126 research outputs found

    Open TURNS: An industrial software for uncertainty quantification in simulation

    Full text link
    The needs to assess robust performances for complex systems and to answer tighter regulatory processes (security, safety, environmental control, and health impacts, etc.) have led to the emergence of a new industrial simulation challenge: to take uncertainties into account when dealing with complex numerical simulation frameworks. Therefore, a generic methodology has emerged from the joint effort of several industrial companies and academic institutions. EDF R&D, Airbus Group and Phimeca Engineering started a collaboration at the beginning of 2005, joined by IMACS in 2014, for the development of an Open Source software platform dedicated to uncertainty propagation by probabilistic methods, named OpenTURNS for Open source Treatment of Uncertainty, Risk 'N Statistics. OpenTURNS addresses the specific industrial challenges attached to uncertainties, which are transparency, genericity, modularity and multi-accessibility. This paper focuses on OpenTURNS and presents its main features: openTURNS is an open source software under the LGPL license, that presents itself as a C++ library and a Python TUI, and which works under Linux and Windows environment. All the methodological tools are described in the different sections of this paper: uncertainty quantification, uncertainty propagation, sensitivity analysis and metamodeling. A section also explains the generic wrappers way to link openTURNS to any external code. The paper illustrates as much as possible the methodological tools on an educational example that simulates the height of a river and compares it to the height of a dyke that protects industrial facilities. At last, it gives an overview of the main developments planned for the next few years

    Inseparability and Strong Hypotheses for Disjoint NP Pairs

    Get PDF
    This paper investigates the existence of inseparable disjoint pairs of NP languages and related strong hypotheses in computational complexity. Our main theorem says that, if NP does not have measure 0 in EXP, then there exist disjoint pairs of NP languages that are P-inseparable, in fact TIME(2^(n^k))-inseparable. We also relate these conditions to strong hypotheses concerning randomness and genericity of disjoint pairs

    Genericity and measure for exponential time

    Get PDF
    AbstractRecently, Lutz [14, 15] introduced a polynomial time bounded version of Lebesgue measure. He and others (see e.g. [11, 13–18, 20]) used this concept to investigate the quantitative structure of Exponential Time (E = DTIME(2lin)). Previously, Ambos-Spies et al. [2, 3] introduced polynomial time bounded genericity concepts and used them for the investigation of structural properties of NP (under appropriate assumptions) and E. Here we relate these concepts to each other. We show that, for any c ⩾ 1, the class of nc-generic sets has p-measure 1. This allows us to simplify and extend certain p-measure 1-results. To illustrate the power of generic sets we take the Small Span Theorem of Juedes and Lutz [11] as an example and prove a generalization for bounded query reductions

    Virtual Roots of a Real Polynomial and Fractional Derivatives

    Get PDF
    International audienceAfter the works of Gonzales-Vega, Lombardi, Mahé,\cite{Lomb1} and Coste, Lajous, Lombardi, Roy \cite{Lomb2}, we consider the virtual roots of a univariate polynomial ff with real coefficients. Using fractional derivatives, we associate to ff a bivariate polynomial Pf(x,t)P_f(x,t) depending on the choice of an origin aa, then two type of plan curves we call the FDcurve and stem of ff. We show, in the generic case, how to locate the virtual roots of ff on the Budan table and on each of these curves. The paper is illustrated with examples and pictures computed with the computer algebra system Maple
    • …
    corecore