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Abstract

In this note, a new concept called SDR-matrix is proposed, which is an infinite lower triangular matrix
obeying the generalized rule of David star. Some basic properties of SDR-matrices are discussed and two
conjectures on SDR-matrices are presented, one of which states that if a matrix is a SDR-matrix, then so is
its matrix inverse (if exists).
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The Star of David rule (see [1,14,15] and references therein), originally stated by Gould in
1972, is given by

() G2 G2 = () ) )

for any k and n, which implies that

() (E) G =0 G) G0
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In 2003, the author observed in his Master dissertation [13] that if multiplying the above two
identities and dividing by n(n + 1)(n 4 2), one can arrive at

Ny k-1 Np 1,k N2, k42 = Nk Np 1 k2 N2, k1 15

where N, x = %(Z) (k " ]) is the Narayana Number [10, A001263].

In the summer of 2006, the author asked Mansour [5] for a combinatorial proof of the above
Narayana identity to be found. Later, by Chen’s bijective algorithm for trees [2], Li and Mansour
[4] provided a combinatorial proof of a general identity

N k+m—1Nn+1k+m—2Nn+2.k+m=3 " * Notm—2k+1Nn+m—1,k Nntm k+m
= n,an+1,k+mNn+2,k+m71 te Nn+m72,k+3Nn+m71,k+2Nn+m,k+l~

This motivates the author to reconsider the Star of David rule and to propose a new concept
called S D R-matrix which obeys the generalized rule of David star.

Definition 1.1. Let ./ = (A, k)n>k>0 be an infinite lower triangular matrix, for any given integer
m > 3, if there hold

p—r—1 r p—r—1

,
nAn+i,k+r7i H Aptp—iktrti+l = HAn+pfi,k+p7r+i l_[ Antiktp—r—i—1
i=0 i=0 i=0 i=0

forall2 < p<m—1and 0 < r < p — 1, then .«/ is called an S D R-matrix of order m.
In order to give a more intuitive view on the definition, we present a pictorial description of
the generalized rule for the case m = 5. See Fig. 1.

Let SDR,, denote the set of S D R-matrices of order m and S D R, be the set of S D R-matrices
</ of order oo, thatis .« € SDR,, for any m > 3. By our notation, it is obvious that the Pascal
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Fig. 1. The case m = 5.
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k
of order 3. In fact, both of them will be proved to be S D R-matrices of order co

triangle 2 = ((")) =0 and the Narayana triangle A" = (Ny41 k+1)n>k>0 are SD R-matrices
nzk=

1 1
1 1 1 1
1 2 1 1 3 1
=11 3 3 1 , N=11 6 6 1
1 4 6 4 1 1 10 20 10 1
1 5 10 10 5 1 1 15

50 50 15 1

In this paper, we will discuss some basic properties of the sets SDR,,, and propose two con-
jectures on SDR,, for 3 < m < oo in the next section. We also give some comments on relations
between S D R-matrices and Riordan arrays in Section 3.

2. The basic properties of S D R-matrices

For any infinite lower triangular matrices .27 = (A, x)n>k>0 and B = (By k)n>k>0, define
o 0 B = (An.kBn.ik)n>k>0 to be the Hadamard product of .o/ and 4, denote by o/°/ the jth
Hadamard power of .o/; If A, x # 0 for n > k > 0, then define /oD = (A;,lc)@k}o to be the
Hadamard inverse of .o7. Y

From Definition 1.1, one can easily derive the following three lemmas.

Lemma 2.1. For any </ € SDRy,, # € SDRy,+; withi > 0, there hold o/ o B € SDR,,, and
/°=D e SDR,, if it exists.

Lemma 2.2. For any o/ = (Apk)nzk>0 € SDRy,, then (Anyiksj)nzk>0 € SDRy, for fixed
i,j=0.

Lemma 2.3. Given any sequence (an),n>0, let A = an, By x = ax and Cp j = an—i for n >
k >0, then (Ay )nzk>0, (Bu,i)n=k>0> (Cpk)nzk>0 € SDR.

Example 2.4. Let a, = n! for n > 0, then we have

-1 —1
P = (MDpziz0 0 (D750 0 (0 — )DS, Y,

1
k+1 n=>k>0 k n=>k>0

L= ((n+ DDusrz00 2o ((k + HHC,.

which, by Lemmas 2.1-2.3, produce that the Pascal triangle 2, the Narayana triangle /" and the

Lah triangle % belong to SD Ry, where (L) x = (Z) EZIB,’ is the Lah number [3].

Theorem 2.5. For any sequences (a,)n>0, (bn)n>0 and (cy)n>0 such that by = 1, a, + 0 and
cn #0forn >0, let of = (arhp_kcp)n>k>0, then /=" € SDR.
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Proof. By Lemmas 2.1 and 2.3, we have .Z € SDR. It is not difficult to derive the matrix
inverse ./ ! of .o/ with the generic entries
1 1
(A" Ik =a, By kck’

where B, with By = 1 are given by

By =) (1) > bibiy - -bi;  (n = 1), LAY

i Figte i =i i 21
Hence, by Lemmas 2.1 and 2.3, one can deduce that
A~ = (@ nzkz0 0 (Bu-tdnzk20 0 (¢ Dnzk=0 € SD R,
as desired. [

Specially, when ¢, :=1 or a,:= “" , by = n,, cp:=n!, both # = (axby—r)n=k=0 and € =

((k) akbn,k> . arein SDR, then so # ' and €. More precisely, let an_1 = b;l =c, =

nzk=

n!(n + 1)! for n > 0, note that the Narayana triangle /" € SDR, and

N b 41\ (n+1\ _ n!(n + 1)!
mtL A= T k1 k) T kk+DIn—k)n—k+ D

Then one has .4 ~' € SDRy by Theorem 2.5.
Theorem 2.5 suggests the following conjecture.

Conjecture 2.6. For any o/ € SDR,,, if the inverse /! of o/ exists, then /"' € SDR,,.

Theorem 2 7. For any sequences (an)n>0, (bn)n>0 with by = 1 and a, # 0 forn > 0, let of =
(anbn—ra; )n>k>07 then the matrix power o) e SD R for any integer j.

Proof. By Lemmas 2.1 and 2.3, we have ./ € SD R.. Note that it is trivially true for j = 1 and
J =0 (where </ is the identity matrix by convention). It is easy to obtain the (n, k)-entries of
o/ for j =2,

(A Ik = > sy Ly ky L gk Lk k
k<kj 1<-<k <n
1
:ancn—kak )
where C,, with Co = 1 is given by C,, = Zi1+i2+---+ij=n,i1,...,i,->0 bi b, - ~b,~j forn > 1
By Lemmas 2.1 and 2.3, one can deduce that
i -1
A = (an)n>k0 © (Cp—t)nzk=0 © (@ Inzk>0 € SDRoo

By Theorem 2.5 and its proof, we have g e SDR and (&f*])n,k = a,,Bn_kak_l, where
By, is given by (2.1). Note that ./ ~! has the form as required in Theorem 2.7, so by the former
part of this proof, we have .«/~/ € SDR, for j > 1. Hence we are done. [J
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Leta, =b, =n!,a, =b, =n!(n+ 1)!ora, =n!(n+ 1)! and bn_1 = n! forn > 0 in Theo-
rem 2.7, one has

Corollary 2.8. For ?, N and &, then 7, V', #J € SDR for any integer j.

Remark 2.9. In general, for .o/, 4 € SDR,,, their matrix product .o/ 4 is possibly notin SDR,,,.
For example, 2, /" € SDRj3, but

1
2 1
4 5 1
PN =] 8 18 9 1 ¢ SDRj.

6 56 50 14 1
2 160 220 110 20 1

Theorem 2.10. For any .o = (An i)n>k>0 With Ayx #0 for n >k > 0, then o/ € SDR;, 41
ifand only if o/ € SDR,,.

Proof. Note that SDR,,+1 C SDR,,, so the necessity is clear. It only needs to prove the sufficient
condition. For the symmetry, it suffices to verify

r m—r r m-—r
[TAnsiksr—i [ ] Anem-ivrarrsivr =[] Antm—iviiom—rrier [ | Antidom—r—i
i=0 i=0 i=0 i=0

for 0 < r < [m/2] — 1. We just take the case r = 0 for example, others can be done similarly.
It is trivial when A, k4+m = An+1.k+m+1 = 0. So we assume that A, km # 0, Apt1 ktm+1 F 0,
then all Aj,4; ¢+ ; to be considered, except for A, y4m+1, must not be zero. By Definition 1.1, we
have

Aptm—ikti Antm—i—1 ki1 Antm—it1 k+it2

= Antm—i+1k+i+1Antm—ik+i+2Antm—i—1,k+i O <i<m—1), (2.2)
m—1 m—1
Aptma1 ktm+1 1_[ Aptikam—i = Antlk+1 1_[ Aptm—it 1 ktit2s (2.3)
i=0 i=0
m—1 m—1
Apt1 k+1 l_[ Aptm—ik+i+l = Antm k+tm l_[ Aptitl ktm—i—1, 24
i=0 i=0
m—1 m—1
An+n1,k+m 1_[ An+i,k+m—i—l = An,k l_[ An+m—i,k+i+1- (25)
i=0 i=0

Multiplying (2.2)—(2.5) together, after cancellation, one can get
m m

Ak 1_[ Aptm—it hti+1 = Antmt1ktmtl l_[ Aptiktm—i
i=0 i=0

which confirms the case r = 0. O
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Remark 2.11. Thecondition A, x # Oforn > k > OinTheorem2.10is necessary. The following
example verifies this claim

€ SDR3, butnotin SDRy.

N
N
SRR
N||N|+
> =
N—
N—
3
V
>~
V
=)
Il
O = O = O =
W OO~
S WO =
A O =
O =
—

Recall that the Narayana number .4",, 41 k41 can be represented as

1 (n+1) (n+1 k k+1
N = = det
(AR ”+1(k+1)<k> © <n+l) <n+1)’

k k+1

so we can come up with the following definition.
Definition 2.12. Let ./ = (A, r)n>k>0 be an infinite lower triangular matrix, for any integer
j =1, define /() = (AEIJ}()@/@O, where

Ank e Anktj-1
L1 _ .
An,k = det

Aptj—1k 0 Antj—lk+j—1

Theorem 2.13. For any sequences (ay)n>0, (Pn)n>0 and (cn)n>o0 such that by = 1, a, + 0 and
¢n #0forn >0, let of = (akbp—iCn)nzk>0, then /| j) € SD Ry for any integer j > 1.

Proof. By Lemmas 2.1 and 2.3, we have .7 € SDR«. It is easy to derive the determinant

axbp_icp crr gt j—1bn—k—j+10n -1
det : e : = Byt [ [ axyicari,
akbn ki j—1Cnyj—1 -+ Gyj1bpkCnyj1 i=0
where B, with By = 1 are given by
by o by
B, = det : :
bpyj—1 - by
Hence, by Lemmas 2.1 and 2.3, one can deduce that
Jj—1 Jj—1
Ay = | [T arsi o (By—iInzk00 | [ ] cnsi € SDR,
i=0 n=k=0 i=0 n=k=0

as desired. [
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Let a;' =b'=co=n!, a;' =b;'=c,=nln+1)! or a;' =c, =n!(n+1)! and
b;l =n! for n > 0 in Theorem 2.13, one has

Corollary 2.14. For #, N and £, then Z|j1, N[}, L|j] € SDR for any integer j > 1.
Theorem 2.13 suggests the following conjecture.
Conjecture 2.15. If o/ € SD R, then /) € SDRy for any integer j > 1.

Remark 2.16. The conjecture on SDR,, is generally not true for 3 < m < oco. For example, let

n+k
A = (Api)n>k=0 With A, x = (n2k>’ then we have .o/ € SDR3, but
2
1
-1 1
2 -2 1
A = ¢ SDR3,

-2 6 -3 1
3 -9 12 —4 1

1
0o 1
2 0 1
A3 = 0 15 0 1 € SDRs3.
9 0 36 1

3. Further comments

We will present some further comments on the connections between S D R-matrices and Rior-
dan arrays. The concept of Riordan array introduced by Shapiro et al [9], plays a particularly
important role in studying combinatorial identities or sums and also is a powerful tool in study of
many counting problems [6—8]. For examples, Sprugnoli [7,11,12] investigated Riordan arrays
related to binomial coefficients, colored walks, Stirling numbers and Abel-Gould identities.

To define a Riordan array we need two analytic functions, d(t) = dy + dit + dyt> 4 -+ - and
h(t) = hit + hat® + - - - A Riordan array is an infinite lower triangular array {dy i }» ken, defined
by a pair of formal power series (d(t), h(t)), with the generic element d,, x satisfying

dy i = ["1d @) () (n, k > 0).

Assume that dy = 0 #* hy, then (d(¢), h(t)) is an element of the Riordan group [9], under the
group multiplication rule:

d(@), h())(g®), f()) = (d(t)g(h(1)), f(h(1))).
This indicates that the identity is I = (1, ¢), the usual matrix identity, and that

R )
@(t), h(0) _<d(}_z(t))’h(t) ,

where /(t) is the compositional inverse of A(z), i.e., h(h(t)) = h(h(t)) = .
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By our notation, we have

1 t
P=— — SDR,
<l—t l—t>€ *

; 1 t
Pl = ( ) € SDRy,

1—jt’ 1—jt

((2), .= (e
k =|——=,—— ) € SDR3,
nT n=k>0 -7 11

1 o\ (1= VT—47 1 - V1472
-2 1-¢2) 212 ’ 2t
(dn—i)nzk=0 = (d(1), 1) € SDRoo.

€ SDR3,

Hence, it is natural to ask the following question.

Question 3.1. Given a formal power series d(¢), what conditions /(¢) should satisfy, such that
(d(t), h(t)) forms an S D R-matrix.
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