6 research outputs found

    Truncated Variational Sampling for "Black Box" Optimization of Generative Models

    Get PDF
    We investigate the optimization of two probabilistic generative models with binary latent variables using a novel variational EM approach. The approach distinguishes itself from previous variational approaches by using latent states as variational parameters. Here we use efficient and general purpose sampling procedures to vary the latent states, and investigate the "black box" applicability of the resulting optimization procedure. For general purpose applicability, samples are drawn from approximate marginal distributions of the considered generative model as well as from the model's prior distribution. As such, variational sampling is defined in a generic form, and is directly executable for a given model. As a proof of concept, we then apply the novel procedure (A) to Binary Sparse Coding (a model with continuous observables), and (B) to basic Sigmoid Belief Networks (which are models with binary observables). Numerical experiments verify that the investigated approach efficiently as well as effectively increases a variational free energy objective without requiring any additional analytical steps

    Truncated Variational Sampling for "Black Box" Optimization of Generative Models

    Get PDF
    We investigate the optimization of two probabilistic generative models with binary latent variables using a novel variational EM approach. The approach distinguishes itself from previous variational approaches by using latent states as variational parameters. Here we use efficient and general purpose sampling procedures to vary the latent states, and investigate the "black box" applicability of the resulting optimization procedure. For general purpose applicability, samples are drawn from approximate marginal distributions of the considered generative model as well as from the model's prior distribution. As such, variational sampling is defined in a generic form, and is directly executable for a given model. As a proof of concept, we then apply the novel procedure (A) to Binary Sparse Coding (a model with continuous observables), and (B) to basic Sigmoid Belief Networks (which are models with binary observables). Numerical experiments verify that the investigated approach efficiently as well as effectively increases a variational free energy objective without requiring any additional analytical steps

    Are v1 simple cells optimized for visual occlusions? : A comparative study

    Get PDF
    Abstract: Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. Author Summary: The statistics of our visual world is dominated by occlusions. Almost every image processed by our brain consists of mutually occluding objects, animals and plants. Our visual cortex is optimized through evolution and throughout our lifespan for such stimuli. Yet, the standard computational models of primary visual processing do not consider occlusions. In this study, we ask what effects visual occlusions may have on predicted response properties of simple cells which are the first cortical processing units for images. Our results suggest that recently observed differences between experiments and predictions of the standard simple cell models can be attributed to occlusions. The most significant consequence of occlusions is the prediction of many cells sensitive to center-surround stimuli. Experimentally, large quantities of such cells are observed since new techniques (reverse correlation) are used. Without occlusions, they are only obtained for specific settings and none of the seminal studies (sparse coding, ICA) predicted such fields. In contrast, the new type of response naturally emerges as soon as occlusions are considered. In comparison with recent in vivo experiments we find that occlusive models are consistent with the high percentages of center-surround simple cells observed in macaque monkeys, ferrets and mice

    Direct Evolutionary Optimization of Variational Autoencoders With Binary Latents

    Full text link
    Discrete latent variables are considered important for real world data, which has motivated research on Variational Autoencoders (VAEs) with discrete latents. However, standard VAE-training is not possible in this case, which has motivated different strategies to manipulate discrete distributions in order to train discrete VAEs similarly to conventional ones. Here we ask if it is also possible to keep the discrete nature of the latents fully intact by applying a direct discrete optimization for the encoding model. The approach is consequently strongly diverting from standard VAE-training by sidestepping sampling approximation, reparameterization trick and amortization. Discrete optimization is realized in a variational setting using truncated posteriors in conjunction with evolutionary algorithms. For VAEs with binary latents, we (A) show how such a discrete variational method ties into gradient ascent for network weights, and (B) how the decoder is used to select latent states for training. Conventional amortized training is more efficient and applicable to large neural networks. However, using smaller networks, we here find direct discrete optimization to be efficiently scalable to hundreds of latents. More importantly, we find the effectiveness of direct optimization to be highly competitive in `zero-shot' learning. In contrast to large supervised networks, the here investigated VAEs can, e.g., denoise a single image without previous training on clean data and/or training on large image datasets. More generally, the studied approach shows that training of VAEs is indeed possible without sampling-based approximation and reparameterization, which may be interesting for the analysis of VAE-training in general. For `zero-shot' settings a direct optimization, furthermore, makes VAEs competitive where they have previously been outperformed by non-generative approaches

    On scalable inference and learning in spike-and-slab sparse coding

    Get PDF
    Sparse coding is a widely applied latent variable analysis technique. The standard formulation of sparse coding assumes Laplace as a prior distribution for modeling the activations of latent components. In this work we study sparse coding with spike-and-slab distribution as a prior for latent activity. A spike-and-slab distribution has its probability mass distributed across a ’spike’ at zero and a ’slab’ spreading over a continuous range. For its capacity to induce exact zeros with a higher likelihood, a spike-and-slab prior distribution constitutes a more accurate model of sparse coding. The distribution as a prior also allows for the sparseness of latent activity to be directly inferred from observed data, which essentially makes spike-and-slab sparse coding more flexible and self-adaptive to a wide range of data distributions. By modeling the slab with a Gaussian distribution, we furthermore show that in contrast to the standard approach to sparse coding, we can indeed derive closed-form analytical expressions for exact inference and learning in linear spike-and-slab sparse coding. However, as the posterior landscape of a spike-and-slab prior turns out to be highly multi-modal with a prohibitive exploration cost, in addition to the exact method, we also develop subspace and Gibbs sampling based approximate inference techniques for scalable applications of the linear model. We contrast our approximation methods with variational approximation for scalable posterior inference in linear spike-and-slab sparse coding. We further combine the Gaussian spike-and-slab prior with a nonlinear generative model, which assumes a point-wise maximum combination rule for the generation of observed data. We analyze the model as a precise encoder of low-level features such as edges and their occlusions in visual data. We again combine subspace selection with Gibbs sampling to overcome the analytical intractability of performing exact inference in the model. We numerically analyze our methods on both synthetic and real data for their verification and comparison with other approaches. We assess the linear spike-and-slab approach on source separation and image denoising benchmarks. In most experiments we obtain competitive or state-of-the-art results, while we find that spike-and-slab sparse coding overall outperforms other comparable approaches. By extracting thousands of latent components from a large amount of training data we further demonstrate that our subspace Gibbs sampler is among the most scalable posterior inference methods for a linear sparse coding approach. For the nonlinear model we experiment with artificial and real images to demonstrate that the components learned by the model lie closer to the ground-truth and are easily interpretable as the underlying generative causes of the input. We find that in comparison to standard sparse coding, the nonlinear spike-and-slab approach can compressively encode images using naturally sparse and discernible compositions of latent components. We also demonstrate that the components inferred by the model from natural image patches are statistically more consistent with respect to their structure and distribution to the response patterns of simple cells in the primary visual cortex of the brain. This work thereby contributes novel methods for sophisticated inference and learning in spike-and-slab sparse coding, while it also empirically showcases their functional efficacy through a variety of applications.Sparse Coding ist eine weit verbreitete Technik der latenten Variablenanalyse. Die Standardformulierung von Sparse Coding setzt a priori eine Laplace-Verteilung zur Modellierung der Aktivierung von latenten Komponenten voraus. In dieser Arbeit untersuchen wir Sparse Coding mit einer a priori Spike-and-Slab-Verteilung fĂŒr latente AktivitĂ€t. Eine Spike-and-Slab-Verteilung verteilt ihre Wahrscheinlichkeitsmasse um ein Aktionspotential (“Spike”) um Null und eine dicke Verteilung (“slab”) ĂŒber einen kontinuierlichen Wertebereich. Durch die Induktion von exakten Nullen mit einer höheren Wahrscheinlichkeit erzeugt eine Apriori-Spike-and-Slab-Verteilung ein genaueres Modell von Sparse Coding. Als A-priori-Verteilung erlaubt sie es uns die Seltenheit von latenten Komponenten direkt von Daten abzuleiten, sodass ein Spike-and-Slab-getriebenes Modell von Sparse Coding sich besser verschiedensten Verteilungen von Daten anpasst. Durch das Modellieren des Slab mittels einer Gauß-Verteilung zeigen wir, dass – im Gegensatz zur Standardformulierung von Sparse Coding – wir in der Tat geschlossene analytische AusdrĂŒcke ableiten können, um eine exakte Ableitung und das Lernen eines linearen Spike-and-Slab-Sparse-Coding-Modell durchzufĂŒhren. Weil eine Spike-and-Slab-A-priori-Verteilung zu einer hoch multimodalen A-posteriori-Landschaft mit viel zu hohen Suchkosten fĂŒhrt, entwickeln wir zusĂ€tzlich zur exakten Methode NĂ€herungslösungen basierend auf einem Teilraum und Gibbs-Sampling fĂŒr skalierbare Anwendungen des Modells. Wir vergleichen unseren Ansatz der nĂ€herungsweisen Inferenz mit nĂ€herungsweiser Variationsrechnung des linearen Spike-and-Slab-Sparse Coding. Des Weiteren kombinieren wir die Spike-and-Slab-A-priori-Verteilung mit einem nicht-linearen Sparse-Coding-Modell, das eine punktweise Maximum-Kombinationsregel zur Datengenerierung voraussetzt. Wir analysieren das Modell als genauen Kodierer von untergeordneten Merkmalen in Bildern wie z.B. Kanten und deren Okklusionen. Wir lösen die analytische Ausweglosigkeit, eine Ableitung von multimodalen A-posteriori-Verteilungen im Modell durchzufĂŒhren, durch die Kombination von Gibbs-Sampling und der Auswahl eines Teilraums, um eine skalierbare Prozedur fĂŒr die approximative Inferenz des Modells zu entwickeln. Wir analysieren unsere Methode numerisch durch synthetische und wirkliche Daten zum Nachweis und Vergleich mit anderen AnsĂ€tzen. Wir bewerten den linearen Spike-and-Slab-Ansatz mittels MaßstĂ€ben fĂŒr die Quellentrennung und zur RauschunterdrĂŒckung in Bildern. In den meisten Experimenten erhalten wir vergleichsweise oder die beste Resultate. Gleichzeitig finden wir, dass Spike-and-Slab-Sparse-Coding insgesamt andere vergleichbare AnsĂ€tze ĂŒbertrifft. Durch die Extraktion von Tausenden von latenten Komponenten aus einer riesigen Menge an Trainingsdaten zeigen wir des Weiteren, dass unserer Teilraum Gibbs-Sampler zu den skalierbarsten Inferenzmethoden der linearen Sparse-Coding-Modelle gehört. FĂŒr das nichtlineare Modell experimentieren wir mit kĂŒnstlichen und echten Bildern zur Demonstration, dass die von dem Modell gelernten Komponenten nĂ€her an der “Ground Truth” liegen und leichter zu interpretieren sind als die zugrundeliegenden generierenden EinflĂŒsse der Eingabe. Wir finden, dass – im Vergleich zu Standard-Sparse-Coding – der nichtlineare Spike-and-Slab-Ansatz Bilder komprimierend kodieren kann durch natĂŒrliche dĂŒnnbesetzte und klar erkennbare Kompositionen von latenten Komponenten. Wir zeigen auch, dass die vom Modell abgeleiteten Komponenten von natĂŒrlichen Bildern statistisch konsistenter sind in ihrer Struktur und Verteilung mit dem Antwortmuster von einfachen Zellen im primĂ€ren visuellen Kortex. Diese Arbeit leistet durch neue Methoden zur komplexen Inferenz und zum Erlernen ivvon Spike-and-Slab-Sparse-Coding einen Beitrag und demonstriert deren praktikable Wirksamkeit durch einen Vielzahl von Anwendungen
    corecore