132 research outputs found

    An object query language for multimedia federations

    Get PDF
    The Fischlar system provides a large centralised repository of multimedia files. As expansion is difficult in centralised systems and as different user groups have a requirement to define their own schemas, the EGTV (Efficient Global Transactions for Video) project was established to examine how the distribution of this database could be managed. The federated database approach is advocated where global schema is designed in a top-down approach, while all multimedia and textual data is stored in object-oriented (O-O) and object-relational (0-R) compliant databases. This thesis investigates queries and updates on large multimedia collections organised in the database federation. The goal of this research is to provide a generic query language capable of interrogating global and local multimedia database schemas. Therefore, a new query language EQL is defined to facilitate the querying of object-oriented and objectrelational database schemas in a database and platform independent manner, and acts as a canonical language for database federations. A new canonical language was required as the existing query language standards (SQL: 1999 and OQL) axe generally incompatible and translation between them is not trivial. EQL is supported with a formally defined object algebra and specified semantics for query evaluation. The ability to capture and store metadata of multiple database schemas is essential when constructing and querying a federated schema. Therefore we also present a new platform independent metamodel for specifying multimedia schemas stored in both object-oriented and object-relational databases. This metadata information is later used for the construction of a global schemas, and during the evaluation of local and global queries. Another important feature of any federated system is the ability to unambiguously define database schemas. The schema definition language for an EGTV database federation must be capable of specifying both object-oriented and object-relational schemas in the database independent format. As XML represents a standard for encoding and distributing data across various platforms, a language based upon XML has been developed as a part of our research. The ODLx (Object Definition Language XML) language specifies a set of XMLbased structures for defining complex database schemas capable of representing different multimedia types. The language is fully integrated with the EGTV metamodel through which ODLx schemas can be mapped to 0-0 and 0-R databases

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    Managing Schema Change in an Heterogeneous Environment

    Get PDF
    Change is inevitable even for persistent information. Effectively managing change of persistent information, which includes the specification, execution and the maintenance of any derived information, is critical and must be addressed by all database systems. Today, for every data model there exists a well-defined set of change primitives that can alter both the structure (the schema) and the data. Several proposals also exist for incrementally propagating a primitive change to any derived information (or view). However, existing support is lacking in two ways. First, change primitives as presented in literature are very limiting in terms of their capabilities allowing users to simply add or remove schema elements. More complex types of changes such the merging or splitting of schema elements are not supported in a principled manner. Second, algorithms for maintaining derived information often do not account for the potential heterogeneity between the source and the target. The goal of this dissertation is to provide solutions that address these two key issues. The first part of this dissertation addresses the challenge of expressing a rich complex set of changes. We propose the SERF (Schema Evolution through an Extensible, Re-usable and Flexible) framework that allows users to perform a wide range of complex user-defined schema transformations. Our approach combines existing schema evolution primitives using OQL (object query language) as the glue logic. Within the context of this work, we look at the different domains in which SERF can be applied, including web site management. To further enrich our framework, we also investigate the optimization and verification of SERF transformations. The second part of this dissertation addresses the problem of maintaining views in the face of source changes when the source and the view are not in the same data model. With today\u27s increasing heterogeneity in information structure, it is critical that maintenance of views addresses the data model boundaries. However, view definitions that go across data models are limited to hard-coded algorithms, thereby making it difficult to develop general maintenance algorithms. We provide a two-step solution for this problem. We have developed a cross algebra, that defines views such that there is no restriction that forces the view and the source data models to be the same. We then define update propagation algorithms that can propagate changes from source to target irrespective of the exact translation and the data models. We validate our ideas by applying them to translation and change propagation between the XML and relational data models

    Migrating relational databases into object-based and XML databases

    Get PDF
    Rapid changes in information technology, the emergence of object-based and WWW applications, and the interest of organisations in securing benefits from new technologies have made information systems re-engineering in general and database migration in particular an active research area. In order to improve the functionality and performance of existing systems, the re-engineering process requires identifying and understanding all of the components of such systems. An underlying database is one of the most important component of information systems. A considerable body of data is stored in relational databases (RDBs), yet they have limitations to support complex structures and user-defined data types provided by relatively recent databases such as object-based and XML databases. Instead of throwing away the large amount of data stored in RDBs, it is more appropriate to enrich and convert such data to be used by new systems. Most researchers into the migration of RDBs into object-based/XML databases have concentrated on schema translation, accessing and publishing RDB data using newer technology, while few have paid attention to the conversion of data, and the preservation of data semantics, e.g., inheritance and integrity constraints. In addition, existing work does not appear to provide a solution for more than one target database. Thus, research on the migration of RDBs is not fully developed. We propose a solution that offers automatic migration of an RDB as a source into the recent database technologies as targets based on available standards such as ODMG 3.0, SQL4 and XML Schema. A canonical data model (CDM) is proposed to bridge the semantic gap between an RDB and the target databases. The CDM preserves and enhances the metadata of existing RDBs to fit in with the essential characteristics of the target databases. The adoption of standards is essential for increased portability, flexibility and constraints preservation. This thesis contributes a solution for migrating RDBs into object-based and XML databases. The solution takes an existing RDB as input, enriches its metadata representation with the required explicit semantics, and constructs an enhanced relational schema representation (RSR). Based on the RSR, a CDM is generated which is enriched with the RDB's constraints and data semantics that may not have been explicitly expressed in the RDB metadata. The CDM so obtained facilitates both schema translation and data conversion. We design sets of rules for translating the CDM into each of the three target schemas, and provide algorithms for converting RDB data into the target formats based on the CDM. A prototype of the solution has been implemented, which generates the three target databases. Experimental study has been conducted to evaluate the prototype. The experimental results show that the target schemas resulting from the prototype and those generated by existing manual mapping techniques were comparable. We have also shown that the source and target databases were equivalent, and demonstrated that the solution, conceptually and practically, is feasible, efficient and correct

    Fundamentals of object-oriented languages, systems, and methods : Seminar 9434, August 22-26, 1994

    Get PDF

    Fundamentals of object-oriented languages, systems, and methods : Seminar 9434, August 22-26, 1994

    Get PDF

    A persistent object manager for HEP

    Get PDF
    We propose to perform research in the area of a Persistant Object Manager for HEP. Persistant Objects are those which continue to exist upon process termination and may be accessed by other processes. It is expected that any system based upon this research will work primarily but not necessarily exclusively in an Object Oriented environment. Target applications include follow on or replacement products for existing packages such as GEANT, HEPDB, FATMEN, BHBOOK, experiment specific code event storage. In this respect, it is expected that more functionality will be required than simple persistance. It will be one of the goals of the of the project to define this extra layer of functionality. Strong emphasis will be placed on the use of standards and/or existing solutions wherever possible

    The mediated data integration (MeDInt) : An approach to the integration of database and legacy systems

    Get PDF
    The information required for decision making by executives in organizations is normally scattered across disparate data sources including databases and legacy systems. To gain a competitive advantage, it is extremely important for executives to be able to obtain one unique view of information in an accurate and timely manner. To do this, it is necessary to interoperate multiple data sources, which differ structurally and semantically. Particular problems occur when applying traditional integration approaches, for example, the global schema needs to be recreated when the component schema has been modified. This research investigates the following heterogeneities between heterogeneous data sources: Data Model Heterogeneities, Schematic Heterogeneities and Semantic Heterogeneities. The problems of existing integration approaches are reviewed and solved by introducing and designing a new integration approach to logically interoperate heterogeneous data sources and to resolve three previously classified heterogeneities. The research attempts to reduce the complexity of the integration process by maximising the degree of automation. Mediation and wrapping techniques are employed in this research. The Mediated Data Integration (MeDint) architecture has been introduced to integrate heterogeneous data sources. Three major elements, the MeDint Mediator, wrappers, and the Mediated Data Model (MDM) play important roles in the integration of heterogeneous data sources. The MeDint Mediator acts as an intermediate layer transforming queries to sub-queries, resolving conflicts, and consolidating conflict-resolved results. Wrappers serve as translators between the MeDint Mediator and data sources. Both the mediator and wrappers arc well-supported by MDM, a semantically-rich data model which can describe or represent heterogeneous data schematically and semantically. Some organisational information systems have been tested and evaluated using the MeDint architecture. The results have addressed all the research questions regarding the interoperability of heterogeneous data sources. In addition, the results also confirm that the Me Dint architecture is able to provide integration that is transparent to users and that the schema evolution does not affect the integration

    Acta Cybernetica : Volume 13. Number 2.

    Get PDF
    corecore