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1. INTRODUCTION

Finite state machines (FSMs) have been used to model
systems in different areas like sequential circuits [1],
software development [2] and communication protocols
[3, 4, 5, 6, 7, 8, 9, 10]. To ensure the reliability of
these systems once implemented they must be tested
for conformance to their specification. Usually the
implementation of a system specified by an FSM is
tested for conformance by applying a sequence of
inputs and verifying that the corresponding sequence
of outputs is that which is expected.

Ideally complete test suites are produced that would
distinguish any faulty implementation given that it does
not have more states than its specification. However,
often this is not feasible because these methods rely
on FSM with certain characteristics that cannot always
be guaranteed. Work on generating complete test
suits relies on either a distinguishing sequence (DS)
being present in an FSM [11, 1, 12, 13], the existence
of a reliable reset in the FSM [2] or generation of
test sequences of at least exponential (in terms of the
number of states) length [14]. These issues will be later
discussed in the paper. Hence generating incomplete
test suites has been of interest.

This paper focuses on the U-method for test
sequence generation [15] where unique input/output
(UIO) sequences for each state have to be generated.
The problem of generating such sequences is known
to be NP-hard [16]. While a random algorithm
could be used it does not always produce acceptable
results. Representing test sequence generation as a
search problem with a specified fitness function gives
the opportunity for algorithms known to be robust
in searches of unknown domains, such as genetic
algorithms [17], to be used. Generating test sequences
using such algorithms could provide a computationally
easy solution that produces good results as shown by
[18].

One of the primary contributions of this paper is the
proposal for a more computationally efficient and yet
effective method of generating UIO sequences. The
proposed method also does not suffer from the usual
restriction of some test sequence generation methods
(D-method and W-method for example) where only
fully specified FSMs can be considered. The generated
UIOs can be used for partially or completely specified
FSMs that in turn can be used in generating a test
sequence using the U-method. As a result weak
conformance testing can be applied to partially specified
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FSMs without having any completeness assumption.
In order to minimise manual testing and hence

software production costs and speed the process up,
automation is necessary. Automation has been widely
used in testing and test data generation [15, 6, 19,
20]. Automating the generation of UIO sequences can
contribute to this.

The primary contributions of this paper are showing
how UIO generation can be formulated in terms
of an automated search problem and describing an
approach to automation of UIO generation using
genetic algorithms. This paper demonstrates that UIO
generation can be reduced to an automated search
problem and presents results from an empirical study
of this approach.

The paper presents results from an empirical study of
this approach, which provides evidence that the genetic
algorithm is successful in guiding the automated search.

The paper begins with some preliminaries on
finite state machines, conformance testing and genetic
algorithms in Section 2. Section 3 shows how the
UIOs can be generated using GAs and the results from
the conducted experiments are presented in Section 4.
Finally in Section 5 conclusions are drawn.

2. BACKGROUND

Testing is an important part of the software engineering
process and can account for up to 50% of the total cost
of software development [21]. This motivates the study
of testing finite state machines to ensure the correct
functioning of systems.

The generation of efficient and effective test sequences
is very important in conformance testing. Test
sequences can be generated using formal methods like
Transition Tours (T-method), Unique Input Output
Sequences (U-method), Distinguishing Sequences (D-
method) and Characterizing Sets (W-method). The U-
methods is popular because of the following reasons [5].
The T-method does not consider state transfer faults
since it does not verify the final state of a transition
sequence. The W-method relies on a reliable reset
for the FSM and in practice UIOs lead to shorter
test sequences than those produced using characterizing
sets. There exist FSMs with UIOs for every state but
no Distinguishing sequence. Practitioners report that
in practice many FSMs have UIOs [3].

2.1. Finite state machines

Finite state systems are usually modelled using Mealy
machines that produce an output for every transition
triggered by an input. A finite state machine M
can be denoted M = (S, s1, δ, λ,X, Y ) where S, X, Y
are finite nonempty sets of states, input symbols and
output symbols respectively and s1 ∈ S is the initial
state. δ is the state transition function and λ is the
output function. A transition is represented as t =

(si, x, y, sj) where si ∈ S is the start state, sj ∈ S
is the end state, x ∈ X is the input and y ∈ Y
is the output. When a machine M in state si ∈ S
receives input x it moves to state δ(si, x) = sj and
outputs λ(si, x) = y. The functions δ and λ can be
extended to take input sequences to give functions δ*
and λ* respectively. FSMs can be represented using
state transition diagrams where the vertices correspond
to states and the edges to state transitions which are
labelled with the associated input and output [16] (fig.
1).

FIGURE 1. Transition diagram of a finite state machine
M1

An FSM is said to be deterministic if there is no pair
of transitions that have the same initial state and input
i.e. upon an input a unique transition follows to the
next state. If for any state an input could trigger more
than one transition the machine is nondeterministic.
FSMs for which a transition exists for every input
a ∈ X and state s ∈ S are known as completely (fully)
specified. Given an FSM that is partially specified
it is possible to take a completeness assumption and
complete M by either adding an error state or assuming
that where the input was not specified originally an
empty output should be produced.

Those FSMs where every state can be reached from
the initial state are known as initially connected.
Unreachable states can be removed from any FSM to
make it initially connected. An FSM M is strongly
connected if for every pair of states (si, sj) from M
there is some input sequence that takes M from si to
sj . If M is initially connected and has a reset operator
then it must be strongly connected. A reset operator
takes the FSM to its initial state. The presence of
a correctly implemented reset operator is sometimes
important for transition testing but cannot always be
guaranteed. One of the advantages of the U-method is
that it does not need a reset.

Two states si and sj are said to be equivalent if
for every input sequence the same output sequence is
generated. Otherwise the two states are inequivalent
and there exists an input sequence x where λ*(si, x) 6=
λ*(sj , x) and that sequence is known as a separating
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sequence. Comparing states from different machines
is similar. Two FSMs M and M ′ are equivalent if
their initial states are equivalent. A minimal FSM is
a machine M such that there is no equivalent FSM M ′

with fewer states than M.
For example figure 1 represents the deterministic

FSM M1. M1 with an initial state s1 is initially and
strongly connected as every state in M1 is reachable
from any other state. M1 is also completely specified
and minimal.

In this work we consider only deterministic FSMs.
For non-deterministic FSM conformance testing refer to
[22, 23, 24]. It is also safe to assume that only minimal
FSMs should be considered as any deterministic FSM
can be minimised [25] and there are well known methods
to automatically do so [26, 25]. Also for the reasons
outlined before only strongly connected FSMs are
considered.

2.2. Conformance testing

When testing from an FSM model M it is assumed that
the implementation under test (IUT) can be modelled
by an unknown FSM M ′ and thus that testing involves
comparing the behaviour of two FSMs. Verifying
that M ′ is equivalent to M by only observing the
input/output behaviour of M ′ is known as conformance
testing or fault detection.

Often a fault can be categorised as either an output
fault or a state transfer fault. Output faults are those
faults where the wrong output is produced and state
transfer faults are those faults where the state after a
transition is wrong. An output fault can be detected by
executing a transition and observing its output. A state
transfer fault can be detected by checking if the final
state is correct after the transition testing is applied.
Suppose we wish to check a transition t = (si, x, y, sj).
The test strategy would involve moving M ′ to si,
applying the input x, verifying that the output is y,
and using a state verification technique to verify the
transition’s end state [2].

The first step is known as homing a machine to a
desired initial state si. It can be done by using a homing
sequence which can be constructed in polynomial time
[26]. The second step, transition verification, is to check
whether M ′ produces a desired output sequence. The
last step is to check whether M ′ is in the expected state
sj = δ(si, x). There are three main techniques that can
be used in state verification:

• Distinguishing sequence (DS)
• Unique input/output sequence (UIO)
• Characterizing set (CS)

A distinguishing sequence is an input sequence that
produces output unique for each state. Not all FSMs
have a DS.

A UIO for state s is an input/output sequence x/y
such that λ*(s, x) = y and ∀s′ ∈ S.s′ 6= s, we have that

λ*(s′, x) 6= y. A DS defines a UIO for every state.
While not every FSM has UIOs for all states, some
FSMs without a DS have UIOs for all states. Also in
practice most FSMs have UIOs for all states [7].

A characterizing set is a set of input sequences W
which can distinguish any pair of states. If every
sequence in W is executed from some state sj , the set
of output sequences verifies sj . However this technique
requires a number of input sequences to be executed
for each state, and therefore could lead to long test
sequences. For some states not every element of W is
required and some subset can be used (the Wp method).
This can reduce the effort involved in verifying a state.
Some improvements on the W-method are presented in
[27, 22, 28].

A general method for constructing minimal length
checking sequences described in [29] utilises DSs,
characterizing sets or UIOs depending on their
existence.

In order to minimise test sequence length when
testing using UIOs, usually minimal UIOs are used
(the shortest UIO for a state). However it has
been suggested [30] that using non minimal UIOs can
improve the chance of avoiding fault masking (when two
or more faults collectively mask their faulty behaviour
leading to false confidence in the implementation under
test). Different UIOs for the same state can be
compared by using a metric known as degree of
difference (DoD) [31]. The DoD between two transition
walks with identical input sequence is defined as the
number of output differences between them. A UIO
with higher DoD is expected to be more fault tolerant
[30].

Some UIOs could be of exponential length. Generally
if a UIO is longer than of O(n2) it might not be worth
considering since a characterizing set with upper bound
of O(n2) length would exist [2].

Not all FSMs are completely specified. There
are two types of conformance testing, strong and
weak, depending on how unspecified transitions are
treated. In strong conformance testing a completeness
assumption stating how missing transitions are to be
treated is necessary for partially specified FSMs. In
weak conformance testing the missing transitions are
treated as ’don’t care’ and the implementation is
required to have only the same ’core behaviour’ as the
specification.

UIOs have been popular [5, 32] since they help in
state transition fault detection and tend to yield shorter
test sequences than the D and W methods [5, 32].
UIOs do not necessarily need a reliable reset operator.
Only the U-method and the T-method can be used for
weak conformance testing of partially specified FSMs
[5]. However the T-method does not check for state
transition faults.

In order to test a transition of an FSM the machine
has to be put in the initial state of that transition. Then
the input is applied and the output checked to verify
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that it is as expected. After that the UIO sequence for
that state is used to verify that there is no state transfer
fault. Several test sequence generation techniques based
on UIOs can be used [5, 3, 6, 7, 33, 9]. This motivates
an interest in automating the generation of UIOs.

2.3. Genetic algorithms

A Genetic algorithm (GA) [17, 34] is a heuristic
optimisation technique which derives its behaviour from
a metaphor of the processes of evolution in nature.
GAs have been widely used in search optimisation
problems [17]. GAs and other meta-heuristic algorithms
have also been also used to automate software testing
[19, 20, 35, 36, 37]. GAs are known to be particularly
useful when searching large, multimodal and unknown
search spaces. One of the benefits of GAs is their ability
to escape local minima in the search for the global
minimum.

Generally a GA consists of a group of individuals
(population of genomes), each representing a potential
solution to the problem in hand. An initial population
with such individuals is usually selected at random.
Then a parent selection process is used to pick a
few of these individuals. New offspring individuals
are produced using crossover, which keeps some
of their parent’s characterises and mutation, which
introduces some new genetic material. The quality
of each individual is measured by a fitness function,
defined for the particular search problem. Crossover
exchanges information between two or more individuals.
The mutation process randomly modifies offspring
individuals. The population is iteratively recombined
and mutated to evolve successive populations, known as
generations. When the termination criterion specified
is satisfied, the algorithm terminates. A flowchart for a
simple GA is presented in Figure 2.

FIGURE 2. Flowchart for a basic GA

There are many different types of GAs, but they all
share the basic principle of having a pool (population)
of potential solutions (genomes) where some are picked

using a biased selection process and recombined by
crossover and mutation operations. An objective
function, known as the fitness function, defines how
close each individual is to being a solution and hence
guides the search.

When using a GA to solve a problem the first issue
that needs to be addressed is how to represent potential
solutions in the GA population. A genotype is how
a potential solution is encoded in a GA, while the
phenotype is the real representation of that individual.
There are different representation techniques, the most
common being binary and characters. Gray coding
is a binary representation technique that uses slightly
different encoding to standard binary. It has been
shown [38] that Gray codes are generally superior to
standard binary by helping to represent the solutions
more evenly in the search space.

The first step in a GA involves the initialisation of a
population of usually randomly generated individuals.
The size of the population is specified at the start.
Every individual is evaluated using the fitness function.
When ranking is used the population is sorted according
to the fitness value of the individuals. Then each
individual is ranked irrespective to the size of its and its
predecessors fitness. This is known as linear ranking. It
has been shown that using linear ranking helps reduce
the chance of a few very fit individuals dominating the
search leading to a premature convergence [39].

An important part of the algorithm is parent
selection. A commonly used technique is the roulette-
wheel selection. Here the chance of an individual being
selected is directly proportional to its fitness or rank (if
linear ranking is used). Hence the selection is biased
towards fitter individuals.

A genome is made up of one or more chromosomes,
each representing a parameter in the fitness function.
In some literature genome is referred to as chromosome
and genes refer to what we call chromosomes, but here
we use chromosome as a part of a genome and gene as
the building block of a chromosome.

The most common recombination technique used
is crossover. During crossover the genes of the two
parents are selectively used to create one or more new
offsprings. The simplest crossover is known as single
point crossover [39]. For example Figure 3 shows
how a single point crossover is applied to two parent
chromosomes where two new child chromosomes are
produced. There is also multiple point crossovers [40].
In this work single point crossover was used with a
randomly generated crossover point as used in [41].

FIGURE 3. Example of crossover
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Mutation is applied to each individual after crossover.
It randomly alters one or more genes known as single
point and multiple point mutation respectively [17].
Not all individuals are mutated. A pre defined mutation
rate (typically the reciprocal of the chromosome length)
is used to determine if mutation will be performed. A
single point mutation with randomly selected point was
used in this work as in [41].

There can be different termination criteria for a
GA depending on the fitness function. If the fitness
function is such that a solution would produce a
specific fitness value, which is known, then the GA
can terminate when an individual with such fitness is
generated. However in many cases this is not known
therefore the GA must be given other termination
criteria. Such a criterion can be the specification of a
maximum number of generations after which the GA
will terminate irrespective of whether a solution has
been generated. Another commonly used termination
criterion is population saturation. After the fitness of all
or some of the individuals in the GA population has not
increased for a number of generations, it is assumed that
a peak of the search space has been found that cannot
be escaped. Usually a combination of these termination
criteria are used. We use all three.

3. UIO SEQUENCE GENERATION

The problem of constructing UIO sequences is known
to be NP-hard [16]. While a random search algorithm
would be cheap to implement, it does not always
produce acceptable results. Representing UIO sequence
generation as a search problem with a specified fitness
function gives the opportunity for algorithms known to
be robust in searches of unknown domains, such as GAs,
to be used.

A UIO for a given state s of an FSM is an
input/output sequence that labels a sequence of
transitions from s, but does not label a sequence of
transitions from any other state. The UIOs considered
in this work do not contain transitions unspecified in the
FSM specification. This allows for weak conformance
testing of partially specified machines. The proposed
method uses GA search in an attempt to generate
a UIO sequence for each state of a given FSM. A
fitness function directs the search. The fitness function
estimates how likely it is that a given transition
sequence is a UIO sequence without actually verifying
that it is one. For an input sequence of size l for a given
state in an FSM with n states the fitness function used
is of O(l) complexity while a UIO verification algorithm
would be of O(nl).

Previous work [18] has shown that a GA may be
used in the generation of UIOs using a state splitting
tree. A state splitting tree is a rooted tree that is
used to construct adaptive distinguishing sequences or
UIOs from an FSM. The fitness function encourages
candidates to split the set of all states (in the root)

Start state Input / Output End state Rank

1 a / 0 1 1

1 b / 1 2 1

2 a / 1 2 0

2 b / 1 3 1

3 a / 0 2 1

3 b / 0 1 0

TABLE 1. Transition table for the FSM from Figure 1
with I/O rankings

into more discrete units (that share the same input and
output characters). Hence the fitness function guides
the search to explore potential UIOs by rewarding the
early occurrence of discrete partitions while penalising
the length of the sequence. The previous work differs
from that described here in three important ways: (1) It
used a more computationally intensive fitness function
(based on generating the state splitting tree [16] and
thus considering all states of the FSM); (2) It was
evaluated only on relatively small FSMs; (3) Only
completely specified machines were considered. In the
work described in the present paper the fitness function
is simpler and computationally easy to compute, and it
also generated UIOs for partially specified machines.

3.1. Defining UIO generation as a search
problem

When searching for a solution using genetic algorithms
an efficient way must be defined to distinguish between
potentially good and potentially bad solutions. A
fitness function has been defined in order to represent
the UIO sequence generation as a search problem.
The fitness function determines how suitable a given
transition sequence is to be a UIO sequence.

In order to verify if an input sequence would produce
a UIO an algorithm with complexity is of O(nl) has
to be executed where n is the number of states of the
FSM and l is the length of the input sequence. Instead
the proposed fitness function has complexity of O(l),
and this fitness function aims to reward sequences that
are likely to be UIOs. Picking a less computationally
complex algorithm for the fitness function is important
since the algorithm can be executed several times for
each state.

A transition ranking process is completed first before
the fitness function is ready to be used. This process
ranks each input/output pair of the specification
machine according to how many times it reoccurs in
the transition table (a table with all the transitions of
a machine) of the machine. A pair that occurs only
once gets the lowest rank, a pair that occurs twice is
ranked next etc. Pairs that have the same number of
occurrences in the transition table get the same rank.
For example Table 1 shows a ranked transition table for
the FSM from Figure 1 (M1).

It is important to note that execution costs for
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different transitions are simply assumed to be equal.
Also equally ranked pairs are assumed to have similar
ability to construct valid UIOs. Where this does not
hold it would be straightforward to introduce extra
information into the fitness function without increasing
the complexity of the algorithm.

The fitness algorithm used in this paper rewards
a potential solution according to the ranks of the
input/output pairs the sequence contains. The fitness
function reflects the belief that the more lower ranked
transitions a sequence contains, the more likely it
is to define a UIO. Some reported experiments in
Section 4 investigate this claim. In fact if there is an
input/output pair that is unique, then it automatically
becomes a UIO, identifying the state from which the
transition initiates. This fitness function however does
not account for infeasible test sequences if partially
specified FSMs are considered. Input characters testing
unspecified transitions could result in unexpected
behaviour of the IUT. Hence this fitness function works
only for fully specified machine and in order for a
partially specified machine to be used a completeness
assumption has to be made. Below we explain how the
fitness function can be adapted for partially specified
machines.

Now consider the FSM M1 in Figure 1. Using
the fitness function defined above the fitness of an
input/output sequence would be the sum of the ranks
assigned to the input/output pairs it is composed of. If
we consider the sequence a/0, b/1 as a potential UIO
for s1 of M1 and use the ranking provided on Table 1,
a fitness value of 2 will be derived. This sequence is
not a UIO as the same sequence could be executed and
the same output observed from s3 of M1. On the other
hand while the sequence b/1, a/1 is considered from s1
a fitness value of 1 could be derived. This sequence is
a UIO and its fitness value reflects the higher chance of
it being a UIO compared to the sequence before that.

Not all FSMs are completely specified and protocols
systems are typically partially specified [16]. In strong
conformance testing assumptions on how the non core
transitions are to be treated are made hence converting
the machine into a completely specified FSM. For
example one scenario is to add a transition with null
output that stays in the same state. An alternative
completeness assumption may be that if a transition is
not in the core, then the machine makes a transition
to an error state and outputs an error symbol. The
missing transitions are treated as being ’do not cares’
in weak conformance testing. The implementation is
only required to have the same core behaviour, and can
be arbitrary or undefined for the missing transitions.

Further refinements to the fitness function allow
it to work for partially specified machines. This
could facilitate weak conformance testing without a
completeness assumption. For the purpose a simulator
of the specification FSM was constructed. The FSM
simulator (λ* and δ*) is a lite version of the IUT that

validV alue := 0
strengthV alue := 0
Sk := SUIO

If (l = 0) then return ø
For(i := 1 to l) //for all the inputs/characters

Sm := Sk

yi := λ(Sk, xi)
Sk := δ(Sk, xi)
If (Sk 6= ø)

//There is a transition with this input
validV alue := validV alue + 1
strengthV alue := strengthV alue + rSk,xi

EndIf
Else

strengthV alue := strengthV alue + penaltyV alue
Sk := Sm

EndElse
EndFor
return l − validV alue + strengthV alue

FIGURE 4. UIO fitness algorithm

only determines if a test sequence is feasible from a
given start state and if not it indicates how close it came
of being feasible. If an input character from a sequence
represents an infeasible transition from a given state
the input is ignored by leaving the FSM in the same
state and then the next input character in the sequence
is considered. Hence the whole input sequence under
consideration can be evaluated by the fitness function
even when an infeasible character has been reached.
The fitness of infeasible input sequences is penalised
according to how close the sequence came to be valid,
while valid sequences are not penalised at all. The
algorithm for the fitness function proposed is presented
in Figure 4. The parameters involved are as follows:
SUIO is the test state; x is a single input character; y
is single output character; l represents the length of the
input sequence; r is the set of transition rankings where
rs,x represents the rank for the transition initiating from
state s when input x is fed; and penaltyV alue is a
penalty constant or function that penalises the fitness
when an unspecified transition is triggered.

The test sequence generated like this would enable
strong conformance testing with a less restrictive
completeness assumption and weak conformance testing
without any completeness assumption for a partially
specified machine.

The whole process of searching for a UIO for each
state of a given FSM can be easily automated as only
the transition table of the FSM is required.

A GA using this fitness function is directed
towards generating input sequences that contain
mostly input/output pairs with lower frequency in the
transition table corresponding to feasible transitions (in
the specification). The fitness function represents the
search for a UIO sequence as a function minimisation
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problem so an input sequence with a lower fitness value
is considered to be more likely to form a UIO sequence
since it is made up of more low ranked transitions.

3.2. Input sequence representation and GA

Generating a UIO sequence for a given state of
an FSM would involve finding an appropriate input
sequence that generates a unique output sequence.
A specification simulator of the FSM can be used
to simulate a transition path and generate the
corresponding output. Hence a genotype representing
a potential solution for a given state will only need to
encode an input sequence.

A phenotype representing a sequence of characters
can easily be represented as a genotype made of
chromosomes for each character. Then each character
can be represented as it is or encoded in binary notation.
As described in Section 2 the classic GA approach would
be to encode the characters in binary, but both methods
could be applied to this problem. The GA tool used for
UIO generation [42] supported only binary, hence that
was the method of choice. Also in an attempt to reduce
premature convergence in the population Gray coding
was used instead of standard binary encoding [38].

A type checking process could be used to discard
genotypes that do not represent valid phenotypes.
When using binary representation the information that
it translates to should ideally be in increments of the
power of 2. Hence an input for an FSM with binary
alphabet can be presented with a single digit in binary,
an input with input alphabet of size 4, with 2 binary
digits, etc. However there is a problem if the FSM
considered has an input alphabet of size that is not a
power of 2. In such cases a special type checking must
be performed on all chromosomes within a genotype
considered for fitness evaluation. The essence of this
type checking is to ignore those binary combinations
that do not translate to input characters from the input
alphabet of the FSM considered. In the cases where
a genotype is produced with invalid chromosome(s),
the gene recombination, or generation in the case
of the initial population generation, is repeated until
a genotype where all the chromosomes are valid is
produced.

This could potentially affect the speed of the
algorithm as the input alphabet of the FSMs considered
increases. However this was not evident in the
experiments reported in Section 4. Sometimes the size
of the input alphabet for an FSM is slightly bigger than
its optimal binary representation (e.g. input alphabet of
17 will necessitate the use of a binary string of length 5
just because of one extra input character and introduces
15 redundant binary combinations). In such cases
alternative binary to character translation techniques
can be used [41] that distribute the number of valid
characters and reduce the number of redundant binary
combinations, but optimising this part of the generation

algorithm is not a focus of this paper.
The fitness function is designed so that it can

compare only input sequences of the same length. For
testing efficiency shorter sequences are more desirable,
however we chose to separately consider the problem of
having a fitness function and data representation that
effectively addresses both the problem of UIO sequence
generation and the length of such a sequence generated
simultaneously.

Sequences of various lengths can be represented in
binary for the GA in two ways. The first way is to
simply have genotypes of different lengths encoding
input sequence of different lengths. In this case the
problem of how to apply the genetic recombination
techniques has to be considered. Some work has
been done on variable length genotype recombination,
however these methods are very domain specific and
no generic form is available [43]. A different approach
is to encode different length input sequences by using
the same length genotypes. This could be done by
introducing a reset or sequence termination character to
the sequence input alphabet. When such a character is
reached in a sequence, the remaining characters encoded
in the genotype will be ignored. In both situations
the fitness function will favour shorter sequences to
longer ones as they are likely to get a lower fitness
value because of the fewer transitions involved. Initial
experiments found that such a fitness function would
always favour a single character sequence with just a
reset character. Hence in order to generate a minimal
UIO a set of generation attempts were made with
gradually increasing sequence size.

3.3. Generating UIOs using genetic algorithms

After a fitness function and a phenotype representation
technique are defined a GA can be used to find UIOs
for all the states of an FSM. Verifying whether an input
sequence is a valid UIO for a given state of an FSM is
computation intense - O(nl) for sequences of length l
and n state FSM. So after a GA search stops, instead
of checking if all the population individuals of the GA
are UIOs only the sequence with the best fitness is
considered. The result need not be a UIO sequence
since not all FSMs have UIOs for all states or the GA
might have converged prematurely i.e. the search might
have converged to a local minimum. To increase the
confidence that the input/output sequence found is the
minimal length UIO for any given state i.e. a global
minimum in the search space has been reached, the GA
should be executed a number of times and only the best
result kept.

For every GA execution the initial population is a
set of randomly generated input sequences (genotypes).
The corresponding output can be obtained from the
FSM simulator generated from the FSM specifications
(transition table). Each generated input sequence is
type checked to see whether it represents a specified
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sequence of input of characters for the FSM under
test. If not a new sequence is randomly generated
until the initial population consists entirely of specified
input sequences. The fitness is evaluated only for valid
sequences. Hence any repeated attempts to generate
a sequences are not counted as fitness evaluations.
Starting the GA with a population of valid input
sequences increases the probability of generating new
valid input sequences after crossover. The crossover and
mutation operators recombine the existing genotypes
in such a way that input sequences representing
specified transitions with lower ranked input/output
pairs are rewarded. Input sequences that represent
some unspecified transitions, specified transitions with
higher ranked input/output pairs or a combination of
both would be rewarded less and penalised.

An example of how the GA recombination operators
can help in this search follows. Lets consider an FSM
M2 for which the sequence a/1, b/0, c/1 is a UIO for
s1. Assuming that abc is the only minimal UIO for that
state lets take aab and cbc as two potential solutions in
the population of the GA searching to find that UIO.
Recombining these two sequences using a crossover at
the first point would generate the necessary solution
abc. Alternatively a crossover at the second point would
generate the sequence aac that after a mutation at the
second point can again produce the required abc.

The GA for every search terminates either after a
set number of recombinations or if the population gets
saturated with the same solution and does not improve
for a number of generations. The lowest possible value
for the fitness function cannot be negative but otherwise
is unknown. Hence the GA cannot be set to terminate
after an optimal solution is found. The only exception
is when a single input character represents a UIO, then
the fitness value evaluates to 0 and the GA terminates.
Hence the GA currently used might have generated a
solution much earlier than it actually terminates, but
we have not yet attempted to optimise this aspect of
the GA. Further work will aim to improve the fitness
function and the generation algorithm so that fewer GA
cycles are necessary before a solution is found.

4. EXPERIMENTS

Most FSM examples available in the literature are not
very large. A set of relatively small real FSM systems
exists that is used for benchmarking purposes [44]. This
set can be used to examine the effects of the UIO
generation algorithm on small but real FSMs and in
order to examine how it performs on larger FSMs a set
of larger randomly generated FSMs was used.

The first set of experiments considers a set of 11 real
FSMs (Table 2). The FSMs ranged in size from 4 to
27 states and 10 to 108 transitions. The second set
of experiment was conducted on a set of 23 randomly
generated FSMs (Table 3). These FSMs ranged from 5

FSM States Transitions Inputs Outputs

dk15 4 32 8 11

mc 4 32 8 8

bbtas 6 24 4 4

beecount 7 51 8 4

dk14 7 56 8 15

dk27 7 14 2 3

shiftreg 8 16 2 2

dk17 8 32 4 5

lion9 9 25 4 2

dk512 15 30 2 4

dk16 27 108 4 5

TABLE 2. List of the 11 real FSM examples used

FSM States Transitions Inputs Outputs

1 5 14 4 2

2 10 33 4 2

3 20 51 4 2

4 39 87 4 2

5 50 136 4 2

6 73 177 4 2

7 90 218 4 2

8 98 250 4 2

9 113 296 4 2

10 132 316 4 2

11 158 393 4 2

12 180 450 4 2

13 203 498 4 2

14 209 553 4 2

15 227 568 4 2

16 244 611 4 2

17 264 658 4 2

18 291 765 4 2

19 305 771 4 2

20 311 765 4 2

21 323 809 4 2

22 347 856 4 2

23 360 901 4 2

TABLE 3. List of the 23 randomly generated FSM
examples used

to 360 states and 14 to 901 transitions in size 4. Both
sets consisted only of deterministic, strongly connected,
and minimal but not necessarily completely specified
finite state machines.

A breadth first search (BFS) algorithm can be
used to enumerate through all possible input sequence
combinations. By verifying each combination we can
exhaustively (up to a fixed input sequence limit) find
all the minimal length UIOs (within that limit). This
approach would require each input sequence to be
verified using a UIO verification algorithm (O(nl)). On
the other hand the GA approach presented in this paper
verifies only one input sequence at the end of a GA

4The experiments were carried out on FSMs with at most 360
states due to the prototype tool being limited to FSMs with
no more than 1000 transitions. This restriction was due to a
combination of Java features and the tool design.
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execution. For that reason it is difficult to present a
precise comparison of effort between the GA and a BFS
algorithm but a rough figure, biased towards the BFS
is presented.

The minimal UIOs found for all the states of an
FSM by the two GAs and random algorithm were
considered. The shortest UIO for each state was listed.
The longest UIO in this list was used as an indicator of
what maximum length input sequence a BFS algorithm
would be expected to generate for a given FSM in a
worst case scenario. This figure is compared to the
number of fitness evaluations (including unsuccessful
UIO generation attempts) by the GAs and random
UIO generation (the 2 GAs and random were given the
same effort in terms of fitness evaluations). Figure 5
shows the difference between these two figures for all 23
randomly generated FSMs. As some of the BFS input
sequence variations go into billions Figure 6 shows the
same information but filtering the 4 worst estimated
BFS effort FSMs. From the graph it is clear that for
many FSMs the BFS algorithm could have been more
efficient to use. This is because of the mainly short
UIOs found for many of the FSMs. However the graphs
also indicate that the BFS is much worse in some cases,
where the GA performed well.

FIGURE 5. Difference in effort between worst case BFS
and current GA results in attempt to find all UIOs of an
FSM

FIGURE 6. Difference in effort between worst case BFS
and current GA results in attempt to find all UIOs of an
FSM - 4 worst performing FSMs for BFS removed from
graph

It was expected that when small FSMs are considered
the real advantage of the new method cannot
always be observed over the random test sequence
generation method. However as the size of the FSMs
considered increases the proposed method is expected
to outperform the random method. Since BFS is not
feasible for those FSMs where the benefits of using GA
are likely to be observed, BFS was not included in the
experiments.

Some results justifying the UIO generation algorithm
choice are presented first. Then the actual performance
of the algorithm is compared with the random
generation algorithm. The reason for using two different
GA types was to experiment if the slightly different
heuristics can generate better results. The first GA
used a single point crossover and mutation while the
second used a complex multiple point crossover and
mutation. In general the second GA tended to find
a solution slightly faster than the first GA, but they
produced the same results. Hence for most FSMs the
two GAs show identical performance.

4.1. UIO generation process

For any successful heuristic search it is imperative that
a fitness function is selected that guides the search
correctly towards a solution. In the search for UIOs the
degree of difference (DoD) metric can be used [30]. A
DoD compares the output sequence β generated by an
input sequence α from state si with the corresponding
output sequence from state sj . We can extend this
notion and instead of comparing the output sequence
of si only to that of sj , where sj is just another state,
we can compare it to all states apart from si. We sum
all the individual DoD values into one cumulative DoD
for a given UIO. This process is of the same complexity
as the UIO verification algorithm - O(ln). In this paper
we refer to this cumulative DoD value.

FIGURE 7. Fitness function value and DoD for a set of
UIOs for FSM dk16

Figure 7 has two graphs representing the DoD and
fitness values of 19 input sequences for the dk16
FSM, the largest from the set of real FSM examples.
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These 19 input sequences represented 19 UIOs for
different states of that FSM. The vertical scale of the
graph represents the fitness and DoD values while the
horizontal represents the state of the UIO. It can be seen
how the shape of the fitness function closely follows the
shape of the DoD, except for the extent of the actual
rises and falls of the DoD. This indicates that the fitness
function, although not calculating the DoD for a given
input sequence, can serve as a rough estimate of which
input sequences are likely to have higher DoD and hence
are likely to be UIOs. Therefore the fitness function is
likely to be directing the search in a positive direction
without the full expense of calculating the DoD.

FIGURE 8. Positions in the GA population where the
first valid UIO was found for each state of FSM dk16 (the
largest of the real FSMs)

As mentioned before the UIO generation process used
involved verifying whether a given input sequence is
a UIO for a given state. After a GA has terminated
only the highest ranked element in the final population
is verified to see whether it represents a UIO because
of the computational complexity involved with this
checking process. Verifying an input sequence as a
UIO is the most expensive part of the algorithm but
it would not make sense to verify only the top ranked
individual of a population if such individuals do not
tend to be UIOs. Figure 8 represents the rank of the
first element within the 20 terminated GA populations
which generated UIOs for the dk16 FSM (the largest
of the real FSMs). Half of the UIOs were found
at the top, 0-th position of their corresponding GA
population. The next highest ratio represented only
10% of the results. The rest of the real FSMs had even
higher ratio of UIOs found at the top, 0-th position
of their corresponding GA populations. This suggests
that we lose little by verifying only the top ranked
individual but we reduce the complexity of the whole
UIO generation process since we repeat the search if a
UIO is not found. It is simple to adapt the algorithm
so it checks all elements of the final population or some
fixed proportion of this.

4.2. UIO Generation

A set of experiments involving UIO generation were
run using the two sets of FSMs. Two slightly different
GAs and a random search algorithm were used for
every FSM. After each UIO generation attempt a simple
algorithm was used to determine whether the sequence
is indeed a valid UIO and does not contain unspecified
transitions. The GAs used a single, ranked population
where fitter genotypes are added by removing the
genotypes with the lowest rank. The genotype selection
was done using roulette wheel selection [34]. Gray
coding [41] was used as the chromosome representation
technique. The recombination operators used were
uniform crossover and uniform binary mutation with
mutation rate of 0.05. The first GA used the classic
genotype recombination while the second GA used a
chromosome recombination where each input character
for a transition sequence is represented as a separate
chromosome. The second GA performs recombination
independently on each character of the input sequence.
The termination criteria were population saturation or
up to 10,000 fitness evaluations. A UIO generation
attempt for a given state in the FSM involved no
more than 3 GA executions, for each of the sequence
sizes (number of chromosomes) considered with up
to 25 inputs. The fittest phenotype after each
GA termination was considered as a potential UIO
sequence. As soon as a valid UIO was found for a
given state in the FSM the search moved to the next
state. For the randomly generated FSMs no more than
15 GA executions were considered for each sequence size
up to 45 inputs because these FSMs are larger and we
expected that more effort would be required to generate
UIOs.

After sequences were generated with the two GAs,
random sequence generation was applied. After a
number of random input sequence generations, within
the FSM input alphabet constraints, the sequences
were ranked and the fittest one was checked to
determine whether it was a UIO. The number of random
generation attempts (to generate a UIO) for a state
of the FSM used was equal to the average number of
attempts it took the GAs to generate a UIO for that
particular state. Every attempt to generate a sequence
for a given state was repeated for sequence sizes ranging
from the shortest to the longest UIO sequence found for
this state by the GAs. The random search was given at
least the same computational power in terms of number
of fitness evaluations and UIO verification attempts.

Figure 9 and Table 4 show the results of the UIO
generation algorithm conducted on the set of 11 real
FSMs. For each FSM two different types of GA
algorithms and a random generation algorithm were
executed in an attempt to generate UIOs for each state.

Some of the FSMs considered have a very small
number of states. For such FSMs a single input
character might represent a UIO. In such cases it is
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FIGURE 9. Percentage state coverage in UIOs generated
by GA compared to random algorithm. Results for real
FSMs

FSM States GA % GA Alt % Ran. % Diff.%

dk15 4 75 75 50 25

mc 4 100 100 100 0

bbtas 6 100 100 67 33

beecount 7 28 28 28 0

dk14 7 43 43 43 0

dk27 7 57 57 43 14

shiftreg 8 100 100 100 0

dk17 8 88 88 63 25

lion9 9 22 22 22 0

dk512 15 73 73 40 33

dk16 27 74 74 63 11

TABLE 4. Percentage state coverage in UIOs generated by
GA compared to random algorithm. Results for real FSMs

obvious that the random algorithm will be effective. For
example all the UIOs in the mc FSM were of length 1.
It is also important to note that not all FSMs have UIOs
for all states. For example the lion9 and becount FSMs
have UIOs for only 2 of their states, and they were
found by the UIO generation algorithms. The number
of UIOs generated were compared to results reported in
[45, 46]. FSMs dk14 − 17 and dk512 were reported to
have the same UIO state coverage as we found. In [45]
the dk16 FSM was reported to have UIOs for 21 of its
27 states, however [46] reported that it only has UIOs
for 20 states and we manually verified that. The GA
produced UIOs for these 20 states. FSMs mc, bbtas
and shiftreg had UIOs generated for all their states.
This shows that for each FSM the GA UIO generation
managed to find at least one UIO for all the states that
had one. Also for most of the FSMs the GA based
UIO generation outperformed the random generation
generating up to 33% better results. As expected not
all the UIOs generated were minimal.

Now consider the experiments with (larger) randomly
generated FSMs. Both GA search based UIO
generation techniques performed better for all 23
randomly generated FSMs, sometimes generating UIOs
for up to 62% more states than the random search.

The two GAs produced identical UIO state coverage
results. Figure 10 shows the number of states for which
a UIO has been generated as a percentage of the total
number of states of the FSM using the three methods.
Figure 11 shows the same data but plots the difference
in the percentage between the random search and the
two GA methods. Here it appears that the difference
between the GA and random algorithm increases as
the size of the FSMs increases. Both graphs clearly
illustrate the potential advantage of using GA search
against random search for UIOs, when using the fitness
function considered. It is important to remember that
different FSMs have different properties. For example
not all FSMs have UIO sequences for all their states.
Hence the graphs are not very smooth. Again, not all
the UIOs generated were minimal.

FIGURE 10. Percentage state coverage in UIOs generated
by GA compared to random algorithm. The two GAs
produced identical results. Results for Randomly generated
FSMs

FIGURE 11. Percentage difference in UIOs generated by
GA compared to random algorithm. Results for Randomly
generated FSMs

Another interesting result was that the average UIO
sequence size was much shorter than expected as in the
worst case the length of a UIO is exponential in terms
of the number of states of the FSM [4]. In fact, most
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of the UIO sequences seem to be very short, even for
larger FSMs. In comparison, a separating sequence is
expected to be of size n − 1 at most, but it has been
observed that its expected size is of O(log(n)) [47].
Figure 12 shows the average UIO sequence length for
each of the 23 FSMs using the GA methods and the
random search. The graph does not seem to increase
exponentially, but it actually seems to increase at a rate
less than linear. Since most of the larger FSMs on the
graph have state coverage as high as 95%, indicating
that there are not many UIOs left to be found, it seems
that most of the UIOs tend to be very short.

FIGURE 12. Average UIO size found for the Randomly
generated FSMs

5. CONCLUSIONS

State verification is an important part of conformance
testing for FSMs. UIO sequences are commonly used
for state verification because of their advantages over
the other methods. The problem of generating such
sequences however is known to be NP-hard [16]. While
a random algorithm could be used it does not always
produce acceptable results. GA have previously been
used to generate UIOs for relative small and completely
specified FSMs [18].

In this paper we define the problem of finding
UIO sequences as a search problem. We define
a computationally efficient fitness function of O(l)
complexity for an input sequence of size l that is used
to guide a GA. UIOs for both completely and partially
specified FSMs were generated. Our approach considers
partially specified FSMs and generates UIOs that can
also be used for weak conformance testing without
completing the FSM.

We investigated the performance of a GA search for
UIOs for an FSM using this fitness algorithm on a
number of real and some larger randomly generated
FSMs and report the results.

UIOs were computed using GA and random search.
The experiment included two groups of FSMs: a set of
11 real FSM specifications of small size; and a set of 21

randomly generated FSMs with up to 360 states. The
fitness function appears to direct the search towards
generating UIOs. The experiments show that the GA
outperforms (up to 62% better) or is at least as good as
a random search for UIO sequences. As the size of the
FSMs increased the difference between the performance
of the GA and random UIO generation also increased.

The results also show that the average UIO size
tends to be small even for larger FSMs. Most of
the UIOs found were no longer than 10 input/output
pairs. Searching for UIOs using a breadth first search
algorithm for some of the larger FSMs considered could
run into billions of input sequence generations in a
worst case scenario (judging from the minimal UIOs
we have found for those FSMs). However breadth first
search could be more efficient than GA for shorter UIOs.
This could suggest that breadth first search or even
random search can be very useful for generating most
of the UIOs, which are very short. GA search can
subsequently be used to search for longer UIOs which
are otherwise computationally difficult to identify using
breadth-first search.
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