22 research outputs found

    Production matrices for geometric graphs

    Get PDF
    We present production matrices for non-crossing geometric graphs on point sets in convex position, which allow us to derive formulas for the numbers of such graphs. Several known identities for Catalan numbers, Ballot numbers, and Fibonacci numbers arise in a natural way, and also new formulas are obtained, such as a formula for the number of non-crossing geometric graphs with root vertex of given degree. The characteristic polynomials of some of these production matrices are also presented. The proofs make use of generating trees and Riordan arrays.Postprint (updated version

    The Star of David Rule

    Get PDF
    In this note, a new concept called {\em SDRSDR-matrix} is proposed, which is an infinite lower triangular matrix obeying the generalized rule of David star. Some basic properties of SDRSDR-matrices are discussed and two conjectures on SDRSDR-matrices are presented, one of which states that if a matrix is a SDRSDR-matrix, then so is its matrix inverse (if exists).Comment: 7 pages, 1 figur

    Characteristic polynomials of production matrices for geometric graphs

    Get PDF
    An n×n production matrix for a class of geometric graphs has the property that the numbers of these geometric graphs on up to n vertices can be read off from the powers of the matrix. Recently, we obtained such production matrices for non-crossing geometric graphs on point sets in convex position [Huemer, C., A. Pilz, C. Seara, and R.I. Silveira, Production matrices for geometric graphs, Electronic Notes in Discrete Mathematics 54 (2016) 301–306]. In this note, we determine the characteristic polynomials of these matrices. Then, the Cayley-Hamilton theorem implies relations among the numbers of geometric graphs with different numbers of vertices. Further, relations between characteristic polynomials of production matrices for geometric graphs and Fibonacci numbers are revealed.This project has received funding from the European Union’s Horizon 89 2020 research and innovation programme under the Marie Sk lodowska- 90 Curie grant agreement No 734922. 91 C. H., C. S., and R. I. S. were partially supported by projects MINECO MTM2015- 92 63791-R and Gen. Cat. DGR2014SGR46. R. I. S. was also supported by MINECO 93 through the Ramon y Cajal programPostprint (published version

    New results on production matrices for geometric graphs

    Get PDF
    We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another way of counting the number of such objects. For instance, a formula for the number of connected geometric graphs with given root degree, drawn on a set of n points in convex position in the plane, is presented. Further, we find the characteristic polynomials and we provide a characterization of the eigenvectors of the production matrices.Postprint (author's final draft

    Index

    Get PDF
    corecore