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Framework for Generating Object-Oriented 
Databases from Conceptual Specifications 

György Kovács * Patrick van Bőmmel t 

Abstract 
When designing underlying databases of information systems, data are 

first modelled on conceptual level, then the obtained conceptual data models 
are transformed to database schemas. The focus of this paper is the trans-
formation of conceptual models into database systems with object-oriented 
features. The transformation is captured within the framework of a two level 
architecture. Conceptual models axe first mapped to abstract intermediate 
specifications, which are then transformed to database schemas in a given 
target environment. This enables us to treat different target systems, such as 
object-oriented and object-relational systems including the standards ODMG 
and SQL3, in a uniform way. To express intermediate representations of con-
ceptual models we use F-logic, a logic-based abstract specification language 
for object-oriented systems. We focus on the first step of the overall trans-
formation, i.e. the mapping of conceptual models into F-logic. Several trans-
formation alternatives are discussed, and a corresponding graphical notation 
for specifying transformation alternatives is provided. 

Keywords: database design, data transformation, conceptual data mod-
els, 0 0 models 

1 Introduction 
It has been generally agreed on that conceptual data modelling is very important 
when building information systems. This means that data must be modelled first 
on conceptual level, and then the obtained conceptual model (conceptual schema) 
must be translated to the external and internal level, according to the three level 
architecture for information systems modelling ([15]). By doing so, the issues of 
correctness and efficiency are well-separated, which is quite desirable. In this paper 
we deal with the transformation of conceptual data models to the internal level. 
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Internal (implementation-oriented) models are considered to be database models 
that are supported by database management systems (DBMS) running on comput-
ers. It is also assumed (required) that some database language is provided for such 
a model. The well-known relational model ([11], [36]) is the underlying database 
model of today's RDBMSs and the related database language is typically SQL (see 
e.g. [13]). However, the relational technology is not always appropriate for some 
real-life applications, e.g. multimedia or geographical applications, where usually 
highly structured, complex objects must be stored and manipulated. To overcome 
the limitations of the relational model, advanced database models have been devel-
oped, such as the nested relational model (see e.g. [30], [1], [5]) along with proposals 
for nested SQL extensions (e.g. [27], [28], [23]) as well as database models with 
object-oriented features. Database systems with object facilities serve as candidates 
for next generation database systems. Although a number of such models and query 
languages have been proposed (see e.g. [2], [32], [4], [31], [19]), there is no object-
oriented database model and language yet, that has been commonly accepted. This 
fact is known and inspired people attempting to define the requirements for next 
generation DBMSs ([3], [34], [20], [12]). Basically, two main approaches, the pure 
object-oriented ( 0 0 ) and the object-relational (OR), compete with each other and 
seem to co-exist in the future. The same is reflected in the standardisation efforts 
resulting in the ODMG-93 ([9]) de facto standard for truly object database systems 
and SQL3 ([24]) for object-relational systems, though some compatibility between 
them is also aimed. 

For data modelling a number of semantic modelling techniques have been devel-
oped, such as (extended) ER ([10], [14]), NIAM ([26]) and PSM ([18], [16]). Seman-
tic modelling has been used in practice for long and has proved to be a powerful 
technique. The mapping of resulting conceptual schemas into relational environ-
ments is well-defined (see e.g. [35], [26]) and this process is supported by many 
CASE-tools. Also, a transformation mechanism to nested relational schemas has 
been established ([8], [7]). Although there exist OO data modelling techniques, e.g. 
OMT ([29]), for designig object-oriented databases, the use of traditional semantic 
modelling will very likely not disappear from system design, but will remain as a 
powerful alternative, especially in data intensive domains. Indeed, in [33], where 
semantic modelling (using extended ER) and OO data modelling are compared, it is 
concluded that even when OO databases are designed the recommended strategy is: 
(1) creating an EER (or e.g. NIAM) schema; (2) map it to an OO schema; and (3) 
augment OO schema with behavioral constructs. As a consequence, a mechanism 
for transforming semantic models into modern database systems is needed. 

In this paper we deal with the problem of how to transform conceptual data 
models into somehow object-oriented database environments. Although valuable 
previous work has been done on this topic (e.g. [25], [21], [6]), a general unify-
ing mechanism is still missing, which inspired our work. In general, a conceptual 
data model (conceptual schema) consists of an information structure and a set of 
integrity constraints, both of which require translation. In addition to the results 
of existing proposals, advanced modelling constructs (set types, list types, general-
isation) are to be considered as part of the structure translation process. Even for 



Framework for Generating Object-Oriented Databases 105 

simple constructs additional tranformation alternatives can be recognized. More-
over, a more comprehensive treatment of constraints is necessary in general. 

In our approach (similarly to that of [6]) the transformation is captured within 
the framework of a two level architecture. Conceptual schemas are first trans-
formed to abstract intermediate specifications (design step). Then the obtained in-
termediate specifications are translated into the final implementation environment 
(implementation step). This means that in case of different target environments 
the same design step can be applied and only the implementation step will differ. 
That is, choosing a new target system requires only the implementation step to be 
adapted. Thus, as the main benefit of this approach, we gain general applicability. 
The common design decisions can be factored out in the first step. Here we focus 
on the design step, the second step is discussed only in very general terms. 

For expressing intermediate representations F-logic ([19]), a logic-based abstract 
specification language for object-oriented systems, is used (cf. [6]). Conceptual 
models are defined in terms of PSM (Predicator Set Model, [18], [16]), a fully 
formalized extension of NIAM. However, our approach is easily applicable to other 
conceptual modelling techniques (e.g. ER) due to the usage of similar constructs. 

In the present paper we set up the framework for a general transformation 
mechanism consisting of two steps as discussed above. It serves as a basis towards 
working out a comprehensive method for designing modern ( 0 0 , O R ) databases 
based on conceptual (semantic) data modelling. We focus on structural aspects 
and outline a number of alternatives for the translation of information structures 
into 0 0 systems. A corresponding graphical notation is introduced for illustration 
purposes. Since the mapping of structures is influenced by simple uniqueness (key) 
constraints, such constraints are also covered. However, the transformation of 
complex conceptual constraints in general is beyond the scope of the present paper, 
though it belongs to the whole picture and is seen as an essential part of the overall 
transformation, which has to be worked out. 

The rest of the paper is organized as follows. In section 2 our approach is 
presented. In section 3 the conceptual data modelling technique PSM is summarized 
to an extent needed for the purpose of the paper. Section 4 gives an overview of 
F-logic, that is used for expressing intermediate specifications. Alternatives for the 
transformation of conceptual information structures into F-logic (the design step) 
are discussed in section 5. In section 6 the transformation of an example PSM 
schema into F-logic is worked out in detail. The implementation step is discussed 
in general terms in section 7, where also an example schema definition in ODMG-93 
is provided. Section 8 contains the conclusions and topics for further work. 

2 Approach 

The expected end product of the transformation of a conceptual data model is some-
thing that can be run on a computer with a given target environment (DBMS) for 
creating a database. That is, at the end a sequence of statements in the database 
language of the assumed DBMS has to be generated to create the corresponding 
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database schema. As it was already mentioned, in our approach the transformation 
is captured in the framework of a two level architecture, i.e. it is performed in two 
steps as shown in figure 1. Conceptual schemas are first transformed to abstract 
intermediate specifications (design step). Then the obtained intermediate specifi-
cations are translated into the final implementation environment (implementation 
step). The task of the second step is the generation of statements in a concrete 
database language. In [6] a similar approach is taken. 

Conceptual 

data model 

design 
step 

Intermediate 
specification 

implementation 
step 

D B Language 

statements 

Figure 1: Two level architecture for transformation 

There are several advantages of a two level architecture approach, e.g.: 

• Provided that the intermediate specification, language is general enough to 
cover all the final target models that are intended to be considered, the design 
step, which is the more complex and essential part of the whole transforma-
tion, becomes the same single task for different target environments and is 
independent of the choice of the actual target system. The different system 
specific details must be dealt with in the implementation step only. 

• Provided that conceptual models and intermediate specifications have under-
lying precise formalism, the transformation from the conceptual to the in-
termediate level can be given algorithmically in a formal framework. This is 
very fundamental in order to have an automated transformation mechanism. 

• Since a given conceptual model may have a number of correct representations 
on the internal level and possibly the best candidate should be chosen, op-
timization is important. In a two level transformation optimization can be 
incorporated at both levels. 

We have already made it clear that to express data models on the conceptual 
level, we will use the Predicator Set Model ([18], [16]), an extension of NIAM ([26]). 
PSM is a fully formalized expressive modelling technique. It is briefly summarized 
in section 3. As potential final target environments, truly object-oriented as well as 
object-relational database systems are considered including the related standards 
ODMG and SQL3, respectively. Fixing an appropriate specification language for 
specifying intermediate models is a basic task. When doing so, the following re-
quirements are fundamental to be taken into account: a 

• The chosen specification language should be implementation-oriented, i.e. it 
should be able to deal with (important) concepts of implementation environ-
ments. At the same time it should provide a high level of abstraction to make 
it possible for us not to deal with the irrelevant aspects in the design step. 
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• It must be general enough and support object-oriented concepts to cover 
object-relational and object-oriented target systems. 

• It must be provided with sufficient support for constraint specifications. On 
the one hand, because the transformation of structures often imply integrity 
constraints in the target database to be specified. On the other hand, because 
the translation of conceptual integrity constraints typically (but not always) 
results in database constraints. Although the general treatment of constraints 
and their translation is outside the scope of our present paper, this is a very 
essential perspectival requirement. 

• It must have formal syntax and semantics. This makes it possible to define 
our transformation in a formal framework. 

To sum it up, we need an abstract and formal database model with object-
oriented facilities, that also allows to specify integrity constraints. After investigat-
ing a number of proposals (e.g. [2], [32], [31], [19]) we have concluded that F-logic 
([19]) is the one that fulfils our needs the best. Models of other proposals are not 
general enough and/or are not provided with precise formal syntax and semantics 
and/or do not deal with constraints at all. Consequently, we use F-logic as an 
abstract intermediate specification language. In section 4 an overview of F-logic 
is given based on [19], where it was presented. We note that F-logic has a pure 
object-oriented view. However, it can serve as an abstract intermediate specifica-
tion language in case of object-relational database sytems as well. The picture of 
figure 1 can now be refined to show our approach more concretely, which is depicted 
in figure 2. 

Figure 2: The concrete architecture 

3 Conceptual data models 
In this section we give a brief overview of the Predicator Set Model (PSM), that 
is used for expressing conceptual data models, without going into formal details 
(for details see [18] or [16]). A conceptual data model E = (I ,C) consists of 
an information structure 2 and a set of integrity constraints C. An information 
structure I is a structure consisting of the following basic components: 
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1. A set V of predicators. A predicator is intended to specify the role played by 
an object type in a fact type (see below). 

2. A set O of object types. Object types are classified as follows: 

(a) Entity types (£) and label types (£). The difference is that labels can, in 
contrast with entities, be represented (reproduced), on a communication 
medium. V is a set of concrete domains (e.g. string, natno) associated 
with label types via the function Dom : £ —> V. 

(b) Fact types {T). The set T is a partition of the set of predicators V. The 
fact type that corresponds with a predicator is obtained by the auxiliary 
function Fact : V —> T. 

(c) Power types (Q) and sequence types (S). Power types are also called set 
types. The intention of sequence types is to model list structures. 

3. A function Base : V —> O specifying the object type associated to a predica-
tor. 

4. A function Elt : Q u S - ^ O specifying the element type of-.power types and 
sequence types. 

5. A binary relation Spec on. object types, capturing.specialisation, a S p e c b is 
interpreted'as "a is a subtype (specialisation) of b", or "b is a supertype of 
a"". Specialisation of label types is prohibited, and only entity types can act 
as subtypes (Spec C £ x 0\C). Specialisation networks are acyclic. 

.6. A binary relation Gen on object types, capturing generalisation, a Gen b is 
interpreted as "a is a generalisation of b", or "b is a specifier of a". Gener-
alisation of label types is prohibited, and only entity types can act as gen-
eralised object types (Gen C E x 0\£) . Generalisation networks are acyclic. 
Furthemore, to avoid conflicting situations, generalised object types cannot 
be subtypes. The difference between generalisation and specialisation lies in 
their population (see below). 

The connection between (abstract) entity types and (concrete) label types is 
established by so-called bridge types. A fact type / is called a bridge type only if 
it has the form / = {p, q} with Base (p ) e C and Base(i?) £ £. A fact type is called 
an objectified fact type if it is the base object type of some predicator. 

Figure 3 shows an example information structure. In this figure we have a 
number of entity types, e.g. Person and Project, represented by circles. Label 
types, also represented by circles, appear in parentheses, examples are Date and 
TeLnr. By convention, if a label type is an identifier for an entity type, then the 
label type is represented within the same circle, see e.g. entity type Person and 
its identifying label type PJd. Fact types consist of predicators represented by 
boxes connected with circles for their base object types. For example, fact type 
Employment is a binary fact type consisting of two predicators, employedjby and 
employs. 
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Figure 3: Information structure with uniqueness constraints 

Figure 3 also contains representatives of advanced modelling constructs. 
We have power type Pr.group with element type Project and sequence type 
Daily -activities with element type Activity. Power types and sequence types are 
represented by circles and boxes, respectively, around their element type.. Entity 
types Manager and Coworker are specialised object types (subtypes) represented 
by solid arrows from subtypes to supertypes. Their common supertype is entity 
type Person. Entity type Equipment is a generalised object type with entity 
types Car and PC as its specifiers. Generalisations are represented by dashed ar-
rows from specifiers to generalised types. As distinguished fact types, for bridge 
types many examples can be seen, e.g. {hasXJname,is-Cname-of } connecting 
entity type Company with label type Csiame. As an example of objectified fact 
types we have fact type Coworkership. 

Populations and constraints 

An information structure is used as a frame for some part of the (real or fictive) 
world, the so-called Universe of Discourse (UoD). A state of the UoD corresponds 
with a so-called instantiation or population of the information structure, and vice 
versa. A population Popz of an information structure J is a value assignment to the 
object types in O, conforming to the structure as prescribed in I. The population 
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of a label type comes from the corresponding concrete domain (e.g. string, natural 
number), while the population of an entity type comes from an abstract domain 
containing unstructured values. 

These domains are part of the universe of instances fi, which is inductively de-
fined as follows. Firstly, all possible atomic instances are contained in fi. Secondly, 
ft contains all possible composed instances such as (a) mappings from predicators to 
instances, intended for the population of fact types, (b) sets of instances, intended 
for the population of power types, (c) sequences of instances, intended for the pop-
ulation of sequence types. The basic difference between specialisation (subtyping) 
and generalisation is that a subtype gets the population (and identification) from 
its supertype using subtype defining rules, while the population of a generalised 
object type is the union of the population of its specifiers. For a formal treatment 
of populations we refer to [17]. 

Forbidden populations are excluded by so-called (static) integrity constraints. 
Uniqueness constraints require uniqueness of values in some set of predicators. 
Graphically such uniquness constraints are represented by double-headed arrows 
next to the predicators they belong to. For example, in figure 3 we have 
unique(employed-by) expressing that a person may belong to one department only. 
There is a variety of other constraints, such as total role, occurrence frequency, set, 
enumeration, power type, sequence type, and specialization constraints. These are 
not relevant for the purpose of the present paper. 

4 F-logic 
To express intermediate specifications we use F-logic, an abstract logic-based lan-
guage for 0 0 systems. In this section we shortly summarize the parts relevant 
for us. For a comprehensive description of F-logic we refer to [19], where it was 
presented. In [22] an overview of F-logic from the perspective of our transformation 
is given. 

Basic elements in F-logic are id-terms, terms built from function symbols and 
variables as usual. They denote objects, classes and methods. Ground id-terms 
are variable-free id-terms playing the role of logical object identifiers (oid). By 
means of id-terms F-molecules can be constructed, and from F-molecules more 
complex formulas can be built. F-logic is provided with a model-theoretic semantics 
defined by means of semantic structures called F-structures. F-structures and the 
satisfaction of formulas are defined in such a way that the commonly known 0 0 
features are incorporated. Along with the description of its syntax, below we give 
an informal summary of the semantics of F-logic, for details see [19]. ' F-molecules 
are defined as follows (C, D, 0, M, R, Ai-s, Ri-s, ATj-s and RTi-s below are 
id-terms, k, I > 0). 

Is-a assertions of the form C :: D and 0 : C stating that class C is a subclass of 
class D and object 0 is a member of class C, respectively. Each class is subclass 
and superclass of itself. The subclass relation is transitive, and subclass hierarchies 
are acyclic. Objects belonging to a class also belong to any superclass of that class. 
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Structures (signature expressions, see below) are inherited from superclasses. 
Object mulecules of the form 0[ a '-separated list of method expressions ]. A 

method expression can be a scalar data expression M @ Ai,..., A/. —> R, a set-
valued data expression M @ ..., Ak —» {-Ri, -•-, Ri}, a scalar signature ex-
pression M @ ATi,..., ATk =>• (RTi,..., RTi), or a set-valued, signature expression 
M @ AT\,..., ATk {RTi, ...,RTi). Here O denotes an object or a class. M cor-
responds to a method. In data expressions it denotes method invocation, while 
in signature expressions it denotes the signature of some method. The syntactic 
context of M indicates that the corresponding method is a scalar function (—>,=>) 
or a set-valued function ( — I n scalar data expressions R represents the 
output of the method M when invoked on object 0 with arguments Ai, . . . , Ak- In 
set-valued data expressions Ri-s represent elements of the resulting set. In signa-
ture expressions RT^~s represent the types (classes) of the result (scalar case) or the 
types of the elements of the result (set-valued case) of the method M when invoked 
on an object of class O with arguments of types ATi, •••, ATk- The output (or the 
elements of the output, resp.) of the method must belong to all the RTi classes. 
When only one result type is specified the parentheses may be omitted. 

From F-molecules complex formulas (F-formulae) can be built by means of 
logical connectives (A,V,-i) and quantifiers (V, 3) with their usual interpretation. 
The implication connective " -f— " can also be used as usual, i.e. ip <— i)> is a 
shorthand for ip V -11p. 

F-logic databases (F-programs), well-typing 

An F-logic database, also called an F-program, is basically an arbitrary set of F-
formulae. Since this definition is too general, restrictions on the form of the allowed 
formulas are applied. An F-program P consists of a set of rules, statements of the 
form head <— body, where head is an F-molecule and body is a conjunction of liter-
als (F-molecules or negated F-molecules). The semantics of F-programs is given by 
Herbrand interpretation, more concretely by canonic Herbrand models (H-models). 
An F-program can be structured in such a way that its schema (declaration) part 
and data (object base) part are shown separately. 

Example 4.1 
Let's suppose that we have a simple database about persons, employees and 

projects. Such a database can be defined by the following F-program: 

Schema (declarations) 
employee:: per son 
person [no,me string-, 

age =>• integer ] 
employee [salary integer] 

works-for =£> project ] 
project [title => string; 
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budget integer; 
is-involved @ emplayee => boolean ] 

Object base 
smith: person 
jane: employee 
natlang: project 
dbopt: project 
smith [name —» " John Smith"; 

age —» 38 ] 
jane [ name —» " Eva .Jane"; 

age 22; 

salary —> 5100; 
works-for —» {dbopt, natlang}, ] 

•natlang [title —> "Natural Language Processing"; 
budgets 50000] 

dbopt [title —> "Database Optimization"; 
budget 65000; 
is .involved @ jane —• true} 

Note that class membership relations concerning simple objects, e.g. 
38 : integer, are omitted in the ex,ample. • 

In the schema part of example 4.1 we defined the classes person, employee and 
project. The is-a assertion states that employee is a subclass of person. The object 
molecules in the schema contain only signature expressions specifying argument and 
result types of methods and attributes. For example, works-for is a set-valued 
attribute in class employee returning a set of project objects for an employee. 
is-involved represents a scalar method with one argument of type employee. When 
it is applied to a project with a given employee it returns true or false. 

The data part, of example 4.1 describes the actual content of the data.ba.se. 
Objects are identified by logical object identifiers. Is-a assertions represent, class 
memberships. For instance, the example shows that, Eva Jane identified by jane is 
an employee. For individual objects the values of attributes, or more generally the 
results of method invocations with some arguments, are given by data expressions 
, e.g. name—t"Eva .Jane" for employee jane, and isJ,nvolved@smith—*true for 
project dbopt. 

The connection between data expressions and signature expressions is not cap-
tured by the defintion of F-structures. This link is provided at, a met,a level by means 
of well-typing conditions. Informally, an F-program P is well-typed if canonic H-
models of P obey the type restrictions given by signature expressions occuring in 
P. This means that (1) for any data expression on any object in P there exists a 
covering signature expression (i.e. the method can be invoked on the object, with 
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the given arguments), and (2) the result of such a data expression is of type pre-
scribed by the covering signature expression. Note that the F-program of example 
4.1 is well-typed. 

Constraints 

In database systems usually a set of integrity constraints is associated with a partic-
ular database to disallow invalid database states. F-logic itself does not define the 
concept of integrity (semantic) constraints. In [6], however, it has been extended 
for this purpose. We use the extension presented there. An integrity constraint, in 
F-logic is an arbitrary F-formula. An F-program with constraints is a tuple (P, IC), 
where P is an F-program and IC is a set of integrity constraints (F-formulae). As a 
syntactic convention, integrity constraints are preceded by the symbol "!— The 
semantics of an F-program with constraints (P,IC) is defined by some canonic 
H-model of P that is also a model of IC. In order to be a well-typed F-program 
with constraints (P,IC), P must be well-typed. 

Example 4.2 
Let's suppose that in the F-logic database of example J^.l project titles must 
be unique. The corresponding F-program now is extended, to' become an F-
program with constraints containing the single constraint as follows: 

!— XL = X2 <— Xi : project [ title Y ] A X2 • project. [ title -4 V ] 

• 

In the above example we used X\ -.project [title Y] as a shorthand for 
X\ -.project, A Xi : [title->Y] (with X-2 analogously). This kind of shorthand is 
often used in F-logic. The equality predicate = (defined in [19]) expresses that two 
objects are identical. 

In section 6.2 some macros (shorthands) will be introduced for specifying key, 
mandatory and inverse constraints on F-logic level. Such constraints have to be 
generated during the transformation of information structures in several situations. 

Lists and sets 

For the transformation of PSM sequence types we need an F-logic construct, that 
is usually known as list. F-logic itself is not provided with list data types, but lists 
can be modelled by defining a parametric family of classes, see [19] or [22]. We also 
need to translate PSM power types. Although the concept of set-valued attributes 
(methods) enable to manage sets, its applicability is limited. Defining attributes of 
nested sets (sets of sets) is not easy and natural. In [22] we defined a parametric 
family of classes for this purpose. From now on we assume that the aforementioned 
parametric classes are defined in each F-program, and list,(t) and set(t), where t is 
a ground id-term denoting a class, can be used in F-programs whenever needed. 
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5 From PSM to F-logic: the design step 

5.1 Framework 

In this section we outline the essence of our approach to the transformation of 
conceptual models into F-logic (design step, see figure 2) by means of activity-
graphs with different, decomposition levels. States denoted by ellipses are input, 
ancl/or output of activities denoted by rectangles. 

Basically, since the final goal is database schema generation, we are interested 
in schema (data structure + integrity constraints) transformation. However, the 
semantics of conceptual structures, and more particularly,1 the constraints are de-
fined in terms of populations. This means that, we have to deal with population 
transformation too. In fact, populations must be transformed anyway when our 
approach is integrated in an executable transformation mechanism concerning also 
operations and their transformation. Such an execution model is essential e.g. for 
optimization. 

PSM database 

Figure 4: The design step 

As depicted in figure 4, a PSM schema £ = {1,C.) together with a population 
Popj (PSM database) is translated to an F-program with constraints (P , IC) . The 
activity graph of this figure already shows a first, level decomposition to separate 
the schema from the population and their transformations. The population is 
represented in P (object base part), while the schema (structure 4- constraints) 
is represented in P (declaration part) as well as in IC. For the transformation 
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of populations and constraints (part of the schema) the result of the structure 
transformation is needed. That is the reason for the upward-directed arrows. 

PSM schema 

Constraints 

Figure 5: Decomposition of schema transformation 

To illustrate the transformation of schemas in more detail, the corresponding 
part of the diagram of figure 4 is decomposed as depicted in figure 5. The in-
formation structure 1 becomes (the declaration) part of P on the one hand, and 
some basic constraints (e.g. inverse constraints) are also generated. Figure 5 also 
shows that the transformation of structures is influenced by uniqueness constraints. 
Except simple uniqueness constraints (over single predicators), the conceptual con-
straints in C are translated to F-logic constraints in IC in general. The transforma-
tion of constraints takes both the conceptual structure and its internal counterpart 
as its input. In the rest of section 5 the transformation of information structures 
is discussed. 

5.2 Some preliminary issues 
When transforming information structures, for all possible constructs of PSM we 
have to define their counterparts in F-logic. Basically, an information structure is 
mapped to F-logic class definitions, i.e. a set of object molecules with signature 
expressions only. For simplicity, we do not deal with assigning concrete names 
to the obtained F-logic components. Instead, an abstract notational convention 
is used, indicating the kind of an F-logic component and the components of the 
information structure it resulted from. For example, a class is denoted by C.\, 
where X contains the PSM component(s) to which the class corresponds. 
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In F-logic no difference is made between attributes and methods of classes. 
An attribute is considered to be a method without arguments. This enables the 
uniform treatment of (stored or derived) attributes and general methods. However, 
in object-oriented database systems a clear distinction between them is often made. 
This will be respected during our transformation, which is important also because, 
due to the elimination of certain kinds of redundancy during information analysis, a 
conceptual (PSM) schema represents data to be stored. From now on, by attributes 
we mean stored attributes. The distinction between (stored) attributes and general 
methods, however, is made only on syntactic (notational) level, thus preserving 
their uniform treatment in F-logic. Attributes and methods will be denoted in the 
form of At.trx and Metlix, respectively, 

For certain kinds of PSM components the translation is quite straightforward, 
but for others several alternatives are possible. The basic PSM components to be 
transformed are: object types, predicators, specialisation and generalisation hierar-
chies. The notion of object types in PSM is very general, it covers a number of more 
specific concepts, such as entity types, label types, fact types, set types, sequence 
types. Below we -discuss the transformation of different PSM constructs separately. 
Some (simple) solutions have counterparts presented in [6] and [21], where the 
transformation is discussed in terms of ER and BRM schemas, respectively. Trans-
formation alternatives presented in the rest of this section is discussed by means of 
abstract figures. Figure 6 shows how arrows in such figures are interpreted. 

C x = Class resulting from PSM component(s) X . 

O C = Object type O is represented in class C 

CI C 2 = In class CI a scalar-valued attribute o f type C2 is defined 

CI C2 = In class C1 a scalar- or set-valued attribute o f type C 2 is defined 

: = Grouping indication 

Figure 6: Graphical notation for specifying transformation alternatives 

5.3 Entity types 
By default, entity types are translated to F-logic classes. The corresponding class 
defiiiitions are object molecules with signature expressions only. As an initial step, 
an empty object molecule is defined for each entity type. The structure of the class 
corresponding to an entity type depends on how the fact types in which the entity 
type is involved are transformed. 

Figure 7: Entity types are mapped to classes 

Sometimes an entity type simply models values of a label type connected with 
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it (see e.g. entity type Duration in figure 3). In such cases the elimination of the 
counterpart class of the entity type is reasonable. Then the corresponding class is 
substituted with the concrete domain of the connected label type. 

5.4 Label types and bridge types 
A label type represents a set of simple values from a concrete domain. For simplicity, 
we assume that each conrete domain has a counterpart class built-in F-logic. Since 
the simple values represented by label types do not have independent existence and 
may only occur as part of more complex objects, for a label type L, in contrast with 
entity types, no separate F-logic class is created. It is mapped to the (assumed) 
built-in F-logic class that corresponds to its concrete domain Dom(L). 

A bridge type is a special binary fact type connecting a nou-label type with 
a label type. Assuming that the involved non-label type is mapped to a class, a 
bridge type is incorporated as an attribute in that class. If a uniqueness constraint 
is specified on the predicator with the non-label type as its base, then the attribute 
is scalar-valued. Otherwise, it is defined to be set-valued. Situations when our 
assumption does not hold will be mentioned and treated places where they may 
arise. The translation of bridge types and the related label types is illustrated in 
figure 8. 

5.5 Fact types and predicators 
In this section we consider non-bridge fact types, when discussing the mapping of 
fact types into F-logic. The transformation of fact types is not straightforward, 
there are several possibilities how to transform them and their predicators. The 
translation of a fact type has a strong effect "on thé' final F-logic counterparts of the 
object types involved in the fact type via predicators. Alternatives are discussed 
below. 

5.5.1 Trivial mapping 

The simplest, solution is generating a separate F-logic (relation) class for each fact 
type. Then each predicator of a fact type results in a scalar-valued attribute in the 
corresponding class. Figure 9 illustrates this trivial translation. 

This transformation is valid only if the base object, type of each predicator in / 
has a corresponding F-logic class. However, this is not, necessarily the case, e.g. if 

Figure 8: Mapping of bridge types and label types 
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0 / -
I 

-Cf-

Figure 9: Illustration of trivial mapping 

a base object type is a power type. Such cases will be discussed and treated later 
at the appropriate places. 

Since the population of a fact type is a set of tuples, that are in turn total func-
tions, it has to be ensured that each attribute of a fact (relationship) object carries 
some value. This can (has to) be forced by introducing appropriate constraints. On 
the other hand, fact objects are value-based and are identified by the participating 
objects. Therefore, a constraint has to be generated requiring that no two different 
fact objects may correspond to the same combination of participating objects (see 

Although the'trivial mapping is sufficient to store all data, in order to improve 
query performance additional inverse attributes can be defined in any/all of the 
classes that correspond to the participating object types. Then such an inverse 
attribute stores references to relationship objects in which they participate (see 
also [21]). The type of inverse attributes is influenced by uniqueness constraints. 
Moreover, if inverse attributes are introduced, then also inverse constraints have to 
be generated to guarantee integrity. 

Introducing inverse attributes with appropriate inverse constraints is a general 
option in the transformation. In principle, they can be generated in all alternatives 
that will be discussed for the transformation of fact types. In the sequel we will 
not explicitly mention the possibility again and again. 

5.5.2 Incorporation of fact types 

Fact types can be translated in such a way that they are incorporated in classes 
obtained for their object types, e.g. classes for entity types (see also [21]). In 
this case fact types are represented as reference attributes in such classes. More 
precisely, those attributes correspond to predicators constituting fact types. 

Binary fact types 

First we consider binary fact types as subjects of incorporation. As shown infig-
ure 10, a binary fact type / can be incorporated in any/both of the two classes 
corresponding to its two base object types. The actual kind of reference attributes 
(scalar-valued or set-valued) is guided by uniqueness constraints. If / is incorpo-
rated in both classes, then an inverse constraint is needed as well. 

Note that this way of transforming binary fact types looks very much like the 

also [6]). 



Framework for Generating Object-Oriented Databases 119 

Ca CB 
(C) 

Figure 10: Incorporation of binary fact types 

transformation of bridge types (see section 5.4), which is not surprising, since bridge 
types are always incorporated in the classes for the non-label types involved. 

Relational view of incorporation 

For binary fact types the incorporation mechanism can be combined with the trivial 
mapping as follows. A class is introduced for the fact type / similarly to the 
case of trivial mapping. At the same time, however, one of the two base object, 
types is chosen, around which the related objects are arranged, similarly to the 
case of incorporation. Then the predicator with the "central" base object type 
becomes a scalar-valued attribute in the class corresponding to the fact type. The 
other predicator becomes either a set-valued or a scalar-valued attribute. This new 
alternative is depicted in figure 11. 

C A - Q — CB C A - Q *=- CB 

(a) (b) 

Figure 11: Relational incoporation of binary fact types 

Note that if a uniqueness constraint is specified on the predicator with the " cen-
tral" base object type, then the result is indentical to that of the trivial mapping. 
The combination of trivial mapping with incorporation can be viewed as a nest 
operation performed on the result of the trivial mapping. The basic constraints 
mentioned there are also needed here, but they have to be adapted according to 



120 György Kovács, Patrick van Bommel 

the different, structure. 
We note that basically this alternative has relational nature. Since constructs 

from object-orientation are involved as well (set-valued attributes) it fits in the 
object-relational approach. 

Fact types of higher degree 

An n-ary fact, type / (n > 2) can be incorporated in a class corresponding to a 
base object, type of a predicator in / , for which a uniqueness constraint is specified 
(provided that each object type involved in / has a counterpart, class, for now if, is 
assumed). The situation is depicted in firgure 12. 

Figure 12: Incorporation of n-ary fact types 

As opposed to the binary case, here the uniqueness constraint is required, be-
cause without, that the concrete relationships between objects cannot be stored 
unambigously. The result of this transformation is that a class in which / is in-
corporated will have scalar-valued attributes for referencing related objects. The 
basic constraints discussed for trivial mapping have to be defined conforming this 
structure. If / is incorporated in more than one class, then inverse constraints are 
needed as well. 

For the transformation of binary fact types we considered the combination of 
trivial mapping and incorporation. Since to incorporate fact types of higher de-
gree uniqueness constraints over single predicators are required, we would get back 
exactly the trivial mapping when applying such a combination. Therefore, this 
alternative is not considered at all. 

Quasi-incorporation 

Although our latest note is valid, for n-ary fact types, where n > 2, a, way to 
combine incorporation with the relational view can be recognized. The mechanism 
is slightly different from what we had for binary fact types. It, is shown in figure 
13. Fact type / is represented in a class for one of its base object types as well 
as in a subsidiary class denoted by C¡>. The class Cy\ l in which / is incorporated 
has an attribute (scalar- or set-valued) for referencing objects of class C y . Those 
objects represent combinations of other objects that are related to a given C/i, 
object, via / . The attribute in Ga, is scalar-valued if uniqueness constraint, is on 
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the predieator with base Ai , otherwise set-valued. As usual, structure conforming 
basic constraints are needed. 

Figure 13: Illustration of quasi-incorporation 

Note that, in contrast with pure incorporation of n-ary fact types, here no 
uniqueness constraint has been required. That is, this kind of transformation.is 
more generally applicable. Note furthermore that quasi-incorporation of binary fact 
does not make sense, since it would produce a subsidiary class, as an unnecessary 
extra shell, with a single attribute. 

5.5.3 Grouping 

Since during information analysis fact types are determined such that they represent 
elementary recording types ([26]), most of them are binary or ternary in practice. 
That is, applying e.g. the trivial transformation would result in small but many 
object classes. Instead of transforming each fact type to a separate class, another 
alternative is to perform some grouping of fact types that are joinable via common 
object types before generating F-logic class definitions. Then for fact types in the 
same group a single class is created. 

The grouping mechanism is implemented by means of a so-called grouping pro-
file. A grouping profile is a set of groupings, where a grouping is a set of sets of 
predicators satisfying certain wellformedness conditions, e.g. conditions that re-
quire the joinability (predicators in a set have the same object type as their base) 
and connectivity of fact types to be grouped. 

One particular grouping in the grouping profile implicitly specifies a set of fact 
types to be grouped together. The result of grouping is that one class is generated 
for the fact types in one group, and all those fact types are represented in that 
class. The structure of the class is obtained in such a way that one (scalar-vaued) 
attribute is defined for each set of predicators (corresponding to one object type) 
in the grouping and one (scalar-vaued) attribute is defined for each non-grouping 
predicator occuring in the grouped fact types. 

The grouping meachnism is illustrated in figure 14. According to the figure, the 
grouping profile consists of a single (maximal) grouping. That grouping contains 
two sets of predicators (with common object types). 
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G 

^ Qis.hj' 

Figure 14: Illustration of the grouping mechanism 

5.5.4 OR-like grouping 

In section 5.5.2 we discussed the incorporation of fact types in classes corresponding 
to base object types. For binary fact types the relational variant, resulting from 
the combination of trivial mapping and incorporation, was also considered. In this 
section we show how this combined alternative can be further integrated with a 
restricted version of the grouping mechanism. 

~ - : Qf.g.h'r''' 

Figure 15: OR-like grouping 

The situation is depicted in figure 15. The restrictions on the general grouping 
(having fiat, behavior) means that a particular grouping in the grouping profile may 
consist, of only a single set of predicators with common base object type. (Note the 
difference with figure 14 with respect to the grouping indication.) Similarly to the 
relational incorporation for binary fact types (see figure 11), a central object type 
is chosen around which related data coming from several (grouped) fact, types is 
arranged. This gives some 0 0 characteristic to this transformation, while keeping 
also the relational view of grouping. From the alternatives discussed so far the 
general idea illustrated by figure 15 can be seen. 
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Grouping with quasi-incorporation 

In figure 13 an alternative way to incorporate fact types of higher degree (called 
quasi-incorporation) with some relational characteristic was illustrated. There sub-
sidiary classes have been introduced. That mechanism can be combined with (re-
stricted) grouping analogously with the combination presented in the previous sec-
tion, as shown in figure 16. Since only alternatives discussed earlier are combined 
in a way that has also been described, we do not explain this combination in more 
detail. 

~ ~ ; Qf.n'hl 

Figure 16: Grouping with quasi-incorporation 

5.5.5 Objectification 

As said in section 3, a fact type is objectified if it is the base object type of some 
predicator. The transformation of objectified fact types must be examined with 
some special care, since it has to be ensured that data attached to facts (and not 
e.g. to entities) are storable as well. Now we consider how the alternatives for the 
transformation of fact types are applicable to objectified fact types. 

Objectification and trivial mapping 

Obviously, the trivial mapping method can be applied to an objectified fact type 
as to any fact type without problems, which is the most natural solution. During 
the transformation of the rest of the information structure any of the alternatives 
can be chosen. Then the (objectified) fact type behaves as if it was an entity type. 

Objectification and grouping 

In principle, an objectified fact type can be considered for grouping, but not as it 
stands. In order to be able to transform the other fact, types it is involved in, first it 
has to be unnested with respect to all those fact types. In many cases, however, the 
same final result can be obtained by applying different transformation alternatives. 
Therefore, we do not deal with providing an unnest, operation for objectifications 
and do not consider objectified fact types to be grouped in any way. 
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Incorporation of objectified fact types 

In section 5.5.2 the alternative of incorporating fact types in classes for their base 
object types was discussed. Binary fact types can always be incorporated, but fact 
types of higher degree can be considered for incorporation at presence of uniqueness 
constraints over single predicators. Incorporation of objectified fact types is a 
meaningful option in even more restrictive situations only. The rationale behind 
this is that beside representation of (objectified) facts, we also have to deal with 
the representability of facts attached to (objectified) facts. 

Figure 17: Incorporation of objectified fact type 

The mechanism of incorporating objectified fact types is illustrated in figure 17. 
It shows that if an objectified fact type / is incorporated in the counterpart class 
of one of its base object types, then the fact types in which / participates are also 
incorporated in the same class. The unambigous representability is ensured by the 
required uniqueness constraint (also when / is binary). 

Obviously, this transformation requires the fact types with base object type / to 
fulfill the condition for incorporation. If for any of those fact types this precondition 
is not satisfied, then / cannot be incorporated either. This leads to a situation that 
can be captured by recursive checking and evaluation. 

At some earlier points of this paper we assumed the existence of classes for base 
object types when describing transformation alternatives for fact types (also bridge 
types). We also promised to highlight and treat situations when it's not the case. 
Now we reached such a situation, because the incorporation mechanism is applied to 
fact types with base / , but no class for / exists. The special treatment here is that 
we explicitly prescribed the class in which the incorporation has to be performed 
instead of the class for / . Note, however, that during the incorporation of / the 
existence of classes for its base object types is still an assumption (precondition). 

The relational-like incorporation for binary fact types (see figure 11) is generally 
not applicaple to objectified binary fact types, only when the trivial mapping is 
obtained back due to the required uniqueness constraint. Otherwise the problem 
of unambigous representability arises. 

For similar reason, quasi-incorporation of objectified fact types is only possible 
at the presence of appropriate uniqueness constraints. The illustrating figure is 
obtained as a combination of figures 13 and 17 and is presented in figure 18 without 
further explanation. 
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5.6 Power types 

Power types in PSM represent sets. An instance of a power type is a (non-empty) 
set of instances of its element type and is identified by its elements. Since in F-logic 
we have the concept of set-valued attribute, at first sight it might seem that power 
types can be represented simply by means of set-valued attributes. 

However, set-valued attributes have limited applicability. Nested power types 
(power types of power types) cannot be expressed in F-logic in terms of set-valued 
attributes. For instance, in our example in figure 3 if budgets belong to groups 
of groups of projects, then that situation cannot be represented by set-valued at-
tributes. Therefore, for the transformation of power types the parametric class 
set(C) (discussed in section 4), where the parameter C can be an arbitrary class, 
will be used. 

Figure 19: Alternatives for power types 

A power type can be transformed such that it is simply represented as a set(...) 
type wherever it occurs. An alternative solution is that a separate class in defined 
for the power type with one attribute containing the set elements and possibly other 
attributes holding references to related objects. The choice depends on its context 
and/or the designer's preference.. This consideration, however, suggests that the 
transformation of power types with or without defining counterpart classes can be 
both reasonable solutions, which is shown in figure 19. Our manner of transforming 
a power type P covers both alternatives in a uniform way. The procedure is as 
follows: 
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1. First, as an initial step, a class Cp is introduced with a single scalar-valued 
attribute At.treiements of type .sei(C'E|t(pj) for containing the set elements. 

2. During the transformation of the information structure consider P as if it was 
an entity type (remember that entity types are always mapped to classes). 

3. When the whole information structure has been translated, Cp will or will 
not contain attributes other than Attrelements • If Cp contains no attribute 
other than Attr elements, then optionally the class Cp can be eliminated by 
substituting it with sei(Cg|t(p)) where it occurs. 

As it can be seen, the translation of a power type requires its element type (not 
necessarily entity type, it can be e.g. a fact type) to be mapped to a class. To 
take this into account, it is required that if a fact type is the element type of a 
power type, then the fact type has to result in a class, i.e. it has to be transformed 
according to the trivial mapping. 

Furthermore, note that although at the end power types do not necessarily 
result in classes, the assumption, made at several places before, that corresponding 
classes for participating object types exist when fact types are mapped (see section 
5.5) is not violated, because the elimination of the counterpart class for a. power 
type may be performed as a final step only. 

5.7 Sequence types 
The transformation of sequence types into F-logic is analogous to that of power 
types, see figure 20. The only differences are that (1) instead of the parametric class 
set(C) the parametric class list(C) is used, and (2) the implicit attribute is denoted 
by Attr sequence instead of Attr eiements- In other aspects the procedure is identical, 
therefore is not further detailed here. Moreover, similar considerations and notes 
are valid for the mapping of sequence types what we had for the transformation of 
power types. 

Cs " - •*=- list(Ca) Ca list(CA) CA 

(a) (b) 

Figure 20: Alternatives for sequence types 

5.8 Specialisation and generalisation 
Specialisation and generalisation hierarchies of PSM models are translated to sub-
class hierarchies in F-logic. Both ASpecB and B Gen A result in CA "-CB.{CA IS 
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subclass of Cs ) . As a consequence, participating object types have to be mapped 
to classes. Taking the restrictions on Spec and Gen (see section 3) into account this 
means that: (1) If B is a fact type, then it has to be translated according to trivial 
mapping. (2) If B is either a power type or a sequence type, then its corresponding 
class cannot be eliminated. 

So far, specialisation and generalisation were treated in the same way. However, 
they are different concepts, and the difference has to be reflected on F-logic level 
as well. As mentioned in section 3, the difference lies in the way subtypes and 
generalised object types get their identification, and in the way their population is 
derived. A generalised object type inherits identification from its specifiers and its 
population is the union of the populations of its specifiers. Therefore, in an F-logic 
class hierarchy that corresponds to a generalisation hierarchy non-leaf level classes 
may have only object instances that belong to some leaf level class. This can be 
achieved by introducing appropriate constraints. 

A subtype inherits identification from its supertype and its population is a 
subset of the population of its subtype and is derived by means of a subtype defining 
rule. When mapping a subtype relationship, the associated subtype defining rule 
has be translated too, resulting in a rule in the corresponding F-program. The 
body of the rule is the subtype defining rule translated into F-logic, while the head 
is an is-a assertion specifying class membership. 

5.9 Methodization 

In general, an attribute of a class carries direct reference(s) to related object(s), 
which means that by means of attributes (methods without arguments) only rela-
tionships between two objects can be captured. However, it would often be useful 
to have a device to enable that objects related to a given combination of other ob-
jects can be obtained. This can be achieved by defining general methods (method 
with arguments). A mechanism, called methodization, can be introduced for this 
purpose as a complementary device in order to provide efficient access (querying) 
of data stored in attributes of classes. 

For example, provided that ¿fact type is mapped to a class, facts (relationships) 
become stored objects. The attributes of a relationship object contain references 
to objects that are in relationship. If now we want to know what objects of a given 
class are in relationship with some combination of objects of some classes, we have 
to perform an appropriate query. Clearly, it can be very useful to define access 
methods to make querying (traversing relationships) easier and more efficient. 

The scale of choices for methods is quite wide. The signatures of methods are 
strongly influenced by uniqueness constraints. The behavior of methods can be 
defined in terms of F-logic rules. In [6] a similar technique is introduced, which is 
called pivoting. 
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Inverse attributes vs methodization 

It was said earlier that inverse attributes can be optionally defined beside attributes 
needed for sufficient storage of data. It improves query performance, but makes 
update more complex. To ensure integrity, introducing inverse attributes must be 
done along with generating inverse constraints. 

Alternatively, stored inverse attributes can be substituted with 'methods without 
arguments. In this case the inverse constraints needed for the inverse attributes 
are converted to rules in the F-program. Those rules define the behavior of the 
(inverse) methods. 

6 Elaborated example 

Until now we discussed possible ways to transform conceptual structures to 0 0 
database schemas. In this section we transform the PSM schema in figure 3 into 
F-logic. During this mapping ob ject molecules defining only parts of classes are 
obtained often. Since, according to the semantics of F-logic, they can be unified to 
get equivalent more complex object molecules, at the end we will also present the 
unified result. 

6.1 Declarations 

Entity types are mapped to classes. As an initial step, for each entity type a, an 
empty object molecule is generated, i.e. we obtain: 

GEquipment [ ] C(Ja r [] C p c [ ] Cl>, ,,_.„„ I ] CMana!l,r[] 

Cc oworker [] Cjjept. [] CBuilding [1 CPl •oject. 

Cc ompany [] CActivity [] CDuration [] CA,nonnt.of.-money [] 

Furthermore, in the initial step a class is created for each power type and se-
quence type with a single attribute for containing the set and list elements, respec-
tively: 

CP 

r-group [ Att7 elements ^ Set(Cproject) ] 

CDaily-activit ies [ Attl'sequence Ust^C'Activity)] 
Specialisation and generalisation relationship result in subclass relationships: 

& Manager •• CPerson 

C c oworker c P erson 

C c ar CEquipment Cpc • • CEquipment. 

Bridge types are incorporated in classes obtained for the involved non-label 
type. Suppose that with the occuring label types the following concrete domains, 
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that are assumed to be built-in classes in F-logic, are associated: 

Dom (Date) = Date 

Dom (Dollars) = Dom(iiows) = Integer 
Dom (Regjnr) = Dom (PC-nr) = Dom (PJd) — Dom (P-name) = String 
Dom (Prjname) — Dom (D-name) = Dom (B.code) = Dom (A.code) = String 
Dom (C.code) = Dom (C .name) = Dom(TeLnr) = Dom (A-descr) = String 

For identifying bridge types the predicator with non-label base object type X is 
referred to as hasJX. Then the mapping of bridge types yields the following object 
molecules: 

CPerson [ AttriLas_p_id => String ] CPerson [ AttrhasiPname => String} 

CEquipment [ AttTbought-on => Date ] Ccar [ AttThas-Reu.no String } 

Cpc [Attrhas_pc_nr =>• String] CProject [ A t t T has-Pr-name => String] 

Coept. [AttT has-D-name =>• String] CBuilding [At.tr haS-B .code => String] 

cArticle [ A t t r ¡ i a s _ a _ c o d e =>• String] CActivity [ Attrhas.A.descr =>String] 
cDuration [ AttThas-Hour => Integer ] CAm..of.m. [ Attr has-Dollars => Integer ] 

Ccompany [ Attr has-C -code ^ String ] Ccompany [ Attr has. Cname ^ String] 

Gcompany [ Attr has- Telnr String] 

Finally, we transform (non-bridge) fact types. In section 5.5 a number of al-
ternatives were discussed. We transform the fact types of figure 3 such that we 
cover as many alternatives as reasonable according to the complexity of the input 
schema. In order to identify chosen alternatives unambigously we always refer to 
the corresponding figures. The specified uniqueness constraints, of course, are taken 
into account. 

The objectified fact type Coworkership is mapped according to the trivial map-
ping (figure 9), which results in: 

GCow or her ship [AttrWorks-for GPersonj Attr has -as.coworker Gproject ] 

The binary fact type Cow.dur is incorporated (figure 10) in the class obtained 
for the base object type of its predicator has .as.duration yielding: 

Ccoworkership [Attr has-as-duration GDuration ] 

Incorporation of binary fact types in one of the two classes corresponding 
to their base object types is applied to other fact types as well. Fact types 
Salary, Activities and Budget are incorporated in classes Ccoworker, C Manager 
and Cpr-group, respectively. The following object molecules are generated: 

CCoworker [ Attr earns ^ GAmount-of -money ] 

CManager [Att7perforTJies ^ GDaily.activities ] 

Gpr -group [ Attl may .spend GAmount .of .money ] 
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Fact, type Car .usage is incorporated in both classes corresponding to the in-
volved object types (figure 10, alternative (c)), namely in Ccar and C Manager• T w o 
object molecules are obtained: 

Ccav [ Attl used-by CManayer ] 

CManager [ -Attruses ^ Ccar ] 

In figure 11 a relational-like way of incorporating binary fact types, as the 
combination of trivial mapping and incorporation (alternatively seen as nesting on 
the result of trivial mapping), has been shown. Fact type Location is mapped 
according to this way of transformation. Object type Dept. is chosen as the central 
object type. This results in: 

CLocation [ Att.7 is_located-(it ^ CDept. j Attl accomodates —^ CBuilding j 

To illustrate the alternative coming from the combination of incorporation ( 0 0 
nature) with restricted grouping (relational nature), fact, types Employment and 
PC-usage with common object type Person are grouped according to the 0 R -
like grouping shown in figure 15. The following single class (object molecule) is 
generated: 

C {Employment, PC .usage} [ Attl {employed-by,works-on} C Person j 

Att.Temploys => Coept.. \ Attri,cionljS_to Cpc ] 

The combination of OR-like grouping and quasi-incorporation has been depicted 
in Figure 16. To set an example for this mechanism, fact types Management and 
Supply are grouped together via ob ject type Project such that for fact type Sujrply 
a subsidiary class CSuvply> is introduced. Beside this subsidiary class, a relation 
class is also defined representing fact type Management, and partially fact type 
Supply. The obtained object molecules are the following: 

G Supply' [ Attr suppiies =í> CCompany i Att.T is _Supplied C Article ] 

(-'{Management, Supply} [ Att.7 {managed-by, receives} CProject-. 

Attrman(lges —t-v CPerson] AttrVeceives ^Sujyph/' ] 

By now, each fact type of figure 3 has been translated. We did not, exploit 
every particular alternative discussed in section 5.5 coming from different kinds of 
combinations. However, all the basic building blocks used in some combination, 
such as trivial mapping, incorporation, quasi-incorporation, grouping, have been 
covered. 

Class elimination 

After completing the transformation of the PSM structure of figure 3, the elimina-
tion of classes for power types and sequence types can be considered (see sections 5.6 
and 5.7). Since the class Cpr_grouv contains an attribute other than Attrci,.ineni.s, 
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it cannot be eliminated. The elimination of class CDaily.activities, however, is rea-
sonable. The class is substituted with list(CActivity) and is removed. 

As mentioned in section 5.3, classes for entity types with label type nature can 
also be eliminated. In our example such classes are CDuration and CAmount.of .money 
at least. They are, therefore, eliminated. Occurrences are replaced with the built-in 
classes for the concrete domains of their corresponding label types. 

Unified declarations 

Due to the fact that in some cases above different, parts of class definitions were 
obtained at different points of the transformation, some classes are defined by means 
of more than one object molecule. The separate parts can now be put, together as 
presented below. The class eliminations above are taken into account. Clearly, 
the input schema does not cover all the details of the application domain, which 
lead to simple (entity) classes in many cases. Those classes likely have additional 
attributes, which is also indicated below. During the above transformation we used 
denotations rather than names for classes and attributes. In order to make the 
example more readable we also give names to classes and attributes now. 

Person [ P.id=> String-, nam.e => String;... ] 

Manager:: Person 
Manager [dailyjactivities => list( Activity); uses-car Car;...] 

Coworker :: Person 
Coworker [ salary => Integer; ... ] 

Equipment [bought.on Date]... ] 

Car :: Equipment 
Car [reg.nr =>• String; usedJby => Manager;... ] 

PC :: Equipment 

PC [pc.nr =>• String;... ] 

Project. [ title =>• String;... ] 

Department [name String;... ] 

Building [B.code => String;... ] 

Article [ A.code => String;... ] 

Activity [description =>- String;... ] 

Company [ C-Code => String; name String; teljnrs =£> String;... ] 

Pr.group [projects => set(Project); budget => Integer;... ] 

Coiuorkership [ employee => Person; project =>• Project; duration =>• Integer ] 
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DeptJoc [ dept. => Department; building Building ] 

Employment [ employee =>• Person; dept => Department; iuorks-on =»• PC ] 

Supply [ supplier => Company ; article => Article ] 

Project.rel [project => Project; managers =£> Person; receives Supply ] 

6.2 Constraints 
The result of the transformation of the information structure in figure 3 was influ-
enced by simple conceptual uniqueness constraints. On the other hand, in addition 
to class definitions, the structure transformation results in some kinds of basic con-
straints in F-logic, such as key, mandatory and inverse constraints. In this section 
we provide these constraints for our example. 

Uniqueness constraints 

F-logic uniqueness (key) constraints are obtained in two ways. Firstly, from the 
unique representation of facts (relationships) (see also [6]). Secondly, the simple 
conceptual uniqueness constraints in figure 3 are translated as well. For uniqueness 
constraints the macro " ! - Key(C, {Ax,..., A „ } ) " is defined as follows: 

The notation Ai —>(-») Ri means that if Ai is scalar-valued, then —» is used, 
otherwise — I n our example the following F-logic uniqueness constraints are 

Mandatory constraints 

Since the population of fact types consists of total functions, it has to be en-
sured that if a class corresponds to a fact type, then each attribute of a mem-
ber of that class (fact object) carries some value. Again, a general macro 

!— X = Y X:C[Ax -K-») Rl.;-; An->(-») Rn] a 

generated: 

!— Key (Person, {P-id}) 
!— Key (Car, {reg jar-}) 
!— Key (PC,{pc.nr}) 
!— Key (Department, {name}) 
!- Key(Art.icle,{A-code}) 
!— Key(Compajiy, {C-Code}) 
!— Key (Cow.ship, {employee, project.}) 
!— Key(E7nployme7it, {employee}) 
!— Key (Supply, {supplier, article}) 

Key (Manager, {usesjcar}) 
Key (Car, {used-by}) 
Key (Project, {title}) 
Key (Building, {B-Code}) 
Key(Activity, {description}) 
Key (Pr _group ,{pr oj ects}) 
Key (DeptJoc, {dept}) 
Key(E7iiployme7it, {works-o'n,}) 
Key(Project-rel, {project}) 
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"!— Mandatory(C, {.4i,..., A „ } ) " is introduced to serve as a shorthand for the fol-
lowing: 

! - ( 3 y ) j q . 4 ! - K - » ) Y] X:C 

!— (3Y)X [ An -»(-») Y ] X : C 

In the case of our example the following mandatory constraints are necessary: 

!— Mar\datory(Coworkership, {employee,project,}) 
!— Mandatory(Z)epi Joe, {dept., building}) 
!— Mandatory(Supply, {supplier, article.}) 

Inverse constraints 

When two attributes are considered to be inverses of each other, inverse constraints 
have to be defined. According to the possible kinds of relationship types between 
two classes we introduce the following three macros: 

!— l n v e r s e l - l ( C i , Ai, C 2 , A2) c = f ! - Y : C 2 [ A 2 - > X ] A ' : C i [ A , - > Y ] 

!- Y-.CilA^X] X-.C2[A2^Y] 

!— l n v e r s e l - N ( C i , A 1 , C 2 , A 2 ) = f ! - Y-.C2[A2^X] X -.C^A^Y] 
!— Y:Ci[Ai-»X] X-.C2[A2-*Y] 

!— l n V e r s e M - N ( C j , . 4 i , C 2 , A 2 ) d = ! - Y : C 2 [ A 2 - » X ] X:C1[A1^»Y] 
!— Y :C\ [Aj 4 ) 1 ] X:C2[A-2^»Y] 

In our example fact type Car-usage has been incorporated in both classes ob-
tained for the two involved entity types, namely in classes Manager and Car, 
yielding one attribute in each being inverses of each other. Therefore, an inverse 
constraint is also required as follows: 

!— Inversel-l (Manager, uses Mar, Car, usedJby) 

Effects of specialisation and generalisation 

The population of subtypes (specialisation) is defined by subtype defining rule. 
This mechanism has to be translated into F-logic. In our example we have 
Manager Spec Person and Coworker Spec Per.son. Let $ Manager and lI'c<,worker 
denote the F-logic counterpart of the subtype defining rules for subtypes Manager 
and Coworker, respectively. Then we introduce the following two constraints: 

!— X : Manager <— X : Person A ^ Manager{X) 
!- X -.Coworker <— X: Person A i ' c owovker (X) 
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The subtype defining rules are: A person is a manager if he/she plays the role 
manages. A person is a coworker if he/she plays the role viorks.for. It has effect 
on the final result of the translation of fact types Management, and Coworker ship. 
In class Project.rel the result type Person is replaced with Manager: 

Project.rel [project => Project.] managers Manager; receives Supply ] 

In class Cmuorkership the result type Person is replaced with Coworker: 

Cow.ship [ employee Coworker, project => Project] duration =>• Integer ] 

In case of generalisation it has to be ensured that every instance in the popu-
lation of a generalised type belongs to the population of one of its specifiers. This 
can be expressed in terms of constraints on F-logic level. In our example we obtain: 

!— (X :Car V X:PC) X : Equipment. 

6.3 Inverse attributes and methods 
As said in section 5.9, a wide range of introducing inverse attributes with inverse 
constraints as well as methods with the definition of their behavior is possible. 
To illustrate these general mechanisms, now we introduce an additional inverse 
attribute and a method. Class Coworker is augmented with attribute involvedJ.n 
containing references to Coworker ship objects in which a given person is involved. 
The following additional object molecule, that can be unified with the existing one 
for class Coworker, and inverse constraint are defined: 

Coworker [ involvedjin Coworker ship ] 
!— Inversel-N(Coiuorker, involvedjin, Coiuorkership, employee) 

As an example of an access method, the method suppliers is introduced in 
class Project returning the companies that supply a given article for the project 
on which the method is invoked. The object molecule defining the signature of the 
method is the following: 

Project [ suppliers @ Article =$> Company ] 

The semantics of the method is given by means of the following F-logic rule: 

Y [suppliers @ W —» V ] <— X : Project.rel [project —receives — Z } A 
Z : Supply [ supplier —> V; article —> W ] 

7 About the implementation step 
The second step of the transformation (the implementation step, see figure 2) is 
the translation of intermediate models defined in terms of F-logic into a 0 0 final 
target, environment, e.g. SQL3 or ODMG-93. A sequence of DDL statements in the 
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corresponding database language has to be generated from F-logic specifications. 
Unlike in the design step, in the implementation step separate translations have 
to be defined for different target environments, where all the system specific de-
tails must be dealt with. This can be implemented by means of translation tables, 
containing all the system specific information (e.g. supported data types, corre-
spondece between F-logic "built-in" classes and system specific data types) needed 
for the generation of DDL statements. 

Since in the present paper the main focus is on the design step, we do not further-
elaborate on the implementation step. However, in the section below an example 
is given in terms of ODMG-93. 

7.1 Example in ODMG-93 
Next the F-logic schema in section 6 obtained for the PSM schema of figure 3 
is translated into ODMG-93. Beside class declarations (including the additional 
inverse attribute and method), uniqueness and inverse constraints are translated. 
Specifying other constraints is not supported directly in ODMG-93, therefore they 
are not considered here. For the syntax and semantics of ODMG-93 we refer to [9]. 

interface Person 
( extent Persons 

keys P_id ) : persistent 
{ attribute string PJd ; 

attribute string name ; ... } ; 

interface Manager : Person 
( extent Managers 

keys uses.car ) : persistent 
{ relationship List<Activity> daily .activities ; 

relationship Car used_car 
inverse Car:: used.by ; . . . } ; 

interface Coworker : Person 
( extent Coworkers ) : persistent 
{ attribute integer salary ; 

relationship Set<Coworkership> involved i n 
inverse Coworkership:: employee ; ... } ; 

interface Activity 
( extent Activities 

keys description ) : persistent 
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{ attribute string description ; ... } ; 

interface Project 
( extent Projects 

keys title ) : persistent 
{ attribute string title ; 

Set<Coiripany> suppliers( in Article art ) ; } ; 

interface Article 
( extent Articles 

keys A.code ) : persistent 
{ attribute string A_code ; ... } ; 

interface Company 
( extent Companies 

keys C.code ) : persistent 
{ attribute string C.code ; 

attribute string name ; 
attribute Set<string> teLnrs ; ... } ; 

interface Coworkership 
( extent Coworkerships 

keys (employee, project) ) : persistent 
{ attribute integer duration ; 

relationship Coworker employee 
inverse Coworker:: involvedJn ; 

relationship Project project ; } ; 

interface Supply 
( extent Supplies 

keys (supplier, article) ) : persistent 
{ relationship Company supplier ; 

relationship Article article ; } ; 

interface Project_rel 
( extent Project-rels 
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keys project -) : persistent 
{ relationship Project project ; 

relationship Set<Manager> managers ; 
relationship Set<Supply> receives ; } ; 

8 Conclusions and further research 

In this paper we dealt with the transformation of conceptual data models into 
database environments with object-oriented features, such as ODMG-93 and SQL3. 
In our approach this transformation is captured within the framework of a two 
level architecture. Conceptual models are first mapped to intermediate specifica-
tions (design step). Then the obtained intermediate specifications are translated 
into the database language of a given target database system (implementation 
step). For expressing conceptual models we used the object-role modelling tech-
nique PSM (Predicator Set Model), a formalized extension of NIAM. Intermediate 
specifications are expressed in terms of F-logic, a logic-based abstract specification 
language for object-oriented systems. The advantages of a two step tranformation 
mechanism have been discussed. 

Here we focused on the first step of the overall transformation. A number of 
alternatives for the transformation of conceptual structures have been presented, re-
sulting in a collection of design options. Such alternatives were discussed by means 
of illustrating figures. The mapping of information structures is often influenced 
by simple uniqueness constraints. Also, transforming structures often imply basic 
(e.g. key) integrity constraints in the target model to be generated. The treatment 
of these aspects has been incorporated. The transformation of a real life exam-
ple conceptual schema into F-logic has been worked out in detail. Moreover, the 
obtained F-logic specification has been partially translated into ODMG-93, thus 
illustrating the applicability of the transformation process in practice. 

For further research the most fundamental topic is the full formalization of the 
first (design) step of our transformation mechanism according to the formalisms 
of PSM and F-logic. Beside the mapping of information structures, the transfor-
mation of populations in a formal framework is also essential, since the semantics 
of an information structure is defined in terms of its possible populations. This is 
important, in order to prove the correctness of the transformation formally. The 
general treatment of conceptual constraints, that are parts of conceptual schemas, 
and their translation are to be addressed. Furthermore, issues concerning the sec-
ond (implementation) step of the overall transformation have to be worked out in 
more detail. Our present paper has set up the framework and provides the basis 
for a general automated transformation mechanism that covers all the aspects just 
desrcibed. 
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CD Grammar Systems and Trajectories* 

Alexandra Mateescu^ 

Abstract 

In this paper we consider constraints, as a new research area for cooperat-
ing distributed (CD) grammar systems. Constraints are based on the notion 
of a trajectory. The flexible approach provides a framework to study some 
interesting properties of a CD grammar system like fairness or parallelization 
of languages. The use: of teams in the derivations of words is also considered. 

1 Introduction 
The cooperating distributed (CD) grammar systems were introduced in [2] with 
motivations from Artificial Intelligence (the so-called blackboard model in problem 
solving, [22]). For more details see the monograph [3]. 

Such a system consists of several ordinary grammars working by turns on the 
same sentential form; at each moment, one component is active, the others are 
waiting. Natural variants are systems in which more components (a team) are 
active at the same time. Teams can be with prescribed number of elements, non-
deterministically chosen. The notion was introduced in [8]. 

In this paper we consider constraints that involve the general strategy to switch 
from one component (team) to another component (team). 

Usually, the operation is modelled by the shuffle operation or restrictions of this 
operation, such as literal shuffle, insertion, etc. 

Syntactic constraints, we consider here, are based on the notion of a trajectory, 
introduced in [16]. Roughly speaking, a trajectory is a segment of a line in the 
plane, starting in the origin of axes and continuing parallel with the axis Ox or Oy. 
The line can change its direction only in points of non-negative integer coordinates. 

A trajectory defines how to skip from a component (team) to another component 
(team) during the derivation operation. 

Languages consisting of trajectories are a special case of picture languages in-
troduced in [20]. 

*The work reported here has been supported by the Academy of Finland, Project 137358. 
Presented at the workshop Grammar Systems: Recent Results and Perspectives, July 26-27, 
1996, Budapest. 

tDepartment, of Mathematics, University of Bucharest, Romania and Department of Mathe-
matics, University of Turku, Finland 
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2 Basic definitions 
The reader is referred to [25] for basic elements of formal language theory and to 
[3] for détails about grammar systems. 

For an alphabet £ , we denote by £* the free monoid generated by £ under the 
operation of concatenation; A is the empty string and \x\ is the length of x g £*. 
If a £ £ and w € £*, then \w\a denotes the number of occurrences of the symbol a 
in w. 

The anti-catenation operation, denoted by is defined as: u°v = vu, for any 
u,v£T,*. 

•A generalized sequential machine (GSM) is a 6-tuple M = (Q, £ , A, S, qo, F), 
where Q is a finite set of states, £ is the input alphabet, A is the output alphabet, 
qo £ Q is the initial state, F C Q is the set of final states, and <5 is the transition 
function, i.e., a function from Q x £ to finite subsets of Q x A*. Let u = uiu> • • • un 

be a word from £*, where Ui € £ , 1 < i < n. The set of all output words of u by 
M, denoted M(u), is: 

M(u) = {w | w = w\w-2 ... ivn, where Wi G ¿ ( f t - i , Ui), 1 < i < n, 

and ô(qn-i,un) G F}. 

If L C £* is a language, then: 

M(L) = (J M(u). 
uEL 

For more informations about GSM, the reader is referred to [24]. 
A CD grammar system (of degree n,n > 1) is a construct 

T = (N,I:,P1,P2,...,P11,S), 

where N is a (nonterminal) alphabet, £ is a (terminal) alphabet disjoint from N, 
S £ N and Pi are finite sets of context-free rules over TV U £ , 1 < % < n. 

For a given Pi, the direct derivation is defined in the usual way; we 
denote by >=^pi\ a derivation in Pt consisting of exactly 
k steps, at most k, at least k steps, k > 1, of any number of steps and as long as 
possible, respectively (x ^^^ y means that x y and there is no z such that 
V = > p , - z ) -

For / e {*,£} U { < k,= k,> k | k > 1} we denote by Lf (T) the language 
generated by T in the / mode, that is 

Lf(T) = {x G £* | S =>fPii X! ... =>fp.m= x 

1 < ij < n, 1 < j < w, TO > 1} 

and by CD(f) the family of such languages. (Note that we do not distinguish here 
between systems with A-free and with arbitrary components.) 
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Given a grammar system T = (TV, £ , P i , . . . , Pn, w) with components N. £, Pi, 
... ,Pn as above but with a string axiom w £ (N U £)* instead of a symbol S £ N, 
and given a natural number s > 1, a subset Q = {P^,... ,Pit} of {Pi,... ,P„ } is 
called an .s-t,eam. For such an s-team Q and for x,y £ (N U £)*, we write 

x =>Q y iff x = X1A1X2 •. • ASXS+1, y = Xi2/1X2 •. • ysxs+i, 
Xj 6 (TV U £)*, l<j<s+l,Aj-> y, € Pi,, 1 < j < s. 

Then the relations A; > 1, can be defined as 
above, with the clarification that in the t case the derivation is correct when no 
more rules of any of the team components can be used. 

In the sequel we recall some operations from formal languages that simulate the 
parallel composition of words. 

The shuffle operation, denoted by LU, is defined recursively by: 

auLLibv — a(uLU?w) U b(au\JJv), 

and 
u L U A = A L L I ' u = { • « } , 

where u .v € £* and a ,b £ £ . 
The shuffle of two languages Li and L2 is: 

LiLUL-2 = (J ulllv. 

The literal shuffle, denoted by LU;, is defined as follows: 

i aibia2b2... anbnbn+i ... bm, if n < m, 
a\a,2 • • • anLU/»i(J2 • • • om = s , , , ... [ ai&ia2o2 • • • a m 6 m a m + i . . . an, if rn < n, 

where a,;, b.j £ £. 

(ïtLU(A) = (ALU iu) = {u} , 

where u £ £*. 

The balanced literal shuffle, denoted by LLÎ , is defined in the next way: 

, ( a,ibia2b2... anbn, if n = rn, at(i2 • • • anLUwi)i02 • • • om = < (ll ... , [ (/), if n ^ rn, 

where a,;, bj £ £. 
The insertion operation, see [7], denoted by <—, is defined as: 

u <— v = {u'vu" | u'u" = u,u ,u" £ £*}. 

All the above operations are extended in the usual way to operations with 
languages. 
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3 Trajectories and constraints 
In this section we introduce the notion of the trajectory and that of the shuffle 
on trajectories, and study their basic properties which are necessary in the sequel. 
The shuffle of two words has a natural geometrical interpretation related to latticial 
points in the plane (points with nonnegative integer coordinates) and with a certain • 
"walk" in the plane defined by each trajectory. 

Definition 3.1 Consider the alphabet V = {?', u}. We say that.r andu are versors 
in the plane: r stands for the right direction, whereas u stands for the up direction. 
A trajectory is an element t, t. 6 V*. 

• 
Definition 3.2 Let £ be an alphabet and let t be a trajectory, t. = t,xt-2 ... tn, where 
ti € V, 1 < i < n. Let a, 13 be two words over £, a = aia-2 • • .ap,f) = b\b2 ... b,,. 
where ai, bj € 1 < i < p and 1 < j < q. 

The shuffle of a with ¡3 on the trajectory t, denoted alUtP, is defined as follovis: 
if \a\ i1 14-- o r \P\ # 1*1«, t h e n aUJt/3 = 0, else 

a L U t p = cic-2 . . . Cp+g, where, if \txt2 ... i » - i | , - - k\ and \tit2 ... i ^ - i |« = k-2. 
then 

_ i a k l + i , if ti = 
Ct \bk2+i, if ti = u. 

a 
If T is a set of trajectories, the shuffle of a with (3 on the set T of trajectories, 
denoted aUUt(3, is: 

alUTP = (J aLUt/3. 
t£T 

The above operation is extended to languages over S, if L\,L2 C £*, then we 
define 

LI\AATL2 = ( J A\±LT(3-
a£LuP£L-2 

Example 3.1 Let a and [3 be the words a = aia2a^a4a^aeaTas, (3 = bibob^b^b^ 
and assume that t = r3u2r3ururu. The shuffle of a with (3 on the trajectory t is: 

alLitP = {aia2a36i62a4a5a6^3a7',4ii8^5}-

The result has the following geometrical interpretation (see Figure 1): the tra-
jectory t defines a line starting in the origin and continuing one unit to the right 
or up, depending of the definition of t. In our case, first there are three units right, 
then two units up, then three units right, etc. Assign a on the Ox axis and [3 
on the Oy axis of the plane. Observe that the trajectory ends in the point with 
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coordinates (8, 5) (denoted by E in Figure 1) that is exactly the upper right corner 
of the rectangle defined by a and ¡3, i.e., the rectangle OAEB in Figure 1. Hence, 
the result of the shuffle of a with ¡3 on the trajectory t is nonempty. The result 
can be read following the line defined by the trajectory t: that is, when being in a 
lattice point of the trajectory, with the trajectory going right, one should pick up 
the corresponding letter from a., otherwise, if the trajectory is going up, then one 
should add to the result the corresponding letter from /3. Hence, the trajectory t 
defines a line in the rectangle OAEB, on which one has "to walk" starting from 
the corner O, the origin, and ending in the corner E, the exit point. In each lattice 
point one has to follow one of the versors r or u, according to the definition of t. 

Assume now that t' is another trajectory, say: 

In Figure 1, the trajectory t! is depicted by a much bolder line than the trajectory 
t. Observe that: 

Consider the set of trajectories, T = {t,t'}. The shuffle of a with /3 on the set T 
of trajectories is: 

aLUx/i = {aiaiazbib-iCiiaaaebsaibiasbs, biaia,2a^a4arJ>2b^b4aQb^aja,s}. 

t! = ur5u3rur2. 

11 

E 
B 

t 

t' 

a,i a,2 «3 ß4 a5 a,ß a7 og A x 

Figure 1 
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Remark 3.1 One can easily observe that the follovring known operations for the 
parallel composition of words are particular cases of the operation of shuffle on 
trajectories. 

1. Let T be the set T = {r,u}*. Then for the shuffle operation LU, LUT = LU. 

Assume that T = (ru)*(r* Uu*). Note that in this case LUt = LLI;, the literal 
shuffle. 

3. Consider T = (ru)*. Then LUt = LUt;, where LU^ is the balanced literal 
•shuffle. 

4. Define T = r*u*r* and note that LUx =•<—, where <— refers to the the 
insertion operation. 

5. Assume that T = r*u*. It follows that LUy = where • is the catenation 
operation. 

6. Consider T = u*r* and observe that LUy =°, 'where ° denotes the anti-
catenation operation. 

• 

The following two theorems are representation results for the languages of the 
form LILUTL-2- We omit their rather straightforward proofs. 

Theorem 3.1 For all languages L\ and L2, L\,L2 C E*; and for all sets T of 
trajectories, there exist a gsm M and two letter-to-letter morphisms g and h such 
that 

LILUTL-2 = M(/i(L1 )LU.g(L2 )L±JT). 

Our next theorem is a variant of Theorem 3.1. 

Theorem 3.2 For all languages Li and L2, L\,L> C £* ; and for all sets T of 
trajectories, there exist a morphism ip and two letter-to-letter morphisms g and li; 

g : E —> EJ" and h : E — E j where £ i and £2 are two copies of E, and a regular 
language B.: such that 

L ! L U T L 2 = < / > ( ( / i ( L i ) L U < 7 ( Z , 2 ) L ± J T ) n B.). 



CD Grammal• Systems and Trajectories 147 

4 Constraints and CD grammar systems 
Now we consider only CD grammar systems with two components. Moreover, we 
assume that the rules of each component have distinct labels. The case of CD 
grammar systems with more than two components can be easily obtained as a 
generalization. 

Let T = (N, £, S, Pi, P2) be a CD grammar system with two components and 
let T C {r, u}* be a set of trajectories. The constraint language generated by V is 
the set of all words w € E* such that w can be generated by T following a trajectory 
from T, i.e. the components Pi and P2 are used according to a trajectory t £ T. 
Whenever r does occur in t the component P\ is used, otherwise, if u does occur 
in t, then the component P2 is used. 

Additionaly, one may consider constraint languages associated to each compo-
nent. These languages are shuffled on the set T of trajectories. 

Example 4.1 Let T = (N, H,S,Pi,P2) be the followmg CD grammar system: N = 
E = {a,&,c}, 

Pi = {Pi • S —> aS, p-2 : X —> cX, p3 :X —> A} 

P2 = {qi : 5 —• bS, q2 : S —> X}. 

The constraint language associated to the component Pi is Li = {piP2pz \ n >1} 
and the constraint language associated to the component P2 is L2 = {q]lq2 | n >1}. 
The set of trajectories is T = {rnun+1rn+1 | n > 1}. The constraint language 
associated to the CD grammar system T is 

LlLUTL2 = {p?q?q2P$P3 I n > 1}. 

One can easily verify that the language generated by the CD grammar system T 
viith the above constraints is: 

L{r) = {anbncn | n > 1}. 

• 
. Note that the language generated is non-context-free, but also the set T of 

trajectories is a non-context-free language. However we will see in the next section 
that this language can be generated also using only context-free constraints. 

5 Regular and context-free trajectories 
It is well known that the shuffle of two regular languages is a regular language. 
Moreover, given two finite automata AI and A2 one can effectively find a finite 
automaton A such that L(A) = L(AI)\AAL(A2). 

The following theorem provides a characterization of those sets of trajectories 
T for which LI\JJTL2 is a regular language, whenever L\, L2 are regular languages. 
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Theorem 5.1 LetT be a set of trajectories, T C {r, u\*. The following assertions 
are equivalent: 

(i) for all regular languages L\. Lo, L\\JJTL2 is a regular language. 

(ii) T is a regular language. 

Proof. (i) => (ii) Assume that L\ = r* and L2 = u* and note that L\UJTL2 = 
T. It follows that T is a regular language. 

(ii) => (i) Assume that T is a regular language. Consider two regular languages 
LY, L>. Without loss of generality, we may assume that L\ and L2 are over the 
same alphabet E. Let AI = (QI,E,SI,QQ,FI) be a finite deterministic automaton 
such that L(Ai) = Li, i = 1,2. Also, let AT = (QT, {?'•,"}, ST,QO >FT) be a finite 
deterministic automaton such that L(AT) = T. 

We define a finite nondeterministic automaton A = (Q, E, <5, Qo, F) such that 
L(A) = Li UATLI • Informally, A, on an input w 6 E*, simulates nondeterminis-
tically Ai or A2 and from time to time changes the simulation from Ax to A2 or 
from A2 to Ai. Each change determines a transition in AT as follows: a change 
from Ai to A2 is interpreted as u and a change from A2 to Ai is interpreted as r. 
The input w is accepted by A iff A\, A2 and AT accept. 

Formally, Q = Ch x QT x Q2, Q0 = {(q^,q^,q'i)}, F = F, x FT x F2. The 
definition of 6 is: 

S((qi,d,q2),a) = {(S1(q1,a),ST(d,r),q2), (qllST(d,u),ih(q2,a))}, 

where, qx e Qi,d£ QT, q2 G Q-2,ae E. 
One can easily verify that ¿(^4) = LIUJTL2 and hence L\UJTL2 is a regular 

language. 
• 

Next theorem gives a similar result as Theorem 5.1, but for context-free sets of 
trajectories. 

Theorem 5.2 LetT be a set of trajectories, T C {7', u}*. The following assertions 
are equivalent: 

(i) for all regular languages L\ , L2, LX\1ATL2 is a context-free language. 

(ii) T is a context-free language. 

Proof, (i) (ii) Assume that L\ = r* and L> = u* and note that L\UJtL->. 
/ Therefore T is a context-free language. 

(ii) => (-¿) Assume that T is a context-free language. Consider two regular lan-
guages L]. L2. Without loss of generality, we may assume that L\ and L> are over 
the same alphabet E. Let Ai = (Qi, £ , Si, q^, Fi) be a finite deterministic automa-
ton such that L(Ai) - Lui = 1,2. Also, let PT = (QT, T t , {r, -1/,}, &r, , Zr, FT) 
be a pushdown automaton such that L(PT) = T. 
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We define a pushdown automaton P = (Q, T, £, <5, Qo, Z, F) such that L(P) — 
L\\JJtL-2• Informally, P, behaves as the automaton A from the proof of The-
orem 5.1, except that on the second component of the states, P simulates the 
pushdown automaton Pp. That is, on an input w G £*, P simulates nondetermin-
istically Ai or A-2 and from time to time changes the simulation from Ai to A2 or 
from A-2 to Ai. Each change determines a transition in Pt as follows: a change 
from Ai to A2 is interpreted as u and a change from A2 to Ai is interpreted as r. 
The input w is accepted by P iff Ai, A2 and Pt accept. 

Formally, Q = Qx x QT x Q2, Q0 = {(q^, , <$)}, F = x FT x F2, T = r T , 
Z = Zr. The definition of <5 is: 

<5((9i > d, q2), a, X ) = U ( S ] a ) 6 5 T ( r f i I v Y ) ( ( < 5 i (qi, a),s, q2), a ) U 

,a>)e5Tld,u,x)((qi,s',82{q2,a),a')} 

where, qi G Qi, d € QT, 9a € Q2, a e E, X e T, a G F*. 
Additionally, 

fi((qi,d,q2),k,X) = U(Sta)efiT(d,\,X)((qi,-'>,<l2),a!.) 

.where, qy G Qi, d G QT, q2 € Q2, X G T, a G T*. 
One can verify that L(P) = ZaLUrZ^ a n d hence L\IL\tL2 is a context-free 

language. • 

Theorem 5.3 Let T be a set of trajectories, T C {r,ti,}* such that T is a regular 
language. 

(i) If Li is a context-free language and if L2 is a regular language, then L^\AJtL2 
is a context-free language. 

(ii) If L\ is a regular language arid if L2 is a context-free language, then LiUJj'L2 
is a context-free language. 

Proof. The proof is similar with the proof of Theorem 5.2. For the case (i) the 
pushdown automaton is simulated 011 the first component of the states, whereas for 
the case (ii) the pushdown automaton is simulated 011 the third component of the 
states. • 
Alternative proofs for Theorems 5.1 - 5.3 can be obtained using Theorem 3.1 or 
Theorem. 3.2. 

From Theorems 5.1 - 5.3 we obtain the following corollary: 

Corollary 5.1 Let L\, X2 and T, T C {r, it}* be three languages. 
(i) if all three languages are regular languages, then Lil_Ux£2 is a regular lan-

guage. 

(ii) if two languages are regular languages and the third one is a context-free, 
language, then LiLUtZ/2 is a context-free language. 
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6 Fairness 
Fairness is a property of the parallel composition of processes that, roughly speak-
ing, says that each action of a process is performed with not too much delay with 
respect to performing actions from another process. That is, the parallel composi-
tion is "fair" with both processes that are performed. 

Definition 6.1 Let T C {r,u}* be a set of trajectories and let n be an integer, 
n >1. T has the n-faimess property iff for all t E T and for all t! such that • 
t = t't." for• some t" £ {r, u}*, it follows that: 

\\t'\r-\t'\u\<n. 

• 

This means that all trajectories from T are contained in the region of the plane 
bounded by the line y = x — n and the line y = x + n, see Figure 2, for n = 4. 

Example 6.1 The balanced literal shuffle (tlJ¡,) has the n-fairness property for- all 
n, n > 1. 

The follovnng operations: shuffle (UJ), catenation (•), insertion (<—) do not 
have the n-fairness property for any n, n > 1. 

For instance, note that the catenation means shuffle on the set, T of trajectories, 
•where (sec also Remark 3.1, 5.): 

T = r*u* = { r V | i,j > 0}. 

Therefore, 

{| It'\r - |i'U II t't" e T for some t"} = {| » - j || i,j > 0}. 

Because the values | i — j |, where i,j > 0, cannot be bounded by any fixed, constant 
n, n > 1, it follows that the catenation is not n-fair for any n > 1. 

A similar argument is valid to prove that shuffle and insertion operations do 
not have the n-fairness property for any n, n > 1. 

Definition 6.2 Let n be a fixed number, n > 1. Define the language Fn by: 

Fn = {te V*\ | |£'|,. - |i'|u |< n, for all t' such that, t. = t't", t," £ V*\. 

• 

Remark 6.1 Note that a set T of trajectories has the n-fairness property if and 
only if T C Fn. 

• 
We omit the straightforward proof of the following statement. 
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Proposition 6.1 For every n, n > 1, the language Fn is a regular language. 

Corollary 6.1 Let T be a set of trajectories. If T is a context-free or a simple 
matrix language and n is a fixed number, n > 1, then it is decidable whether or not 
T has the n-fairness property. 

Proof. It is easy to observe that for the above families of languages the problem 
if a language from a family is contained in a regular language is a decidable problem. 
Hence, from Proposition 6.1, this corollary follows. • 

/ - r / 
/ / / 

/ / / / 
/ / 

/ / 
/ 

/ 
/ 

1 / 
01 4 

Figure 2 

Comment. For a context-free language T C V* it is decidable whether or not 
there exists a non-negative integer n, such that T has the n-fairness property, see 
[19]. However, in general it is an open problem for what families C of languages it 
is decidable this problem. 

Now we use the fairness concept in connection with CD grammar systems. Let 
r be a CD grammar system, 

r = {N,X,P1,P2,...,Pm,S). 

Assume that the components of T are labelled, such that Pt has the label e,;, 
1 < i < m. Let E be the set of labels, E = {ex, e2, • • •, e,uj. 

In order to extend the notion of fairness for the general case of CD grammar 
systems with m components, m > 2, firstly we define the notion of a m-trajectory. 
A m-trajectory is an element t £ E*, i.e., a word over the m letters alphabet 
{ei,e-2,.. - ,em}. 
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Definition 6.3 Let T C E* be a set of m-trajectories and let n be an integer, 
n > 1. T has the n-fairness property iff for all t £ T and for all t! such that 
t = ft." for some t." £ E*, it follows that: 

l l f 'k - l t ' l e , \<n, 

for all 1 < i, j < m. 
A CD grammar T has the n-fairness property iff for all terminal derivations 

S = > e i , Wi =>ei2 W-2 = > e i 3 • • • = > e i f c U>k 

the corresponding trajectory e^e^ .. .eik has the n-fairness property. 
A language L is n-fair, n > 1, iff there exists a CD grammar system F with the 

n-fairness property such that L(T) = L. 

• 
Theorem 6.1 If a language L can be generated by a CD grammar system F such 
that r has the n-fairness property for some n > 1, then L can be generated by a 
CD grammar system T' in the < k mode of derivation. 

The converse is not true. 

Proof. Observe that for k = n the CD grammar system T has the property that 
L<k{r) = L. Hence, one can simply define the CD grammar system T' as being T. 

The converse is not true since a CD grammar system F can generate terminal 
strings in the < k mode, just by alternating two of its components and without, 
using the other components. Thus, such a derivation is not n-fair for any n. q 

Theorem 6.2 There exists a non-context-free and semilinear language L such that: 
(i) L can be generated by a CD grammar systern in the t mode of derivation. 
(ii) L cannot be generated by any n-fair CD grammar system for any n > 1. 

Proof. (i) Let L be the following non-context-free and semilinear language: 

L = {aibic> | 1 < i < j}. 

Let r be the following CD grammar system: 

r = (N,Z,Pl,P2,P3,P4,S), 

where: N = \S, X, X', Y, Y',Y",Z), S = {a ,6 ,c } , and the components: 

Pi = { 5 -—> XY, S —> X'Y',S —> X'Y"}, 

P, = {X —» aX'b,Y —> cY',Y —> cY"}, 

p., = { X ' — a X b , Y' —> cY, Y" —^ cZ}, 

P4 = {X' —> ab,Y" —> c, Y" —> cY"}. 
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One can easily verify that Lt{T) = L. 
(?//) In order to prove this statement, assume by contrary that L can be generated 

by a CD grammar system F that has the n-fairness property for some n > 1. 
Clearly, T must have a component, say a, that increases the number of occur-

rences of the symbol a at least by one. Similarly, F should have a component, say 
7, that increase the number of occurrences of the symbol c by.s. Assume that s is 
the maximum of the number of c symbols that can be produced by a component 
when it is applied only once. 

Since the CD grammar system T is n-fair for some fixed n > 1, it follows that 
after each v, consecutive steps in a derivation the number of occurrences of the 
symbol a is increased with at least 1 and the number of occurrences of the symbol 
c with at most, (n — l)s. 

Therefore, if a terminal derivation has length p, where p = nq + r, such that 
0 < r < n, then the derived word has at least q occurrences of the symbol a and at, 
most q(n — l).s + rs occurrences of the symbol c. 

Assume that this derivation produces the terminal word w = alblc?. Note that, 
q < i and that j < q(n — l )s + rs < q(n — l )s + ns. Therefore j < i(n — l).s + v,s. 
Note that n and s are fixed constants. 

It follows that the CD grammar system F cannot generate words cftfc1 with 
j > i(n — 1)« + ns. This contradicts our assumption that L(F) = L. j-j 

C o m m e n t . The above theorem is similar with another, well-known result from 
the theory of CD grammar-systems, see [3]. The derivation mode = k gives also 
some idea of fairness. However, it is known that, the language 

L = {a2" | n > 1} 

can be generated by a CD grammar system in the t mode, but L cannot be generated 
by any CD grammar system in the mode = k. 

Theorem 6.2 provides an example of a language that can be generated by a CD 
grammar system in mode t, but it cannot be generated by any 7),-fair CD grammar 
system for any n > 1. 

7 Parallelization of CD grammar systems 
In the following we shall deal with parallelization of languages using shuffle on 
trajectories. 

The parallelization of a problem consists in decomposing the problem in subprob-
lems, such that, each subproblem can be solved by a processor, i.e., the subproblems 
are solved in parallel and, finally, the partial results are collected and assembled 
in the answer of the initial problem by a processor. Solving problems in this way 
increases the time efficiency. It is known that not every problem can be parallelized. 
Also, no general methods are known for the parallelization of problems. 

Here we formulate the problem in terms of languages and shuffle on trajectories, 
and present some examples. 
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The parallelization of a. language L consists in finding languages L\, L> and T, 
T C V*. such that L = L\[AJyL2 and moreover, the complexity of L\, L> and T 
is in some sense smaller than the complexity of L. In the sequel the complexity 
of a language L refers to the Chomsky class of L, i.e., regular languages are less 
complex than context-free languages that are less complex than context-sensitive 
languages. 

One can easily see that every language L, L C {a, b}* can be written as L = 
a*\JJrb* for some set T of trajectories. However, this is not a parallelization of L 
since the complexity of T is the same with the complexity of L. 

In view of Corollary 5.1 there are non-context-free languages L such that L = 
L 1 LU T i 2 for some context-free languages L\, L2 and T. Moreover, one of those 
three languages can be even a regular language. Note that this is a parallelization 
of L. 

As a first example we consider the non-context-free language L C {a,,b.c}*, 
L = {w || w |„=| w |b=| w |c}. 

Consider the languages: Li .C {a, b}*, L\ — {u || u |n=| u L2 = <•* and 
T = {t || t | r= 2 | t |„}. 

One can easily verify that L = Li\JJtL2. Moreover, note that Ll and T are 
context-free languages, whereas L2 is a regular language. Hence this is a paral-
lelization of L. As a consequence of Corollary 5.1 one cannot expect a significant 
improvement of this result, for instance to have only one context-free language and 
two regular languages in the decomposition of L. 

Now we consider the case of CD grammar systems. Next example shows how 
one can define context-free constraints to generate a non-context-free language. 

Example 7.1 Let F = (N,11, S, Pi, P2) be the following CD grammar system,: 
N={S},Z = {a,b,c}, 

Pl = { p i : S —)• aS, p2 : S —> bS} 

P2 = {<7i : S —> cS, q2 : S — ) A}. 

The constraint language associated to the component Pi is Li = {p'ip2 \ n > 1} 
and. the constraint language associated to the component P2 is L2 = {q[lq2 \ n >1}. 
The set of trajectories is T = {7-2™u,!'+1 | n > ij.. The constraint language associ-
ated to the CD grammar system r is 

LillJTL2 = {pllp?q?q2 \n > 1}. 

One can easily verify that the language generated by the CD grammar system T 
with the above constraints is: 

L(T) = {anbnc11 | 7), > 1}. 

• 

Each set, T of trajectories from the above examples concerning CD grammar 
systems does not have the fairness property. However it is not known if the language 
L = \anbncn | n > 1} can be generated by a CD grammar system using constraints 
with the fairness property. 
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8 Conclusions 
We considered the notion of trajectory in connection with CD grammar systems. 
The use of trajectories in the theory of CD grammar systems offers some new pos-
sibilities to investigate this area. The concept of fairness can be introduced at the 
level of the components of a CD grammar system, at the level of the productions 
of a CD grammar system or at the level of the teams used in the derivations of a 
CD grammar system. For the case of teams, one should put, labels to all possible 
teams and consider as valid only those derivations that follow trajectories from a 
certain, fixed set of trajectories. Mixed fairness constraints are also possible. For 
a given CD grammar system, the valid derivations can be defined as being those 
derivations that satisfy a certain fairness constraint at the level of components and 
another fairness constraint at the level of productions, etc. Therefore, this frame-
work offers a great flexibility in modelling the fairness phenomenon with respect to 
CD grammar systems. 

Fairness is a natural property of a CD grammar system and it leads to new 
interesting properties. For instance, it is not known the generative power of the 
CD grammar systems that use constraints with the fairness property. 

There are different natural variants of the fairness property. The fairness prop-
erty can be considered also with respect to only a part (a fixed subset) of the 
components (or of productions or teams) of a CD grammar system. 

The fairness property can be relaxed or modified in other, different, ways. For 
instance one can consider the restriction that there exists a fixed u > 1 such that 
in any terminal derivation, in any n consecutive steps of it, each component does 
occur at, least, once, but it does not occur more than k times, where k is a fixed 
number. 

The interrelations between the fairness property and the generative modes t, 
= k, < k and * are subjected for further research. 

A more general approach, based on geometric considerations, can be considered. 
Assume that we fix two regions A and B in a many dimensional space (the number 
of dimensions is equal with the number of versors that encode the trajectories). 
The regions A and B are not necessarily disjoint. A derivation is considered valid 
iff the associated trajectory is contained in the region A but it, avoids the region B. 
Note that this approach is an extensions of the notion of fairness depicted in Figure 
2. There the region A is the band of the plane bounded by the lines y = x 4- 4 and 
y = x — 4 whereas the region B is empty or any region outside of A. 

The idea behind this considerations is also the existence of non-critical sections 
(devices) described by the region A and of critical sections (devices) described by 
the region B. 

Another important problem is the problem of parallelization of languages, i.e., to 
express a language as the shuffle of two (or more) other languages over a certain set 
(or sets) of trajectories. The possibility of decomposing a language as the parallel 
composition of other, less complex, languages is of theoretical but, especially of 
practical interest. This problem leads to the possibility to perform the parsing 
operation or other operations, by a parallel machine. 
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It is an open problem to decide for a given language L (L defined using a CD 
grammar system) whether or not there exist two languages L\ and L> and a set T 
of trajectories, such that L = L i U J t ^ -

The problem of parallelization of languages opens new connections between CD 
grammar systems and the theory of parallel computation. 
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On Hybrid Connectionist-Symbolic Models * 

Petr Sosik tt 

Abstract 
There are many similarities between grammar systems and artificial neural 

networks: parallelism, independently working elements (grammars/neurons), 
communication of the elements, absence of centralized control. On the other 
hand, there are crucial differences between symbolic and quantitative data 
processing. 

We will try to give a brief overview of the methods of "building bridges" 
between symbolic and connectionist paradigm and to propose some recent 
results. After that, we will touch some essential problems, concerning in-
corporation of accepting/generating grammar systems and neural network 
models. 

Keywords: grammar system, artificial neural network, Unite automaton, 
grammatical inference. 

1 Introduction 
First let's recall some characteristics of the constructions we intend to deal with, 
emphasizing their aspects important for the following discussion. This is not to 
replace broad and exact descriptions in the basic literature referred to. 

Moreover, we restrict our attention to rather theoretical aspects of interactions 
of neural nets and grammars/grammar systems in hybrid models. For a broader 
discussion of linking symbolic and subsymbolic systems we refer e.g. to [38]. 

Speaking about some types of distributed systems, we will use the term "agent" 
for some simple, but subsystem, interacting with the environment (including other 
agents) [14]. In terms of grammar systems the agent represents usually a grammar 
(Chomsky, Lindenmayer or other type [27]), in terms of neural network it represents 
one neuron or a small group of them. 

Let's keep in mind that the artificial neural networks are (not only) biologically 
motivated, so that each model is looked at as a mathematical machine, possibly 
physically implementable. That's why this "implementing" point of view will be 
emphasized in the following paragraphs. 
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1.1 Automata 

A formal automaton is an accepting device, which is primarily intended to classify 
strings as accepted, or rejected. Its input string (over a finite alphabet) is accessed 
sequentially. At each step the automaton reads one symbol of the string (and 
eventually performs some other actions), at the next step it can read the neighboring 
symbol only. Generally it needs a read/write memory of an unlimited size, but in 
the most cases of interest in this paper (languages within the context-sensitive 
class), the amount of memory actually needed can be limited to the length of the 
processed string. For basic description of formal automata and grammars we refer-
to [19], [39]. 

1.2 Grammars 

A formal grammar is a form of syntactical description of some formal language. 
The most important component is a set of rewriting r ules (over some finite alpha-
bet). We can interpret it as a generating device, at each step applying some of its 
rules to a processed sentential form. Due to the fact, that such a device must be 
eventually able to produce any string of its (often infinite) language, it is mostly 
nondeterministic (which concern the selection of a rule and a position within the 
processed string where it is applied). An implementation of a grammar would re-
quire an unlimited size memory for reading/writing the string just generated. The 
memory must allow in principle random access, i.e. at each step any symbol(s) of 
the string generated can be processed. Some types of grammars can be transformed 
to a normal form suffering with sequential access. Moreover, the memory must be 
able to insert new symbols into a processed string. 

1.3 Neural networks 
An artificial neural network (ANN) is a finite set of interconnected autonomous 
agents - neurons. There exist also models of infinite size, but they are rather 
special [37]. Typically all neurons in the network compute the same function (1), 
where Xj are the inputs, the yi is the output of i-th neuron in the network, 0i is the 
threshold function, see Fig.l. Constants w^ are called weights of the inputs. For a 
more detailed description we refer to [18], [34]. 

The input of ANN is some ?i-tuple and the output some m-tuple of real-valued 
signals. There is no relation between n and m. The neurons are often grouped to 
layers, each layer being connected by its inputs to its lower and by its outputs to its 
upper neighbor. Then the topmost layer is called the output layer, connecting its 
outputs to the outer environment, the most bottom one with its inputs incoming 
from the environmen is the input layer and the others are the Indde-n. ones. Within 

N 

(1) 
3 = 1 
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Figure 1: The basic model of neuron and the common types of threshold function. 

one-layer networks, the same categorization can be applied to single neurons. There 
are also intra-layer or bidirectional connections in some models. 

The topology of the network (with respect to the paths of passing signals) can 
be feedforward or feedback. In the later case, the existence of the feedback loops 
can lead to the complex dynamical behavior of the network. 

There is a pre-defined communication graph of the neurons. It can evolve during 
a training process (some new connections can appear, some old ones can vanish, 
existing ones can change their strength), but generally these changes are much 
slower than the normal flow of information (signal levels) through the network. 

Thus we distinguish between the learning mode of the network when the weights 
(and sometimes other parameters or even topology) change, and the recall mode, 
when only signal level changes. There is a lot of learning (training) algorithms, 
various heuristics, which we will not discuss here in general, although it is just, the 
training algorithm, what mostly influences the network behavior. 

From another point of view, it is possible to use ANNs with a certain set, of 
threshold functions for approximating any real function with arbitrary small error 
[23], [30], but this approach is far from symbolic information processing we intend 
to deal with. 

In the most of the known models all the neurons operate in parallel (except, 
for instance, Hopfield network with asynchronous mode) and there is no centralized 
control of the network activity; the neuron's behavior is influenced by its neighbours 
only. Neurons can operate in both continuous and discrete time, in the latter case 
often with a common clock. 
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1.4 Grammar systems 
A grammar system usually consists of some set of (relatively autonomous) com-
ponents (grammars, agents), performing some operations with a processed string. 
The notion, originally, was introduced for modelling syntactic properties of multi-
agent, systems (for details see [6] and [9]), but many variants of grammars (rewriting 
systems) with regulation and/or modularization can be considered as grammar sys-
tems, too (confer to [31], [8]). Here we only emphasize some special capabilities of 
grammar systems, different from those of single grammars. 

• Parallelism: while grammars with parallel derivation are rather special, some 
of basic grammar system models are inherently parallel, e.g. Lindenmayer 
systems (although they are rather a kind of parallel grammar than a grammar 
system [27]), parallel communicating grammar systems (PCGS), . . . . 

• In the case of these parallel grammar systems, a memory for storing the 
processed string must allow multiple agents to access different parts of the 
string at the same time. 

• In some models (Lindenmayer systems [31], colonies with terminal mode of 
rewriting [21], . . . ) there is a virtually unlimited potential of rewriting rules 
(each rule must be simultaneously at arbitrary number of symbols in gener-
ated string). 

• There are various forms of communication between agents; the simplest form 
is probably synchronization. A communication graph of agents can be prede-
fined (e.g. colonies, eco-grammar systems [5]) or dynamically defined during 
the work of the system (e.g. PCGS). 

Especially the requirements for the dynamic communication graph, the unlim-
ited potential of rules, but also for the parallel memory capable of inserting symbols 
can be a source of implementational difficulties [24]. Among physically existing sys-
tems, most close to these requirements seem to be those with a great number of 
elements moving freely (immune system [29], splicing systems [12], . . . ) . 

Accepting grammar systems have also been defined [10], [11], relaxing some 
of these requirements (from the implementation point of view) of the generating 
systems: the degree of nondeterminism (however its definition could be problematic 
[10]) is often lower, there is no necessity of inserting new symbols into the processed 
string if we do not admit A-rules. 

2 A motivation for hybrid models 

2.1 Goals and expectations 
Both grammar and neural systems, representing symbolic and quantitative data, 
manipulation, are inspired (partially) from the areas of AI and AL. Indeed in bio-
logical systems we can find connection of both approaches. For example: specific 
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immunity could well be viewed as a competition between grammars, generating 
polysaccharide strings covering the antigen; and lymphocyte automata attempting 
to recognize them. And this competition causes adaptation of both of these systems 
[29]. ' • . 

Among the advantages of ANNs the most important are adaptability, generali-
zability, massive parallelism, noise tolerance and graceful degradation (robustness). 
Main disadvantages are difficult understanding and explanation of the results and 
time-consuming learning. The symbol processing systems have their strength in 
easy manipulation with symbolic and rule knowledge and wide base of theoretical 
results, their weaknesses dwell in sensitivity to noise and difficult, often almost 
impossible adaptation to a novel data. As the disadvantages of one type systems 
are balanced by the advantages of second type ones, the hybrid architectures seem 
to be a very promising way [4]. Another advantage of hybrid architectures can 
be their scalability. Finally, some authors find them crucial to understanding and 
constructing cognitive models [17]. 

2.2 Some basic ideas 
The first, step of a neural symbolic processing is to find a. proper coding of symbols. 
In animal nerves all signals are of the same amplitude and stimuli intensity is 
expressed by their frequency [25]. Moreover, coding via the signal intensity leads 
to loss of robustness due to the necessity of distinguishing between close signal 
levels. Symbols are coded most often by a group of parallel stimuli, each with 
clearly distinguishable intensity levels (typically binary). Very often a "one-hot" 
coding is used (each symbol is assigned a separate input of the ANN). 

With a piece of abstraction we can think about symbol-processing structures 
within the brain, with their abilities having been obtained by training. Training is . 
mostly much more effective with a teacher: a neural network obtains some stimuli 
and after processing them gives output. Then the teacher produces a training 
signal, expressing the difference between desired output and output, given by net,. 
This signal is. utilized by the to change its internal structure slightly, so that, after 
many such cycles, resulting changes converge to correct (desired) outputs. From 
this point of view it seems that, the trainable neural network should be closer to an 
accepting symbolic system than a generating one, because it is easier to obtain a, 
training signal in the accepting case. This is indeed the approach of [1], [2], [16], 
[36] and many others. 

Now, how complex languages can biological neural nets "recognize"? Strictly-
speaking, all the languages we can ever recognize should be regular, because at some 
moment we are able to keep in mind only a limited amount of information. Really 
most of the languages we recognize (for example languages of syntactical description 
of visual images, which we know the brain uses [13]) are finite or without the need 
of recurrent, application of the same rule(s) many times, which is typical for formal 
languages. This, on the one hand, could in an extreme case lead to an impression 
of the brain as a system of finite state automata (FSA). On the other hand, the 
effectiveness of neural processing of such languages clearly couldn't be by using FSA 
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machinery. To give a rather expressive example, we know how long the transfer of 
one stimulus through the neuron and the following relaxation takes - something 
like "neural step" [3]. A.simple reflex reaction, of a child who suddenly runs into 
the roach takes only about 40-60 such time steps [20], done of course massively 
parallel! 

We often perform tasks that are clearly non-regular. Hardly anybody is capable 
of multiplying two arbitrary ten digit numbers in his mind, even after long .training 
- this seems to be a rather "nonneural" task. The most primitive tool we can use 
is paper and pencil - external memory for symbol manipulation. Imagine, how we 
would recognize e.g. strings of language {0nln|n e A'}- Moreover, the brain also 
contains some very specialized structures, created not by training of an individual, 
but by evolution [25]. 

To conclude, we use specialized tools for accepting non-regular language, that 
were not created by a simple training within our brains. This again leads us to the 
necessity of hybrid architectures, already expressed in the previous section. 

2.3 Theoretical computational power of the neural nets 

Now, let's briefly characterize ANN models, with enough computational power to 
accept four basic classes of formal languages. The models are size-independent on 
the length of the processed string. In the later text a recurrent neural 'net/work 
(R.NN) is referred to. It.is one-layer fully interconnected ANN with N neurons 
and n inputs, with a dynamics characterized by the equation (2). In addition 
to (1), v,j are the inputs of the network with weights u.¡7- for i-th neuron, c¿ is the 
threshold value. In the following four cases of equivalence the bottom-left, threshold 
functions of the Fig.l has The. network operates in discrete'time and the input string 
is presented sequentially, i.e. one symbol at each step. The precise definition of 
language acceptance can be found in [32], [33]. Here we only note, that the used 
RNN has two binary outputs,, the "data" one with accepted/rejected signal and the 
"validation" one, stating whén the data are valid. 

N N 

.7 = 1 J 1 

1. Acceptance of regular languages: RNN with discrete outputs of all neurons, 
i.e. output of each neuron is 0 or 1. A result (output of the network: ac-
cepted/rejected) is provided in the next step after the last input symbol has 
been presented. This well-known result can be found in [22]. 

2. Context-free languages: RNN with rational-valued outputs and weights of the 
neurons. As above, a result is provided immediately after the input, string has 
been presented. The precision óf computations needed is dependent, on (and 
limited by) the length of the input string. This is rather trivial consequence 
of the proof of the main result in [32], the principle of which is given in section 
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3.1. It is clear, that the stack of a pushdown automaton could be implemented 
by the same way as the tape of a Turing machine (TM) in [32]. 

3. Context-sensitive languages: RNN with rational-valued outputs and weights 
of the neurons, providing a result after some delay after the input string has 
been presented. Again the precision of computations needed is by the length 
of the input string. For deriving this result from [32], it is enough to note the 
difference between TM and the linear-bounded automaton [39]. 

4. Recursively enumerable languages: recurrent ANN with rational-valued out-
puts and weights of the neurons, providing a result after a delay, which can 
grow over any limit. The necessary precision of computation is also un-
bounded. This is proven in [32]. 

3 An overview of hybrid architectures 
Architectures coupling symbolic and "neural" methods contain mostly separate 
neural and symbolic modules. The input of neural net has usually a form of sym-
bolic knowledge (a string or a set of them, properly coded), its output is again 
interpreted in terms of symbolic knowledge (rules, semantic knowledge...) [38]. 
Rarely we can meet direct incorporating of symbolic and neural computation prin-
ciples in one module [22], [35], 

3.1 Computational power studies 
The aim of these studies is mostly to give a proof of computational power of partic-
ular type of ANN. The proofs are constructive, i.e. the result is an ANN modelling 
the behavior of the the original system (usually some formal automaton), with-
out care of computational complexity and/or model size. Some models are even 
of infinite size, although the original system is finite [37]. As an example of this 
approach we present results in [32]. The authors proved that RNN restricted to 
rational-valued weights and signals has the universal computational power, by con-
structing a neural model of any TM. The principle of the model (highly simplified) 
is as follows: First, the tape alphabet is coded by a set of natural numbers less 
than some b, the empty symbol being coded as 0. Then any string rir2 . . . '/ ;„ over 
the tape alphabet can be coded as 

k 
C ' ( r 1 r 2 . . . r t ) = ^ g e ( 0 , l ) . (3) 

¿=1 
(In fact the coding is more complicated to avoid the necessity of distinguishing 

between two very close numbers.) Now let p be the position of the head on the 
tape of TM. Let output value of neuron a code the portion 7,;)+i7'),+2 . . . of the tape 
by the coding (3). Let code portion r\r2 • • - rp of the tape in reverse order. Then 
we can extract the representation of the symbol read by the head as \_bop\, where 



166 Pet,i Sosík 

op is the output value of neuron /3. Movement head to the right is represented by 
setting 

00 •= {op + [boa\)/b, oa := boa - [boa\; (4) 

and analogously to the left. Here [-'-'J is the integer part of x. Rules of TM are 
then represented by groups of neurons realizing proper logic function. The whole 
model consists of a fixed number (some hundreds) of neurons. The neurons a, ft 
play the role of wheels rewinding the TM tape, the head being placed between 
them. Thus the unbounded length of tape is replaced by the unbounded precision 
of rational number. 

If we extend domain of computation to real numbers, we obtain even more 
powerful (from the computational complexity point of view) devices than TMs 
(the power equals to TM consulting sparse oracle) [33]. 

There are (from the implementational point of view) two major drawbacks of 
this approach: Firstly, there is the necessity of unbounded precise rational number 
computation. Secondly, the architecture is "hardwired" and practically involves no 
adaptation. Moreover, it would be very difficult to extend this approach towards 
parallel working grammar system due to sequential access to the processed string. 

3.2 Topology preserving models 

These models are topologically similar to the original system, including both num-
ber of elements (neurons, states, rules) and the connections between thern. Typi-
cally each element of one system is modelled by one or a group of the model. The 
advantage of this approach is often the possibility of and giving a proof of functional 
equivalence of the systems in both directions, with respect to the computational 
complexity. Also direct manipulation with a symbolic knowledge within the ANN 
is then possible. 

As an example the classical paper [22] can be presented, establishing equivalence 
between finite automata and RNNs with discrete-valued outputs. In [15]. neural 
structures equivalent to the state transitions of FSA are used for inserting symbolic 
knowledge into a RNN. Also some of the models referred to in [38] have this prop-
erty, what can lead to using a-priori training (see end of this section). In [35] (see 
Fig. 2) we deal with computational equivalence of eco-grammar systems and ANNs 
in both directions. Here parallel data processing is fully preserved, which allows to 
construct model of computational complexity very close to original system. 

Again, the disadvantage of this approach is the fact that neural structures topo-
logically similar to the original system are often heterogeneous, what can cause 
problems with learning, because the most of learning algorithms require a (compu-
tationally) homogeneous network for propagating a learning signal through it and 
making gradient-directed steps towards the solution. 
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Figure 2: The neural model of an eco-grammar system. 
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3.3 Adaptive models 
These models are clearly the most promising ones and are often applied to the 
grammatical inference problems, natural language understanding or as a part of 
knowledge and reasoning systems [38], [4]. 

A lot of recent works deal with a grammatical inference of some accepting device, 
as FSA [1], [15], or deterministic pushdown automaton (PDA) [36]. This approach 
seems to be most suitable for studying interactions of neural and symbolic parts of 
the systems, for instance methods for extracting FSA or PDA from trained RNN 
of various orders. It seems that if one step of the modelled accepting device is 
governed by n factors (for PDA n = 3 : a state, a tape symbol, a stack symbol), 
n-tii order neurons suit best [16], [36]. More complex languages (context-sensitive) 
accepting devices can be also inferred using RNNs, but in these cases extending 
"nonneural" inferring algorithms are used [2]. 

As an example we present the results in [1], using the extraction of unbiased 
FSA from the trained homogeneous first order RNN: 

First, RNN (with one output unit giving value in (0,1), which corresponds to 
rejecting/accepting of input string) is trained using positive and negative examples. 
Then a prefix tree of these strings is built and its nodes are identified with the states 
of an unbiased FSA (UFSA - its definition is given in [1]). Each state is assigned a. 
set of corresponding hidden layer neuron output values, forming a cluster (initially 
consisting of a single point) in the state space of the hidden layer neuron outputs. 
Then, a hierarchical clustering in this space is performed. Whenever two clusters 
are merged, parallel merging of their associated'states is performed in the UFSA 
representation. After each step the consistency of the UFSA with the training set is 
tested. Whenever an inconsistency occurs, the process is stopped. The advantage 
of this approach is that there is no estimation of the number of the UFSA states, 
minimal cluster distance and so on: only the metric for cluster distance must, be 
defined. 

A lot, of similar results cited above lead us to the opinion that, (from the adapt-
ability point, of view) there is no need for topological equivalence of the original 
system and the model. The most natural representation of one state of the UFSA 
in RNN is a cluster of neuron states, which has nothing to do with the net topology. 
Generally, even if we haven't any prior knowledge of the complexity of the grammar 
inferred, the RNN can create a model of this grammar in the space of its internal 
states. Then we apply some heuristic algorithm for extracting this grammar mak-
ing it as simple as possible to be consistent with the set of training strings. The 
drawback of this approach is again the problematic interpretation of the results of 
ANN and its transformation to a symbolic knowledge. 

4 Hybrid models with grammar systems 
One possible way of constructing such models could be incorporating some sym-
bol manipulating principles into the neural nets, what's in opposite to usual ap-
proaches, integrating neural nets as a part of rather complex symbolic knowledge 
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manipulating architectures. Some problems of this intention are discussed here. 
First., a communication between agents in distributed systems (including various 

kinds of systems from multicomputers to neural nets) could in general be charac-
terized as by request (when the agents are passive until any external stimulus) or 
by command (when the agents activelly offers their free cappacity and/or results). 
The terminology is inspired by [7], [28], where PCGSs are studied. It seems, that 
the communication by request is closer to the nature of ANNs, when every agent 
(neuron), through the weights of its connection, can decide which other agents it 
gets information from. 

As it was mentioned in section 1, dynamically defined and parallel communi-
cation between agents and parallel access of the agents to different parts of the 
processed string is typical for some types of grammar systems. This is contrasted 
to the nature of ANNs with fixed communication graphs. To introduce a "commu-
nication dynamics" into ANNs, one have to create highly interconnected structures 
(including all possible communication branches) equipped with a mechanism of 
dynamic activation of the connections needed. (This can be directed e.g. by an 
occurance of some patterns in the string(s) processed by the system) Due to the con-
clusions in section 2, pre-defined specialized structures allowing this dynamics need 
to be used as a part of NN. See [36] where a "neural PDA" is presented, equipped 
with external continuous stack. Unfortunately, the existence of such structures is 
often in contradiction with the request for homogenity of network dynamics, be-
cause many training algorithms require differentiability of the transfer function of 
the neurons and groups of neurons. 

Another problem can be caused by the fact that the recurrent application of the 
same rule (group of rules) to the generated or accepted string is typical for grammars 
(and thus also agents of grammar systems). ANNs, in contrast, obviously reach a 
stable state in a few steps, due to their nature as an asymptotically stable dynamical 
system. In the models described in section 3.3 this problem has been overcome by 
the sequential reading of the input string, providing stimuli not allowing the system 
dynamics to stabilize. This solution leads nevertheless to the lack of parallelism. 

Also a memory for storing the processed string, capable of replacing some, sub-
strings by ones of different length, is a very "nonneural" device. Both these prob-
lems seem to be best solved by adding another special structure integrating the 
one-step actions of agents into the processed string and re-loading the result into 
net inputs. During the phase of learning, such a network could be "unfolded in 
time", just, as in the Backpropagation algorithm [18], [36] and similar ones, giving 
promising results. 

5 Conclusion 
Although there have been many successfully working hybrid neural-symbolic ar-
chitectures referred to in the last, two sections, it still seems to be possible to find 
a closer connection of grammar systems and ANNs, particularly exploiting mas-
sive parallelism and no need of centralized control in both system types. A highly 



170 Pet,i Sosík 

interconnected RNN looks as a promising way of constructing trainable "neural" 
accepting symbol-processing system, eventually, with a lot of autonomous modules, 
equipped with some special structures for symbol storing, transfer and some other 
tasks which are inherently "nonneural". It would be capable of parallel string 
processing and inter-agent communication. 

There are many open problems, including the definition of training hybrid sys-
tems and proofs of their stability and convergence. Some of them have been par-
tially solved already, as the training of ANNs is only now beginning to be deeper 
understood task [4]. Anyway, parallelism and decentralized processing are the main 
features of present computer architecture trends. 
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Various Communications in PC Grammar Systems * 

György Vaszil tt 

Abstract 
A slightly modified communication protocol called immediate communica-

tion is introduced for P C grammar systems and the generative power of these 
systems is shown to be equal to what we call homogeneous systems, systems 
with queries of a special form. To acquire this result we also introduce a 
generalization of returning systems, called systems with returning languages. 

1 Introduction 
Parallel communicating grammar systems (PC grammar systems) were introduced 
in [6] as a grammatical description of the so-called classroom model of problem 
solving. The agents of the classroom are generative grammars, which all operate 
on their own sentential form, these represent the subsolutions of the overall solution 
which is the language generated by the whole system. During their operation the 
agents may communicate, they may exchange their strings with each other. The 
language generated by the system is the language generated by the classroom leader 
which is one of the component grammars, usually called the master grammar of 
the system. 

Parallel communicating grammar systems have been the subject of detailed 
study over the past.few years. See [3], [4], [5] for results on their generative power, 
and [2] on their size parameters. A summary of their properties can be found in 
the monograph [1]. 

The power of PC grammar systems is measured by their generative capacity, 
which may depend on a number of factors. The type of the component grammars 
and the number of the components are obviously very important among these 
factors, but there are many others to be considered. 

In their paper [6], Gh. Pàun and L. Santean considered variants with a universal 
clock and two basic methods for communication. The presence of the universal clock 
means that all components use their rules synchronized in time, one derivation step 
is taken by the system with all components using one of their rewriting rules. 
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Communication in this construction is realized with the aid of special nonter-
minals, the so-called query symbols. Each of these symbols points to one of the 
component grammars of the system, and when one of them appears in a sentential 
form, it has to be replaced with the current sentential form of the component it 
refers to. 

This is communication by request, which has two basic variants. One is called 
returning communication: after a component sends its string to an other compo-
nent, it must return to its start symbol (or axiom) and begin to generate a new 
string. The other is called non-returning communication: the component which 
sends its string keeps a copy for itself and continues to process it after communi-
cation. 

In the following we keep the basic features of the original model. We will 
consider synchronized systems with communication by request, but propose a slight 
change in the communication protocol introducing immediate communications, and 
investigate the impact of this modification on the generative power. To do this, 
we also generalize the notion of a returning communication by introducing systems 
with returning languages. 

The results we obtain will show that the languages generated with immediate 
communication can be generated with a very much simplified form of query rules 
using the original protocol. This simple form of queries is what we call homogeneous. 

2 Preliminaries 
The reader is assumed to be familiar with the basics of formal language theory; 
further details can be found in [7]. 

The set of all words over an alphabet V and the empty word are denoted by 
V* and e respectively, the family of regular, linear and context-free grammars by 
REG, LIN and CF, respectively. | w | and | UI denotes the length of a word UJ 
and the number of occurences of symbols from set X in w, respectively. 

Now we recall the notion of parallel communicating grammar systems from [6], 
for more material see the monograph [1]. 

Definition 2.1 A parallel communicating grammar system with n components, 
where n > 1, (a PC grammar system, for short), is an (n + 3)-tuple F = 
(N, K, T, Gi,..., Gn), where N is a. nonterminal alphabet, T is a terminal alpha-
bet and K = {Qi, Q-2, • • •, Qn} is an alphabet of query symbols. N, T, and K are 
pairwise disjoint sets, Gi = ( N u K , T, Pi, Si), 1 < i < n, called a component of T, 
is a usual Chomsky grammar with nonterminal alphabet N U K, terminal alphabet 
T, a set of rewriting rules Pi and an axiom or (a start symbol) .SV Gi is said to be 
the master (grammar) of T. 

Definition 2.2 Let F = (N, K, T,G\,..., Gn), n > 1, be a PC grammar system 
as above. An n-tuple (x'i , . . . , x n ) , where i j £ (JVUTU K)*, 1 < i < n, is called 
a configuration of T. (Si,..., Sn) is said to be the initial configuration. 
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PC grammar systems change their configurations by performing direct derivation 
steps. 

Definition 2.3 Let T = (N, K, T, Gi,. - . , G„) , n > 1, be a PC grammar sys-
tem and let (xi,..., xn) and (yi,... ,yn) b'e two configurations of F. We say that 
( x i x n ) directly derives ( j / i , . . . , j/„), denoted by ( x i x n ) => (j/i, • - •, yn), if 
one of the next two cases hold: 

1. There is no Xi which contains any query symbol, that is, Xi E (N U T)* for 
1 < i < n. In this case Hi- For Xj E T* we have x< = yi,. The system is 
blocked, if there is an Xj with | Xj 0 and none of the rules of P, can be applied 
to xj. 

2. There is some Xi, 1 < i < n , which contains at least one occurrence of query 
symbols. Let x,i be of the form x* = ziQi lz-2Q i2, • • • ,z<,Qitzt+i, where Zj E (N U 
T)*, 1 < < t + 1 and Qi, E K, 1 < I < t. In this case yi = z\x^ z2x^ ... ztXi, zt+i, 
where xit, 1 < I < t does not contain any query symbol. In returning systems yit = 
Si,, 1 < I < t., in non-returning systems y^ = XiL, ! < / < / , . If some x^ contains 
at least one occurrence of query symbols, then yi = x^ and also y^ = x^,, 1 < I < t. 

If for all Xi with | Xi 0, Xi = Z\Q^ z 2 Q i 2 , . . . , ZtQitzt+\ there is at least one 
Qij, 1 < J < ^ that x^ also contains a query symbol, then the system is blocked 
due to a circular query. 

For all i, 1 < i < n, for which yi is not specified above, yi = x,;. 

The first case is the description of a rewriting step: If no query symbols are present 
in any of the sentential forms, then each component grammar uses one of its rewrit-
ing rules except those which have already produced a terminal string. The deriva-
tion is blocked if a sentential form is not a terminal string, but no rule can be 
applied to it. 

The second case describes a communication: If some query symbol, say Qi, 
appears in a sentential form, then the rewriting stops and a communication step 
must be performed. The symbol Qi must be replaced by the current sentential form 
of component Gi, say Xj, supposing that Xj does not contain any query symbol. 
If this sentential form also contains some query symbols, then first these symbols 
must be replaced with the requested sentential forms. If this condition cannot be 
fulfilled (a circular query appeared), then the derivation is blocked. 

Let =>rew and =>com a denote a rewriting and a communication step respectively. 
If the sentential form of a component was communicated to another, this com-

ponent can continue its own work in two ways: In so-called returning systems, the 
component must return to its axiom and begin to generate a new string. In non-
returning systems the components do not return to their axiom, but continue to 
process the current string. 

A system is centralized if only the component G\ is allowed to introduce query 
symbols, otherwise it is non-centralized. 

By the word query we refer to a sentential form containing at least one query 
symbol. A query is satisfied by a communication replacing the query symbols with 
the requested sentential forms. This may be done in one or more communication 
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steps. The phrase communication step is used to denote the process of satisfying 
the query symbols, which can be satisfied in "parallel". For example the returning 
communication prescribed by (Q>, Q3, a, Q3) takes two communication steps to 
realise: first we get (Q2, a, S3, a), and then (a, S2, S3, a). The two consecutive 
steps together will be referred to as a communication sequence. 

Let =>+ and =>* denote the transitive, and the reflexive, transitive closure of 
=> respectively. 

Definition 2.4 Let k be a natural number, k > 1 and let the k step derivations of 
a PC grammar system be denoted by ( S i , . . . , S„ ) = ( a " , . . . , a " ) =>fc (a'i,..., a';L) 
where ( a y , . . . , is the configuration reached by the system in k steps. The 
language generated by a PC grammar system F is 

L(T) = K e T* I ( S i , . . . , Sn) k (aî,..., ÏT*, 1 < j < k}. 

Thus, the generated language consists of the terminal strings first, appearing a.s 
sentential forms of the master grammar, G\. 

Let the classes of returning and non-returning PC grammar systems with at, 
most, n components of type X, X £ {REG, LIN, CF} and v, > 1 and the 
corresponding language classes be denoted by PCnX, NPCnX and C(PC,,,X), 
C(NPCnX) for non-centralized systems and CPCUX, NCPCnX, C(CPC„.X), 
C(NCPCnX) for centralized systems, respectively . When an arbitrary number of 
components is considered we use * instead of n 

3 PC grammar systems with immediate commu-
nications 

In the communication protocol of [6] the query symbols occurring in one string can 
only be replaced in one communication step. If it is not possible, the system lias to 
wait until all the query symbols of a sentential form can be replaced. For example 
the ciueries (Q2Q3, Q:J, «) are satisfied in the returning mode with the following two 
steps: 

(Q-iQi-.Qi^a) =>com ( Q 2 Ç 3 , a , S 3 ) com (aS3,S2,S-3). Observe that of the 
query Q2Q3 did not get replaced in the first step. 

In the immediate communication mode we allow the replacement of all query-
symbols that request, sentential forms not containing other query symbols. The 
query above will be satisfied with: 

(Q-iQ-.i-Qiid) =>com (Q-ia-i 1, S3) =>com (aa,S2,S3). 

Definition 3.1 Let T = (N, K, T,G\,... ,Gn), n > 1, be a usual PC grammar 
system and let (xx,... ,xn) and ( ? / i , . . . ,y n ) be two configurations of F. We say that 
(x \ ,..., x.n) directly derives (y\,... ,yn)> with immediate commmiications if one of 
the next, two cases holds: 
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1. There is no x* which contains query symbols, x,; £ (N U T)* for 1 < t < 
n. In this case the system performs a rewriting step denoted by ( x i , . . . , x „ ) 
(yi,... ,yn), where x* => yi in G,. For x, £ T* we have Xj = yi and the system is 
blocked if there is an Xj with | xj 0 and no rule of Pj can be applied to x-r 

2. There is some x», 1 < i < n, which contains at least one occurrence of 
query symbols. In this case, the system performs an immediate communication 
step denoted by ( x j , . . . , x n ) => (yi, • • • ,yn), in the following way: 

Let Xi be of the form x, = ziQ^z2Qi2,... ,ztQitzt+\, where Zj £ (NUT)*, 1 < 
j < t + 1 and Qil £ K, 1 < I < t. Now yi = z16i1z2fii2 ... zt,8itzt+\, where 

i 1 < ^ < i is Xj, if xit does not contain any query symbol, or Si, is Q -,, if x.j, 
contains at least one query symbol. If Si, = x,,, then in returning systems ?/,;, = Si,, 
in non-returning systems y^ = Xj,, 1 < I < t. If 6i, = Qi,, then yi, = x^ , 1 < I, < t 
in both type of systems. The derivation is blocked by a circular query if for all i 
with | xi \Kji 0, Xi = zi Qh z2Qi2,..., ZtQit zt+i and j/f = z1Shz2Si2 ... zfStl z,.+i, 
there is a ¿.¿, = Qi,, for some I, 1 < I < t. 

The first case is the description of a usual rewriting step, the second case describes 
an immediate communication: if more query symbols, say Qi, Qj, appear in a sen-
tential form and x,;, the current sentential form of component Gi, does not contain 
query symbols, then Qi must be replaced by Xj, even if Qj can not be replaced 
by :r,j, the current sentential form of Gj in the same step, because it contains 
further queries. In short, strings without query symbols must be communicated 
immediately. 

Let the class of PC grammar systems of type A" with immediate communi-
cations and n components of type Y and the corresponding language classes be 
denoted by fXnY and £(fXnY) respectively, X € {PC, NPC,CPC,CNPC), 
Y £ {REG, LIN, CF}. If an arbitrary number of components is considered we put 
* instead of n. 

In a communication sequence with immediate communication, the strings requested 
by other components are always sent to their destination without any delay if they 
do not contain further queries. Using the usual communication protocol, it is 
possible that a sentential form is requested by two other components, but sent to 
only one of them. For example, if x» is requested by Xfc = QiQj and x; = Qi, but 
Xj = Q771 also contains a query symbol, then Xi can not be sent to xk, until the 
query symbol of XJ, the other requested sentential form is replaced. This makes it 
possible in returning systems, that a query symbol is replaced by the axiom of the 
queried component instead of the string present at the appearance of the query. 
In the example above the result of the communication sequence is the following: 
yk - Si'xm, yi = x.i, while using immediate communication it would be yyj. = x./x.m, 
yi = x-i. 

In a number of cases this difference can not influence the results of a commu-
nication sequence. For example, nonreturning systems do not return to their ax-
iom during the communication sequence, centralized systems never request strings 
containing query symbols and regular or linear components have sentential forms 
containing at most one query symbol. In these cases the generative capacity of 
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immediate communications coincides with the usual communication modes. 

Observation 1 

1. C(f N PCnX) = C(NPCnX), X e {REG, LIN, CF) 

2. C(fPCnX) = C{PCnX), X G {REG,LIN} 

3. C(fCPCnX) = £{CPCnX), X G {REG, LIN, CF] 

In the next section we will investigate the generative power of the remaining case, 
the case of non-centralized context-free returning systems. 

4 The power of returning systems with immediate 
communications 

In this section we study the generative capacity of context-free non-centralized re-
turning systems with immeditae communications, but first we introduce the notion 
of PC grammar systems with returning languages which will be of help in our 
investigations. 

A PC grammar system with returning languages is a natural extension of a. 
returning system. Each component has an associated language, the so-called re-
turning language. After communication they are allowed to start a new derivation 
with any word of this language instead of starting with their axiom again. 

Definition 4.1 A PC grammar system with returning languages is a (2?7, + 3)-tuple 
F = (N, K, T,R. i , . . . , Rn, G1,..., Gn), where N, K, T and G\,..., Gu are the same 
as usual, and Ri,... ,Rn are non-empty sets of words over (TV U T), the so-called 
returning languages. (Ri C (TV U T)*,R.i ± {e} , Ri # 0,1 < i < ?i). 

The system works like a usual returning system, but after communication com-
ponents may start a new derivation with any word of their returning language. 

Let the class of context-free PC grammar systems with returning languages of 
n components of type X, X £ {PC, fPC} and the corresponding language classes 
be denoted by rXnCF and C(rXnCF), respectively. 

With the aid of systems with returning languages we will be able to prove our 
theorem about the power of immediately communicating systems, which will turn 
out to be the same as that of usual returning systems with a certain form of queries, 
which we will call homogeneous queries. 

Definition 4.2 Let, us call a query homogeneous, if all query symbols contained in 
the corresponding sentential form request, the same string, that is, the sentential 
form is of type aiQiaiQi... at-iQiat, where 1 < i < n, 2 < t and aj G (N U 
T)\ 1 <j<t. 

A component viith homogeneous queries is a component grammar Gt, 1 < i < n, 
which is allowed to introduce only homogeneous queries, it has no rule of the form 
A' - » aQiPQ jj, with i ¿ j , a, /3, y G (TV U T U K)*. 
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A PC grammar system is called homogeneous, if it has components with homo-
geneous queries only. 

Let the class of homogeneous PC grammar systems of type X with n context-
free components and the corresponding language classes be denoted by h,XnCF 
and C(hX,,CF) respectively, where X G {PC,NPC}. 

The following inclusion is obvious because communication sequences with homoge-
neous queries produce the same result in the usual and in the immediate commu-
nication modes. 

Observation 2 C(hPCnCF) C C(fPCnCF) 

Our aim is to prove also the converse inclusion. First we present a lemma about 
systems with returning languages. 

Lemma 4.1 Let F be a returning PC grammar system with immediate commimica-
tions, having n context-free components and finite returning languages R.{ consisting 
of only nonterminal symbols, i?,t C N, 1 < i < n. 

If these conditions hold, then there exists F', a returning system with immediate 
communications and 4n components which generates the same language as F. 

Proof: Let T = (N, K, T, Gx,R.i,... ,Gn,R„) G rfPCnCF with nonterminal 
alphabet Arj set of query symbols K, terminal alphabet T, n context-free compo-
nents Gy,..., Gn and returning languages R.\,..., R.n, R-t C N, 1 < i < n. Now 
let T' G fPCinCF be the following: 

r' = (N', K', T, G\,.., G\, G\, ,.,G2n,G'{,.., G"n, G\,.., Gfn) 

where 

N' = {Si, Si S°-,S°',Sl,St',Sf | l < i < n } U 
{A , [X] \XeN}, 

Pi = {Si Ql Si -> Q?} U { X [X] I X - » « e P . l , 
Pf = {s;2 QJ} U { [X] a I X a £ Pita G (N U T)*} U 

{[A'] aiQ)^ ... Q)tat+1 | X -» aiQ^a-z... Qjtar+, G P ( , 
at £ (NUT)*,I <l<t + 1}, 

Pf = {St [Si\,S? Sf,Sf [Y] | Y G Ri} and 
Pf = {Sl^Sj',Sl' ^S$",Sf ^Q-}u{[Y}^[Y]',[Y]' ^Q'l \YeR;} 

for 1 < i < v.. 

The system has four n-tuples of component grammars, and the rules X —> a. £ 
Pi, ! < ' ' - < n of T are broken into two parts X [A] and [X] a. G],..., G,, 
contain the first, parts X [X] and G'\,... ,G2n the second parts [X] —> a. 
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The}- work in the following way: all G\ use the first part of some rules while 
G'j introduce the queries Qj. Now the sentential forms of G'j replace the query-
symbols in Gj, where the application of the rules is finished using their second 
parts. Next the sentential forms are communicated to G\ and the process starts all 
over again. The assistant components G'[ and G\ are used to simulate the return 
of a component to some symbol of the returning language, 1 < i < n. 

First we show how the initial derivation step of T is simulated by T'. We start, 
from a configuration 

col el. c2 c2 ca qn at ct.\ Wl. : ' ' ' > Jn> °1 ' ' ' ' > °n> J ' ' ' ' °n> °1 > " ' ' ! °1l) 

and get 

Q\,...,Ql, <5? , . . . ,^ , S f ' . - . - . O . 

where Sj is either Qj or Q". If some Sj = Qj then the derivation is blocked by a 
circular query. Sf is either [5»] or Sf ' . If some = Sf then the derivation is also 
blocked since S'f is passed to Gj and Pf does not contain rules to rewrite Sf. So 
we must have 

[Si], , . •, [S„], s{',....Sj, ). 
After one communication step we get 

(Sj ' , . . •, Sjl, [ S t ] , . . . , [Sn], S ° , . . . , S®, SJ , . . . , Sj, ), 

and then 

(<>,' ¿1: <5? , . . . ,^ , Si",..., St"). ' 
Here aj differ only in the indices of the query symbols from the strings pro-
duced by G, of r , 1 < i < n, through the first rewriting step. More precisely if 
(Si , . . . ,S n ) =>re,„ ( a i , . . . , a „ ) , then aj = a* if | a* \K= 0, aj = aii Qj, ah ...Qjh a,, 
if a,; = a.ilQj1ai2...Qjlait. The Sj are either Q" or Qj and are either Sf or 
[S»], 1 < j < n. If Sj = Qj for some j, 1 < j < n, then the system is going to be 
blocked after the next, rewriting step, when Gintroduces Q'j, because P• does nor, 
contain rules to rewrite [Sj] or Sf. If Sj = Qj for all i, l<i< n, then (5*' = Sf 
for all i, "1 < i < n, because [Sj] can not, be rewritten with the rules of P". So we 
must have 

(Qj,..., Qn, ax,... ,a.~n, Sj1 , . . . , Sj , . . . , Sj, ), 

and then after a number of communication steps we get 

{ft i, • • •, ftii i , . . . , S - , S™ , . . . , S.JJ , S{ ,..., Sj, ), 

where the A: = Ji if ( j i , • • •, j n ) are the sentential forms of T produced by the initial 
rewriting step and the possibly following communication sequence and 7, £ B.i. If 
7 j £ B.j for some j, 1 < j < it, then ftj = Sj. If 110 aj contains query symbols 
(there are no communication steps following the initial rewriting step in F), then 
fii = aj. If fti is terminal then the system can stop here, if it, is not,, then the 
simulation must go on. We start with 



Various Communications in PC Grammar Systems 181 

(„, C2 C2 on' oni ot" Qt"\ 

^Uj , . . . , ULn, , . . . , o n , J j , . . . , J n , Oj , . . . , o n ), 
where a, G (N U T)* U { 5 / } and get 

(¿],..., Q{..., Ql [1U ..., [rn], Q t , Q " ) , 
with (5| = [«.¿] where [a;] is aj with one of its nonterminals X rewritten to [X] or 
if ai G T* then [a«] = a¿. If some communication occured in the previous step and 
the j-th sentential form was sent to an other component, then ctj = S| and is 
either QV or Qj. If ¿J = Qt for some j, 1 < j < n, then the system is blocked by 
a circular query, so if ctj = Sj for some j , then we must have 

([a\],..,Q«,.,[«„], Q\...,Ql, Q1,...,Q"), 

with Yi G Ri, 1 < i < n. After a communication step we get 

(S],..., Si [«i],.., [1 j],. . , [a,,.], SÎ,...,SZ, [y i ] , . . . , [y„ ] ) . 

Now the system continues the derivation as if Gj has have returned to Yj instead 
of its start symbol. We get 

,..., 51 Pi,..., 01 ¿1,..., S«, [Fi]',..., [rn]'), 

where Sf and Sf are the same as above and 0f differ only in the indices of the query 
symbols from the strings produced by G, of T, 1 < i < n, as described above. The 
<51 are either Qf or Q'j and Sf are either Sf or [Si], 1 < j < n. If S^ = Q'i for 
some j, 1 < j < n, then previously described situation arises, the system is going 
to be blocked after the next rewriting step, when GJ introduces Q'.j, because P!j 
does not, contain rules to rewrite [S7] or Sf. If <5• = Q'j for all i, 1 < i < v., then 
Sf = Sf for all i, 1 < i < n again, because [Si] can not be rewritten with the rules 
of P^. So we must have 

n ' 5 * * • ) Pu ' ' ' ' ' î ^n 1 1 ])••') '»-]) • 
After the communication sequence we get 

(7i, • • •, In, Si..., SI, Sf,..., Sf, [n ] ' , . . . , [K„]'), 

where 7.-L are the results of the communication sequence prescribed by the /1,; sen-
tential forms with 7j = Sj if the sentential form of Gj has been sent to an other 
component during the communication sequence. If 7] G T* the system stops or 
else it can continue to simulate T in the same manner. • 

Let the systems satisfying the conditions of the lemma and the corresponding lan-
guage classes be denoted by rXnCF and C(rXnCF), X G {PCJPC}, respec-
tively. Note that, this proof is based on the fact that, using immediate communica-
tions each component sends its string only once during a communication sequence, 
in other words the strings a component has returned to after a communication 
step are never communicated in'the same communication sequence. Since homoge-
neous systems also have this property and since the simulating system constructed 
according to the previous theorem is homogeneous if we simulate a homogeneous 
system, we have the following: 
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Corollary 4.2 C(rhPC*CF) = C{hPC*CF). 

Before we proceed, we need some further observations about the nature of deriva-
tions in PC grammar systems. In the proof of our main theorem we would like to 
treat the communication sequences of a derivation as "units" together. This means 
that we will assume that terminal words of the master appear only as a result of 
a rewriting step or as a result of a whole communication sequence, so we need to 
prove that all languages of PC grammar systems can also be generated this way, 
where the details of communication sequences are "hidden". 

Definition 4.3 Let T be a PC grammar system. The language generated by F 
with hidden communications is 

Lk( r ) = {u e T* | (Si ,S 2 , ...,Sn)=>* (w ,a 2 , . . . , a „ ) } , 

where | a* |k = 0, 2 < i < n or a 2 , • • •, ctn contain a circular query. In other words, 
the generated language consists of terminal strings present as sentential forms of 
the first component either after a rewriting step which does not introduce queries, 
or at the end of a communication sequence, or in a final blocking configuration. 

Let, the class of languages generated with hidden communications by X type 
PC grammar systems with n context-free components be denoted by £/,(A"„Ci ?) , 
x e {.fPC,rfPC}. 

Lemma 4.3 If L is a language generated by a context-free PC grammar system. 
F £ XnCF, X € {PC, fPC}, L = L (r ) , then L can also be genera,ted by a system, 
with, returning languages T' £ rX2n+-2.CF with hidden communications, L = /,/,(F'). 

Proof: Let, F = (N , K, T,GU..., Gn) with N, K, T and Gh 1 < i, < n as usual and 
let r ' = ( N ' , K ' , T , Go, Ro,G\,R{..., G\, R}n, G\,R{.:., R», Ga, R.a), where 
Gn is the master grammar and 

N' = {X , [X] | X £ N} U {A 0 , So, S'0, Sn, S'a, Sf SfSf | 1 < i < -/;.}, 

Ro = {Ao}, 

Po = {X -» X j A' £ N} U {So -> S^, S^ Ql} U {.40 Q\}, 

R\ = {A\}, 
Pi = {Sl^[Si},A]^Qi}u{X-^[X)\X€N}, 

Rl = {S*}, 
Pf = {Sf —> Q}} U { [X] a. \ X a £ Pi,\ a \K= 0} U 

{[A'] -4 a i a 2 . ..atQltat+1 | X aiQha2 .. .OLtQilat+i £ Pi: 

otj £ (JVUT)*,1 <j <t, + 1}, 
Ra = . {S„ } , 

Pa = {Sa^ S'a,S'a-> S':,S';^QoS'a}, 

for 1 < i < n. 
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This T' system starts with the initial configuration 

(So, S},..., S7\, S f , . . . , S~, S„). 

After a rewriting step we get 

( s ^ s [ s n]> Q1 J • • • ) Qn, S a) 

and after a communication 

(S'0,Ai,...,Al[S1],...,[Sn],S'n). 

Now a rewriting step follows producing 

(Ql, Ql, • • • , Qn, a\, • • • 1 an, Sa), 

where a\ — a* if S» a ; £ Pj and | Q>j |/<-= 0 or if | a , 0, = 
«¿i Q-ii fxi-> •••Qjiait , then a'; = aj1<3]10!i2"-(9}1Qii • After the communication we 
have 

(So, fli, • • •, 0n, Si,..., S„, S^), 

where are the results of the communication sequence prescribed by a[,..., a'N 

with ftj = Sj if the j-th component has returned to its axiom and r$o is either 0y 
or if = Sj then ¿o is the string which was sent by during the communication 
before it has returned to its axiom. If <50 is terminal F' stops here, otherwise its 
work continues. After a rewriting step we get 

(So,{0i},...,[0n),Q\,.--,Qi,QoS'a), 

where [/3,] is 0i with one of its nonterminals X in brackets [A] ([/3i] = [Si] if 0-, = Sj ) 
or if it does not contain any nonterminals then [0i] = fti and ¿o is the same as above. 
Now we get 

(Ao,Al...,Al,[01},...,[0n},SoS'a) 

and then 

(Ql,Ql,...,Ql,il,...,in,5oS^), 

where 7- = 7i if 0i =>c,', 7i with one rewriting step and | 7.i \j<= 0, or if | 7/ 
0, 7i = IhQhUz-Qitli,, then 7- = Ti1Q1jlJi2--Qjl7it- After the communication 
sequence we get 

j Sn, S j , . . . , S,j, 

where ¿¿, 1 < i < n are the results of the communication sequence prescribed by 
7l 1 • • • j In with 6j = Sj if the j-th component has returned to its axiom and So 
is either or if ¿1 = Sj then £0 is the string which was sent by G} during the 
communication before it has returned to its axiom. If So is terminal F' stops here, 
otherwise its work continues in the same manner. • 

Now we need to define a notion we will use in the proof of the next lemma. 
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Definition 4.4 Let T = (N. K, T, Gi...., Gn) a context-free PC grammar system 
with I< = {Qi,.... Qn} and let a be a query, a = a1Qila-2Qi2...atQilat,+i, = 
0, 1 < k < t + 1, 1 <ij <n, 1 <j<t. 

We define the j-th portion 1 < j < t + 1 of this query in the following way: If 
j < t — 1 then the j-th portion is a jQ^ . Moreover, if j = t. then it is at,Qt.(Xt.+1. 

Now we are ready to prove the following: 

Lemma 4.4 Ch(ffPCtCF) C C(rhPC*CF) 

Proof: Let T = (N, K, T, i? . , , . . . , Rn, Gu..., Gn) £ rfPCnCF be a PC grammar 
system with immediate communications, nonterminal alphabet N, set of query 
symbols K, terminal alphabet T, returning languages R,\...., i?,„ and n context-
free components G\,..., Gn. 

Now we construct F' £ rhPCmCF, which generates the same language as F. 
Here •in, = (t, + 2)n + 2u + 3, where t and u are the following: t, is the number of 
possible rule combinations that we can try to apply to the sentential forms of F, 
•u is the sum of uk, 1 < k < t,, where uk is the sum of u^, 1 < i < n and •u,f 
is the number of query symbol occurrences on the right-hand side of the i-tli rule 
of the A;-th rule combination. Formally t = IPJ n iL 'd -^ l ^ w e denote the 
rules of the k-th rule combination with A'f —> a t h e n n = 

T' simulates the application of each rule combination of F in a different vi-
t.uple of simulating components with the aid of assistants assigned to each of the 
simulating n-tuples. First an integer k, 1 < k < t is selected and the application 
of the fc-th rule combination is simulated in the k-th -/¿-tuple and in the /;;-tli set of 
assistant components in p steps, with rules using only homogeneous queries. The 
integer p must, be twice the number of necessary communication steps, which is at 
most p = 2v, — 2. The simulating system contains the following components: 

T' = ( N',K',T,Ri, ,Rb, 
si 1 s~i'2 r-it. (-TJ , ••, ( J l , U n , b j , .., LT,„ , . . . , LTJ , .., Lr.n. 

Gl /-fl 1 S-tl /~lt 
11' ••! luj ' 21 ' ••!(-j2I4' II' 1 > •••.Llnu'n •• 

Gni , G0.2 ; 115 Gu,.., G G,, ) 

where the 7/,-tuples simulating the £;-th rule combination are denoted by Gf: i. < 
i < n with their assistant components GkL {,... ,Gfuk. G,u and Ga-2 are inv<)lved in 
selecting the number of the rule combination to be simulated, G\...., G'n are needed 
to help in sending back the sentential forms to G i , . . . , G n after the simulation 
of a rule combination, G\x,.., GLnut are used to force a restart of the components 
G\ |, •••.G'nu,. by querying them when necessary and G/, makes sure the system blocks 
if it, simulates a rule combination which produces a circular query. 

Let, C C {1, . . . , * } be the set, of those integers which number rule combinations 
that introduce circular queries and let, the start symbol of the component G^y be 
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A** . ' cy-f 

N' = {Z, B, F} U {(l)j, (I), (Si)j | 1 < I < t, 1 < j < V + 2,1 < i < n} U 
I / I / ' 7 

,St* | 1 < k < t, 1 < m < V + 2,1 < i < n, l < j < u'i} U 
| G£7 is a component of T ' } U { X , [X] j X £ N} and 

= { S f 7 } , where G^7 is a component of F', 
Pi = {Ai -4 Si} U {X [X] I X a £ Pi) U {S,„ ->• [X] | X e Ri} U 

(Si)1, (SiY ( S i y + \ ( S i ) " + l i i < j < P } , 
Pi = Ll{ U {S./ - » (5m, -4'i —> Qai, Srtl -> S f l ] , (;/) —» Q.;} U 

{(A;) (fc)1, (fc)' (A;)i+\ (fc)"+2 Qttl | 1 < /;: < i, k ± //, . 
1 <1 <p+ 1} 

for all 1 < i < ??,, 1 < j < t and 

{ ( / ) - > ( / ) | 1 < i < U # 
for all 1 < k < t, 1 < i < n, 1 < j < Ui, 

• Pa, = {Aai (A:),Sn] -> (fc),50l S01 | 1 < k < t], 

Pa3 = {Aa.2 -> Qni, s;l2 gni, srt2 -> , (*o -> (¿o i i < k < t>, 
P[ = {X X I X £ (N U { S a i } ) } U {(k) -»• Q>i I 1 < k < t} U 

{ 4 S'i, S[ S 1 ' , S.f -> s < + 1 ' s f Qn.2 I 1 < / < - 1>, 
for 1 < i < n, 

pk' _ r A k' . cA:'1 cfc' , qfc" cfc'm , + 1 ^k 
1 i.j — X-n-ij ^ Jij >°ij ^ °ij ) ij ^ °ij ' ij ^''«¿.7 

| 1 < 7/1 < p + 1} U 
{ ( 0 - > 5 ^ , 5 a i \ljtk,l<l<t} 

for all 1 < k < t, 1 < i < n, 1 <j<u- and 
P„ = {A„ S,„ S„ -> S,1, Si -> Sl+\S>: 0 „ 3 | 1 < I < p - 1} U 

{(j)->B,B^F\jeC) U 
Cj)1,^)1 S i l j g c } . 

We construct the sets Llf and L2y 1 < i < n, 1 < < vt* in the following way: 
Let us fix a k and observe the n rules of the fc-th rule combination. 

The right sides of the rules determine the communication sequence that would 
follow after rewriting with our certain rule combination. 

We say that a sentential form contains a query at a certain point of the commu-
nication sequence if it contains query symbols which are not yet replaced at that 
point of the communication sequence. 

If our A;-t,h rule combination produces a circular query, we modify the rules. We 
replace those query symbols which participate in the circle with a new nonterminal 
Z and execute the following algorithm on this modified rule combination. (See the 
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example at the end of this section.) 
For each m. 1 < m < p/2, we repeat the following steps. (Note that p/2 

is the maximal number of communication steps in T.) If the 7-t.l1 rule of our 
rule combination is the empty rule, then Llk is empty since uk = 0, no assistant 
components Gj { are present, so we do not, need to construct L2ji. During the 
following algorithm we consider the j-th sentential form only if the j-tli rule of the 
combination is not empty. 

l . a . If the i-th sentential form does not contain a query at, the beginning of the 
7/?,-t,h communication step and it is not communicated in the 7n-th communication 
step then we put the rule [X^] —> «¿[A^]1 in Llf where Xt —¥ ai is the i-tli rule of 
the A;-th rule combination if 771 = 1 and the rule [A',]2"1 -- - » [X i ] 2 m _ 1 for all other 
m. 

1.b. If the v'-th sentential form does not contain a query and it is communicated 
in the 7/1-th step, then we put [X.£] —\ ai in Lf if m = 1 and [X^]2"1-2 c- for all 
other 711. 

2. If the i-th sentential form contains a query which is not yet satisfied at the 
beginning of the in-th communication step, then we put, [Xj] —> [A"j]J in Llf if 
m = 1 and [Xi] 2" ' - 2 [X^2™-1 for all other rn. 

2.a. If the j-th query symbol of this query is replaced in the 7/1-th communi-
cation step then we put (A) 2" 1 - 1 aQfft(k)2m in L2fp where aQifi is the j-th 
portion of the right side of the z-th rule of the fc-tli combination. 

2.b. If the j-th query symbol was or will be replaced in a step different from 
the 771,-th, then we put, (k)2'n~[ -4 (k)2m in L2l?j. 

3. There must be queries that, are completely satisfie'd during the 7/7-th com-
munication step. If the ¿-th sentential form contains a query which is satisfied 
completely during the 771-th communication step, we put [X.;]2"1-1 - » Qf, in Llf 
and we put (k ) 2 m Qf(j+i) in L2fj for all 1 < j < uf - 1 and (k)2m [X,;]2'"' in 
L2k k. 

VII i 

4. For all ?! we did not deal with in point 3, we put [Xi] 2 1" - 1 [X;]2"' in L lf. If 
the ¿-th sentential form contains a query which is not, yet, satisfied completely during 
the m-th communication step, we put (k)2m —> (¿ ; ) 2 m + l in all £2*-, 1 < j < v.f. 

After repeating these steps for all 1 < 77/, < p/2, finally add [X',;]'' —> e to Lif, 
1 < i < n. 

Now we turn to the proof of our lemma. First we concentrate 011 the overall 
architecture of the simulating system and show how it works. We will see how it, 
provides p steps for simulating each rule combination with the rules of the set,s Llf 
and L2fj, 1 < k < i, 1 < i < n, 1 < j < uf. T' starts with the initial configuration 

(.•4i,.., An, /1},.., A}n,..., A\,.., Ajlt 

a 1 41 At At "̂ 11., lnj ' ' ' * ' ill ' ••'•finu'n> 

An,,Aa.2, A[,..,A'n, A\x,.... Alnut^, Ab). 

After one rewriting step we get 
(Si • ••; S f l , Qa\ j Qa 1 j Qai j Qai : 
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(k), Qai J S[,.., S'n, Sh ,...-, Sfnu^, Si,), 

where the component Gai introduced the nonterminal (k) 1 < k < n. This selection 
of k means that the system will try to apply the A;-t,h rule combination. Now a. 
communication follows 

(Sl}..,Sn, (k),..,(k),...,(k),..,(k), 
(A;),.., (A;),...,(/=),.., (A;), 
Sni i (k), S[,.., S'n, Sh ,..., S'n<, Sb), 

where k, 1 < k < t is the number of the rule combination to be applied to the start, 
symbols. Next, we get, 

(k)1,.., (A;)1 Qu..,Qn (k)\..,(ky: 

(k),..,(k) ,..., (k)\..,(ky (/.')•..:(/••): 
, (k), 5 j ,.., S,1, , S^ ,..., S*n<, Si), 

where <% is either (Si)1 or [Si], I < % < n and <5ni is either Sai or (I), 1 < I, < t. If 
Si is (Si)1 or Sai is (I) then the system will get blocked, since G'i do not have rides 
with (Si)1 and Gn i does not have rules with (I) on the left side. So we must have 

([5i],.. ,[5„], (ky,..,(ky ,..., Q1,..,Qn ,..., (ky,..,(ky, 
(k),..,(k) ,..., (ky,..,(ky ,..., (k),..,(k), 
Sai,(k), ¿"l ,--,Sn , 51X ,..., Sfnu^, Si). 

The assistant grammars Gf , for the fc-th rule combination introduced 
Ql, ••; Qn, they will receive the sentential forms of G», 1 < i < n and G„,2 preserves 
the value of k for later use. After the communication we have 

(Slt..,Sn, (i:)1.... (/;•}' ,..., [5i],.., [S„] ,..., (ky,..,(k,y, 
(fc),..,(fe) ,..., (k)^.... (/.•}' ,...,jk),..,(k), 
Sat,(k), S1 ,.., 5,1, , Sh ,..., Sllu,^, Si). 

If the fc-th rule combination is not applicable to the start symbols, then the rules 
of P.,̂  are not, applicable to [5»], 1 < i < n. In this case the system is blocked, so 
let us assume that the fc-th rule combination is applicable. 

In the next rewriting step the system starts to simulate the effect, of the fc-th 
rule combination in p rewriting steps. We are going to show that if the A;-t,h rule 
combination is applicable to the current sentential forms, then the system provides 
time for the simulation, takes the resulting sentential forms back to the first n-tuple 
and starts the process all over again with an other rule combination. The details of 
the simulation of the rule combinations will be discussed later, for now we denote 
the sentential forms of the active simulating components Gf and their assistants 
Gl,n, 1 < m < u'i by a{ and pf, 1 < i < n, 1 < / < uk, 1 < j < p . 

We are only interested in the effect the active simulating components and their 
assistants can have on the rest of the system and this is the following: After com-
munication they return to their axioms and then introduce the query symbol Qai 

querying the "outside world", the component G f l l . 
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If they receive Sa , then they use the rule S„, —> Sfll and at the end of the p 
steps this nonterminal will be sent back to Gi, 1 < i < n with the other simulation 
result, where it behaves exactly as the original start symbol. We show that the 
system is blocked if they receive an other symbol. After one rewriting step we get 

(Si,..,8n, (A;)2,.., (A;)2 ,..., a\,..,ai ,..., (k)2,.., (A;)2, 
(k),..,(k) ,..., (k),..;(k), 

Sa,, (k), S j ,.., S~ , S}x ,..., Snu'n' 

where S.L is either [Si] or (Si)1, l . < i < n and <5„, is either Sn, or (/), 1 < / < t. If Si 
is [Si] or <5(ll is (/), then the system is blocked since Pi and P<n does not contain rules 
with [Si] or (I) on the left side, respectively and no other component (not even the 
active simulating components Gf and their assistants G*-, 1 < i < n, 1 < j < uf) 
could introduce queries requesting one of these <5 i or 6ai sentential forms. So we 
continue from 

( ( S O V . t S n ) 1 , (k)2,..,(k)2 ,..., a\,.., ,..., (k)2,..,(k)2, 
(k),..,(k) ,..., /i!,..,/^,..., (A;),..,(fc), 
Sn,, (k), Sf ,.., S~ , Sjj ,..., Slnut^, S^), 

and get 

((Sj.)2,.., (Sn )2 , (A;)3,.., (A:)3 ,..., a 2 , . . , a 2 ,..., (kf...... [k)\, 
(A;),.., (A;) ,..., /?2,..,/32, ,..., (A;),.., (A;), 
Sn. ii(A'0> S'l , ..,S3 , S|j ,..., S'nut^, S 3 ) . 

where Sni is the same as above. We claim that rewriting steps follow in this manner 
providing the time for the simulation of the rule combination: 

( (Si ) 2 , . . , (S n ) 2 , (A;):l.... (A'):i ,..., af , . . , a 2 ,..., (A:)3,.., (A:)3, 
(A;),.., (A;) ,..., ft2, ,..., (A;),.., (A;), 
S(ii, (A:), S'l , . - ,S3 , Sj-j , . . . , , S 3 ) =>• ... =>• 

((Si) ' ,—1 , . . , (Sn)'>—1, (A)", .•,(*)">•-. ai_1,..,<-L ,..., (A;)'J,.., (k)'", 
(A:),.., (A:) ,..., (! '•):-(k): 
¿ai;(A':), SJ ,..,Sf,, S}^ ,..., ,S'b). 

To verify our claim we show that the active simulating components and their assis-
tants can not, interfere with the work of the other components. To do this we have 
to observe their rule sets. 

If one of the simulating components Gf, 1 < i < n returns to its axiom during 
this series of rewriting steps, it introduces Qai and receives 5ni from Ga, • If Sai 

is Srtl then it uses the rule Sni ->• S f t l . If 5ni is (I), I, ^ k, then it uses its rules 
(I) - » (Z)1 and (I)* (l)i+1, 1 < i < p+ 1. If Sai is (A:), then it introduces Qi in 
the next rewriting step and receive (Si)m , 1 < m < p — 2 from Gt. In this case the 
system is blocked since the simulating components do not, have rules with (Si)"' on 
the left side. 
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Now let, us look at the assistants of the simulating components (7f-, 1 < i < 
n> 1 < i < u-i- If one of them returns to its axiom it, also introduces Q,,., and 
receives from Gni• If Sai is Sai or (I), I ^ k then the same things happen 
as we explained above. If <Sttl is (A:) then it is rewritten to (A;)1 and then rules of 

must be used. These rules can only query the active simulating components 
or their assistants, so they do not interfere with the rest of the system. 

From these considerations we see that, the system is either blocked, or it readies 
the following configuration: 

( ( S 1 ) * - V . , ( S n ) " - 1 ) (A:)7',... (A:)'' a r 1 , . . , ^ - 1 (ky,..,(k)p, 
(A:),.., (A:) ,..., ^ r 1 , - , ^ : 1 (*)>••>(*), 
X (l.\ CP' cpl C l ' , , + 1 Ct 'P + 1 qp\ 

where a''~ 
1 and /3? , 1 < i < ni 1 < .'/ < uk can be sentential forms of components 

that either returned to their axioms or not. If they did not, then we assume the 
sentential forms to be correct, if they did, then and pp~l can be either SU], 
(0, (0" ' or Qu 1 < I < t, 1 < i < n, 1 < m < p - 1. If any of them is Q; then a 
communication step follows and the system is blocked. In the other cases rewriting 
is possible, so we get, ({S1y,..,(Sny, (k)p+1,.., (k)p+1 ,..., ,..., (A:)'''1,-.., (A:)'"'1, 

(A;),.., (A:) ,..., (k),..,jk), 

Sni>{k), Qn2>-->Qa2, Sii : Qa2 ) > 

and then after a communication 
( ( ^ r i - . ^ S n ) " , ( * ) P + V - , ( * ) P + 1 ,..., (A;);,+ l , . . , (k)p+l, 
(A;),.., (A:) ,..., Pl..,Pl' lk ,..., (A:),.„(A:), 

where ap and pp are correct by our assumption (if their component, grammars never 
returned to their axioms), or ap and Pf can be either S,n, (I), ( l ) m or Qi, 1 < i < 
ii,, 1 < m, < p. If any of them is Qi then after the replacement, of this symbol the 
system is blocked. In the other cases rewriting is possible again, so we get 

( ( S , F + V . , ( S „ ) " + 1 , (k)p+2,.., (k)p+2 ,..., a î ' + l , . . , < + 1 (k)p+2,..,(ky+2, 
(A;),.., (A;) ,..., ,..., (k,),..,(k), 
àa,,S'U2, QR,..,QN, QH,..., Qlnutn, Su), 

and then after communication 

((Si) ' , + I,.., ( 5 n ) p + 1 , (k)p+2,..,(k)p+2 ,..., Si, ••,Sk ,..., (A;)/l+2,.., (k)v+2, 
c 1 ct. ° i i > •••! J7l< ' 
Sa,, S'a2, c4+1,..,ap+\ (k),...,PP+1,.., pP+i,..., (k),Sh), 

where Sh is either B if the system should block after the simulation of the fc-th rule 
combination or (A;)1 if it should not. Now if any of the a p + 1 , 1 < i < v, whose 
component grammar has returned to its axiom is not, Sa, or some P\'+[ was not 
Sai before the communication, then the system is blocked. Otherwise we get 
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(Q 1 / *•> V̂Jl? ft 1 } • • • J 
Qaj j • • •) Qai ) 

x n r v p + 1 0 - P + 1 9 1 ' 1 < ? ' " ¿ ' 1 

and then 
(rrp+l nv+1 * s 

^aj j •••5 8ai 5 
S[,..,S'n, Sjj >---yStnu^,6'll), 

where ¿„, is either Sn , or (/), 1 < I < t. If it is Sa, then the system is blocked, 
since G d o e s not have a rule with Sa , on the left. So we have 

K + 1 , . . , < + 1 , ( / ) , - , ( 0 . 
(0 , . . , ( / ) , 
Sn , ,(0> S n , ..., Snut^ , 

where 1, 1 < i < n is the result of the fc-th rule combination with SHl instead 
of Si if the i-th component has returned to its axiom after a communication and 
S'b is either F or Si,. If oci is terminal the system stops here, if it is not, then it 
can continue in the same manner with the simulation of the Z-th rule combination 
if S'b is not F. S^ is F only if the fc-th rule combination introduces a circular query 
in T in which case F' should be blocked. If = Sa, 'for some j, then the j-tli 
component should return to an element of Rj. This is simulated by using a rule 
Sni —> [yY], A' € R.j in the next step. 

Now we show how the p step simulation of the rule combinations is done. We 
have two cases. If the rule combination to be simulated does not introduce a query, 
then no assistant components are present. At the beginning of the simulation we 
get 

(..., [Si], [Sn],...) (..., ^ [S i ] 1 , . . , an[Sn]1, •••)> 

in Gf using the rules of Lf , 1 < i < n, where a^ are the right sides of the rules of 
the fc-th rule combination. Now p rewriting step follows, we get 

(..., a^Si] 1 , . . , «„[Sn]1 , . . .) => ... => ( . . . . a ^ S i ] " , . . , « « ^ ] " , . . . ) , 

and in the next step 

(..., a:i,.., a,i,...) 

using the rules [Sj]'J e, 1 < i < n. Here a* is the result of the application 
of the ¿-th rule of the simulated rule combination, the system deals with it, as we 
previously described. 

If the fc-th rule combination introduces queries, the situation is more compli-
cated. At, the beginning the sentential forms of the simulating ?i,-tuple and the 
assistants are 

(...,[S|j,..,[Sn;, ,(/;:)',..,(/,:)',...). 
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The sentential forms of the components Gf and Gfj after the Z-th rewriting step 
will be denoted by a/ and a^ ' , 1 < i < n, 1 < j < uf, 1 < I < p + 1. 

After the first rewriting step, the sentential forms of the simulating n-tuple and 
their assistants are the following: 

If the ¿-th sentential form in F is communicated in the first step then the sen-
tential form of Gk, a-i1 is Ui, the right side of the ¿-tlx rule of the rule combination: 

(...,«{, ...wîl, ..,aln, , (k)2,.., (A;)2, ...). 

If the ¿-th sentential form in T does not contain a query and it is not communicated 
in the first step then a f is (¿¿[S;]1, u)i is as above: 

(..., a|. . . ,u i x , . . , u i2 [SiJ1,.., a i , , (A;)2,.., (A;)2,...). 

In these two cases -uf = 0, so there are no corresponding assistant, components. 
If the ¿-th sentential form of P contains a query and the j-th query symbol of 

this query is replaced in the first step, then ai = [Sj]1, and the sentential form of 
the assistant component corresponding to this query symbol, a , ] is aiQfa2(A;)2 , 
where ayQi.a-> is the j-th portion of righthand side of the ¿-th rule: 

..., (A;)2,.., axQfa 2 {k) 2 , . . , (A;)2,...). 

If the j-th query symbol of the ¿-th sentential form is not, replaced in the first, step, 
then ai:jl = (A;)2: 

( . . . . . W i , , . . , [SVJ1,.., [Sij]1, ... 
...,(A;)2;..,a1Qfa2(A:)2,..,(A;y2,..,(A;)2,...). 

Now a communication follows in F'. If the /-th sentential form replaces the j-th 
query symbol of the ¿-th sentential form in the first communication step of F, then 
in T' ai1 becomes Sk, ai1 remains [S.;]1 and q^ 1 becomes aiai1a2(k)2 : 

(..., a},.., Si1,.., ^^[Siz]1,.., [Sij]1,.., a*,... 
..., (A:)2,.., aiwila2(A,02,.., (A;)2,.., (A;)2,...). 

Now a rewriting step follows in T'. If the ¿-th sentential form was communicated 
in the first, step then aj — Qai • 

If the ¿-th sentential form was not communicated in the first step and it does 
not contain a query, then aj = 

If the ¿-th sentential form contains a query but it is not completely satisfied in 
the first step, then aj = [5»]2. If the j-th sentential form of this query was replaced 
in the first, step then a¿7-2 = aiai1a2(A;)3: 

(•••>aii -Qa,,-,^2[SiJ2,.., [Si3]2, -,ajx,... 
...,(A:) : i,..,a1^1a2(A:)3,..,(A ;)3,..,(A03,...). 

If the ¿-t,h sentential form contains a query which is completely satisfied in the first, 
step, then aj = Qttk and ajj = uiQi<j+i)> 1 < j < - 1 and a 2 ^ = a;.,,!-[S,;]2 

where u>i, 1 < Z < uf is the satisfied Z-th portion of the righthand side of the query 
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of the ¿-th rule. In this case a communication step follows in which the results of 
the query are collected and passed back from the assistants to : 

(..., aj,Qai,...u>i2[Si2]-,.., Qk4 

..., ( k f , . . . w i Q i 4 2 , W 2 [ 5 i 4 ] 2 , ( A O 3 , - , (AO 3 , •••), 

(...,af, ..,5h, ..,u>i2[Si2]2, . . , w i w 2 [ 5 , 4 ] 2 , . . . 

•-•J (*0'\ Si4l; Si42> , (k)31 ••> (AO3, •• ), 

where is either S n i , (I) with I ^ k or (k). 
Now the simulation of the first communication step of F is complete, the system 

begins to simulate the second one in the same manner. A rewriting step follows. If 
the ¿-th sentential form in F is communicated in the second step then is erased 
from the sentential form of . If the ¿-th sentential form in T does not contain a 
query after the first communication step and it is not communicated in the second 
step then either [S,]2 is changed to [S*]3 or if the ¿-th component has returned to its 
axiom after the first communication step of T then there are three possibilities. If 
Qai was replaced by S n i , then it is not changed. If Qai was replaced by (/), I. ^ A;, 
then it is rewritten to (I)1. If Qai was replaced by (AO, then it is rewritten to QL 

and after this communication no further rewriting will be possible: 

(..., a?,.., ¿1,..,uji2,.., [5,3]3,.., wiw2[Si4]3, - , a 3 , ), 

where is either Sai, (I) with I ± k or Q.h. If S^ = Qi, then the system is blocked 
after the communication. 

Now let us look at the assistant components, lïuf ^ 0 (the ¿-th sentential form 
contained a. query which was completely satisfied in the first step), then G,-;-, 1 < 
j < u1-, the assistant components of Gf have also returned to their axiom and now 
have Qai as their sentential form. If Qai is replaced by 5 a , or by (I), I ^ A;, then 
it will not be changed later. If Q a i is replaced by (k), then it will be rewritten to 
(A:)1 and the assistant will begin to repeat what it previously had done. This will 
not interfere with the rest of the simulation process, since the ¿-th sentential form 
was already communicated. 

If the ¿-t,h sentential form of T contains a query and the j-th query symbol of 
this query is replaced in the second step, then a f = [S;]3, and the sentential form of 
the assistant component corresponding to this query symbol, a*,-3 is a\Qi<t-î{k)4, 
where a iQ;a 2 is the j-th portion of righthand side of the ¿-th rule. If the y-th 
query symbol of the ¿-th sentential form is not replaced in the second step, then 
« : , / = (AO4 

( • • • , a f , . . , < 5 ^ , . . , u j i 2 , . . , [ 5 , 3 ] 3 , . . , w i w 2 [ 5 i 4 ] 3 , . . , a 3 , . . . 

- , (AO 4 , - , Qai, Qai, - , a i Q & a 2 ( f c ) 4 , . . , (fc)4,...). 

Now a communication follows in T'. If the /-th sentential form replaces the //-th 
query symbol of the ¿-th sentential form in the second communication step of F, 
then in T' et;3 becomes S^, «¿3 remains [S;]3 and a^ 3 becomes a i a f a.2{k)A. 

( , . . ,o:î , . ,<5| l , . ,5f2 , . . , [5 i 3]3 , . ,a;1a;2[5 Î 4]3 , . . ,a3 , . . . 
-•, (AO4, -,aiW i2a2(A:)4,.., (A;)4,...). 
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Now a rewriting step follows in F'. If the ¿-th sentential form was communicated in 
the second step then a j = Q a i . If the ¿-th sentential form was not communicated 
in the second step and it does not contain a query, then [5j]3 is changed to [S;]4 in 

If the ¿-th sentential form contains a query but it is not completely satisfied 
in the second step, then a\ = [Si]4. If the j-th sentential form of this query was 
replaced in the second step then a^ 4 = aia/3a:2(A;)5. 

If the '¿-th sentential form contains a query which is completely satisfied in the 
first step, then af = Quk and a\j = u>jQk^+1), 1 < j < and aiuk4 = w„ t[5j]4 

where w/, 1 < I < uk is the satisfied I-th portion of the righthand side of the ¿-th 
rule: 

( - , a j , . . , S l , . . , Q a i , ..,Qk3l, ..^w^S^]4, ... 

•••> 0)5> ••> SUI,SU2> ••,a1u)i2a2[Si3}'1,.., (k)5,...). 

In this case a communication step follows in which the results of the query are 
collected and passed back from the assistants to Gk: 

(...,Q'Î, , . - A 2 , ..,aiw.i2Q2[5i3]4, ..,wiw2[5j4]4, . .a4 , . . . 
..., (k) ',.., Si4i,Sf42, ••, Si2i, ••! •••)• 

Now the simulation of the second communication step of T is complete, the system 
begins to simulate the third one in the same manner, and so on. 

If the simulation of all communication step is complete, then the system uses 
the rules [S,]m [Si]m+\ 1 < ¿ < n, 1 < m < p - 1, and finally when G'-, get 
ready to receive the result, it erases [Si]p, 1 < i < n. 

It is clear that all our arguments about the simulation of the first rewriting 
step and the following communication sequence of T by F' also hold for all other 
rewriting steps and communication sequences, where all of the sentential forms 
contain at least one non-terminal. 

Now let us consider the case when one or more of the sentential forms ttj,..., <x„, 
of G\,..., Gn is terminal and the system chose to simulate the application of a ride 
combination to these sentential forms. 

If atj is terminal for some j and the ji-th rule of the chosen combination is 
empty, the simulation is correct. Now we show that the simulation is also correct, 
if OLj is terminal and the j-th rule of the chosen combination is not empty, but it is 
Xj u>j. 

If \ujj\x = 0, the j-th rule does not introduce queries, then the simulation 
would consist of rewriting [Xj] to WjfX,-]1, u>j[Xj}2 and so on, until the bracketed 
nonterminal [Xj]1 is finally erased. Using these rules on o.j € T* has the same effect 
as if the chosen combination contained the empty rule instead of X j —> Wj. 

| If \UJ)\K 0, the ;y'-th rule introduces queries, then the assistant components 
G^,.., Gkjuk begin to collect the result of the query. The system will get blocked 

when they are ready to send the result to Gk, because Gkx can not rewrite the 
bracketed nonterminals [Xj]1, 1 < I < p. • 
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We demonstrate this construction on a simple example. 

Example Consider the following PC grammar system F g rfPG^CF generating 
the language {aa}. 

T = (N,K,T,R.i,...,R4,G1,...,Gi), N = {Si | 1 < i < 4}, T = {a..b}; 

Pi = {S, -> Q3Q2}, P2 = {S2 -4 Q 3 } , Ps = {S3 -> «}, P4 = {S4 - » ft). 

Since we have only one rule in each rule set, our rule combinations contain the ride 
of Pi and we are free to choose the empty rule instead of one or more rules of the 
other components. This gives us a total number of 8 combinations, of which only 
that one is applicable which contains the four rules of the four components. Let 
this one be the 8-th one and let us concentrate only 011 this combination. 

Now t. = 8, u = 20, uf = 2, -it® = 1, u3 = 0, u* = 0, the simulating system 
r ' € ThPCs.iCF contains the following components: 

T' =( N',K',T,RU. .,R„, 
G/^i /-tl /-fl /08 /-iH 1, ..,<J4, <-TJ , .., LT4, ...., (J-J, .., (.T4, 

r> r r<1 n 8 r<8 r<8 <jr n , . . . , Cr21 , Crj j , (_T12, (jroj , 

Gai,Gtt2, G'1:..,G'n, G\x,...., G^j, Gi, ). 

The longest, communication sequence of the original system contains 2 communi-
cations steps so the choise of p — 4 is appropriate. The rest of the system F' 
is: 

N' = {Sit [Si] | 1 < i < 4} U {S f 7 , A^ | G%yis a component of F'| U 
1 / 1 /"I 1 

{Sij , S& I 1 < k < 8, 1 < i < 4 , 1 < j < v.f, 1 < m < 6 } U 

{ ( 0 , ( l ) j , ( S t y I 1 < l < 8 , 1 < .y < 6, 1 < i < 4 } U 

{Z,B,F}, 
Rfa7 = { S f 7 } , Gg7 is a component of T', 

Pi = {Ai -4 Si} U {Si -4 [Si]} U {Srtl [Si]} U 
{Si^Sl,Sl ->st,st sf, Sf Q'i}, 

Pi = L\{ U { S - -4 <3„, , A? -4 Qax, (j) -4 Qi, Sat Sai } U 
{(*) -4 (k)1, (k.y (k)2,(ky (kf,(kf -4 (k)\(k ,y -4 (k.r, 

(fc)5 -4 (k)a,(kf -4 Qai I 1 < k < 8, k # j], 
for all 1 < i < 4, 1 < j < 8 and 

Pi = L2*ij U {S^- -4 Qai, Afj -4 Qai, (k) -4 (/¡;)J, Sa , S„, } U 
{ ( / ) - » (0 I 1 < l < 8 , l i L k } , 

for all 1 < k < 8, 1 < i < 4, 1 < j < uf. 
pai = {Aai (fc), S a i -4 (fc), Sn i -4 Sa i I 1 < k < 8}, 
Pn2 = {Aa2 - » <2n, , s ; 2 Qai,Sa2 S'a2, (k) (fc) | 1 < fe < 8} , 
Pi = {Si^Si,Sai->Sai}U{A'i^S'i,(k)->Q$\l<k<8}\J 
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{s; sy,sr -> sr,s? s3',s3 st ,s4 g«,}, '3 ' c3' ci1 c4' 

for 1 < i < 4 and 
, / I / I /1 , / 1 /1 I / Til , /111+1 , /6 , pi; / /IK , ok ok ok ÇK . çk çk /m+1 

| 1 < m < 5} U 
11 /1 

lui an 1 «, N U, J. ' ^ M, J- J « i , 

Pfc = { A , S(,, 5Î, S 1 , S1 S 2 , Si -4 S 3 , S3 - » S 4 , S4 Q f t 3} U 
{ ( i ) ^ ( i ) 1 , ^ ) 1 ^ | 1 < j < 8 } . 

for all 1 < k < 8, 1 < i < 4, 1 < j < u* 'i > 

Now if we construct the sets L\\ and L2\^ according to the algorithm given above, 
we get the following result: 

JA = {[5i] [Si]1, [Si]1 [ S i ] 2 , ^ ] 2 -> [Si]3, [Si]3 Qft, [5i]4 e}, 

L\ = {[S2] [S,]1, [Si]1 -> Q*21, [S2]2 e}, 

Ll = {[S3] «, [S3]] [S3]2, [S3]2 -> [S3]3, [S3]3 [S3]4, [S3]4
 C } , 

L\ = {[S4] b[S4]\[S4]1 [S4]2, [S4]2 [S4]3, [S4]3 [S4]4, [S4]" e>, 

L2?! = {(8)1 g« (8) 2 , (8)2 (8)3, (8)3 (8)4, (8)4 Qf2>, 

L2?2 = {(8)1 (8)-\(8)2 (8)3(8)3 Qi(8)4 , (8)4 [Sj]4}, 

L 2 l 1 = { ( 8 ) 1 - > Ç « ( 8 ) 2 , ( 8 ) ^ [ S 2 ] 2 } . • 

By corollary 4.2, lemma 4.3 , lemma 4.4 and by observation 2 we have the following 
theorem: 

Theorem 4.5 C{fPC*CF) = C{hPC,CF) 

Proof: The inclusion £( / iPC*CF) Ç C(fPC*CF) holds by observation 2. To 
show the converse inclusion, we have C(fPCrCF) C Ch(rf PC*CF) by lemma 4.3, 
Ck(ffPCtCF) Ç C{rhPC*CF) by lemma 4.4 and C(rhPC*CF) = £{hPC*CF) 
by corollary 4.2. • 

5 Conclusion 
In this paper we have introduced immediate communication in parallel commu-
nicating grammar systems. Since it differs only slightly from previously existing 
communications, the generative power of these systems do not change in most cases. 
To study the generative power of non-centralized, returning systems, we general-
ized the idea of "returning to the axiom after communication" and we have shown 
that the use of immediate communications in non-centralized returning PC gram-
mar systems results in the same generative power as if we only used homogeneous 
queries with the usual communication protocol. 
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On Two-Step Methods for Stochastic 
Differential Equations 

Rózsa Horváth Bokor 

Abstract 

The paper introduces a new two-step method. Its order of strong conver-
gence is proved. In the approximation of solutions of some stochastic differ-
ential equations, this multistep method converges faster in mean E\X — Y/v| 
than the One-step Milstein scheme with order 1.0 or Two-step Milstein scheme 
with order 1.0. 

Keywords: Stochastic differential equations, strong solutions, numerical 
schemes 

1 Introduction 
The problem considered in this article is that of approximating strong solutions of 
the following type of the Ito stochastic differential equation: 

dXt = a(t, Xt)dt + b(t, Xt)dWt, for 0 < t < T, Xt G Rr f, (1) 

where 
o = («i -.. ad)T,b ={b1... bd)T,X o = X(G 

The above system is driven by the one-dimensional Brownian motion. Details 
about this stochastic object and corresponding calculus can be found in Karatzas 
and Shreve [2]. 

We suppose that throughout this paper E || Xo ||~ < +oo and XQ is independent 
of Tt = u{W s '• 0 < s < t}, the er-algebra generated by the underlying process. 
Also, suppose that coefficients a(t,x) and b(t,x) satisfy conditions which guarantee 
the existence of the unique, strong solution of the stochastic differential equation. 

The approximations considered here are evaluated at points of regular partition 
of the interval [0,T]; these have the form (0," A, 2 A , . . . , NA), where N is a natural 
number and A = We denote nA by rn , for n = 0 , 1 , . . . , N. 

'Department of Mathematics University of Zagreb, Bijemicka 30, 10000 Zagreb, Croatia, email: 
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Here we shall use the abbreviation Yn to denote the value of the approximation 
at time nA and the following operators 

L° 
d d 1 TT^ ,k,i &2 

k=l K k,l=1 dxkdxt ' 

L l = 

t i d X k 

(2) 

(3) 

To classify different methods with respect to the rate of strong convergence as in [3] 
we say that a discrete time approximation YA converges with strong order 7 > 0 if 
there exist constants Ao G (0,+00) and K < +00, not depending on A , such that 
we have a mean global error 

Eps{T) = E \XT ~ ijv | < KA7 for a11 A C (0, Ao)-

The widely used method of order 1.0 is the Milstein method, which has the form 

1 = YnM + « f o , YNM)A + b(rn, YnM)AWn + ^ ( t « , Y^){{AWnf - A ) , (4) 

with F0 M = XQ. The two-step Milstein strong scheme, for which the k-th component 
in the general multidimensional case d = 1, 2 , . . . is given by 

Vk,T 
ln+1 (1 - lk)Yk>T + 7 + ak(rn, y j ) A + Vk (5) 

+ Ik (1 - ak)ak(Tn,Yj) + afcafe(rn_1)rnT_i) A + Vk_, 

with 

V.K = BK{TNRT)AWN + -LIBK(TN,Y^){{AWNY-A), 

Y1 n = Xo, Y1t = Y1* 

where A W n = WTn+1 - WTn, n - 0 , 1 , . . . , N - 1, k = 1 , . . . , d, and ak,~/k G [0,1]. 
In the general multidimensional case with d — 1 , 2 , . . . the k-th component of 

the new multistep scheme takes the form 

Yk+l = (1 - 7k)Yk + lkYti + ak(Tn, Yn)A + bk(rn, Yn)AWn 

+ ¿LWiT^YJUAWn)2 - A) 

+ 7k ^[l-ak)ak(Tn,Yn) + akak{Tn-1,Yn_1)jA 

+ H f c ' ( T n , y n ) + 4 l ( r n . i i y n _ 1 ) j A W n . l l 
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- - U - b ^ T n - u Y ^ ) A (6) 

Y0 = X0,Y1= Y{ M 

where A Wn = WT. - WTri, A = rn+1 - rn, n = 0 , 1 , . . . , N - 1, k = 1 , . . . , d and 
ctk,lk € [0,1]. 

During the last years several authors have proposed multistep methods for 
stochastic differential equations with respect to strong convergence criterious. 

I refer here to the books of Kloeden and Platen [3], Boulean and Lepingle [1] 
and the paper of Lepingle and Ribemont [4]. 

2 The Main Results 
Now we are able to state the corresponding convergence theorem for the multistep 
method (6): 

Theorem 2.1 Consider the ltd equation (1). Let 

da da_ d2a db db_ d2b d2b 
dt' dxi' dxidxj' dt' dxi' dt2' dtdxi' 

_5^ 8H £ x Rd 
dxidt' dxidxj' dxidxjdxk ' ' ' 

be given for all 1 < i,j,k < d, where C;,([0,T] x Rrf,Rrf) denotes the set 
of continuous and bounded functions from [0,T] x Rrf to Rrf, and functions 
L°a,L°b,Lia,L°Lib,LlL1b fulfill the linear growth condition 

\ \ f ( t , x ) II < ^ ( 1 + . 1 1 3 11), 

for every t 6 [0, T], x 6 Rrf, where K\ is a positive constant. Under the assumptions 
the multistep method converges with strong order 7 = 1.0, that is for all n = 
0 ,1 , . . . ,N and step size A = N = 2,3 . . . 

E(|| XTn - Yn ||) < K2( 1 + E || X0 ||)A10, 

where K2 does not depend on A. 

Remarks 2.2 (1) In computation, the boundedness assumption is no restriction 
since any number generated by the computer is bounded by the capacity of the 
computer. 

(2) || • || is a norm in Rd . 

(3) We vjould prove the statement of the theorem for the scheme (6), where a^ = 
0.0. For ak € (0,1] we prove the statement of the theorem on the same way. 
For ak = 0.0 the scheme (5) equals (4) ifYf = Y0M and Y? = YXM. 
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To prove Theorem (2.1), we recall the following lemmas: 

Lemma 2.3 For all natural number N = 1 ,2 , . . . and for all k = 0 , 1 , . . . , N are 
valid the next inequalities 

E(\\YLM\\2)<K3(1 + E\\X0\\2), 

E(\\YkT\\2)<K3(l + E\\X0\\2). 

Lemma 2.4 Under the assumptions of Theorem 2.1 the Milstein approximation 
Yjy converges with strong order 1.0 that is 

E || XT - Ytf ||2 < IUA2 0(l + E || X0 ||2) + K0E || A0 - Y0M ||2 

where the constants K-,• Ka do not depend on A. 

Proof 

Since the first-order partial derivatives of a and b are bounded, there exists a 
K7 < +00 such that for all x,y £ Rd , (see details in Newton [5]) 

|| a(t,x)-a{t,y)\\ < K7\\x-y\\, 
|| b(t,x)-b{t,y)\\ < K7\\x-y\\, 

|| L1b(t,x)-L1b(t,y)\\ < I<7 || re - y || , 
|| a(t,x) || + || b(t,x)\\ + \\LH(t,x)\\ < ^ 7 ( l + ||.x-||). 

We introduce the Milstein approximation (4) in the form 

y ' f i = ( 1 - 7 k)YÏ>M + ak(TniYnM)A + bk(Tn,Yf)±Wn , 

+ l-LHk{Tn,Yn)({^n)2 - A) + lkYk'M 

= ( 1 - lk)Yk'M + ak(rn, YnM) A + bk(rn, F 7 1 m ) A W „ 

+ l-LHk{rn,Y^){{AWn)2 - A) + 7*; [ Y ^ I + ak(Tn.ltY^ )A 

+ & f c(m-i, YfijAW^ + ^ L1 bfc (T„_I , Y^t i ) ( ( A W n _ , )2 - A )^ . 

Taylor's expansion is used to give the term fcfc(r„_i, Y^_x) around (Tn,YnM) and 

b^-uY^) = bk(rn,YnM) + - rn) 

+ f l ^ x r m ^ - Y ^ ) 



On Two-Step Methods for Stochastic Differential Equations 201 

i= 1 
1 _i_ ! V (V* v*'M\(Vi'M _ yi,ifwvi,W ^ 9 Z ^ ^ n i ' n A J n - l -Si A-"«- ! _ J; 2 dx;dxj 

1 J = 1 

and 
a / / 
~ (Tn,Y,f) - „ (t"„-1 , + ( r „ l l , } ' „ l l 'M ) (Tn - T„_'j ) *,* T ,r*,*,M\ 

ax dtdxi 

f)2 hk 
u u Y*-*'M)(Yj-M - Y'j'M\ 

yk 
In+1 

dxjdxi 
.7 = 1 J 

Also; used the fact that 

- Y>'M = —a3 (rn_!, !)A - I P , y^j) 

- ¿ L ^ V n - i . ^ X C A W ^ ) 2 - A ) . 

When these are substituted into the expression Y^^f and assumptions of the the-
orem are used we get 

+ (bk(rn,Yn)-bk(Tn,Yf))AWn 

+ i (l}bk(rn, Yn) - Llbk(rn,Yjf)^j ((A Wn)2 - A ) 

+ Ik - YkLl~ + (ak(rn^,Yn^) - ak(rn_uY^))A 

bh(TniYn) - 6 f c (rn ;y„M ) +bk(Tn-1,Yn-1) - b^m-i.^-i) 

Llbk[rn-u yn-i) - I}bk (rn_!, y,^!) 

+ - A W « - , 

+ fl(rn- -1: ,rn ,ynAi1 ,y,f f)(A • A W „ - ! ) 

+ h(rn- -1 : , /rr i ,y^1 ,yTf i)((A2 • AW n _ i ) 

+ f3(rn- -1: . r ^ y ^ ^ y r i C A - C A ^ ) 2 ) 

+ /4(T71--1 : I ; ^n^ 1, ) ( A Wn _ 1) 3 

+ h{Tn- -1: 
+ feiTn- -1: ,Tn,Y^_l,YJf)(AWn-i)5, 
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where \ \ h { T n _ U T n , Y ^ Y j f ) f < C ^ + U ^ ||2),i = 1,2,3,4,5,6. 
Squaring both sides of the equation, taking expectation and from Lemma. (2.3) 

we get 

£ ( l l Y ! ; + 1 - Y ^ ||2 ) < E ( | | y „ * - Y £ ' m | | 2 ) ( a - 8 + K 9 A + k w A 2 ) 

+ E(\\ Y^ - YtMx l i 2 ) ( ^ n + A'riA + -K'isA2) + A'MA :\ 

where A"8, A'9, A'| 0 , K\i, K\2, K\3 and K1A do not depend on A. 
Using for the starting routine Milstein approximation i.e. Ynk = Y,f"'M and 

yk = Yk'M we get that for all n = 0 ,1 , . . . , Ar 

£ ( | | F t f - ^ M | | 2 ) < A 1 5 A 2 , 

where A'is does not depend on A. 
From Lemma 2.4 

¿5(11 Xr, - YnM ||2) < Ii16( 1 + E || A ' o | | ' 2 ) A 2 , 

where K\§ does not depend on A (see in [3]), we apply these results to prove finally 
the strong order 7 = 1.0 of the multistep method, as is claimed in Theorem 1. 

3 Some Experiments 
Let us consider the Milstein approximation (4), two-step order 1.0 strong scheme 
(5) and the approximation set out above (6). The three approximations set out 
above were each tested on the following examples. 

Example 3.1 

dXt = l.oXtdt + XtdWt (7) 
X0 = 1.0, 

where (Wt) is a Wiener process. 
The solution of (7) is Xt = X0 exp(t + Wt) 

Example 3.2 

dXt = ^ ^ + X 0 ( l + t ) ° ^ d t + X 0 ( l + t r d W i ( 8 ) 

X0 = 1.0 and a = 2.0 

where (Wt) is a Wiener process. 
The solution of (8) is Xt = (1 + t)2 (Wt + t + 1.0) 
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In each case the mean-square error E|| — Yi ||2 at the final time (T = 1) is 
estimated in the following way. A set of 20 blocks, each consisting of 100 outcomes 
( ! < ? ; < 20, 1 < j < 100), were simulated and for each block the estimator 

j=i 

was found. Next the means and variances of these estimators were themselves 
estimated in the usual way: 

2 20 

and 

20 ¿=i 

1 2 0 

¿=i 
According to the central limit theorem, the £j should be nearly Gaussian and so 
approximate 90 percent confidence limits for £|| — Yjv ||" can be found from the 
Gaussian distribution; these were calculated according to the formula e ± 1.73 

The results of the simulations for Examples 3.1 and 3.2 are shown in Table 
1 and 2. These results are gotten for o. = 0, 7 = 1.0 in Example 3.1 and for 
a = 0, 7 = 1.0 and a = 0.5, 7 = 1.0 in Example 3.2. There is 110 sense to take.7 
near zero, because then the new term can be neglected, so the new scheme behaves 
as Milstein 1.0. The meaning of the headers in the tables is: 

A - time step size of the strong approximation; 

e - absolute errors for different time step sizes; 

L - half of the confidence interval lengths. 

For example, we can see from the tables that in Example 3.2 for A = and 
a = 0.0 and 7 = 1.0 the absolute error by Milstein method (4) is 3.42858 • 10 - 2 , 
by Two-step Milstein method (5) is 9.45832 • 10~3, while by the new scheme (G) 
is G.81161 • lO - 3 . Also, the length of the confidence interval by the new scheme is 
smaller than by Milstein 1.0 and Two-step Milstein methods. This statement is 
also true for the Example 3.1. 
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Table 1: Example 3.1 
Milstein method (4). 

A £ L 
1.00000E+00 2.27665E+00 1.47186E-01 
5.00000E-01 1.97078E+00 2.40568E-01 
2.50000E-01 1.20429E+00 8.45154E-02 
1.25000E-01 7.37239E-01 5.64921E-02 
6.25000E-02 3.82413E-01 3.99189E-02 
3.12500E-02 2.39074E-01 6.31194E-02 
1.56250E-02 1.10807E-01 1.27486E-02 
7.81250E-03 5.60566E-02 8.09157E-03 
3.90625E-03 2.53057E-02 3.36756E-03 

Multistep method (6) for a = 0 and 7 = 1.0. 
A £ L 

l.OOOOOE+OO 2.51146E+00 1.98164E-01 
5.00000E-01 1.41485E+00 9.57135E-02 
2.50000E-01 6.39612E-01 5.46793E-02 
1.25000E-01 3.21211E-01 2.94124E-02 
6.25000E-02 1.50961E-01 8.22891E-03 
3.12500E-02 7.51688E-02 5.73330E-03 
1.56250E-02 3.92063E-02 2.09849E-03 
7.81250E-03 2.00488E-02 1.25050E-03 
3.90625E-03 9.94833E-03 6.94911E-04 

Two-step Milstein (5) for a = 0 and 7 = 1.0. 
A £ L 

l.OOOOOE+OO 2.37813E+00 1.87704E-01 
5.00000E-01 1.45746E+00 1.12863E-01 
2.50000E-01 8.02364E-01 9.384G8E-02 
1.25000E-01 4.91936E-01 6.26155E-02 
6.25000E-02 2.36993E-01 2.86351E-02 
3.12500E-02 1.22735E-01 6.91430E-03 
1.56250E-02 6.22639E-02 5.80727E-03 
7.81250E-03 3.31988E-02 2.88916E-03 
3.90625E-03 1.65349E-02 1.28400E-03 
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Table 2: Example 3.2 
Milstein method (4). 

A £ L 
1.00000E+00 4.21558E+00 9.211294E-02 
5.00000E-01 2.90298E+00 7.181054E-02 
2.50000E-01 1.77082E+00 4.158990E-02 
1.25000E-01 9.78134E-01 2.936154E-02 
6.25000E-02 5.27383E-01 1.338104E-02 
3.12500E-02 2.75086E-01 7.950747E-03 
1.56250E-02 1.36424E-01 3.334465E-03 
7.81250E-03 6.97031E-02 1.644745E-03 
3.90625E-03 3.42858E-02 7.971471E-04 

Multistep method (6) for o. = 0 and 7 = 1.0. 
A £ L 

1.00000E+00 4.27766E+00 1.03425E-01 
5.00000E-01 1.70013E+00 3.85968E-02 
2.50000E-01 6.21525E-01 1.72348E-02 
1.25000E-01 2.60004E-01 8.05579E-03 
6.25000E-02 1.16169E-01 3.57810E-03 
3.12500E-02 5.50517E-02 1.51257E-03 
1.56250E-02 2.71983E-02 9.70674E-04 
7.81250E-03 1.33966E-02 4.02296E-04 
3.90625E-03 6.81160E-03 2.22766E-04 

Multistep method (6) for a = 0.5 and 7 = 1.0. 
A £ L 

1.00000E+00 4.17855E+00 1.05099E-01 
5.00000E-01 2.22505E+00 4.56814E-02 
2.50000E-01 1.15922E+00 3.09267E-02 
1.25000E-01 5.91574E-01 1.29769E-02 
6.25000E-02 2.90397E-01 5.80337E-03 
3.12500E-02 1.43653E-01 3.21847E-03 
1.56250E-02 7.27217E-02 2.00281E-03 
7.81250E-03 3.50626E-02 8.46181E-04 
3.90625E-03 1.77133E-02 3.59233E-04 
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Two-step Milstein (5) for a = 0 and 7 = 1.0. 
A e L 

1.00000E+00 4.24832E+00 9.85367E-02 
5.00000E-01 1.77406E+00 5.03204E-02 
2.50000E-01 7.62093E-01 1.71932E-02 
1.25000E-01 3.37591E-01 1.07679E-02 
6.25000E-02 1.60081E-01 5.27565E-03 
3.12500E-02 7.77709E-02 2.43576E-03 
1.56250E-02 3.73556E-02 1.02419E-03 
7.81250E-03 1.96293E-02 5.93383E-04 
3.90625E-03 9.45832E-03 2.41391E-04 

Two-step Milstein (5) for a = 0.5 and 7 = 1.0. 
A e L 

1.00000E+00 4.23623E+00 8.01164E-02 
"5.00000E-01 2.28984E+00 4.36308E-02 
2.50000E-01 1.21665E+00 3.63160E-02 
1.25000E-01 6.34940E-01 1.90075E-02 
6.25000E-02 3.13706E-01 8.61972E-03 
3.12500E-02 1.60810E-01 4.54545E-03 
1.56250E-02 8.02790E-02 2.21567E-03 
7.81250E-03 4.09332E-02 1.03573E-03 
3.90625E-03 2.04743E-02 4.97450E-04 
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