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Abstract -- This paper develops a parallel evolutionary algorithm based design unification of linear 

control systems in both the time and the frequency domains under performance satisfactions. A 

speedup of near-linear pipelinability is observed for the parallelism implemented on a network of 

transputers of Parsytec SuperCluster. The approach is capable of tackling practical constraints such as 

actuator saturation or transportation delays, and can be automated by efficient evolution from plant 

step response data, bypassing the system identification or linearization stage. Intelligently guided by 

the evolutionary optimization, control engineers are able to obtain an optimal “off-the-computer” 

controller by feeding the developed CACSD system with plant I/O data and customer specifications, 

without the need of formulating a differentiable performance index or linearly parameterization. 

Validation results against linear and nonlinear physical plants are convincing, with excellent closed-

loop responses and good robustness in the presence of practical constraints and perturbations. 
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I.  INTRODUCTION 

 

Over the past few decades there have been great advances in the development of linear control 

theories and algorithms, ranging from classical proportional plus integral plus derivative (PID), phase 

lead/lag and pole-placement to more sophisticated optimal, adaptive and modern robust control. Each 

of these schemes, however, has its own control characteristic or design strategy to tackle a specific 

class of control problems. For example, a controller designed from the LQR scheme tends to offer a 

minimized quadratic error with some minimal control effort to overcome actuator saturation, while an 

H∞ controller offers robust performance with a minimal mixed sensitivity function to maintain system 

response and error signals within pre-specified tolerances despite uncertainties. With so many 

mutually independent schemes available to control engineers, however, an increasing challenge has 

been imposed to the engineers to select an appropriate control law that best suits the application on 

hand, and to determine the best controller structure with an optimal parameter set that best meets the 

performance requirements before any practical implementations are attempted [1-4]. 

 

These design deficiencies have prompted the desire of unifying Linear Time-invariant (LTI) 

control schemes based on performance requirements or customer specifications, eliminating the 

need of pre-selecting a control law or constrained in a particular design domain [1-4]. With only 

minor storage and computational overheads, such a performance-prioritised uniform LTI control 

(ULTIC) can be easily understood and applicable to practical engineers in simplifying their design 

and implementation tasks. Unlike existing individual LTI control scheme, it is capable of 

incorporating performance specifications in the time or frequency domains that engineers are 

familiar with, and takes into account the practical system constraints, such as actuator saturation 

and time delays. 

 



 3

Developing an ULTIC control system, however, involves simultaneously determining multiple 

coefficients by optimizing a performance index in a usually noisy and discontinuous multi-modal cost 

surface. Complexity, nonlinearity and constraints in practical systems, such as voltage/current limits, 

saturation, noise and disturbance, make the design problem difficult to solve by conventional 

analytical or numerical means [4-6]. Moreover, the index that reflects practical specifications may not 

be “well-behaved” and conventional search may only lead to local optimum in the multi-modal multi-

dimensional space [5-7]. Although existing modern design succeeds in solving certain class of control 

problems with derived analytical solutions, these methods only confined to a narrow domain with 

known limitations such as numerically or physically ill-posed problems, and difficult to take into 

account the usual hard constraints exist in practical systems [4,8,9]. Such a controller may lead to 

system degradation or may not realize the full potential of the controller when on-line implementation 

is performed. Therefore it is difficult to employ conventional methods to achieve a computer-

automated design that provides highest possible performance and best meets the customer design 

specifications automatically. 

 

One possible approach for the design of ULTIC control system is to exhaustively search for all 

candidate controllers in the solution space. This is, however, practically impossible as an enumerative 

algorithm requires exponential search time and will thus easily break down due to the high parametric 

dimensionality of the problems. In contrast, evolutionary algorithm [10,11] that emulating the 

Darwinian-Wallace principle of “survival-of-the-fittest” in natural selection and genetics, is a 

polynomial algorithm that improves tractability and robustness in global optimizations by slightly 

trading off precision in a non-deterministic manner. Such an algorithm can “intelligently” explore, 

without the need of a differentiable or well-behaved performance index, a noisy and poorly understood 

space at multiple points by a population of candidate solutions leading to several globally optimized 

answers. Owning to its good robustness, high efficiency and global capability, the evolutionary 
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algorithm is naturally suited for ULTIC system design optimization. The EA has been successfully 

applied to various control applications such as the PID controller design [12,13], pole placement 

adaptive control [14], linear control [15], optimal control [16,17], nonlinear and sliding mode control 

[18,19], robust stability [20], fuzzy logic control [21] and neural networks [22,23]. 

 

The issues of ULTIC design strategy and its problem formulation in both the frequency and time 

domain is presented in Section II. Section III illustrates a powerful evolutionary algorithm and its 

parallelism to achieve design automation of an ULTIC system. Apart from using a model, Section IV 

shows that the design can equivalently be achieved based on plant input-output (I/O) data directly, 

bypassing the system identification or linearization stage as required by usual control schemes. In 

Section V, the applicability of the ULTIC design is demonstrated and implemented on two physical 

plants, including a multi-input multi-output nonlinear coupled liquid-level system. Finally, conclusions 

are drawn in Section VI. 

 

II.  UNIFICATION OF LTI CONTROL LAWS 

 

Almost all types of LTI controllers are in the form of a transfer function matrix or its bijective state 

space equation when the design is eventually complete. The order and the coefficients of the transfer 

function, however, vary with the control law or a single design objective. For example, a µ-controller 

tends to offer robust performance, while an optimal controller to offer minimum variance of the 

closed-loop system. Although the obtained coefficients or orders of these two types of controllers may 

be different, the common purpose of both control laws is to devise an LTI controller that could 

guarantee a closed-loop performance to meet certain customer specifications in either the time or the 

frequency domain. 
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Therefore, a step towards unification of LTI controllers is to coin the design by meeting practical 

performance requirements, instead of by a specific scheme, or in a particular domain. Thus, a 

universal LTI controller as shown in Fig. 1 can be described by 
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where ai, bi ∈ ℜ+ ∀ i ∈ {0, 1, ..., n} are the coefficients to be determined in the design to satisfy 

certain specifications; L -1[E(s)] = e(t) is the error input to the controller, the amplitude of which may 

be restricted by an A/D converter; L -1[U(s)] = u(t) is the controller output voltage with a hard 

constraint saturation range such as the limited drive voltage or current. In Fig. 1, the plant G(s) to be 

controlled undergoes a number of perturbations including system time delays, multiplicative 

perturbations ∆m(s) and external disturbance d exist in most practical systems. 
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Fig. 1  A practical unity negative feedback control system 

 

The following formalizes the design issue and to develop an evolutionary computation based auto-

mated design methodology. The feasibility of unifying classical and modern LTI control strategies in 

both the time and the frequency domains is reinforced, guided by performance satisfactions. The un-

derlying aim is to let a practicing engineer conveniently to obtain an “off-the-computer” controller 

directly from customer specifications such as, 

 

Spec. 1: A good relative stability of the closed-loop system (e.g. gain-margin ∈ [4 dB, 6 dB], 

phase-margin ∈ [40 º, 60 º] or 3 dB bandwidth ≤ 10 Hz etc.); 

Spec. 2: An excellent steady-state accuracy in terms of small steady-state errors (e.g. s.s.e. < 3 %); 
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Spec. 3: An excellent transient response in terms of small rise-time, settling-time, overshoots and 

undershoots (e.g. overshoots < 10 %); 

Spec. 4: Robustness in terms of disturbance rejection; and 

Spec. 5: Robustness in terms of plant uncertainties. 

 

In order to satisfy various performance requirements, it is necessary to formulate different building 

blocks in an ULTIC design methodology. Since discontinuous performance index is allowed in 

evolutionary optimization, other specifications such as noise rejection, economical consideration and 

etc., may also be added if so desired. These individual building blocks could be added or multiplied to 

form a composite performance index by either arithmetic or logic operations if specific terms need to 

be emphasized, which offers an unmatched flexibility over conventional gradient-guided search 

methods. 

 

A.  Basic Performance Index for EA Guidance 

In a design exercise, the closed-loop performance can be inverse-indexed conveniently by a basic cost 

function 

 )()(min teNHJ =  (2) 

or 
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Here N is the number of samples used for the simulation and S is known as the sensitivity function. 

The design task for basic performance is thus to find an optimal coefficient set of H(s) or {ai, bi} in (1) 

such that Jmin(H) is minimized. 

Not that, the design of an LTI controller for an optimal performance can be unified in the time and the 

frequency domains. It can also be inferred that the design of an ULTIC controller can be carried out in 
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either the continuous time or the discrete time. The discussions here, however, are restricted in 

deterministic systems for simplicity, since the ULTIC strategy will be applicable to stochastic systems 

by involving an expectation operator in the cost function blocks. If the open-loop system is stable, 

then the Nyquist plot of the denominator of (3) should not encircle its origin in any way. This means 

that for relatively large stability margins, the denominator plot should be relatively far away from its 

origin and its magnitude should have a relatively large value. Hence, minimizing the basic index 

indirectly leads to robust stability and hence largely meets Spec. 1. 

 

B.  Reconciling Accuracy and Chattering 

It is known that smooth control actions often lead to steady-state errors. High control actions usually 

result in low steady-state errors and high robustness, but also result in chattering and excessive wear of 

actuators. This may be reconciled by constructing performance index blocks in a similar manner to 

phase lag-lead compensation or PID control, noting that the chattering is reflected by e& , i.e., the rate 

of change of error. Note that index block manipulations can be easily realized in evolutionary 

guidance, since the EA only requires to compute Jmin and not its gradients. To penalize both the error 

and chattering at the steady-state in the time domain, weighting can be simply realized by multiplying 

the basic index by simulation time index. Also, weighting this way will not penalize a rapid transient 

response. 

 

Therefore, the requirements of a high accuracy and low chattering at the steady-state to meet Spec. 2 

and Spec. 3 can be reconciled in the time domain by adding to the basic index a building block of error 

derivatives and multiplying them by a building block of time as in 
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C.  Disturbance Rejection 
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The magnitude of the transfer from the disturbance to the closed-loop output is give by 
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Therefore, the disturbance rejection is maximized if the basic index or the sensitivity function S is 

minimized, which largely dealt with Spec. 4. In (5), the upper limit of this disturbance rejection is 

however bounded by the limited control gain due to the actuator saturation. To reflect the level of 

disturbance attenuation, the following performance weighting function is employed 

 σ ω ω( ( )) ( )S j W j≤ −
1

1  (6) 

where σ defines the largest singular value and W j1
1− ( )ω  is the desired disturbance attenuation factor. 

Allowing W j1( )ω  to depend on frequency ω enables one to specify a different attenuation factor for 

each ω  in the low frequency. 

 

D.  Robustness against Plant Uncertainty 

Suppose the nominal plant in Fig. 1 is stable with ∆M being zero, then according to Small Gain 

Theorem [24], the size of the smallest stable ∆M(s) for which the system becomes unstable is 
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where T = ( ) 11 −+ GHGH  is the complementary sensitivity function used to measure the stability 

margins of the feedback system in face of multiplicative plant uncertainties. The multiplicative 

stability margin is, by definition, the “size” of the smallest stable ∆M(s) which destabilizes the system 

shown in Fig. 1. Therefore the smaller σ ω( ( ))T j  is, the greater the size of the smallest destabilizing 

multiplicative perturbation will be and, hence, the greater the stability margins of the system, which 

largely dealt with Spec. 5. The stability margin of the ULTIC system can be specified via the singular 

value inequalities such as 
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 σ ω ω( ( )) ( )T j W j≤ −
2

1  (8) 

where W j2
1− ( )ω  is the respective sizes of the largest anticipated multiplicative plant uncertainties for 

the high frequency. 

 

III.  EVOLUTION ENABLES AUTOMATION 

 

As addressed in the Introduction, evolutionary algorithm is probabilistic in nature and based on a-

posteriori information obtained by computerized trial-and-error, require no direct guidance and thus 

no stringent conditions on the cost function. Supported by Schema Theory [25], EA requires an 

exponentially reduced search time, which could be further speeded up several times if engineers’ 

existing experiences are included in the initial design ‘database’ for intelligent design-reuse [26]. It is 

thus particularly useful to provide automated solutions for ULTIC design by incorporating different 

performance blocks in the optimization as to best meets the need of engineers’ design specifications. 

 

Readers may refer to [10,11,25] for detail algorithms of the EA. The multiple search nature of 

reproduction and evolving population indicates that EAs are a natural parallel paradigm [4,27]. For 

this, island model parallel EA that has separate and isolated sub-populations that evolve independently 

and in parallel, with fitter chromosomes occasionally migrate between the sub-populations is studied 

in this paper. The parallelism is developed under a 64-processor Parsytec transputer system. All 

simulation tasks in the ULTIC design are equally shared by up to 64 T8 transputers in a 2-D array, 

which are provided by a Parsytec SuperCluster including the host transputer for communications and 

supervisory tasks. Parallel C is used under the PARIX (PARallel unIX) operating system that offers 

straightforward software-channels for inter-transputer communications. 
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As illustrated in Fig. 2, conventional “computer-aided control system design” (CACSD) package that 

provides simulation results is used to evaluate performances of candidate controllers in terms of plant 

outputs, closed-loop errors and control signal provision. Artificial evolution then enables CACSD to 

become “computer-automated control system design” [4], where the performances on how well the 

candidate controllers meet the specification are used “intelligently” to guide the coefficient 

adjustment. This, however, requires a model of the plant to be controlled in the evaluation process. 

 

Crossover
P2:   4 0 0 3 0  1 6 1
P2:   4 0 0 3 0  1 6 1  

P3:   0 1 6 4 1  8 0 1

Mutation
P2:    4 0 0 3 0  1 6 1
P2’:   4 0 1 3 0 8 0 1  
P3’:   0 1 6 4 1 1 6 1

 f(P1: 1 2 0 9 0 2 1 7)=5%
       f(P2: 4 0 0 3 0 1 6 1)=60%

        f(P3: 0 1 6 4 1 8 0 1)=35%  f(P2)

 f(P3)

 f(P1)

Conventional CAD

Decoding,
simulation,
evaluation

Initial/random
designs coded

Final optimised
designs

Selection

New
generation

 

Fig. 2  Evolution automated CACSD by performance evaluations 

 

IV.  DIRECT DESIGN FROM PLANT STEP RESPONSE DATA 

 

A.  I/O Data Represent a High-Fidelity Model 

In many applications, step response data are often obtained when testing or setting the operating point 

of the system. An LTI model of the plant is then identified or refined from the I/O data before the 

design of a controller is attempted. An example of plant response data, ys(t), to a step input of 

amplitude A = 3 V are plotted in Fig. 3. A first-order model with transport delay is identified from the 

data using a curve fitting approach [4,28], as given by 
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with K = 0.018, D = 1 s and τ = 150 s. 
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Fig. 3  Plant response data ys(t) for 3 V input, response of the first-order model and response obtained 

by convoluting the impulse response 

 

Owing to the simplicity and an acceptable accuracy, in certain control engineering practice, such a 

linear identification technique is even employed to fit data from a plant that may be internally 

nonlinear. Partly, this is because many nonlinear plants exhibit the “Type 0” behavior of an equivalent 

linear system, where all energy storing elements are causal and thus a non-zero control energy is 

needed to maintain the steady-state operating point as indicated by Fig. 3. It is interesting to note that 

the step response data were, in fact, obtained from the output y(t) of a nonlinear coupled liquid-level 

system as shown in Fig. 4. The system simulates the mass-balance dynamics usually found in the 

chemical and dairy plants with the nonlinear dynamics given by 
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Here the tanks are linked through a coupling pipe of an equivalent orifice area a1; the equivalent 

discharging area of Tank 2 is modeled by a2; the liquid level in Tank 1 is h1; that in Tank 2 is h2 with a 

physical constraint being h2 > H3, the equivalent height of both the coupling and discharging pipes; C1 

and C2 are equivalent discharge constants; A = 0.01 m2 is the cross-sectional area of both tanks (which 

can be physically measured with a relatively high accuracy); Q1 and Q2 are the input flow rate per 

actuating volt of the Tank 1 and Tank 2 respectively; and g = 9.81 m s-2 the gravitational constant. 

 

 

Fig. 4  A nonlinear coupled liquid tank control system 

 

To validate the first-order model of (9), its response to the same 3 V step input has been obtained and 

also plotted in Fig. 3. It can be seen that the discrepancy between the model and the plant is small, but 

cannot be eliminated due to the limited order of the model. This problem may, however, be overcome 

if an infinite-order “model” is used. Convoluting the plant unit-impulse response data, g(t) = )(tys& /A, 

can conveniently realize such a “model” and yield a high fidelity reconstruction of the step response as 

shown in Fig. 3. Note that, however, the “model” may only be valid for a consistent operating point, as 

the steady-state gain of a linear equivalent of this nonlinear plant should not be a constant like K, but 

be O(u(∞)). 
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Step response data of a plant represent a high fidelity infinite-order LTI “model”. Such a fidelity only 

holds at a consistent steady-state operating point if the plant is nonlinear. This opens a way of 

designing LTI controllers directly from plant step response data [4,29]. Of course, a more stimulating 

input whose spectra covers the plant bandwidth should reflect the dynamics of a practical plant more 

accurately. Note that this “modeling” approach may also apply to nonlinear plants for a given 

operating point, although a more accurate I/O relationship would be obtained by using the steady-state 

equilibrium and perturbing the plant round this point as adopted in linearization techniques [4]. This 

has eliminated the need of system identification or modeling process as required in most conventional 

control schemes. 

 

B.  Design Evaluation Based on Plant Step Response Data 

Study Fig. 1 again, the closed-loop output contributed purely by the controlled input is given by 
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In Laplace or Fourier transform terms, this output can be evaluated by 
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Therefore, given an open-loop step response, the spectra of the step response or the frequency 

response of a plant, the performance of an LTI controller can always be evaluated in either the time or 

the frequency domain without the need of a model of the plant. 
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V  ULTIC DESIGN EXAMPLES 

 

A.  ULTIC Design for a Linear Plant Directly from Open-Loop Response Data 

Without loss of generality, a typical ODE defining the time-delayed DC servomotor system for 

velocity control is experimented in this paper. The servo-system is given by 
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where u(t) ∈ [-5V, 5V] is the input field control voltage to reflect the saturation constraint of A/D 

converter; ω(t) ∈ ℜ the angular velocity calculated from a Gray-code shaft encoder; KT = 13.5 NmA-1 

the torque constant for a fixed armature current; R = 9.2 W the resistance of the field winding; B =  

2.342 × 103 Nms the friction coefficient of the shaft; L = 0.25 H the inductance; and J = 0.001 kgm2 

the moment of inertia of the motor shaft and load. 

 

The design objective is to achieve a good closed-loop performance with excellent transient response 

and low chattering at the steady-state. For this, a limiting voltage of 5 V for the time-domain design or 

a penalized cost of )max(5 u−  for the frequency-domain is incorporated with the performance index 

of (4) to limit the controller output drives within the saturation range, as well as to satisfy the various 

design criterion. The order of all candidate controllers is not fixed, while allowing its maximum to be 

third-order. Here a sampling period of 10 ms is used, as the time constant for this system is relatively 

small. The ULTIC controller of a minimal cost of (4) evolved directly from the step response data 

obtained from the physical system of (14) is given as 

 
0.02.296.270.1

8.2939.4262.1532.7)( 23
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It can be seen that the EA tends to provide a controller which introduces an integrator to the Type 0 

system of (14). This is expected as the performance index of (4) reflects the requirement of small 
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steady-state errors. The EA also tends to approach a 2nd-order controller for this 2nd-order plant, as the 

coefficients a3 and b3 are relatively small. If the order of the controller is restricted to the 2nd-order, 

however, it will result in a high gain controller [5]. In order to test the EA designed controller, a 

reference given by 

 r(t) = 2Bu(t) - Bu(t-τ)  r.p.s. (16) 

is applied, where B = 4.5, u(t) is the unit step signal, and τ = 5 s. The eddy current brake of the system 

is released at t = 3 s and reapplied at t = 8 s, to test the system robustness in tolerating any plant 

perturbations or friction disturbance. The captured closed-loop response of this system is shown in 

Fig. 5, which confirms that the ULTIC approach yielded a excellent transient and steady-state 

performance, with good robustness against the plant uncertainties. 

Sp
ee

d 
(r

ps
 x

 9
)

Time (sec)
 

Fig. 5  Implemented performance of the I/O data evolved ULTIC system, where plant uncertainties 

occur at the boundaries of the shaded area 

 

B.  ULTIC Design with Emphasis on Robust Performance 

Consider again the DC servo-mechanism for velocity control described in (14). The ULTIC design 

objective here is to achieve good robust performance of (6) and (8) in the frequency domain in 

order to maintain system response and error signals within pre-specified tolerances despite 
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uncertainties and disturbances. For this, the weighting functions W1 and W2 are chosen to reflect 

the system performance and stability robustness as given by [3,4], 
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Stability verification is carried out for every candidate controllers, such that any designs with unstable 

poles on the right s-plane will be assigned a predefined high cost, without performing the closed-loop 

simulation to reduce the overall computation time. The resulting ULTIC controller is 
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Again, the EA tends to provide a controller that introduces an integrator to the Type 0 system of (14). 

The closed-loop response of this system for a step input of 60 r.p.m. (after a 9:1 step-down gear-box) 

is shown by Curve 1 in Fig. 6. To validate the robustness of the controller, a 0.2 Hz sine wave 

disturbance with peak-to-peak amplitude of 0.2 and 10 ms sampling period as shown by Curve 2 of 

Fig. 6 was applied to the system. The attenuated disturbance at the system output and the response of 

the motor system that suffered from this disturbance is shown by Curve 3 and Curve 4 in Fig. 6, 

respectively. The excellent performance clearly reveals that the specification of disturbance 

attenuation for the DC servo-mechanism has been met. 

 

The resultant ULTIC controller output is shown in Fig. 7. It can be seen that the feasibility of 

incorporating such a practical constraint in the evolutionary design not only yields a practical control 

signal that offers an optimised closed-loop performance, but also eliminates the need of artificially 

approximating the control energy in the frequency domain [9]. 
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Fig. 6  Response of the step and disturbance inputs 
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Fig. 7  Controller output with an actuator constraint of 5 volt 

 

C.  Near-Linear Pipelinability and NP of the EA 

To assess the effectiveness of the parallelism, the EA design process has been repeated several times 

on 1, 3, 9 and 15 slave transputer(s), respectively. The average speedup is plotted in Fig. 8. It can be 

seen that a near-linear pipelinability is evident, which implies that evolutionary algorithms are indeed 
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naturally suitable for parallel processing. The other advantage of the EA approach is the non-

deterministic polynomial (NP) feature, which implies that designing a more sophisticated controller 

would not necessarily take more time than designing a simple one. To confirm this, the design of a 

three-coefficient pure PID digital controller has been repeated on the same numbers of transputers. 

The speedup is also plotted in Fig. 8. It can be inferred that, although the number of coefficients of the 

third-order controller is more than doubled, it only requires an O(n) = n × 25% increase in the design 

time, mainly due to the increased simulation time for the more complicated controller. 
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Fig. 8  The near-linear pipelinability and NP feature of the parallel EA 

 

D.  ULTIC Design for a Nonlinear Plant Directly from Open-Loop Response Data 

A model representation of a nonlinear plant may sometimes unavailable or inaccurate. By using the 

EA, however, an ULTIC controller can be designed directly based on the step response data from the 

plant, bypassing the system modeling or linearization stage. The nonlinear coupled liquid–level 

system in Fig. 4 is experimented here in which the nonlinearity is unseen by the EA, only the step 

response data in Fig. 3 is available. The ULTIC controller is designed for an operation of setting the 

Tank 2 liquid level to 10 cm with a quick response and rapid settlement with small steady-state errors. 
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The pumped inflow Q1 is the input used to control the liquid level in Tank 2. Here, the inflow Q2 is 

used as a disturbance into Tank 2 and is given by 

 Q2(t) = 8.33 [u(t-300) - u(t-600)]  cm3s-1 (19) 

The ULTIC controller designed from the EA is given by 

 
0.044.082.10.1

73.1273151243)( 23

23

+++
+++

=
sss

ssssH  (20) 

It is seen that the EA tends to supply an integrator to the Type 0 system of (10) to eliminate the steady-

state error. To compare with the model-based approach, another third-order controller was designed 

from the identified first-order model given by (9). The resultant controller is 

 
0.040.081.10.1

44.1299190217)( 23

23

+++
+++

=
sss
ssssH  (21) 

The performances of controlling the physical coupled liquid-level system by these two controllers 

have been tested upon two different operating levels and added disturbances. The closed-loop step 

responses of Fig. 9 clearly reveals that the ULTIC designed without a model had offered a slightly 

better performance in controlling the nonlinear system. 
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Fig. 9  The implemented performances of the ULTIC controllers designed from the I/O data and the 

first-order model, where disturbance occur at t = 300 and 600 sec 

E.  ULTIC Design for a MIMO Nonlinear Plant 

Convolution 
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Here, an MIMO configuration of the nonlinear couple liquid-level system of Fig. 4 is studied such that 

the water level of 10 cm for Tank 1 and 9 cm for Tank 2 are controlled with minimized rise-time, 

overshoots and steady-state errors. The input to Tank 2, Q2, is now the second system input. For this 

system, a diagonal controller would suffice [19], i.e., the controller has a transfer function matrix given 

by, 

 H =
⎡

⎣
⎢

⎤

⎦
⎥

H
H

1

2

0
0

 (22) 

Note that the steady-state value of liquid level in Tank 1 has to be specified higher than that of Tank 2 

due to the requirement of outflow of liquid in Tank 1 through Tank 2 to reach the reservoir as 

described by (10). Moreover, the steady-state levels of Tank 1 and Tank 2 are bounded with a 

maximum difference of 

 h h

Q
C a

g1 2

1

1 1

2

2
( ) ( )∞ − ∞ ≤

⎛
⎝
⎜

⎞
⎠
⎟

 (23) 

at the extreme of Q2 = 0 with a given Q1. Similarly, 

 

( )

h H

C a g h h
C a

g2 3

1 1 1 2

2 2

2
2

2
( )

( ) (

∞ − ≤

∞ − ∞⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪  (24) 

A transport delay of 1 s is found in each I/O channel of the physical system and is included in the 

design simulation. The obtained best diagonal ULTIC transfer function elements are 

 H s s s s
s s s1

3 2

3 2

7 9 3013 95 7 102
10 0 98 0 73 0 0

( ) . . . .
. . . .

=
+ + +
+ + +

 (25) 

 H s s s s
s s s2

3 2

3 2

4 69 55 76 57 56 0 86
10 0 46 0 38 0 0

( ) . . . .
. . . .

=
+ + +
+ + +

 (26) 

Implemented closed-loop response of the MIMO ULTIC control system is shown in Fig. 10. The 

performance clearly shows a good transient and steady-state performance. The control system also 
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copes well with the presence of the ‘untrained’ operating point at the step-down level. Subject to the 

hard voltage limit, the control signal that provides this closed-loop response is given in Fig. 11. 
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Fig. 10  Performance of the implemented MIMO ULTIC system 
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Fig. 11  Control signal of Tank 1 { ⎯ }and Tank 2 { - - - } for the MIMO ULTIC system 
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VI.  CONCLUSIONS 

 

In this paper, a parallel evolutionary algorithm based technique has been developed for the design 

unification of linear control systems in both the time and the frequency domains under performance 

satisfactions. A speedup of near-linear pipelinability is observed for the EA parallelism implemented 

on a network of Parsytec SuperCluster transputers. It is shown that the design can be further 

automated by efficient evolution from plant step response data, bypassing the system identification or 

linearization stage as required by conventional designs. Using the evolutionary ULTIC approach, 

control engineers only need to feed the CACSD system with the plant I/O data and customer 

specifications to obtain an optimal “off-the-computer” controller. In addition, the resulting ULTIC 

systems are easy to implement with only minor storage and computational overheads. This ULTIC 

design strategy has been validated against linear and nonlinear plants, with excellent performances and 

good robustness in the presence of constraints and perturbations.  

 

Further work of the ULTIC methodology includes the application of multi-objective evolutionary 

algorithms to allow control engineers to integrate and visualize the set of performance criteria [3,30], 

as well as to incorporate other design objectives such as mixed-norm, controller structures and 

economical costing considerations. 
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