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Universal quantum computation encoded over continuous variables can be achieved via Gaussian measure-
ments acting on entangled non-Gaussian states. However, due to the weakness of available nonlinearities,
generally these states can only be prepared conditionally, potentially with low probability. Here we show how
universal quantum computation could be implemented unconditionally using an integrated platform able to
sustain both linear and quadratic optomechanical-like interactions. Specifically, considering cavity opto- and
electromechanical systems, we propose a realization of a driven-dissipative dynamics that deterministically
prepares the required non-Gaussian cluster states—entangled squeezed states of multiple mechanical oscillators
suitably interspersed with cubic-phase states. We next demonstrate how arbitrary Gaussian measurements on
the cluster nodes can be performed by continuously monitoring the output cavity field. Finally, the feasibility
requirements of this approach are analyzed in detail, suggesting that its building blocks are within reach of
current technology.
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I. INTRODUCTION

Measurement-based quantum computation (MBQC) is a
powerful approach to process information encoded in quan-
tum systems [1], which requires solely local measurements
on an entangled state (cluster state) [2,3]. This approach gives
significant theoretical insights into fundamental questions
about the origin of the power of quantum computing [4–9],
and it offers promising applicative opportunities provided
large enough clusters can be built, including the demonstra-
tion of quantum computational supremacy [10,11] and the
realization, in condensed matter systems [12–19], of fault-
tolerant processors with high resilience thresholds [20,21].

In view of the relevance of MBQC, major efforts have been
devoted to its experimental implementation. In the setting of
finite-dimensional (discrete-variable) quantum systems, vari-
ous experimental demonstrations of small-size MBQC have
been reported [22–37]. However, the largest clusters to date
have been generated in the context of continuous-variable
(CV) systems [38,39], with photonic clusters composed of up
to one million modes [31,32,40–45]. Such achievements stem
from the fact that these clusters belong to the class of Gaussian
states [46–49], and CV Gaussian entanglement is gener-
ally available unconditionally (deterministically), contrary to
discrete-variable systems whose entanglement typically relies
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on postselection [50]. Despite such remarkable progress, in
order to realize universal computation [51], these photonic
clusters have to be either equipped with non-Gaussian mea-
surements [52,53] or interspersed with non-Gaussian states
[54]. Unfortunately, both strategies require high-order non-
linearities, which are hard to implement deterministically in
optics and in fact stand as a major roadblock [55]. As a
remedy, we propose here to use nonlinear optomechanical
systems, with the aim of providing a feasible path to unlock
the full potential of unconditional MBQC.

Our approach is motivated by recent experimental break-
throughs in cavity optomechanics [56,57], which lends itself
as a disruptive new platform for CVs in which the infor-
mation carrier is embodied in the center-of-mass motion
of a mechanical oscillator. Indeed ground-state cooling
[58–64], squeezing beyond the parametric limit [65–69],
two-oscillator entanglement [70–72], and nonlocality [73]
have been achieved experimentally, with further scalability
and integrability within reach [74–78]. Crucially, optome-
chanics has a significant advantage over photonics in the
unconditional nonlinearity embedded in the radiation pressure
dynamics [79,80]. For driven systems this manifests primar-
ily as a quadratic coupling in the position of the oscillator
[80–105].

Here we consider a driven-dissipative optomechanical sys-
tem. By taking advantage of the control over the mechanical
state granted by externally driving the cavity, and arranging
for either dissipative engineering [106–108] or continuous
monitoring [49,109,110], we are able to provide schemes for
the deterministic preparation of non-Gaussian cluster states
and local measurements sufficient to achieve computational
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universality. The integration of these schemes into a single
experimental platform constitutes, as far as we know, the first
proposal for universal MBQC with CVs that can be imple-
mented unconditionally.

This paper is organized as follows. In Sec. II we review
measurement-based quantum computation, where we discuss
the standard method for accomplishing universal quantum
computation, and introduce our approach in order to achieve
universality. And in Sec. III we present the optomechanical
system model that will host the resource state suitable for
universal quantum computation. This system is driven by a
time-dependent multitone classical field, and is dissipating to
its environment. Then in Sec. IV we demonstrate our protocol
for preparing a non-Gaussian state, the so-called qubic phase
state. This latter is hosted in mechanical oscillator degrees
of freedom. This target state is obtained dissipatively as the
steady state of the driven optomechanical system proposed in
the previous section. Moreover, in Sec. V we generalize the
proposed protocol of the preceding section in order to generate
a non-Gaussian cluster state, composed of nodes of squeezed
and cubic phase states, with arbitrary size and geometry. In
Sec. VI we focus on how to perform given measurements on
individual mechanical modes, i.e., local operations. Specifi-
cally, the measurements are Gaussian only, since it is, with the
already prepared non-Gaussian cluster state, sufficient to carry
out universal computations. Following that, we discuss in
Sec. VII the feasibility of our proposed scheme, i.e., preparing
the target state and locally measuring quadratures, in current
and near-future experiments. Then a conclusion is given in
Sec. VIII. Furthermore, several Appendixes follow where we
study the validity of the approximations used in our deriva-
tions (Appendix A), the stability of the system (Appendix B),
the time scale to prepare the cluster state (Appendix C), and
an analysis of the effects of the unwanted thermal noise on
the quality of the target state (Appendix F). In addition, we
give an example of the preparation of a two-mode cluster
(Appendix D) and a demonstration of a cubic-phase gate with
this latter (Appendix G).

II. MEASUREMENT-BASED QUANTUM COMPUTATION
WITH CONTINUOUS VARIABLES

As said, MBQC is predicated on the existence of a
highly entangled multipartite resource state known as the
cluster state. For our purposes, a cluster state is associ-
ated with a mathematical lattice graph G(V,E ) of vertices
j ∈ V , and edges ( j, k) ∈ E that define the adjacency matrix
A with entries Aj,k = 1 if ( j, k) ∈ E and Aj,k = 0 other-
wise (with 1 � j, k � N). Consider an N-oscillator system,
with each oscillator j characterized by the canonical po-
sition q j = 1√

2
(b j + b†

j ) and momentum p j = 1
i
√

2
(b j − b†

j )
operators, b j being their respective annihilation operator.
The CV cluster state [52,111] is operationally defined by
first preparing all vertices (embodied by the oscillators)
in a product state of momentum-squeezed vacua S(s) |0〉,
where |0〉 = |0〉1 ⊗ · · · ⊗ |0〉N , S(s) =⊗ j S j (s j ), S j (s j ) =
exp[−i

2 (q j p j + p jq j ) ln s j], and s ≡ (s1, . . . , sN ) is a short-
hand for the degree of squeezing. Then, controlled-phase
operations CZ jk = eiq j qk are applied for any edge ( j, k) ∈ E .

S1(s1)

S2(s2)

...

SN (sN )

V1(γ1)

V2(γ2)

...

VN (γN )

e
i
2 q�Aq

...

|0〉
|0〉
...

|0〉

FIG. 1. Circuit representing the preparation of a cluster state
with squeezing s and adjacency matrix A. In the absence (presence)
of cubic operations—given in the dashed box—the standard (non-
Gaussian) cluster is obtained.

These can be compactly written defining the multioscillator
operator E (A) = e

i
2 q�Aq, with q = (q1, . . . , qN )�. Conse-

quently, the resulting standard cluster state is given by
|s, A〉 = E (A)S(s) |0〉 (see Fig. 1); this is a Gaussian state
and the degree of squeezing s (with s � 1 for momentum
squeezing) determines its quality for computational purposes
[53].

The computation proceeds via a series of local projective
measurements on the cluster nodes. These measurements im-
plement the gates of the program to be computed, whose
output is embodied in the state of the nonmeasured nodes. The
Lloyd-Braunstein criterion [51], first developed for circuit-
based computation, allows a distinction to be drawn between
Gaussian and non-Gaussian gates. A finite set of Gaussian
gates is sufficient to perform any multimode Gaussian oper-
ation. However, it is only when an additional non-Gaussian
gate is at disposal that universality is unlocked, in the sense
that any Hamiltonian can be simulated to arbitrary preci-
sion. In MBQC, Gaussian measurements on the cluster |s, A〉
are sufficient to implement arbitrary Gaussian gates [53],
including in extremely compact ways [112]. On the other
hand, as mentioned, several proposals for implementing non-
Gaussian gates are extant in the literature [53,113–119]. Here
we focus on a method in which the standard cluster is modi-
fied using non-Gaussian resources—called cubic-phase states
[120]. This modified non-Gaussian cluster is particularly ad-
vantageous for scaling to large numbers of operations since
it allows for the measurement strategy to remain Gaussian
[53,120].

We will first present a general exposition of the optome-
chanics model we wish to base our proposal on, and then
introduce two complementary schemes allowing us to prepare
the modified non-Gaussian cluster and perform on it arbitrary
Gaussian measurements.

III. OPTOMECHANICS IMPLEMENTATION

Consider an array of N mechanical resonators, each with
distinct frequency � j , immersed in a cavity field with an-
nihilation operator a and frequency ω and driven by a
time-dependent external field ε(t ). The Hamiltonian for such
a system is

H = ωa†a +
N∑

j=1

� jb
†
jb j + ε(t )∗a + ε(t )a†. (1)
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Due to radiation pressure the cavity frequency becomes de-
pendent on the mechanical positions q j [57]. We expand ω in
powers of q j up to the second order:

ω = ωc +
N∑

j=1

(
g( j)

L q j + g( j)
Q q2

j + · · · ), (2)

with g( j)
L = ∂ω

∂q j
and g( j)

Q = 1
2

∂2ω

∂q2
j

the position and position-

squared couplings of the jth mechanical oscillator with the
cavity field. In addition, we consider the case of a multitone
drive,

ε(t ) =
∑

k

εke−iωkt , (3)

with εk the complex driving amplitudes and ωk the driv-
ing frequencies. The standard linearization procedure for an
externally driven cavity [57] may be expanded to include
the multiple mechanical modes, the multitone drive, and the
position-squared coupling as follows. Allowing our system to
be in contact with a vacuum reservoir for the cavity and a
thermal bath for the mechanical oscillators leads to the fol-
lowing Heisenberg-Langevin equations [121] for the system
operators:

q̇ j (t ) = � j p j, (4)

ṗ j (t ) = −� jq j − a†a
(
g( j)

L + 2g( j)
Q qj

)
− � j p j + ξ j (t ), (5)

ȧ(t ) =
(
−κ

2
− iωc

)
a − ia

N∑
j=1

(
g( j)

L q j + g( j)
Q q2

j

)
− iε(t ) + √

κ ain, (6)

where κ and � j are the damping rates for the cav-
ity mode and the jth mechanical oscillator, and ain and
ξ j are the input noise operators for the cavity and me-
chanical oscillator, respectively, satisfying the correlation
relations

〈a†
in(t )ain(t ′)〉 = 0, (7)

〈ain(t )a†
in(t ′)〉 = δ(t − t ′), (8)

〈ξ †
j (t )ξ j (t

′)〉 = n̄ jδ(t − t ′), (9)

〈ξ j (t )ξ †
j (t ′)〉 = (n̄ j + 1) δ(t − t ′), (10)

with n̄ j denoting the mean phonon number.
We aim to derive an effective Hamiltonian for the system

involving quantum fluctuations around the (classical) field
steady states. Replacing the system operators in Eqs. (4)–(6)

by their mean fields, 〈a〉 ≡ α, 〈qj〉 ≡ Qj , and 〈p j〉 ≡ Pj , the
classical equations of motion become

Q̇ j (t ) = � jPj, (11)

Ṗj (t ) = −� jQ j − |α|2(g( j)
L + 2g( j)

Q Qj
)− � jPj, (12)

α̇(t ) =
(
−κ

2
− i
[
ωc + g( j)

L Qj + g( j)
Q Q2

j

])
α

− iε(t ). (13)

We consider the following ansatz for the intracavity field at
the steady state [56]:

α =
∑

k

αke−iωkt , (14)

where the constants αk are the complex amplitudes of the
cavity at the steady state. By substituting expression (14) in
Eq. (12) we find

Ṗj (t ) = − � jQ j − � jPj

− (g( j)
L + 2g( j)

Q Qj
)∑

k,�

α∗
k α�ei(ωk−ω� )t . (15)

If we assume weak coupling such that for k �= � we have∣∣g( j)
L,Q αkα�

∣∣� � j, (16)

the time-dependent terms in Eq. (15) can be neglected. And
if we denote by Q(0)

j and P(0)
j the values of position and

momentum at the steady state, it is easy to find the following:

P(0)
j = 0, (17)

Q(0)
j =

−g( j)
L

∑
k

|αk|2

� j + 2g( j)
Q

∑
k

|αk|2
, (18)

αk = −iεk
κ
2 + i

(− �k + gLQ0 + gQQ2
0

) , (19)

where �k ≡ ωk − ωc is the detuning of the kth drive with
respect to the cavity.

Having obtained the steady state for all fields, we can
derive a Hamiltonian of the system in terms of the quantum
fluctuations around the classical steady-state values. First, we
split the system operators into a classical part (denoted as αk ,
Q(0)

j , and P(0)
j ) and quantum fluctuations (denoted with a slight

abuse of notation as a, q j , and p j),

a → a +
∑

k

αke−iωkt

q j → q j + Q(0)
j

p j → p j + P(0)
j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (20)

then we substitute (20) in Eqs. (4)–(6). Assuming a strong
drive, αk � 1, we find

q̇ j = � j p j, (21)

ṗ j ≈ −� jq j −
(

a†
∑

k

αke−iωkt + a
∑

k

α∗
k eiωkt

)(
g( j)

L + 2g( j)
Q Q(0)

j + 2g( j)
Q qj

)− � j p j + ξ j (t ), (22)
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ȧ ≈
(−κ

2
− iωc

)
a −

∑
k

iαke−iωkt
([

g( j)
L + 2g( j)

Q Q(0)
j

2]
q j + g( j)

Q q2
j

)+ √
κ ain(t ). (23)

Equations (21)–(23) correspond to the following effective Hamiltonian:

H = ωca†a +
N∑

j=1

[
� jb

†
jb j +

∑
k

(αke−iωkt a† + α∗
k eiωkt a)

(√
2 G( j)

L q j + 2G( j)
Q q2

j

)]
, (24)

where we defined
√

2 G( j)
L ≡ g( j)

L + 2g( j)
Q Q(0)

j
2

and 2G( j)
Q ≡ g( j)

Q .
The explicit time dependence of Hamiltonian (24) can be removed by, first, going to a frame rotating with the free terms of

the system where the Hamiltonian transforms to

H =
N∑

j=1

∑
k

(αke−i�kt a† + α∗
k ei�kt a)

[
G( j)

L (b je
−i� j t + b†

je
i� j t ) + G( j)

Q (b je
−i� j t + b†

je
i� j t )2

]
. (25)

Then, we consider four driving fields per each mechanical
resonator j with detunings �

( j)
1 = −� j , �

( j)
2 = � j , �

( j)
3 =

−2� j , and �
( j)
4 = 2� j and amplitudes α

( j)
� (� = 1, . . . , 4).

Moreover, we consider an additional drive that is resonant
with the cavity (�5 = 0), with amplitude α5. Hamiltonian
(25), in the rotating wave approximation (RWA), becomes
(see Appendix A)

H = a†
N∑

j=1

(
g( j)

1 b j + g( j)
2 b†

j

+ g( j)
3 b2

j + g( j)
4 b†

j
2 + g( j)

5 {b j, b†
j}
)+ H.c., (26)

with g( j)
μ ≡ α

( j)
μ G( j)

L , g( j)
ν ≡ α

( j)
ν G( j)

Q (μ = 1, 2; ν = 3, 4), and

g( j)
5 ≡ α5G( j)

Q the amplifications of the single phonon-photon
couplings due to the external driving. Notice that indepen-
dent control over each term in Hamiltonian (26) is possible
[122], which is in turn crucial for our purposes. The afore-
mentioned RWA holds in a regime satisfying |α( j)

� G(k)
σ | �

� j and |α5G( j)
σ | � � j ( j, k = 1, . . . , N , � = 1, . . . , 4, σ =

L, Q), given that the frequencies � j do not overlap (see Ap-
pendix A).

As said, dissipation is central for our aims. We model
the evolution of the system by a master equation in which
the cavity mode dissipates at a rate κ and the mechanical
oscillators are in contact with a thermal bath [121,123]:

ρ̇(t ) = − i[H, ρ(t )] + κD[a]ρ(t )

+
N∑

j=1

� j (n̄ j + 1)D[b j]ρ(t ) + � j n̄ jD[b†
j]ρ(t ), (27)

where the standard superoperator for Markovian dissipation is
denoted as D[ f ]ρ = f ρ f † − 1

2 { f † f , ρ} ( f = a, b j).

IV. THE CUBIC-PHASE STATE

In this section, we set N = 1 and omit all subscripts and
superscripts related to the oscillator.

The finitely squeezed cubic-phase state of a single oscilla-
tor is defined as [120]

|γ , s〉 = eiγ q3
S(s) |0〉 . (28)

A core result of our proposal is that the cubic-phase state
of a single mechanical oscillator can be unconditionally gen-
erated as the steady state of the dynamics given in Eq. (27)
(with N = 1), applying suitable drive amplitudes and phases.
Setting N = 1, Hamiltonian (26) simplifies to

Hcub = a†(g1b + g2b† + g3b2 + g4b†2 + g5{b, b†}) + H.c.
(29)

The coefficients of the linear terms, g1 and g2, are associated
only with Gaussian steady states [108]. Indeed, the ratio of
the amplitudes of these determines the degree of squeezing
[124] of the steady state [106,108]. Non-Gaussianity at the
steady state derives instead from the remaining coefficients
as follows. By choosing the driving strengths as g2 = −rg1,
g3 = g4 = g5 = −3i

2
√

2
γ (1 + r)g1, with r = s2−1

s2+1 , we obtain the
Hamiltonian

Hcub = g1a†

(
b − rb†

− 3iγ

2
√

2
(1 + r)(b + b†)2

)
+ H.c., (30)

which also can be put in the form

Hcub = g1

√
1 − r2 a†UbU † + H.c., (31)

where U = eiγ q3
e− i

2 ln s (qp+pq). When neglecting the mechan-
ical thermal noise, i.e., � = 0, master equation (27) can be
rewritten as

˙̃ρ(t ) = −i[H̃, ρ̃(t )] + κD[a]ρ̃(t ), (32)

where we defined ρ̃ ≡ U †ρU and

H̃ ≡ U †HcubU = g1

√
1 − r2 a†b + H.c. (33)

Notice that the new transformed Hamiltonian is a beam-
splitter-like interaction. Therefore, the steady state of the
dynamics described by new master equation (32) is the
vacuum for both the cavity and the new U -transformed me-
chanical mode. Consequently, the steady state of the system’s
dynamics governed by the original master equation is the state
|0〉c ⊗ |γ , s〉 where |0〉c is the vacuum state of the cavity and
|γ , s〉 is the mechanical finitely squeezed cubic-phase state
defined in Eq. (28). We stress the fact that the obtained cubic
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FIG. 2. Fidelity of the noisy cubic-phase state with the noiseless
one as a function of the mean phonon number (n̄) and mechanical
damping rate (�). Each point of the plot was obtained with the
following parameters: r = 0.52 (5 dB), γ = 0.2, and κ = 10g1.

phase state is prepared deterministically and this preparation
protocol is independent of the system’s initial conditions.
Moreover, the stability condition of the system’s dynamics is
inherited from the linear system: 0 � r < 1 [125] (see Ap-
pendix B).

In order to consider the effect of nonzero mechanical noise,
we numerically find the steady state of Eq. (27) and then
we calculate the fidelity between the latter and the state in
Eq. (28). This is shown in Fig. 2 where we plot the fidelity
as a function of the mean phonon number of the bath and the
mechanical damping rate. As expected, the mechanical noise
has a noxious effect on the target cubic-phase state; the higher
the temperature (quantified by n̄) or mechanical damping rate
(�), the lower the fidelity.

This analysis shows that a cubic-phase state can be gener-
ated in the massive mechanical oscillator of an optomechanics
experiment. This is a result of interest in its own, given the
highly nonclassical character of such a state—which displays
a nonpositive Wigner function and a high degree of quantum
non-Gaussianity [126,127]—and its deterministic attainabil-
ity. As mentioned, for this state to be considered as a resource
for computing, we must also show that it can be embedded in
a standard Gaussian cluster state [128].

V. NON-GAUSSIAN CLUSTER STATES

We aim to generate a modified non-Gaussian cluster state
sufficient to perform universal computation by interspersing
the standard state |s, A〉 with cubic-phase states. In particular
we will now show how the dissipative dynamics described by
Eq. (27) can be adapted to generate the state

|γ , s, A〉 = E (A)V (γ )S(s) |0〉 , (34)

where γ ≡ (γ1, . . . , γN ) denotes the cubic nonlinearities, and
we have defined V (γ ) =⊗N

j=1 Vj (γ j ) and Vj (γ j ) = eiγ j q3
j (see

Fig. 1). The state |γ , s, A〉 allows the implementation of uni-
versal computation since it can be composed of nodes with

zero nonlinearity, as the standard Gaussian one, and nodes
with γ j �= 0. For any given computation, Gaussian measure-
ments will then “tailor” this non-Gaussian cluster accordingly
to the program to be implemented. In this way, cubic gates
V (γ ) can be implemented only when needed [129].

Adapting the Hamiltonian switching scheme considered in
Refs. [107,108], one can generate the state |γ , s, A〉 via dis-
sipation engineering. The switching scheme involves N steps
such that at each one the driving fields are tuned to implement
the transformation

d� = E (A)V (γ )S(s) b� (E (A)V (γ )S(s))†, (35)

=
N∑

j=1

[R� j b j + S� j b†
j + T� j (b j + b†

j )
2], (36)

where the matrices R, S , and T are given in terms of the
squeezings s, cubic nonlinearity parameters γ , and the target
adjacency matrix A as follows:

R = D+ − i

2
(D+ + D−)A, (37)

S = −D− − i

2
(D+ + D−)A, (38)

T = −3i

2
√

2
Dγ (D+ + D−), (39)

where the matrices D± and Dγ are given by

D± = 1

2
diag

(
s1 ± 1

s1
, . . . , sN ± 1

sN

)
, (40)

Dγ = diag(γ1, . . . , γN ). (41)

The switching protocol is performed by choosing the optome-
chanical couplings such that at the �th step we set:

g( j)
1 = βR� j, (42)

g( j)
2 = βS� j, (43)

g( j)
3 = g( j)

4 = g( j)
5 = βT� j, (44)

where β > 0 is a parameter proportional to the driving
strength [130]. This implies that, at the �th step, the
Hamiltonian is

H (�)
clust = β(a†d� + ad†

� ). (45)

At each step, the system is allowed to reach its steady
state (i.e., the vacuum of the collective mode d�) and then the
Hamiltonian is switched, by modifying the driving fields, for
the next step to begin. Therefore, if the system is initially in
vacuum (and neglecting the mechanical damping), after the N
steps the mechanical state is given by the target cluster state,
in the basis of the local modes {b1, . . . , bN } [131].

We should mention here that the switching program re-
quires, at step �, to set all the quadratic couplings, except
g(�)

5 , to zero [this is clear from Eq. (44) where the matrix
T is diagonal]. On the other hand, the parameters g( j)

5 are
tunable only through the control of the quadratic couplings;
g( j)

5 = α0G( j)
Q , and the resonant drive α0 will lead to all the

terms {b j, b†
j} to be resonant in the Hamiltonian. Therefore,

for our protocol to work one needs to be able to switch on
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FIG. 3. The fidelity of the preparation of a two-node non-
Gaussian cluster state. The nodes of the cluster consist of a squeezed
state and a cubic-phase state with the same amount of squeezing.
We used the following parameters: s1 = s2 = 1.78 (5 dB), γ1 = 0,
γ2 = 0.1, κ = 10β, and evolution duration τ = 20 β−1. Precooling
(dashed line) the oscillators close to the ground state greatly in-
creases the (maximum) achievable fidelity of the scheme.

and off the quadratic couplings G( j)
Q at will in every step of the

switching scheme in order to kill all terms {bj, b†
j} for j �= �

at step �.
The system considered here will always relax to one and

only one steady state; i.e., the dynamical system has always
one attractor. We should stress the fact that this uniqueness
of the steady state is per initial state of the system; i.e., for
every initial state there corresponds exactly one steady state.
One special case is that of a system with one mechanical mode
(N = 1), where all initial states lead to the same steady state,
the cubic-phase state, as shown in Sec. IV. That being said,
for a system with more than one mechanical mode (N � 2),
starting from two different initial states, the system will reach
two different steady states. In particular, if the dynamics starts
from vacuum and we perform Hamiltonian switching, then
the system reaches a unique steady state at every step, and
the steady state of the last step will be our target cluster
state.

Figure 3 demonstrates the effectiveness of the switching
scheme for generating a two-node non-Gaussian cluster. In the
absence of mechanical noise (solid red line), the fidelity with
the target state increases monotonically in each step and it
reaches unit fidelity at the steady state (at the end of the second
step, provided longer evolution time is allowed). When the
mechanical environment is considered (dot-dashed line), the
fidelity reaches a maximum (during the second step) before
the noise starts to negatively affect the quality of the target
cluster state. As already seen in Fig. 2, the thermal noise
has a detrimental effect on the performance of the switching
scheme; however, high fidelities can still be achieved. Part
of this negative effect is due to the fact that the oscillators
are assumed to be initialized in thermal equilibrium with
their environment (with mean phonon numbers n̄1 = 10 and
n̄2 = 1 and mechanical damping γm = 10−4β), rather than

in the ground state. This effect can then be circumvented to
a large degree by first independently cooling the oscillators
(red detuned sideband cooling) [132,133]. This can be seen
in the dashed blue curve of Fig. 3, which in fact closely
approximates the noiseless scenario.

VI. LOCAL GAUSSIAN MEASUREMENTS

For the non-Gaussian cluster state above to be useful in
quantum computation, one finally requires the capacity to
perform Gaussian measurements on individual nodes. Unfor-
tunately, the mechanical modes embodying our cluster state
are not directly accessible to measurement and must be probed
instead using the cavity field as a detector. Conveniently, since
the resonators are assumed to have distinct and well-spaced
frequencies (see Appendix A for details), we may address
each oscillator individually. In particular, by properly driving
the system, it is possible to engineer a quantum nondemolition
(QND) interaction between the cavity position quadrature and
an arbitrary quadrature of any given oscillator [109,110].

Consider again Hamiltonian (26) with g( j)
3 = g( j)

4 = g5 = 0
for j = 1, . . . , N , addressing only the first sidebands. Let
|g( j)

1 | = |g( j)
2 | = β j and arg(g( j)

2 ) = −arg(g( j)
1 ) ≡ φ j . In this

case one has a sum of QND interactions,

Hmeas = 2X
N∑

j=1

β jQ
( j)
φ j

, (46)

where X = a+a†√
2

is the cavity position quadrature and Q( j)
φ j

=
q j cos φ j + p j sin φ j is an arbitrary quadrature of the mechan-
ical mode j. Each oscillator can be addressed in turn by setting
all but the amplitude of interest to zero. In this case we have
an N-step process with each step described by

H (k)
meas = 2βkXQ(k)

φk
. (47)

Let us stress that the mechanical quadrature Q(k)
φk

to be
measured, which in turn depends on the program to be imple-
mented, is simply selected by the phase of the external driving.
Continuously monitoring, via homodyne detection, the out-
put cavity field’s position quadrature drives the mechanical
system towards an eigenstate of the chosen quadrature (rep-
resented by a vacuum state squeezed along an appropriate
axis defined by φk). For the purposes of computation, this is
equivalent to performing a projective quadrature measurement
directly onto the cluster state [110]. As said, the latter are
in turn sufficient to perform any multimode operation, when
operating on the non-Gaussian cluster |γ , s, A〉.

In Appendix G we provide an example of how to im-
plement the minimal building block of universal MBQC by
using the tools introduced so far. In particular, we consider the
universal non-Gaussian gate defined as the operator V = eiγ q3

[47]—called the cubic-phase gate—and show that it can be
reliably implemented on a squeezed state via local Gaussian
measurements on the two-node non-Gaussian cluster of Fig. 3.

VII. EXPERIMENTAL FEASIBILITY

The protocol proposed above to prepare non-Gaussian
cluster states requires physical platforms exhibiting linear
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and quadratic position coupling with the cavity field. More-
over, the system needs to operate in the resolved sideband
regime and the conditions |α( j)

� G(k)
σ | � � j and |α5G( j)

σ | �
� j ( j, k = 1, . . . , N , � = 1, . . . , 4, σ = L,Q) must be met
to ensure the validity of the RWA used in our deriva-
tion of the dynamics. These requirements may be real-
ized in current and near-future experiments. In fact, there
are many platforms that can be used to implement our
scheme, including membrane-in-the-middle configurations
[80,86,88,89,95,134–136], ultracold atoms inside a cavity
[85], photonic crystals [93,94,98,101], circuit QED [96],
electromechanical systems [74,81–83,103,104], microdisks
[87,90–92], and optically levitated particles [97,99,105,137–
139]. In particular, very large quadratic couplings are within
reach of current experiments [87,94,98,140,141]. Also we
mention that linear-to-quadratic ratios of up to 102 may be
obtained [100,102].

Furthermore, the linear-to-quadratic couplings ratio can
be improved by optimizing the experimental design. For
instance, one may exploit the membrane tilting in membrane-
in-the-middle setups [80,86] or fine positioning the microdisk
in microtoroid optomechanical systems [90]. Also, our proto-
cols can be implemented in electrical circuits by controlling
the bias flux and coupling capacitance as proposed in [96],
or considering magnetically or optically levitated particles as
suggested in [137,142].

Moreover, the preparation of the cubic-phase state or the
cluster state can be experimentally certified by means of quan-
tum tomographic strategies, following for example the scheme
recently implemented to verify two-mode entanglement in
electromechanical systems [143]. In particular, methods for
reconstructing the state of a network of harmonic resonators

coupled to an auxiliary mode [144] or to a two-level system
[145] have been proposed.

VIII. CONCLUSIONS AND OUTLOOK

Continuous-variable systems are convenient for fault-
tolerant computation since they naturally offer high-
dimensional spaces in which the discrete units of quantum
information can be resiliently encoded [54,120,146–149],
as recently proven experimentally in the context of circuit-
based quantum computation [150–152]. In this respect,
the alternative measurement-based approach considered here
is promising, thanks to the availability of high threshold
schemes [20,21]. In particular, we have shown that a setting
where mechanical oscillators act as the information carriers,
rather than photons, provides the advantage that the core
ingredients for universal computation—non-Gaussian cluster
states and Gaussian operations—can be realized uncondi-
tionally. This opens the way to deterministic fault-tolerant
quantum computation in integrable platforms where linear and
quadratic optomechanicslike interactions can be simultane-
ously achieved.
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APPENDIX A: VALIDITY OF THE ROTATING WAVE APPROXIMATION

The validity of the RWA used in the Hamiltonian derivation of the main text will be justified here. Recall that the Hamiltonian

H = a†
N∑

j=1

(
g( j)

1 b j + g( j)
2 b†

j + g( j)
3 b2

j + g( j)
4 b†

j
2 + g( j)

5 (b†
jb j + b jb

†
j )
)+ H.c. (A1)

is obtained by discarding all time-dependent (counter-rotating) terms and keeping only the resonant ones. The counter-rotating
terms may be written as

Hcrt =
N∑

j=1

⎡
⎣ 4∑

�=1

H (�)
j ei�� j t +

N∑
k=1,k �= j

Hj,k

⎤
⎦ + H.c., (A2)

with the following expressions:

H (1)
j = a†

[
α0G( j)

L b†
j + α

(−2)
j G( j)

L b j + α
(+1)
j G( j)

Q b†
j
2 +

N∑
k=1

α
(−1)
j G(k)

Q {bk, b†
k}
]

+ a

[
α0G( j)

L b j + α
(+2)
j G( j)

L b†
j + α

(−1)
j G( j)

Q b2
j +

N∑
k=1

α
(+1)
j G(k)

Q {bk, b†
k}
]†

, (A3)

H (2)
j = a†

[
α0G( j)

Q b†
j
2 + α

(−1)
j G( j)

L b†
j +

N∑
k=1

α
(−2)
j G(k)

Q {bk, b†
k}
]

+ a

[
α0G( j)

Q b2
j + α

(+1)
j G( j)

L b j +
N∑

k=1

α
(+2)
j G(k)

Q {bk, b†
k}
]†

, (A4)
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H (3)
j = a†

[
α

(−2)
j G( j)

L b†
j + α

(−1)
j G( j)

Q b†
j
2]+ a

[
α

(+2)
j G( j)

L b j + α
(+1)
j G( j)

Q b2
j

]†
, (A5)

H (4)
j = a†

[
α

(−2)
j G( j)

Q b†
j
2]+ a

[
α

(+2)
j G( j)

Q b2
j

]†
, (A6)

Hj,k = ei(2�k−� j )t
(
a†
[
α

(−2)
k G( j)

L b j + α
(+1)
j G(k)

Q b†
j
2]+ a

[
α

(+2)
k G( j)

L b†
j + α

(−1)
j G(k)

Q b2
j

]†)
+ ei(2�k+� j )t

(
a†
[
α

(−2)
k G( j)

L b†
j + α

(−1)
j G(k)

Q b†
j
2]+ a

[
α

(+2)
k G( j)

L b j + α
(+1)
j G(k)

Q b2
j

]†)
+ e2i(�k−� j )t

(
α

(−2)
k a† + α

(+2),∗
k a

)
G( j)

Q b2
j + e2i(�k+� j )t

(
α

(−2)
k a† + α

(+2),∗
k a

)
G( j)

Q b†
j
2

+ ei(�k+� j )t
(
α

(−1)
k a† + α

(+1),∗
k a

)
G( j)

L b†
j + ei(�k−� j )t

(
α

(−1)
k a† + α

(+1),∗
k a

)
G( j)

L b j . (A7)

Now we can state the necessary conditions to safely ne-
glect the counter-rotating terms. For the RWA to be valid, the
following constraints must be met:∣∣α0G( j)

L,Q

∣∣� � j, (A8)∣∣α(±1)
j G(k)

L,Q

∣∣� � j, (A9)∣∣α(±2)
j G(k)

L,Q

∣∣� � j . (A10)

We study the validity of the RWA in more detail for the
interesting case of the preparation of the cubic-phase state of
a mechanical oscillator. The system consists of a cavity and
one mechanical oscillator (N = 1). The full Hamiltonian of
the system is again

H = HRWA + Hcrt, (A11)

with

HRWA = a†(g1b + b2b† + g3b2 + g4b†2 + g5{b, b†}) + H.c.,
(A12)

Hcrt =
4∑

�=1

H (�)ei��t + H.c., (A13)

and H (�) given by

H (1) = R(g3a† + g∗
4a)b + R(g5a† + g∗

5a)b† + R−1(g2a†

+ g∗
1a)b†2 + R−1(g1a† + g∗

2a){b, b†}, (A14)

H (2) = (g1a† + g∗
2a)b† + (g5a† + g∗

5a)b†2 + (g3a†

+ g∗
4a){b, b†}, (A15)

H (3) = R(g3a† + g∗
4a)b† + R−1(g1a† + g∗

2a)b†2
, (A16)

H (4) = (g3a† + g∗
4a)b†2

, (A17)

where we defined R ≡ GL
GQ

, the ratio between the bare linear
and quadratic optomechanical couplings. Therefore, the nec-
essary conditions for the validity of the RWA are

|g j |, |Rgμ|, |R−1gν |
� �( j = 1, . . . , 5, μ = 3, 4, 5, ν = 1, 2). (A18)

In particular, for the cubic-phase state, g2 = −rg1, g3 =
g4 = g5 = −3i

2
√

2
(1 + r)γ g1 (0 � r < 1 and γ real), these latter

conditions translate to

|g1|, |Rg1|, |R−1g1| � �. (A19)

In the following we quantify the effect of the counter-
rotating terms on the steady state of the dissipative dynamics.
For this, we use the Uhlman fidelity defined as [153,154]

F (γ , s) =
√

〈γ , s|ρfull(t )|γ , s〉, (A20)

where ρfull(t ) is the density operator of the system at time
t when considering the full Hamiltonian, HRWA + Hcrt. We
calculate ρfull(t ) by solving the master equation for big enough
Hilbert space and plot the fidelity F (0.05 × 2

√
2, s(0.33)) as

function of time (see Fig. 4). We see that one can reach fidelity
>0.99 in some regimes. Namely, for the used values and when
the ratio R = GL

GQ
is between 5 and 10, the validity of the RWA

is justified.
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FIG. 4. Time evolution of the fidelity of the system’s state with
the cubic-phase state, for different ratios of R: the first four curves
from the bottom up correspond to ratios 100 (yellow), 0.1 (black),
1 (magenta), and 20 (cyan), respectively, while the next two curves
(see the inset plot for more clarity and contrast) are for ratios 10
(red, the more oscillating curve) and 5 (green, the less oscillating
curve), and the top (blue) curve corresponds to the RWA Hamil-
tonian. The system state is obtained by solving the dynamics of
the cavity-mechanical oscillator with and without the RWA. We
used the parameters γ /2

√
2 = 0.05, r = 0.33 (3 dB squeezing), and

g1 = κ = 10−2 �.
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APPENDIX B: STABILITY ANALYSIS

Here we will give a detailed analysis of the stability of
the optomechanical system described by Hamiltonian (A1) for
one mechanical oscillator (N = 1). The Langevin-Heisenberg
equations for the quantum fluctuations are

U̇ = A U + B + N , (B1)

where U is the operator-valued vector defined as U =
(x, y, q, p)�, with x = (a + a†)/

√
2 and y = (a − a†)/

√
2i

the cavity field quadratures, N = (xin, yin, 0, ξ )� is the vector
of noise operators, and the matrix A and the vector B are given
by

A =

⎛
⎜⎜⎝

−κ
2 0 I1 R2

0 −κ
2 −R1 I2

−I2 R2 0 0
−R1 −I1 0 −�

⎞
⎟⎟⎠,

B =

⎛
⎜⎜⎝

I3q2 + I4 p2 + R5(qp + pq)
−R3q2 − R4 p2 + I5(qp + pq)

2x(R4 p − I5q) + 2y(I4 p + R5q)
2x(−R3q + I5 p) − 2y(I3q + R5 p)

⎞
⎟⎟⎠, (B2)

where Rk and Ik , k = 1, . . . , 5, are defined as follows:

R1 = Re(g1 + g2), I1 = Im(g1 + g2), (B3)

R2 = Re(g1 − g2), I2 = Im(g1 − g2), (B4)

R3 = 1√
2

Re(g3 + g4 + 2g5), I3 = 1√
2

Im(g3 + g4 + 2g5),

(B5)

R4 = −1√
2

Re(g3 + g4 − 2g5), I4 = −1√
2

Im(g3 + g4 − 2g5),

(B6)

R5 = 1√
2

Re(g3 − g4), I5 = 1√
2

Im(g3 − g4). (B7)

The system given by Eq. (B1) is stable if the linear part is
stable [81,155,156]. This is equivalent to A being a Hurwitz
matrix i.e., all eigenvalues have a negative real part. In fact,
applying the Routh-Hurwitz criterion [157] we find the fol-
lowing stability condition:

R1R2 + I1I2 > 0 ⇔ |g1| > |g2|, (B8)

i.e., the driving amplitude at the blue sideband is smaller than
that at the red sideband. For the cubic-phase state, we have
g2 = −rg1. Therefore, the system is always stable as long as
|r| < 1, which is always the case, since r = s2−1

s2+1 and s � 1.

APPENDIX C: TIME SCALE TO REACH THE TARGET
CLUSTER STATE

At each step of the switching protocol, the Hamiltonian is
set to

H� = β�(a†d� + ad†
� ), (C1)

where β� is proportional to the driving power. Since the driv-
ing power may differ in every step we attach the subscript � to
β.

S1(s1)

S2(s2)

V1(γ1)

V2(γ2)

|0〉

|0〉

squeezing cubic phase controlled
phase

FIG. 5. Quantum circuit for the two-mode non-Gaussian cluster
state. Quantum gates S1 and S2 (V1 and V2) are the one-mode squeez-
ing (cubic phase) for modes 1 and 2, respectively.

The dynamics of the system, at step �, is governed by the
master equation

ρ̇� = −i[H�, ρ�] + κ
(
aρ�a† − 1

2 a†aρ� − 1
2ρ�a†a

)
. (C2)

The system will reach the steady state (of step �) in a time
scale given by [108]

τ� = 4

κRe
(
1 −

√
1 − ( 4β�

κ

)2) . (C3)

If the target state has size N (i.e., N mechanical oscillators),
then the switching scheme involves N steps, and the time scale
to prepare the cluster state is

τ (N ) =
N∑

�=1

τ�. (C4)

In the simplest setting where all driving powers are identical,
we set β� ≡ β constant in all steps and obtain

τ (N ) = 4N

κRe
(
1 −

√
1 − ( 4β

κ

)2) . (C5)

This shows that the time scale to prepare the cluster state
grows linearly with the number of nodes. For example, if we
had chosen κ = 10β, then the time scale in units of β is found
to be τ (2) = 9.58. The scheme is most effective when this
time scale is less than the rethermalization time of the system,
i.e., 1

τ (N ) < n̄�, where n̄� is the worst case for the collection
of oscillators.

Notice that the above analysis is independent of the adja-
cency matrix A, and therefore the preparation time does not
depend on the geometry of the target cluster state.

APPENDIX D: TWO-MODE NON-GAUSSIAN CLUSTER
STATE

We demonstrate the generation of a two-mode non-
Gaussian cluster state using the protocol introduced so far.
We choose the target cluster (see Fig. 5) to be a squeezed state
(with parameters s1 and γ1 = 0) coupled to a cubic-phase state
(with parameters s2 and γ2).

First we focus on the noiseless case, i.e., no mechanical
dumping. Since we have two mechanical modes, preparing
the target cluster involves two steps. Starting from the vacuum
state of the two mechanical oscillators, we set the driving
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amplitudes such that the system’s Hamiltonian is

H1 = β

2
a†

[(
s1 + 1

s1

)
b1 −

(
s1 − 1

s1

)
b†

1 − is1(b2 + b†
2)

− 3iγ1s1√
2

(b1 + b†
1)2

]
+ H.c., (D1)

and we wait for sufficient time to reach the steady state. Then
we set the amplitudes so that the Hamiltonian is

H2 = β

2
a†

[
−is2(b1 + b†

1) +
(

s2 + 1

s2

)
b2 −

(
s2 − 1

s2

)
b†

2

− 3iγ2s2√
2

(b2 + b†
2)2

]
+ H.c., (D2)

and we wait again for sufficient time to reach the steady state
of the system. In the main text we showed a plot (Fig. 3)
showing numerical confirmation that the system reaches the
target cluster as a steady state of the system.

Now we turn our focus to the noisy case where the dynam-
ics suffers from the (unwanted) coupling of the mechanical
oscillators with their thermal baths at finite temperature. We
assess the quality of the generated cluster state by the two-step
protocol detailed above. We consider that the two mechanical
oscillators are initially in thermal equilibrium with their baths
with mean phonon occupations n̄1 and n̄2 for the first and sec-
ond modes, respectively. Without loss of generality we assume
the same mechanical damping rate � for both oscillators. The
fidelity of the system was plotted in Fig. 3 in the main text for
n̄1 = 10, n̄2 = 1, and � = 10−4β. We notice that there is a gap
between the curves corresponding to the noisy and noiseless
cases, and this is mainly due to the fact that our protocol is
valid when the initial state of the mechanical oscillators is
the vacuum. And since the mechanical oscillators here are
initially in a thermal state, then we will expect that the fidelity
will follow a different path from that corresponding to the
system being initially in vacuum. This is true even if the noise
is disregarded during the switching protocol. To be able to
assess the robustness of our protocol against the effects of the
mechanical noise, we suggest cooling down the mechanical
oscillators before starting the switching protocol. The cooling

FIG. 6. Possible geometries of a three-mode cluster state.
(a) Linear cluster. (b) Circular cluster.

process is realized by exploiting the red sideband cooling of
each mechanical oscillator individually [68]: We drive the
system with one field addressing one mechanical oscillator
only. The implemented Hamiltonian is

H cool
j = βa†b j + H.c., (D3)

for j = 1, 2. Therefore, our protocol involves four steps: two
steps for cooling the first then second mechanical oscillators,
and two steps for the preparation of the target cluster state as
explained above. Hence, when precooling the oscillators, the
target cluster state is obtained with higher fidelity than before.

APPENDIX E: THREE-MODE NON-GAUSSIAN LINEAR
CLUSTER STATE

In this Appendix, we show the needed steps to prepare a
non-Gaussian three-mode cluster state. In contrast to the case
of a two-mode cluster, there are different geometries for the
three-mode cluster, namely, the linear and circular geometries
(see Fig. 6). The canonical way of preparing the three-mode
cluster state is depicted in the quantum circuits of Fig. 7.

Using our scheme given in Sec. V, we need three steps. In
each step the Hamiltonian of the system is set as the following
[we used Eqs. (45) and (36)]. For the linear cluster we have

H linear
1 = β

2
a†

[(
s1 + 1

s1

)
b1 −

(
s1 − 1

s1

)
b†

1 − is1(b2 + b†
2) − 3iγ1s1√

2
(b1 + b†

1)2

]
+ H.c., (E1)

H linear
2 = β

2
a†

[
−is2(b1 + b†

1 + b3 + b†
3) +

(
s2 + 1

s2

)
b2 −

(
s2 − 1

s2

)
b†

2 − 3iγ2s2√
2

(b2 + b†
2)2

]
+ H.c., (E2)

H linear
3 = β

2
a†

[
−is3(b2 + b†

2) +
(

s3 + 1

s3

)
b3 −

(
s3 − 1

s3

)
b†

3 − 3iγ3s3√
2

(b3 + b†
3)2

]
+ H.c., (E3)

and for the circular cluster the Hamiltonian formulas are sim-
ilar to the above with minor modifications due to the extra
coupling between first and third modes:

H circular
1 = H linear

1 + is1β

2
(a − a†)(b3 + b†

3), (E4)

H circular
2 = H linear

2 , (E5)

H circular
3 = H linear

3 + is3β

2
(a − a†)(b1 + b†

1). (E6)

In Fig. 8 we plot the fidelity between a linear three-mode
cluster (see the figure for the used parameters) and the time
evolution of the system’s state during the two switching steps.
As expected, the system reaches a steady state in every switch-
ing step, witnessed by a constant fidelity with time. More
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S1(s1)

S2(s2)

S3(s3)

V1(γ1)

V2(γ2)

V3(γ3)

(b)

|0〉

|0〉

|0〉

S1(s1)

S2(s2)

S3(s3)

V1(γ1)

V2(γ2)

V3(γ3)

(a)

|0〉

|0〉

|0〉

FIG. 7. Quantum circuit for generating (a) a linear and (b) a
circular three-mode cluster state.

interestingly, the system’s steady state at the final step is
exactly the target cluster state, and this is clear from the fact
that the fidelity reached a stationary value of 1.

Needless to say, the simulation of other cluster states with
more modes becomes computationally very difficult due to
the exponential growth of computational resources needed to
perform the simulations.

APPENDIX F: MECHANICAL NOISE EFFECTS ON THE
PREPARATION OF THE CLUSTER STATES

In this section, we discuss the notorious effects of the
mechanical thermal noise on the quality of the cluster states
obtained from the switching protocol. Our system involves
N mechanical oscillators interacting with a common cavity
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κ1t
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0.95

F
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el
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FIG. 8. Variation of the fidelity between the state of the system
at time t and the target cluster state (three-mode cluster with linear
geometry) with time. We used the following parameters: s1 = s2 =
s3 ≈ 1.41 (3 dB squeezing), γ1 = 0.1, and γ2 = γ3 = 0.

FIG. 9. Final fidelity as a function of temperatures for the two
mechanical oscillators. The used parameters are s1 = s2 ≈ 1.41
(3 dB squeezing), γ1 = 0.1, γ2 = 0, and �1 = �2 = 10−3κ1.

mode. Recall that the full Hamiltonian is given by

H = a†
∑

j

(
g( j)

1 b j + g( j)
2 b†

j + g( j)
3 b2

j + g( j)
4 b†

j
2

+ g( j)
5 {b j, b†

j}
)+ H.c., (F1)

and the dynamics obeys the master equation

dρ(t )

dt
= −i[H, ρ(t )] + κD[a]ρ(t ) +

N∑
j=1

(� j (n̄ j + 1)

× D[b j]ρ(t ) + � j n̄ jD[b†
j]ρ(t )), (F2)

where � j and n̄ j are, respectively, the damping rate and the
mean phonon number corresponding to the mechanical oscil-
lator j.
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FIG. 10. Fidelity of the output state with the cubic-phase-gate
target state averaged over the many measurements. On average the
operation produces a state with high fidelity to the target, with large
temperatures and high damping rates leading to smaller fidelities. See
the text for the used parameters.
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In the following simulations, we consider a system of two
mechanical oscillators and assume they are initially in thermal
equilibrium with their respective baths. After cooling down
the two oscillators, we apply the switching protocol (see the
main text and Appendix D) and calculate the final fidelity
at the steady state. Due to the computational difficulty of
simulating this system, we consider a regime where the cavity
mode can be adiabatically eliminated. Namely, we consider
that the linear (gj

1,2) and quadratic (gj
3,4,5) optomechanical

couplings are much less than the cavity decay rate (κ). The
system dynamics is now described by the following master
equation [121,158–160]:

dρ(t )

dt

= κ1D

[
N∑

j=1

g( j)
1 b j + g( j)

2 b†
j + g( j)

3 b2
j + g( j)

4 b†
j
2 + g( j)

5 {b j, b†
j}
]

× ρ(t ) +
N∑

j=1

� j (n̄ j + 1)D[b j]ρ(t ) + � j n̄ jD[b†
j]ρ(t ),

(F3)

with the effective decay rate κ1 = 4β2

κ
. For simplicity we set

�1 = · · · = �N .
By varying the temperature for the two oscillators, we

obtained a contour plot (see Fig. 9). As one would expect, the
presence of mechanical noise has a deleterious effect on the
prepared cluster state; the greater the temperature of the two
mechanical oscillators the larger the deviation of the steady
state from the ideal target cluster. This deviation is the result of
two things. First, the initial state is no longer the vacuum (our
protocol requires the vacuum as the initial state). To counter
the effect of a nonideal initial state, we perform the cooling
stage for all the mechanical oscillators. Second, the presence
of mechanical coupling to the thermal baths will further affect

the quality of the cluster at the steady state. In fact, it is better
not to wait for a very long time to reach the steady state, but
one may consider shorter times per switching step that are less
than the decoherence time due to thermal effects [108].

APPENDIX G: CUBIC-PHASE GATE

We consider the two-node non-Gaussian cluster of Fig. 5.
We perform a momentum measurement on the input squeezed
state, which results (up to a distortion due to finite squeezing)
in the output given by

|φ′〉 = X (m)P(3γ m)Z (3γ m2)Fe−iγ p3 |φ〉 . (G1)

We assume the same conditions as in the generation of
the non-Gaussian cluster and further assume the capability to
make a projective measurement on the input node (cf. [110]).
The fidelity of the output state with Eq. (G1) is analyzed in
Fig. 10. Since the output depends on the measurement result,
which is random, we examine the fidelity on average over
many measurement results. The scheme proves effective on
average with decreasing success as the temperature increases.

We should mention that in all the simulations carried out
in our paper, including the measurement simulation, we ap-
proximated the ideal continuous system with a discrete one
by truncating the dimension of the Hilbert space in the Fock
basis. Consequently, the spectrum of the momentum observ-
able becomes finite and discrete. Therefore, measuring the
momentum P̂ will always give a result that belongs to this
discrete spectrum. In particular, the measurement simulations
shown in Fig. 10 have a finite resolution which intrinsically
constitutes a binning process. In other words, the discreteness
of the spectrum of P̂ is essentially a form of binning forced on
us by the structure of the simulation. Therefore, the measure-
ment leading to the results in Fig. 10 has an intrinsic nonzero
measurement width. Given that this particularly coarse reso-
lution is successful, we expect that a more realistic scenario
with narrower widths will be even more successful.
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