2,276 research outputs found

    Performance-based control system design automation via evolutionary computing

    Get PDF
    This paper develops an evolutionary algorithm (EA) based methodology for computer-aided control system design (CACSD) automation in both the time and frequency domains under performance satisfactions. The approach is automated by efficient evolution from plant step response data, bypassing the system identification or linearization stage as required by conventional designs. Intelligently guided by the evolutionary optimization, control engineers are able to obtain a near-optimal ‘‘off-thecomputer’’ controller by feeding the developed CACSD system with plant I/O data and customer specifications without the need of a differentiable performance index. A speedup of near-linear pipelineability is also observed for the EA parallelism implemented on a network of transputers of Parsytec SuperCluster. Validation results against linear and nonlinear physical plants are convincing, with good closed-loop performance and robustness in the presence of practical constraints and perturbations

    Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

    Full text link
    PID control architectures are widely used in industrial applications. Despite their low number of open parameters, tuning multiple, coupled PID controllers can become tedious in practice. In this paper, we extend PILCO, a model-based policy search framework, to automatically tune multivariate PID controllers purely based on data observed on an otherwise unknown system. The system's state is extended appropriately to frame the PID policy as a static state feedback policy. This renders PID tuning possible as the solution of a finite horizon optimal control problem without further a priori knowledge. The framework is applied to the task of balancing an inverted pendulum on a seven degree-of-freedom robotic arm, thereby demonstrating its capabilities of fast and data-efficient policy learning, even on complex real world problems.Comment: Accepted final version to appear in 2017 IEEE International Conference on Robotics and Automation (ICRA
    corecore