic problems generated from several stationary benchmark problems show that the proposed algorithm is a good optimizer for DOPs.This work was supported in part by the National Nature Science Foundation of China (NSFC) under Grant 70431003 and Grant 70671020, by the National Innovation Research Community Science Foundation of China under Grant 60521003, by the National Support Plan of China under Grant 2006BAH02A09, by the Engineering and Physical Sciences Research Council (EPSRC) of U.K. under Grant EP/E060722/1, and by the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems

    Get PDF
    Copyright @ Springer-Verlag 2008Dynamic optimization problems challenge traditional evolutionary algorithms seriously since they, once converged, cannot adapt quickly to environmental changes. This paper investigates the application of memetic algorithms, a class of hybrid evolutionary algorithms, for dynamic optimization problems. An adaptive hill climbing method is proposed as the local search technique in the framework of memetic algorithms, which combines the features of greedy crossover-based hill climbing and steepest mutation-based hill climbing. In order to address the convergence problem, two diversity maintaining methods, called adaptive dual mapping and triggered random immigrants, respectively, are also introduced into the proposed memetic algorithm for dynamic optimization problems. Based on a series of dynamic problems generated from several stationary benchmark problems, experiments are carried out to investigate the performance of the proposed memetic algorithm in comparison with some peer evolutionary algorithms. The experimental results show the efficiency of the proposed memetic algorithm in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant Nos. 70431003 and 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, and the National Support Plan of China under Grant No. 2006BAH02A09 and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01

    Particle swarm optimization with composite particles in dynamic environments

    Get PDF
    This article is placed here with the permission of IEEE - Copyright @ 2010 IEEEIn recent years, there has been a growing interest in the study of particle swarm optimization (PSO) in dynamic environments. This paper presents a new PSO model, called PSO with composite particles (PSO-CP), to address dynamic optimization problems. PSO-CP partitions the swarm into a set of composite particles based on their similarity using a "worst first" principle. Inspired by the composite particle phenomenon in physics, the elementary members in each composite particle interact via a velocity-anisotropic reflection scheme to integrate valuable information for effectively and rapidly finding the promising optima in the search space. Each composite particle maintains the diversity by a scattering operator. In addition, an integral movement strategy is introduced to promote the swarm diversity. Experiments on a typical dynamic test benchmark problem provide a guideline for setting the involved parameters and show that PSO-CP is efficient in comparison with several state-of-the-art PSO algorithms for dynamic optimization problems.This work was supported in part by the Key Program of the National Natural Science Foundation (NNSF) of China under Grant 70931001 and 70771021, the Science Fund for Creative Research Group of the NNSF of China under Grant 60821063 and 70721001, the Ph.D. Programs Foundation of the Ministry of education of China under Grant 200801450008, and by the Engineering and Physical Sciences Research Council of U.K. under Grant EP/E060722/1

    Genetic algorithms with memory- and elitism-based immigrants in dynamic environments

    Get PDF
    Copyright @ 2008 by the Massachusetts Institute of TechnologyIn recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/E060722/01
    corecore