1,446 research outputs found

    Built-In Test Sequence Generation for Synchronous Sequential Circuits Based on Loading and Expansion of Test Subsequences

    Get PDF
    We describe an on-chip test generation scheme for synchronous sequential circuits that allows at-speed testing of such circuits. The proposed scheme is based on loading of (short) input sequences into an on-chip memory, and expansion of these sequences on-chip into test sequences. Complete coverage of modeled faults is achieved by basing the selection of the loaded sequences on a deterministic test sequence T 0, and ensuring that every fault detected by T 0 is detected by the expanded version of at least one loaded sequence. Experimental results presented for benchmark circuits show that the length of the sequence that needs to be stored at any time is on the average 10 % of the length of T 0, and that the total length of all the loaded sequences is on the average 46 % of the length of T 0. 1

    Automated unique input output sequence generation for conformance testing of FSMs

    Get PDF
    This paper describes a method for automatically generating unique input output (UIO) sequences for FSM conformance testing. UIOs are used in conformance testing to verify the end state of a transition sequence. UIO sequence generation is represented as a search problem and genetic algorithms are used to search this space. Empirical evidence indicates that the proposed method yields considerably better (up to 62% better) results compared with random UIO sequence generation

    Fault detection on sequential machines

    Get PDF
    This paper presents an algorithm for deriving an optimum test sequence for detecting faults in a synchronous machine. In this study, the flow table is used as a tool to generate the fault detection tests. The fault stuck-at-1 (or stuck-at-0 ) is said to be present when a permanent signal valued 1 (or 0) appears on a component of the machine. Only single faults are treated . The result of the procedure is one or more test sequences guaranteed to detect a set of faults (Fp). First, sequential machines with feedback lines as memory elements are considered . Then the memory elements are changed to R-S flip-flops. Finally, several suggestions for further work are made --Abstract, Page ii

    UIO sequence based checking sequences for distributed test architectures

    Get PDF
    This study addresses the construction of a preset checking sequence that will not pose controllability (synchronization) and observability (undetectable output shift) problems when applied in distributed test architectures that utilize remote testers. The controllability problem manifests itself when a tester is required to send the current input and because it did not send the previous input nor did it receive the previous output it cannot determine when to send the input. The observability problem manifests itself when a tester is expecting an output in response to either the previous input or the current input and because it is not the one to send the current input, it cannot determine when to start and stop waiting for the output. Based on UIO sequences, a checking sequence construction method is proposed to yield a sequence that is free from controllability and observability problems

    Testability and redundancy techniques for improved yield and reliability of CMOS VLSI circuits

    Get PDF
    The research presented in this thesis is concerned with the design of fault-tolerant integrated circuits as a contribution to the design of fault-tolerant systems. The economical manufacture of very large area ICs will necessitate the incorporation of fault-tolerance features which are routinely employed in current high density dynamic random access memories. Furthermore, the growing use of ICs in safety-critical applications and/or hostile environments in addition to the prospect of single-chip systems will mandate the use of fault-tolerance for improved reliability. A fault-tolerant IC must be able to detect and correct all possible faults that may affect its operation. The ability of a chip to detect its own faults is not only necessary for fault-tolerance, but it is also regarded as the ultimate solution to the problem of testing. Off-line periodic testing is selected for this research because it achieves better coverage of physical faults and it requires less extra hardware than on-line error detection techniques. Tests for CMOS stuck-open faults are shown to detect all other faults. Simple test sequence generation procedures for the detection of all faults are derived. The test sequences generated by these procedures produce a trivial output, thereby, greatly simplifying the task of test response analysis. A further advantage of the proposed test generation procedures is that they do not require the enumeration of faults. The implementation of built-in self-test is considered and it is shown that the hardware overhead is comparable to that associated with pseudo-random and pseudo-exhaustive techniques while achieving a much higher fault coverage through-the use of the proposed test generation procedures. The consideration of the problem of testing the test circuitry led to the conclusion that complete test coverage may be achieved if separate chips cooperate in testing each other's untested parts. An alternative approach towards complete test coverage would be to design the test circuitry so that it is as distributed as possible and so that it is tested as it performs its function. Fault correction relies on the provision of spare units and a means of reconfiguring the circuit so that the faulty units are discarded. This raises the question of what is the optimum size of a unit? A mathematical model, linking yield and reliability is therefore developed to answer such a question and also to study the effects of such parameters as the amount of redundancy, the size of the additional circuitry required for testing and reconfiguration, and the effect of periodic testing on reliability. The stringent requirement on the size of the reconfiguration logic is illustrated by the application of the model to a typical example. Another important result concerns the effect of periodic testing on reliability. It is shown that periodic off-line testing can achieve approximately the same level of reliability as on-line testing, even when the time between tests is many hundreds of hours

    Testing from a finite state machine: Extending invertibility to sequences

    Get PDF
    When testing a system modelled as a finite state machine it is desirable to minimize the effort required. It has been demonstrated that it is possible to utilize test sequence overlap in order to reduce the test effort and this overlap has been represented by using invertible transitions. In this paper invertibility will be extended to sequences in order to reduce the test effort further and encapsulate a more general type of test sequence overlap. It will also be shown that certain properties of invertible sequences can be used in the generation of state identification sequences

    A Total Self Checking Comparator Implementable on FPGAS Using Bist Technology

    Get PDF
    an integrated circuits (IC) "manufacturing tests" may be made easier to administer with the use of design for testability (DFT). Integrated circuits' embedded memory tests make use of the TSC (TSC) approach. We have shown the TSC method and several algorithms used in TSC for the purpose of testing embedded memory in this article. An address generator, controller, comparator, and memory are the four main components of this kind of memory TSC technology. This paper details the three memory TSC controller implementation techniques. The memory TSC controller is modelled in Verilog HDL, and its accuracy is checked using the RTL compiler before synthesis. Here we provide a way to build TSC comparators for TSC systems that may be implemented on FPGAs—totally self-checking (TSC) systems—that can be used online. By directly measuring the output of each lookup table (LUT), this approach may be utilised to do comprehensive online diagnostics of all LUTs. This entails mapping the basic components of the comparator with a limited number of test patterns. With our technique, we can achieve exhaustive diagnosis with a small number of test patterns on the order of n [O(n)] (where n is the input number to the comparator) while yet covering all bases 100% of the time, even if we are just aware of the LUT's specs and not its exact structure. For systems that need absolute reliability, FPGAs will be a perfect fit. Our experiment also included a single-event upset (SEU) induced by neutron radiation to validate the soft error rate (SER) in a field-programmable gate array (FPGA) based on static random-access memory (SRAM)

    Checking sequence construction using adaptive and preset distinguishing sequences

    Get PDF
    Methods for testing from finite state machine-based specifications often require the existence of a preset distinguishing sequence for constructing checking sequences. It has been shown that an adaptive distinguishing sequence is sufficient for these methods. This result is significant because adaptive distinguishing sequences are strictly more common and up to exponentially shorter than preset ones. However, there has been no study on the actual effect of using adaptive distinguishing sequences on the length of checking sequences. This paper describes experiments that show that checking sequences constructed using adaptive distinguishing sequences are almost consistently shorter than those based on preset distinguishing sequences. This is investigated for three different checking sequence generation methods and the results obtained from an extensive experimental study are given

    Investigations into the feasibility of an on-line test methodology

    Get PDF
    This thesis aims to understand how information coding and the protocol that it supports can affect the characteristics of electronic circuits. More specifically, it investigates an on-line test methodology called IFIS (If it Fails It Stops) and its impact on the design, implementation and subsequent characteristics of circuits intended for application specific lC (ASIC) technology. The first study investigates the influences of information coding and protocol on the characteristics of IFIS systems. The second study investigates methods of circuit design applicable to IFIS cells and identifies the· technique possessing the characteristics most suitable for on-line testing. The third study investigates the characteristics of a 'real-life' commercial UART re-engineered using the techniques resulting from the previous two studies. The final study investigates the effects of the halting properties endowed by the protocol on failure diagnosis within IFIS systems. The outcome of this work is an identification and characterisation of the factors that influence behaviour, implementation costs and the ability to test and diagnose IFIS designs

    Functional Testing of Processor Cores in FPGA-Based Applications

    Get PDF
    Embedded processor cores, which are widely used in SRAM-based FPGA applications, are candidates for SEU (Single Event Upset)-induced faults and need to be tested occasionally during system exploitation. Verifying a processor core is a difficult task, due to its complexity and the lack of user knowledge about the core-implementation details. In user applications, processor cores are normally tested by executing some kind of functional test in which the individual processor's instructions are tested with a set of deterministic test patterns, and the results are then compared with the stored reference values. For practical reasons the number of test patterns and corresponding results is usually small, which inherently leads to low fault coverage. In this paper we develop a concept that combines the whole instruction-set test into a compact test sequence, which can then be repeated with different input test patterns. This improves the fault coverage considerably with no additional memory requirements
    corecore