419 research outputs found

    Unconditional measurement-based quantum computation with optomechanical continuous variables

    Get PDF
    Universal quantum computation encoded over continuous variables can be achieved via Gaussian measurements acting on entangled non-Gaussian states. However, due to the weakness of available nonlinearities, generally these states can only be prepared conditionally, potentially with low probability. Here we show how universal quantum computation could be implemented unconditionally using an integrated platform able to sustain both linear and quadratic optomechanical-like interactions. Specifically, considering cavity opto- and electro-mechanical systems, we propose a realisation of a driven-dissipative dynamics that deterministically prepares the required non-Gaussian cluster states --- entangled squeezed states of multiple mechanical oscillators suitably interspersed with cubic-phase states. We next demonstrate how arbitrary Gaussian measurements on the cluster nodes can be performed by continuously monitoring the output cavity field. Finally, the feasibility requirements of this approach are analysed in detail, suggesting that its building blocks are within reach of current technology.Comment: 5 pages + 9 pages supplementary materia

    Mechanical Entanglement via Detuned Parametric Amplification

    Full text link
    We propose two schemes to generate entanglement between a pair of mechanical oscillators using parametric amplification. In contrast to existing parametric drive-based protocols, both schemes operate in the steady-state. Using a detuned parametric drive to maintain equilibrium and to couple orthogonal quadratures, our approach can be viewed as a two-mode extension of previous proposals for parametric squeezing. We find that robust steady-state entanglement is possible for matched oscillators with well-controlled coupling. In addition, one of the proposed schemes is robust to differences in the damping rates of the two oscillators.Comment: 13 pages, 2 figure

    Ultra-Strong Optomechanics Incorporating the Dynamical Casimir Effect

    Get PDF
    We propose a superconducting circuit comprising a dc-SQUID with mechanically compliant arm embedded in a coplanar microwave cavity that realizes an optomechanical system with a degenerate or non-degenerate parametric interaction generated via the dynamical Casimir effect. For experimentally feasible parameters, this setup is capable of reaching the single-photon, ultra-strong coupling regime, while simultaneously possessing a parametric coupling strength approaching the renormalized cavity frequency. This opens up the possibility of observing the interplay between these two fundamental nonlinearities at the single-photon level.Comment: 7 pages, 1 figure, 1 tabl

    Optomechanical circuits for nanomechanical continuous variable quantum state processing

    Full text link
    We propose and analyze a nanomechanical architecture where light is used to perform linear quantum operations on a set of many vibrational modes. Suitable amplitude modulation of a single laser beam is shown to generate squeezing, entanglement, and state-transfer between modes that are selected according to their mechanical oscillation frequency. Current optomechanical devices based on photonic crystals may provide a platform for realizing this scheme.Comment: 11 pages, 5 figure

    Enhancing Quantum Effects via Periodic Modulations in Optomechanical Systems

    Full text link
    Parametrically modulated optomechanical systems have been recently proposed as a simple and efficient setting for the quantum control of a micromechanical oscillator: relevant possibilities include the generation of squeezing in the oscillator position (or momentum) and the enhancement of entanglement between mechanical and radiation modes. In this paper we further investigate this new modulation regime, considering an optomechanical system with one or more parameters being modulated over time. We first apply a sinusoidal modulation of the mechanical frequency and characterize the optimal regime in which the visibility of purely quantum effects is maximal. We then introduce a second modulation on the input laser intensity and analyze the interplay between the two. We find that an interference pattern shows up, so that different choices of the relative phase between the two modulations can either enhance or cancel the desired quantum effects.Comment: 10 pages, 4 figure
    • …
    corecore