3 research outputs found

    Modeling Based on Elman Wavelet Neural Network for Class-D Power Amplifiers

    Get PDF
    In Class-D Power Amplifiers (CDPAs), the power supply noise can intermodulate with the input signal, manifesting into power-supply induced intermodulation distortion (PS-IMD) and due to the memory effects of the system, there exist asymmetries in the PS-IMDs. In this paper, a new behavioral modeling based on the Elman Wavelet Neural Network (EWNN) is proposed to study the nonlinear distortion of the CDPAs. In EWNN model, the Morlet wavelet functions are employed as the activation function and there is a normalized operation in the hidden layer, the modification of the scale factor and translation factor in the wavelet functions are ignored to avoid the fluctuations of the error curves. When there are 30 neurons in the hidden layer, to achieve the same square sum error (SSE) ϵmin=103\epsilon_{min}=10^{-3}, EWNN needs 31 iteration steps, while the basic Elman neural network (BENN) model needs 86 steps. The Volterra-Laguerre model has 605 parameters to be estimated but still can't achieve the same magnitude accuracy of EWNN. Simulation results show that the proposed approach of EWNN model has fewer parameters and higher accuracy than the Volterra-Laguerre model and its convergence rate is much faster than the BENN model

    Genetic algorithm for Artificial Neural Network training for the purpose of Automated Part Recognition

    Get PDF
    Object or part recognition is of major interest in industrial environments. Current methods implement expensive camera based solutions. There is a need for a cost effective alternative to be developed. One of the proposed methods is to overcome the hardware, camera, problem by implementing a software solution. Artificial Neural Networks (ANN) are to be used as the underlying intelligent software as they have high tolerance for noise and have the ability to generalize. A colleague has implemented a basic ANN based system comprising of an ANN and three cost effective laser distance sensors. However, the system is only able to identify 3 different parts and needed hard coding changes made by trial and error. This is not practical for industrial use in a production environment where there are a large quantity of different parts to be identified that change relatively regularly. The ability to easily train more parts is required. Difficulties associated with traditional mathematically guided training methods are discussed, which leads to the development of a Genetic Algorithm (GA) based evolutionary training method that overcomes these difficulties and makes accurate part recognition possible. An ANN hybridised with GA training is introduced and a general solution encoding scheme which is used to encode the required ANN connection weights. Experimental tests were performed in order to determine the ideal GA performance and control parameters as studies have indicated that different GA control parameters can lead to large differences in training accuracy. After performing these tests, the training accuracy was analyzed by investigation into GA performance as well as hardware based part recognition performance. This analysis identified the ideal GA control parameters when training an ANN for the purpose of part recognition and showed that the ANN generally trained well and could generalize well on data not presented to it during training

    Intelligent Diagnosis and Smart Detection of Crack in a Structure from its Vibration Signatures

    Get PDF
    In recent years, there has been a growing interest in the development of structural health monitoring for vibrating structures, especially crack detection methodologies and on-line diagnostic techniques. In the current research, methodologies have been developed for damage detection of a cracked cantilever beam using analytical, fuzzy logic, neural network and fuzzy neuro techniques. The presence of a crack in a structural member introduces a local flexibility that affects its dynamic response. For finding out the deviation in the vibrating signatures of the cracked cantilever beam the local stiffness matrices are taken into account. Theoretical analyses have been carried out to calculate the natural frequencies and mode shapes of the cracked cantilever beam using local stiffness matrices. Strain energy release rate has been used for calculating the local stiffness of the beam. The fuzzy inference system has been designed using the first three relative natural frequencies and mode shapes as input parameters. The output from the fuzzy controller is relative crack location and relative crack depth. Several fuzzy rules have been developed using the vibration signatures of the cantilever beam. A Neural Network technique using multi layered back propagation algorithm has been developed for damage assessment using the first three relative natural frequencies and mode shapes as input parameters and relative crack location and relative crack depth as output parameters. Several training patterns are derived for designing the Neural Network. A hybrid fuzzy-neuro intelligent system has been formulated for fault identification. The fuzzy controller is designed with six input parameters and two output parameters. The input parameters to the fuzzy system are relative deviation of first three natural frequencies and first three mode shapes. The output parameters of the fuzzy system are initial relative crack depth and initial relative crack location. The input parameters to the neural controller are relative deviation of first three natural frequencies and first three mode shapes along with the interim outputs of fuzzy controller. The output parameters of the fuzzy-neuro system are final relative crack depth and final relative crack location. A series of fuzzy rules and training patterns are derived for the fuzzy and neural system respectively to predict the final crack location and final crack depth.To diagnose the crack in the vibrating structure multiple adaptive neuro-fuzzy inference system (MANFIS) methodology has been applied. The final outputs of the MANFIS are relative crack depth and relative crack location. Several hundred fuzzy rules and neural network training patterns are derived using natural frequencies, mode shapes, crack depths and crack locations. The proposed research work aims to broaden the development in the area of fault detection of dynamically vibrating structures. This research also addresses the accuracy for detection of crack location and depth with considerably low computational time. The objective of the research is related to design of an intelligent controller for prediction of damage location and severity in a uniform cracked cantilever beam using AI techniques (i.e. Fuzzy, neural, adaptive neuro-fuzzy and Manfis)
    corecore