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Abstract

In this note, a new concept called SDR-matrix is proposed, which is an infinite lower triangular matrix
obeying the generalized rule of David star. Some basic properties of SDR-matrices are discussed and two
conjectures on SDR-matrices are presented, one of which states that if a matrix is a SDR-matrix, then so is
its matrix inverse (if exists).
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The Star of David rule (see [1,14,15] and references therein), originally stated by Gould in
1972, is given by(
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for any k and n, which implies that(
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In 2003, the author observed in his Master dissertation [13] that if multiplying the above two
identities and dividing by n(n + 1)(n + 2), one can arrive at

Nn,k+1Nn+1,kNn+2,k+2 = Nn,kNn+1,k+2Nn+2,k+1,

where Nn,k = 1
n

(
n

k

) (
n

k − 1

)
is the Narayana Number [10, A001263].

In the summer of 2006, the author asked Mansour [5] for a combinatorial proof of the above
Narayana identity to be found. Later, by Chen’s bijective algorithm for trees [2], Li and Mansour
[4] provided a combinatorial proof of a general identity

Nn,k+m−1Nn+1,k+m−2Nn+2,k+m−3 · · · Nn+m−2,k+1Nn+m−1,kNn+m,k+m

= Nn,kNn+1,k+mNn+2,k+m−1 · · · Nn+m−2,k+3Nn+m−1,k+2Nn+m,k+1.

This motivates the author to reconsider the Star of David rule and to propose a new concept
called SDR-matrix which obeys the generalized rule of David star.

Definition 1.1. Let A = (An,k)n�k�0 be an infinite lower triangular matrix, for any given integer
m � 3, if there hold

r∏
i=0

An+i,k+r−i

p−r−1∏
i=0

An+p−i,k+r+i+1 =
r∏

i=0

An+p−i,k+p−r+i

p−r−1∏
i=0

An+i,k+p−r−i−1

for all 2 � p � m − 1 and 0 � r � p − 1, then A is called an SDR-matrix of order m.

In order to give a more intuitive view on the definition, we present a pictorial description of
the generalized rule for the case m = 5. See Fig. 1.

Let SDRm denote the set of SDR-matrices of order m and SDR∞ be the set of SDR-matrices
A of order ∞, that is A ∈ SDRm for any m � 3. By our notation, it is obvious that the Pascal

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

THE STAR O F DAVID RULE

Fig. 1. The case m = 5.
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triangle P =
((

n

k

))
n�k�0

and the Narayana triangle N = (Nn+1,k+1)n�k�0 are SDR-matrices

of order 3. In fact, both of them will be proved to be SDR-matrices of order ∞

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 1
1 3 1
1 6 6 1
1 10 20 10 1
1 15 50 50 15 1

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In this paper, we will discuss some basic properties of the sets SDRm and propose two con-
jectures on SDRm for 3 � m � ∞ in the next section. We also give some comments on relations
between SDR-matrices and Riordan arrays in Section 3.

2. The basic properties of SDR-matrices

For any infinite lower triangular matrices A = (An,k)n�k�0 and B = (Bn,k)n�k�0, define
A ◦ B = (An,kBn,k)n�k�0 to be the Hadamard product of A and B, denote by A◦j the j th
Hadamard power of A; If An,k /= 0 for n � k � 0, then define A◦(−1) = (A−1

n,k)n�k�0 to be the
Hadamard inverse of A.

From Definition 1.1, one can easily derive the following three lemmas.

Lemma 2.1. For any A ∈ SDRm, B ∈ SDRm+i with i � 0, there hold A ◦ B ∈ SDRm, and
A◦(−1) ∈ SDRm if it exists.

Lemma 2.2. For any A = (An,k)n�k�0 ∈ SDRm, then (An+i,k+j )n�k�0 ∈ SDRm for fixed
i, j � 0.

Lemma 2.3. Given any sequence (an)n�0, let An,k = an, Bn,k = ak and Cn,k = an−k for n �
k � 0, then (An,k)n�k�0, (Bn,k)n�k�0, (Cn,k)n�k�0 ∈ SDR∞.

Example 2.4. Let an = n! for n � 0, then we have

P = (n!)n�k�0 ◦ (k!)◦(−1)
n�k�0 ◦ ((n − k)!)◦(−1)

n�k�0,

N =
(

1

k + 1

)
n�k�0

◦ P ◦
((

n + 1
k

))
n�k�0

,

L = ((n + 1)!)n�k�0 ◦ P ◦ ((k + 1)!)◦(−1)
n�k�0,

which, by Lemmas 2.1–2.3, produce that the Pascal triangle P, the Narayana triangle N and the

Lah triangle L belong to SDR∞, where (L)n,k =
(

n

k

)
(n+1)!
(k+1)! is the Lah number [3].

Theorem 2.5. For any sequences (an)n�0, (bn)n�0 and (cn)n�0 such that b0 = 1, an /= 0 and
cn /= 0 for n � 0, let A = (akbn−kcn)n�k�0, then A−1 ∈ SDR∞.
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Proof. By Lemmas 2.1 and 2.3, we have A ∈ SDR∞. It is not difficult to derive the matrix
inverse A−1 of A with the generic entries

(A−1)n,k = a−1
n Bn−kc

−1
k ,

where Bn with B0 = 1 are given by

Bn =
n∑

j=1

(−1)j
∑

i1+i2+···+ij =n,i1,...,ij �1

bi1bi2 · · · bij (n � 1). (2.1)

Hence, by Lemmas 2.1 and 2.3, one can deduce that

A−1 = (a−1
n )n�k�0 ◦ (Bn−k)n�k�0 ◦ (c−1

k )n�k�0 ∈ SDR∞,

as desired. �

Specially, when cn :=1 or an := an

n! , bn := bn

n! , cn :=n!, both B = (akbn−k)n�k�0 and C =((
n

k

)
akbn−k

)
n�k�0

are in SDR∞, then so B−1 and C−1. More precisely, let a−1
n = b−1

n = cn =
n!(n + 1)! for n � 0, note that the Narayana triangle N ∈ SDR∞ and

Nn+1,k+1 = 1

n + 1

(
n + 1
k + 1

)(
n + 1

k

)
= n!(n + 1)!

k!(k + 1)!(n − k)!(n − k + 1)! .

Then one has N−1 ∈ SDR∞ by Theorem 2.5.
Theorem 2.5 suggests the following conjecture.

Conjecture 2.6. For any A ∈ SDRm, if the inverse A−1 of A exists, then A−1 ∈ SDRm.

Theorem 2.7. For any sequences (an)n�0, (bn)n�0 with b0 = 1 and an /= 0 for n � 0, let A =
(anbn−ka

−1
k )n�k�0, then the matrix power Aj ∈ SDR∞ for any integer j.

Proof. By Lemmas 2.1 and 2.3, we have A ∈ SDR∞. Note that it is trivially true for j = 1 and
j = 0 (where A0 is the identity matrix by convention). It is easy to obtain the (n, k)-entries of
Aj for j � 2,

(Aj )n,k =
∑

k�kj−1�···�k1�n

An,k1Ak1,k2 · · ·Akj−2,kj−1Akj−1,k

= anCn−ka
−1
k ,

where Cn with C0 = 1 is given by Cn = ∑
i1+i2+···+ij =n,i1,...,ij �0 bi1bi2 · · · bij for n � 1.

By Lemmas 2.1 and 2.3, one can deduce that

Aj = (an)n�k�0 ◦ (Cn−k)n�k�0 ◦ (a−1
k )n�k�0 ∈ SDR∞.

By Theorem 2.5 and its proof, we have A−1 ∈ SDR∞ and (A−1)n,k = anBn−ka
−1
k , where

Bn is given by (2.1). Note that A−1 has the form as required in Theorem 2.7, so by the former
part of this proof, we have A−j ∈ SDR∞ for j � 1. Hence we are done. �
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Let an = bn = n!, an = bn = n!(n + 1)! or an = n!(n + 1)! and b−1
n = n! for n � 0 in Theo-

rem 2.7, one has

Corollary 2.8. For P, N and L, then Pj ,Nj ,Lj ∈ SDR∞ for any integer j.

Remark 2.9. In general, for A,B ∈ SDRm, their matrix product AB is possibly not in SDRm.
For example, P,N ∈ SDR3, but

PN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 1
4 5 1
8 18 9 1
16 56 50 14 1
32 160 220 110 20 1

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

/∈ SDR3.

Theorem 2.10. For any A = (An,k)n�k�0 with An,k /= 0 for n � k � 0, then A ∈ SDRm+1
if and only if A ∈ SDRm.

Proof. Note that SDRm+1 ⊂ SDRm, so the necessity is clear. It only needs to prove the sufficient
condition. For the symmetry, it suffices to verify

r∏
i=0

An+i,k+r−i

m−r∏
i=0

An+m−i+1,k+r+i+1 =
r∏

i=0

An+m−i+1,k+m−r+i+1

m−r∏
i=0

An+i,k+m−r−i

for 0 � r � [m/2] − 1. We just take the case r = 0 for example, others can be done similarly.
It is trivial when An,k+m = An+1,k+m+1 = 0. So we assume that An,k+m /= 0, An+1,k+m+1 /= 0,
then all An+i,k+j to be considered, except for An,k+m+1, must not be zero. By Definition 1.1, we
have

An+m−i,k+iAn+m−i−1,k+i+1An+m−i+1,k+i+2

= An+m−i+1,k+i+1An+m−i,k+i+2An+m−i−1,k+i (0 � i � m − 1), (2.2)

An+m+1,k+m+1

m−1∏
i=0

An+i,k+m−i = An+1,k+1

m−1∏
i=0

An+m−i+1,k+i+2, (2.3)

An+1,k+1

m−1∏
i=0

An+m−i,k+i+1 = An+m,k+m

m−1∏
i=0

An+i+1,k+m−i−1, (2.4)

An+m,k+m

m−1∏
i=0

An+i,k+m−i−1 = An,k

m−1∏
i=0

An+m−i,k+i+1. (2.5)

Multiplying (2.2)–(2.5) together, after cancellation, one can get

An,k

m∏
i=0

An+m−i+1,k+i+1 = An+m+1,k+m+1

m∏
i=0

An+i,k+m−i ,

which confirms the case r = 0. �
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Remark 2.11. The conditionAn,k /= 0 forn � k � 0 in Theorem 2.10 is necessary. The following
example verifies this claim

((
n+k

2
n−k

2

))
n�k�0

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1
1 0 1
0 2 0 1
1 0 3 0 1
0 3 0 4 0 1

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ SDR3, but not in SDR4.

Recall that the Narayana number Nn+1,k+1 can be represented as

Nn+1,k+1 = 1

n + 1

(
n + 1
k + 1

)(
n + 1

k

)
= det

⎛
⎜⎜⎝

(
n

k

) (
n

k + 1

)
(

n + 1
k

) (
n + 1
k + 1

)
⎞
⎟⎟⎠ ,

so we can come up with the following definition.

Definition 2.12. Let A = (An,k)n�k�0 be an infinite lower triangular matrix, for any integer
j � 1, define A[j ] = (A

[j ]
n,k)n�k�0, where

A
[j ]
n,k = det

⎛
⎜⎝

An,k · · · An,k+j−1
... · · · ...

An+j−1,k · · · An+j−1,k+j−1

⎞
⎟⎠ .

Theorem 2.13. For any sequences (an)n�0, (bn)n�0 and (cn)n�0 such that b0 = 1, an /= 0 and
cn /= 0 for n � 0, let A = (akbn−kcn)n�k�0, then A[j ] ∈ SDR∞ for any integer j � 1.

Proof. By Lemmas 2.1 and 2.3, we have A ∈ SDR∞. It is easy to derive the determinant

det

⎛
⎜⎝

akbn−kcn · · · ak+j−1bn−k−j+1cn

... · · · ...

akbn−k+j−1cn+j−1 · · · ak+j−1bn−kcn+j−1

⎞
⎟⎠ = Bn−k

j−1∏
i=0

ak+icn+i ,

where Bn with B0 = 1 are given by

Bn = det

⎛
⎜⎝

bn · · · bn−j+1
... · · · ...

bn+j−1 · · · bn

⎞
⎟⎠ .

Hence, by Lemmas 2.1 and 2.3, one can deduce that

A[j ] =
⎛
⎝j−1∏

i=0

ak+i

⎞
⎠

n�k�0

◦ (Bn−k)n�k�0 ◦
⎛
⎝j−1∏

i=0

cn+i

⎞
⎠

n�k�0

∈ SDR∞,

as desired. �
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Let a−1
n = b−1

n = cn = n!, a−1
n = b−1

n = cn = n!(n + 1)! or a−1
n = cn = n!(n + 1)! and

b−1
n = n! for n � 0 in Theorem 2.13, one has

Corollary 2.14. For P, N and L, then P[j ],N[j ],L[j ] ∈ SDR∞ for any integer j � 1.

Theorem 2.13 suggests the following conjecture.

Conjecture 2.15. If A ∈ SDR∞, then A[j ] ∈ SDR∞ for any integer j � 1.

Remark 2.16. The conjecture on SDRm is generally not true for 3 � m < ∞. For example, let

A = (An,k)n�k�0 with An,k =
(

n+k
2

n−k
2

)
, then we have A ∈ SDR3, but

A[2] =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
−1 1
2 −2 1

−2 6 −3 1
3 −9 12 −4 1

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

/∈ SDR3,

A[3] =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0 1
2 0 1
0 15 0 1
9 0 36 0 1

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ SDR3.

3. Further comments

We will present some further comments on the connections between SDR-matrices and Rior-
dan arrays. The concept of Riordan array introduced by Shapiro et al [9], plays a particularly
important role in studying combinatorial identities or sums and also is a powerful tool in study of
many counting problems [6–8]. For examples, Sprugnoli [7,11,12] investigated Riordan arrays
related to binomial coefficients, colored walks, Stirling numbers and Abel–Gould identities.

To define a Riordan array we need two analytic functions, d(t) = d0 + d1t + d2t
2 + · · · and

h(t) = h1t + h2t
2 + · · · A Riordan array is an infinite lower triangular array {dn,k}n,k∈N, defined

by a pair of formal power series (d(t), h(t)), with the generic element dn,k satisfying

dn,k = [tn]d(t)(h(t))k (n, k � 0).

Assume that d0 /= 0 /= h1, then (d(t), h(t)) is an element of the Riordan group [9], under the
group multiplication rule:

(d(t), h(t))(g(t), f (t)) = (d(t)g(h(t)), f (h(t))).

This indicates that the identity is I = (1, t), the usual matrix identity, and that

(d(t), h(t))−1 =
(

1

d(h̄(t))
, h̄(t)

)
,

where h̄(t) is the compositional inverse of h(t), i.e., h̄(h(t)) = h(h̄(t)) = t .
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By our notation, we have

P =
(

1

1 − t
,

t

1 − t

)
∈ SDR∞,

Pj =
(

1

1 − j t
,

t

1 − j t

)
∈ SDR∞,((

n+k
2

n−k
2

))
n�k�0

=
(

1

1 − t2
,

t

1 − t2

)
∈ SDR3,

(
1

1 − t2
,

t

1 − t2

)−1

=
(

1 − √
1 − 4t2

2t2
,

1 − √
1 − 4t2

2t

)
∈ SDR3,

(dn−k)n�k�0 = (d(t), t) ∈ SDR∞.

Hence, it is natural to ask the following question.

Question 3.1. Given a formal power series d(t), what conditions h(t) should satisfy, such that
(d(t), h(t)) forms an SDR-matrix.
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