15,883 research outputs found

    Generic Adaptation Support for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks are used in various and expanding application scenarios and are also considered to be important elements of the Internet of Things. They monitor and deliver data, which is not only used for research but to an increasing degree also in business environments. With the increasing complexity of these scenarios and the increasing dependency on the availability of the sensor network data, the requirements to a Wireless Sensor Network increase at the same pace. Since Wireless Sensor Networks are typically implemented using resource-constrained platforms, sensor network algorithms are typically optimised for specific operating conditions such as static or mobile networks, high or low traffic etc. However, due to scenario complexity and dynamic real-world conditions a static configuration of a Wireless Sensor Network software cannot always meet the requirements. Moreover, these requirements of the sensor network's user can change over time, for example concerning accuracy. Therefore, the sensor network software has to adapt itself to cope with dynamic system conditions and user requirements. This thesis presents the TinyAdapt and TinySwitch frameworks to solve the aforementioned problems. TinyAdapt, our generic adaptation framework for Wireless Sensor Networks, allows for the autonomous adaptation of arbitrary sensor network algorithms based on explicit and intuitively defined user preferences and on automatically monitored network conditions. Due to a two-phase approach, run-time adaptation is executed completely and efficiently on standard sensor node hardware and does not need support from, e.g., the base station. The creation of adaptive applications is guided by a complete workflow, which is presented as well. When changing parameters of an algorithm is not enough to achieve the desired adaptation results, the algorithm has to be exchanged completely. However, several limitations of TinyOS and the sensor node hardware limit the use of simple code exchange by node reprogramming for efficient adaptation. TinySwitch, our generic switching framework, allows to switch between alternative algorithms that are already installed in parallel. TinySwitch analyses these algorithms, determines their dependencies and creates all code to enable one of the algorithms while isolating all others. Due to its minimal overhead, TinySwitch is perfectly suited for run-time adaptation in TinyAdapt

    Unified radio and network control across heterogeneous hardware platforms

    Get PDF
    Experimentation is an important step in the investigation of techniques for handling spectrum scarcity or the development of new waveforms in future wireless networks. However, it is impractical and not cost effective to construct custom platforms for each future network scenario to be investigated. This problem is addressed by defining Unified Programming Interfaces that allow common access to several platforms for experimentation-based prototyping, research, and development purposes. The design of these interfaces is driven by a diverse set of scenarios that capture the functionality relevant to future network implementations while trying to keep them as generic as possible. Herein, the definition of this set of scenarios is presented as well as the architecture for supporting experimentation-based wireless research over multiple hardware platforms. The proposed architecture for experimentation incorporates both local and global unified interfaces to control any aspect of a wireless system while being completely agnostic to the actual technology incorporated. Control is feasible from the low-level features of individual radios to the entire network stack, including hierarchical control combinations. A testbed to enable the use of the above architecture is utilized that uses a backbone network in order to be able to extract measurements and observe the overall behaviour of the system under test without imposing further communication overhead to the actual experiment. Based on the aforementioned architecture, a system is proposed that is able to support the advancement of intelligent techniques for future networks through experimentation while decoupling promising algorithms and techniques from the capabilities of a specific hardware platform

    Heterogeneous component interactions: Sensors integration into multimedia applications

    Full text link
    Resource-constrained embedded and mobile devices are becoming increasingly common. Since few years, some mobile and ubiquitous devices such as wireless sensor, able to be aware of their physical environment, appeared. Such devices enable proposing applications which adapt to user's need according the context evolution. It implies the collaboration of sensors and software components which differ on their nature and their communication mechanisms. This paper proposes a unified component model in order to easily design applications based on software components and sensors without taking care of their nature. Then it presents a state of the art of communication problems linked to heterogeneous components and proposes an interaction mechanism which ensures information exchanges between wireless sensors and software components

    Sensor function virtualization to support distributed intelligence in the internet of things

    Get PDF
    It is estimated that-by 2020-billion devices will be connected to the Internet. This number not only includes TVs, PCs, tablets and smartphones, but also billions of embedded sensors that will make up the "Internet of Things" and enable a whole new range of intelligent services in domains such as manufacturing, health, smart homes, logistics, etc. To some extent, intelligence such as data processing or access control can be placed on the devices themselves. Alternatively, functionalities can be outsourced to the cloud. In reality, there is no single solution that fits all needs. Cooperation between devices, intermediate infrastructures (local networks, access networks, global networks) and/or cloud systems is needed in order to optimally support IoT communication and IoT applications. Through distributed intelligence the right communication and processing functionality will be available at the right place. The first part of this paper motivates the need for such distributed intelligence based on shortcomings in typical IoT systems. The second part focuses on the concept of sensor function virtualization, a potential enabler for distributed intelligence, and presents solutions on how to realize it

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    Context-aware QoS provisioning for an M-health service platform

    Get PDF
    Inevitably, healthcare goes mobile. Recently developed mobile healthcare (i.e., m-health) services allow healthcare professionals to monitor mobile patient's vital signs and provide feedback to this patient anywhere at any time. Due to the nature of current supporting mobile service platforms, m-health services are delivered with a best-effort, i.e., there are no guarantees on the delivered Quality of Service (QoS). In this paper, we argue that the use of context information in an m-health service platform improves the delivered QoS. We give a first attempt to merge context information with a QoS-aware mobile service platform in the m-health services domain. We illustrate this with an epilepsy tele-monitoring scenario

    Managed ecosystems of networked objects

    Get PDF
    Small embedded devices such as sensors and actuators will become the cornerstone of the Future Internet. To this end, generic, open and secure communication and service platforms are needed in order to be able to exploit the new business opportunities these devices bring. In this paper, we evaluate the current efforts to integrate sensors and actuators into the Internet and identify the limitations at the level of cooperation of these Internet-connected objects and the possible intelligence at the end points. As a solution, we propose the concept of Managed Ecosystem of Networked Objects, which aims to create a smart network architecture for groups of Internet-connected objects by combining network virtualization and clean-slate end-to-end protocol design. The concept maps to many real-life scenarios and should empower application developers to use sensor data in an easy and natural way. At the same time, the concept introduces many new challenging research problems, but their realization could offer a meaningful contribution to the realization of the Internet of Things

    Garnet: a middleware architecture for distributing data streams originating in wireless sensor networks

    Get PDF
    We present an architectural framework, Garnet, which provides a data stream centric abstraction to encourage the manipulation and exploitation of data generated in sensor networks. By providing middleware services to allow mutually-unaware applications to manipulate sensor behaviour, a scalable, extensible platform is provided. We focus on sensor networks with transmit and receive capabilities as this combination poses greater challenges for managing and distributing sensed data. Our approach allows simple and sophisticated sensors to coexist, and allows data consumers to be mutually unaware of each other This also promotes the use of middleware services to mediate among consumers with potentially conflicting demands for shared data. Garnet has been implemented in Java, and we report on our progress to date and outline some likely scenarios where the use of our distributed architecture and accompanying middleware support enhances the task of sharing data in sensor network environments
    corecore