provided by Elsevier - Publish

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 429 (2008) 1954–1961

www.elsevier.com/locate/laa

The Star of David rule

Yidong Sun

Department of Mathematics, Dalian Maritime University, 116026 Dalian, PR China

Received 18 January 2008; accepted 22 May 2008 Available online 14 July 2008 Submitted by R.A. Brualdi

Abstract

In this note, a new concept called *SDR*-*matrix* is proposed, which is an infinite lower triangular matrix obeying the generalized rule of David star. Some basic properties of *SDR*-matrices are discussed and two conjectures on *SDR*-matrices are presented, one of which states that if a matrix is a *SDR*-matrix, then so is its matrix inverse (if exists).

© 2008 Elsevier Inc. All rights rese[rved.](#page-7-0)

AMS classification: Primary 05A10; Secondary 15A09

Keywords: Narayana triangle; Pascal triangle; Lah triangle; *SDR*-matrix

1. Introduction

The *Star of David rule* (see [1,14,15] and references therein), originally stated by Gould in 1972, is given by

.

$$
\binom{n}{k}\binom{n+1}{k-1}\binom{n+2}{k+1} = \binom{n}{k-1}\binom{n+1}{k+1}\binom{n+2}{k}
$$

for any k and n , which implies that

$$
\binom{n}{k+1}\binom{n+1}{k}\binom{n+2}{k+2} = \binom{n}{k}\binom{n+1}{k+2}\binom{n+2}{k+1}
$$

E-mail address: sydmath@yahoo.com.cn

^{0024-3795/\$ -} see front matter \odot 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2008.05.027

In 2003, the author observed in his Master dissertation [13] that if multiplying the above two identities and dividing by $n(n + 1)(n + 2)$, one can arrive at

$$
N_{n,k+1}N_{n+1,k}N_{n+2,k+2}=N_{n,k}N_{n+1,k+2}N_{n+2,k+1},
$$

where $N_{n,k} = \frac{1}{n} {n \choose k} {n \choose k-1}$ is the Narayana Number [10, A001263].

In the summer of 2006 , the author asked Mansour [5] for a combinatorial proof of the above Narayana identity to be found. Later, by Chen's bijective algorithm for trees [2], Li and Mansour [4] provided a combinatorial proof of a general identity

$$
N_{n,k+m-1}N_{n+1,k+m-2}N_{n+2,k+m-3}\cdots N_{n+m-2,k+1}N_{n+m-1,k}N_{n+m,k+m}
$$

= $N_{n,k}N_{n+1,k+m}N_{n+2,k+m-1}\cdots N_{n+m-2,k+3}N_{n+m-1,k+2}N_{n+m,k+1}.$

This motivates the author to reconsider the Star of David rule and to propose a new concept called SDR-*matrix* which obeys the generalized rule of David star.

Definition 1.1. Let $\mathcal{A} = (A_{n,k})_{n \geq k \geq 0}$ be an infinite lower triangular matrix, for any given integer $m \geqslant 3$, if there hold

$$
\prod_{i=0}^{r} A_{n+i,k+r-i} \prod_{i=0}^{p-r-1} A_{n+p-i,k+r+i+1} = \prod_{i=0}^{r} A_{n+p-i,k+p-r+i} \prod_{i=0}^{p-r-1} A_{n+i,k+p-r-i-1}
$$

for all $2 \leq p \leq m - 1$ and $0 \leq r \leq p - 1$, then $\mathscr A$ is called an *SDR*-*matrix of order* m.

In order to give a more intuitive view on the definition, we present a pictorial description of the generalized rule for the case $m = 5$. See Fig. 1.

Let SDR_m denote the set of SDR -matrices of order m and SDR_{∞} be the set of SDR -matrices $\mathscr A$ of order ∞ , that is $\mathscr A \in SDR_m$ for any $m \geq 3$. By our notation, it is obvious that the Pascal

triangle $\mathscr{P} = \left(\binom{n}{k} \right)$ $n \ge k \ge 0$ and the Narayana triangle $\mathcal{N} = (N_{n+1,k+1})_{n \ge k \ge 0}$ are SDR-matrices of order 3. In fact, both of them will be proved to be SDR -matrices of order ∞

$$
\mathscr{P} = \begin{pmatrix} 1 & & & & & \\ 1 & 1 & & & & & \\ 1 & 2 & 1 & & & & \\ 1 & 3 & 3 & 1 & & & \\ 1 & 4 & 6 & 4 & 1 & & \\ 1 & 5 & 10 & 10 & 5 & 1 \end{pmatrix}, \qquad \mathscr{N} = \begin{pmatrix} 1 & & & & & & \\ 1 & 1 & & & & & \\ 1 & 3 & 1 & & & & \\ 1 & 6 & 6 & 1 & & & \\ 1 & 10 & 20 & 10 & 1 & & \\ 1 & 15 & 50 & 50 & 15 & 1 \end{pmatrix}.
$$

In this paper, we will discuss some basic properties of the sets SDR_m and propose two conjectures on SDR_m for $3 \le m \le \infty$ in the next section. We also give some comments on relations between SDR-matrices and Riordan arrays in Section 3.

2. The basic properties of *SDR***-matrices**

For any infinite lower triangular matrices $\mathscr{A} = (A_{n,k})_{n \geq k \geq 0}$ and $\mathscr{B} = (B_{n,k})_{n \geq k \geq 0}$, define $\mathscr{A} \circ \mathscr{B} = (A_{n,k}B_{n,k})_{n \geq k \geq 0}$ to be the Hadamard product of \mathscr{A} and \mathscr{B} , denote by $\mathscr{A}^{\circ j}$ the jth Hadamard power of \mathscr{A} ; If $A_{n,k} \neq 0$ for $n \geq k \geq 0$, then define $\mathscr{A}^{\circ(-1)} = (A_{n,k}^{-1})_{n \geq k \geq 0}$ to be the Hadamard inverse of \mathcal{A} .

From Definition 1.1, one can easily derive the following three lemmas.

Lemma 2.1. *For any* $\mathscr{A} \in SDR_m$, $\mathscr{B} \in SDR_{m+i}$ *with* $i \geq 0$, *there hold* $\mathscr{A} \circ \mathscr{B} \in SDR_m$, *and* $\mathscr{A}^{\circ(-1)} \in SDR_m$ if it exists.

Lemma 2.2. For any $\mathscr{A} = (A_{n,k})_{n \geq k \geq 0} \in SDR_m$, then $(A_{n+i,k+j})_{n \geq k \geq 0} \in SDR_m$ for fixed $i, j \geqslant 0.$

Lemma 2.3. *Given any sequence* $(a_n)_{n\geqslant 0}$, *let* $A_{n,k} = a_n$, $B_{n,k} = a_k$ *and* $C_{n,k} = a_{n-k}$ *for* $n \geqslant 0$ $k \geq 0$, then $(A_{n,k})_{n \geq k \geq 0}$, $(B_{n,k})_{n \geq k \geq 0}$, $(C_{n,k})_{n \geq k \geq 0} \in SDR_{\infty}$.

Example 2.4. Let $a_n = n!$ for $n \ge 0$, then we have

$$
\mathscr{P} = (n!)_{n \geq k \geq 0} \circ (k!)_{n \geq k \geq 0}^{\circ (-1)} \circ ((n-k)!)_{n \geq k \geq 0}^{\circ (-1)},
$$

$$
\mathscr{N} = \left(\frac{1}{k+1}\right)_{n \geq k \geq 0} \circ \mathscr{P} \circ \left(\binom{n+1}{k}\right)_{n \geq k \geq 0},
$$

$$
\mathscr{L} = ((n+1)!)_{n \geq k \geq 0} \circ \mathscr{P} \circ ((k+1)!)_{n \geq k \geq 0}^{\circ (-1)},
$$

which, by Lemmas 2.1–2.3, produce that the Pascal triangle \mathcal{P} , the Narayana triangle \mathcal{N} and the Lah triangle $\mathscr L$ belong to SDR_{∞} , where $(\mathscr L)_{n,k} = \binom{n}{k} \frac{(n+1)!}{(k+1)!}$ is the Lah number [3].

Theorem 2.5. For any sequences $(a_n)_{n\geqslant 0}$, $(b_n)_{n\geqslant 0}$ and $(c_n)_{n\geqslant 0}$ such that $b_0 = 1$, $a_n \neq 0$ and $c_n \neq 0$ *for* $n \geq 0$, let $\mathscr{A} = (a_k b_{n-k} c_n)_{n \geq k \geq 0}$, then $\mathscr{A}^{-1} \in SDR_\infty$.

Proof. By Lemmas [2.1](#page-2-0) and [2.3](#page-2-0), we have $\mathscr{A} \in SDR_{\infty}$. It is not difficult to derive the matrix inverse \mathscr{A}^{-1} of $\mathscr A$ with the generic entries

$$
(\mathcal{A}^{-1})_{n,k} = a_n^{-1} B_{n-k} c_k^{-1},
$$

where B_n with $B_0 = 1$ are given by

$$
B_n = \sum_{j=1}^n (-1)^j \sum_{i_1 + i_2 + \dots + i_j = n, i_1, \dots, i_j \ge 1} b_{i_1} b_{i_2} \cdots b_{i_j} \quad (n \ge 1).
$$
 (2.1)

Hence, by Lemmas 2.1 and 2.3, one can deduce that

$$
\mathscr{A}^{-1} = (a_n^{-1})_{n \ge k \ge 0} \circ (B_{n-k})_{n \ge k \ge 0} \circ (c_k^{-1})_{n \ge k \ge 0} \in SDR_{\infty},
$$

as desired. \square

Specially[,](#page-2-0) [wh](#page-2-0)en $c_n := 1$ or $a_n := \frac{a_n}{n!}$, $b_n := \frac{b_n}{n!}$, $c_n := n!$, both $\mathscr{B} = (a_k b_{n-k})_{n \geq k \geq 0}$ and $\mathscr{C} =$ $\left(\binom{n}{k} a_k b_{n-k}\right)$ $n \ge k \ge 0$ are in SDR_{∞} , then so \mathscr{B}^{-1} and \mathscr{C}^{-1} . More precisely, let $a_n^{-1} = b_n^{-1} = c_n = 1$ $n!(n + 1)!$ for $n \geq 0$, note that the Narayana triangle $\mathcal{N} \in SDR_{\infty}$ and

$$
N_{n+1,k+1} = \frac{1}{n+1} \binom{n+1}{k+1} \binom{n+1}{k} = \frac{n!(n+1)!}{k!(k+1)!(n-k)!(n-k+1)!}
$$

Then one has $\mathcal{N}^{-1} \in SDR_{\infty}$ [b](#page-2-0)y Theorem 2.5.

Theorem 2.5 suggests the following conjecture.

Conjecture 2.6. *For any* $\mathcal{A} \in SDR_m$, *if the inverse* \mathcal{A}^{-1} *of* \mathcal{A} *exists, then* $\mathcal{A}^{-1} \in SDR_m$.

Theorem 2.7. For any sequences $(a_n)_{n\geqslant 0}$, $(b_n)_{n\geqslant 0}$ with $b_0 = 1$ and $a_n \neq 0$ for $n \geqslant 0$, let $\mathcal{A} =$ $(a_nb_{n-k}a_k^{-1})_{n\ge k\ge 0}$, then the matrix power \mathcal{A}^j ∈ SDR_∞ for any integer j.

Proof. By Le[mmas](#page-2-0) 2.1 [and](#page-2-0) 2.3, we have $\mathscr{A} \in SDR_{\infty}$. Note that it is trivially true for $j = 1$ and $j = 0$ (where \mathscr{A}^0 is the identity matrix by convention). It is easy to obtain the (n, k) -entries of \mathscr{A}^j for $j \geqslant 2$,

$$
(\mathscr{A}^j)_{n,k} = \sum_{k \leq k_{j-1} \leq \dots \leq k_1 \leq n} \mathscr{A}_{n,k_1} \mathscr{A}_{k_1,k_2} \cdots \mathscr{A}_{k_{j-2},k_{j-1}} \mathscr{A}_{k_{j-1},k}
$$

= $a_n C_{n-k} a_k^{-1}$,

where C_n with $C_0 = 1$ is given by $C_n = \sum_{i_1+i_2+\cdots+i_j=n, i_1,\dots,i_j\geqslant 0} b_{i_1}b_{i_2}\cdots b_{i_j}$ for $n \geqslant 1$. By Lemmas 2.1 and 2.3, one can deduce that

$$
\mathscr{A}^j = (a_n)_{n \geq k \geq 0} \circ (C_{n-k})_{n \geq k \geq 0} \circ (a_k^{-1})_{n \geq k \geq 0} \in SDR_{\infty}.
$$

By Theorem 2.5 and its proof, we have $\mathscr{A}^{-1} \in SDR_{\infty}$ and $(\mathscr{A}^{-1})_{n,k} = a_n B_{n-k} a_k^{-1}$, where B_n is given by (2.1). Note that \mathscr{A}^{-1} has the form as required in Theorem 2.7, so by the former part of this proof, we have $\mathscr{A}^{-j} \in SDR_{\infty}$ for $j \geq 1$. Hence we are done. \square

.

Let $a_n = b_n = n!$, $a_n = b_n = n!(n + 1)!$ or $a_n = n!(n + 1)!$ and $b_n^{-1} = n!$ for $n \ge 0$ in Theorem 2.7, one has

Corollary 2.8. *For* \mathcal{P} , \mathcal{N} *and* \mathcal{L} , *then* \mathcal{P}^j , \mathcal{N}^j , \mathcal{L}^j \in *SDR*_∞ *for any integer j*.

Remark 2.9. In general, for $\mathscr{A}, \mathscr{B} \in SDR_m$, their matrix product $\mathscr{A}\mathscr{B}$ is possibly not in SDR_m . For example, $\mathcal{P},\mathcal{N} \in SDR_3$, but

$$
\mathscr{P} \mathscr{N} = \begin{pmatrix} 1 & & & & & \\ 2 & 1 & & & & \\ 4 & 5 & 1 & & & \\ 8 & 18 & 9 & 1 & & \\ 16 & 56 & 50 & 14 & 1 & \\ 32 & 160 & 220 & 110 & 20 & 1 \end{pmatrix} \notin SDR_3.
$$

Theorem 2.10. For any $\mathscr{A} = (A_{n,k})_{n \geq k \geq 0}$ with $A_{n,k} \neq 0$ for $n \geq k \geq 0$, then $\mathscr{A} \in SDR_{m+1}$ *if and only if* $\mathcal{A} \in SDR_m$.

Proof. Note that $SDR_{m+1} \subset SDR_m$, so the necessity is clear. It only needs to prove the sufficient condition. For the symmetry, it suffices to verify

$$
\prod_{i=0}^{r} A_{n+i,k+r-i} \prod_{i=0}^{m-r} A_{n+m-i+1,k+r+i+1} = \prod_{i=0}^{r} A_{n+m-i+1,k+m-r+i+1} \prod_{i=0}^{m-r} A_{n+i,k+m-r-i}
$$

for $0 \le r \le [m/2] - 1$. We just take the case $r = 0$ for example, others can be done similarly. It is trivial when $A_{n,k+m} = A_{n+1,k+m+1} = 0$. So we assume that $A_{n,k+m} \neq 0, A_{n+1,k+m+1} \neq 0$, then all $A_{n+i,k+j}$ to be considered, except for $A_{n,k+m+1}$, must not be zero. By Definition 1.1, we have

$$
A_{n+m-i,k+i}A_{n+m-i-1,k+i+1}A_{n+m-i+1,k+i+2}
$$

= $A_{n+m-i+1,k+i+1}A_{n+m-i,k+i+2}A_{n+m-i-1,k+i} \quad (0 \le i \le m-1),$ (2.2)

$$
A_{n+m+1,k+m+1} \prod_{i=0}^{m-1} A_{n+i,k+m-i} = A_{n+1,k+1} \prod_{i=0}^{m-1} A_{n+m-i+1,k+i+2},
$$
\n(2.3)

$$
A_{n+1,k+1} \prod_{i=0}^{m-1} A_{n+m-i,k+i+1} = A_{n+m,k+m} \prod_{i=0}^{m-1} A_{n+i+1,k+m-i-1},
$$
 (2.4)

$$
A_{n+m,k+m} \prod_{i=0}^{m-1} A_{n+i,k+m-i-1} = A_{n,k} \prod_{i=0}^{m-1} A_{n+m-i,k+i+1}.
$$
 (2.5)

Multiplying (2.2)–(2.5) together, after cancellation, one can get

$$
A_{n,k} \prod_{i=0}^{m} A_{n+m-i+1,k+i+1} = A_{n+m+1,k+m+1} \prod_{i=0}^{m} A_{n+i,k+m-i},
$$

which confirms the case $r = 0$. \Box

Remark 2.11. The condition $A_{n,k} \neq 0$ for $n \geq k \geq 0$ in Theorem 2.10 is necessary. The following example verifies this claim

-n+k 2 n−k 2 nk-0 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 1 10 1 02 0 1 10 3 01 03 0 401 ··· ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∈ SDR3, but not in SDR4.

Recall that the Narayana number $\mathcal{N}_{n+1,k+1}$ can be represented as

$$
\mathcal{N}_{n+1,k+1} = \frac{1}{n+1} \begin{pmatrix} n+1 \\ k+1 \end{pmatrix} \begin{pmatrix} n+1 \\ k \end{pmatrix} = \det \begin{pmatrix} n \\ k \end{pmatrix} \begin{pmatrix} n \\ k+1 \end{pmatrix} \begin{pmatrix} n \\ k+1 \end{pmatrix},
$$

so we can come up with the following definition.

Definition 2.12. Let $\mathscr{A} = (A_{n,k})_{n \geq k \geq 0}$ be an infinite lower triangular matrix, for any integer $j \geq 1$, define $\mathscr{A}_{[j]} = (A_{n,k}^{[j]})_{n \geq k \geq 0}$ $\mathscr{A}_{[j]} = (A_{n,k}^{[j]})_{n \geq k \geq 0}$ $\mathscr{A}_{[j]} = (A_{n,k}^{[j]})_{n \geq k \geq 0}$, where

 \blacksquare

$$
A_{n,k}^{[j]} = \det \begin{pmatrix} A_{n,k} & \cdots & A_{n,k+j-1} \\ \vdots & \cdots & \vdots \\ A_{n+j-1,k} & \cdots & A_{n+j-1,k+j-1} \end{pmatrix}
$$

Theorem 2.13. For any sequences $(a_n)_{n\geqslant0}$, $(b_n)_{n\geqslant0}$ and $(c_n)_{n\geqslant0}$ such that $b_0 = 1$, $a_n \neq 0$ and $c_n \neq 0$ *for* $n \geq 0$, *let* $\mathscr{A} = (a_k b_{n-k} c_n)_{n \geq k \geq 0}$, *then* $\mathscr{A}_{[j]} \in SDR_\infty$ *for any integer* $j \geq 1$.

Proof. By Lemmas 2.1 and 2.3, we have $\mathcal{A} \in SDR_{\infty}$. It is easy to derive the determinant

$$
\det \begin{pmatrix} a_{k}b_{n-k}c_{n} & \cdots & a_{k+j-1}b_{n-k-j+1}c_{n} \\ \vdots & \cdots & \vdots \\ a_{k}b_{n-k+j-1}c_{n+j-1} & \cdots & a_{k+j-1}b_{n-k}c_{n+j-1} \end{pmatrix} = B_{n-k} \prod_{i=0}^{j-1} a_{k+i}c_{n+i},
$$

where B_n with $B_0 = 1$ are given by

$$
B_n = \det \begin{pmatrix} b_n & \cdots & b_{n-j+1} \\ \vdots & \cdots & \vdots \\ b_{n+j-1} & \cdots & b_n \end{pmatrix}.
$$

Hence, by Lemmas 2.1 and 2.3, one can deduce that

$$
\mathscr{A}_{[j]} = \left(\prod_{i=0}^{j-1} a_{k+i} \right)_{n \geq k \geq 0} \circ (B_{n-k})_{n \geq k \geq 0} \circ \left(\prod_{i=0}^{j-1} c_{n+i} \right)_{n \geq k \geq 0} \in SDR_{\infty},
$$

as desired. \square

Let $a_n^{-1} = b_n^{-1} = c_n = n!$, $a_n^{-1} = b_n^{-1} = c_n = n!(n+1)!$ or $a_n^{-1} = c_n = n!(n+1)!$ and $b_n^{-1} = n!$ for $n \ge 0$ in Theorem 2.13, one has

Corollary 2.14. *For* \mathcal{P}, \mathcal{N} *and* $\mathcal{L},$ *then* $\mathcal{P}_{[j]}, \mathcal{N}_{[j]}, \mathcal{L}_{[j]} \in SDR_{\infty}$ *for any integer* $j \geq 1$ *.*

Theorem 2.13 suggests the following conjecture.

Conjecture 2.15. *If* $\mathcal{A} \in SDR_{\infty}$, then $\mathcal{A}_{[j]} \in SDR_{\infty}$ for any integer $j \geq 1$.

Remark 2.16. The conjecture on SDR_m is generally not true for $3 \leq m < \infty$. For example, let $\mathscr{A} = (A_{n,k})_{n \geq k \geq 0}$ with $A_{n,k} = \left(\frac{\frac{n+k}{2}}{\frac{n-k}{2}}\right)$), then we have $\mathscr{A} \in SDR_3$, but $\mathscr{A}_{[2]} =$ $\sqrt{2}$ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 −1 1 **2** −2 1 −2 6 −**3** 1 3 −**9** 12 −4 1 ··· ⎞ $\frac{1}{\sqrt{2\pi}}$ $\notin SDR_3$, $\mathscr{A}_{[3]} =$ $\sqrt{2}$ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 1 20 1 0 15 0 1 9 0 [36](#page-7-0) 0 1 ··· ⎞ $\frac{1}{\sqrt{2\pi}}$ $\in SDR_3$.

3. Further comments

We will present some further comments on the connections between SDR-matr[ice](#page-7-0)s and Riordan arrays. The concept of Riordan array introduced by Shapiro et al [9], plays a particularly important role in studying combinatorial identities or sums and also is a powerful tool in study of many counting problems [6–8]. For examples, Sprugnoli [7,11,12] investigated Riordan arrays related to binomial coefficients, colored walks, Stirling numbers and Abel–Gould identities.

To define a Riordan array we need two analytic functions, $d(t) = d_0 + d_1t + d_2t^2 + \cdots$ and $h(t) = h_1 t + h_2 t^2 + \cdots$ A *Riordan array* is an infinite lower triangular array $\{d_{n,k}\}_{n,k\in\mathbb{N}}$, defined by a pair of formal power series $(d(t), h(t))$, with the generic element $d_{n,k}$ satisfying

$$
d_{n,k} = [t^n]d(t)(h(t))^{k} \quad (n, k \geq 0).
$$

Assume that $d_0 \neq 0 \neq h_1$, then $(d(t), h(t))$ is an element of the *Riordan group* [9], under the group multiplication rule:

$$
(d(t), h(t))(g(t), f(t)) = (d(t)g(h(t)), f(h(t))).
$$

This indicates that the identity is $I = (1, t)$, the usual matrix identity, and that

$$
(d(t), h(t))^{-1} = \left(\frac{1}{d(\bar{h}(t))}, \bar{h}(t)\right),
$$

where $\bar{h}(t)$ is the compositional inverse of $h(t)$, i.e., $\bar{h}(h(t)) = h(\bar{h}(t)) = t$.

By our notation, we have

$$
\mathscr{P} = \left(\frac{1}{1-t}, \frac{t}{1-t}\right) \in SDR_{\infty},
$$
\n
$$
\mathscr{P}^j = \left(\frac{1}{1-jt}, \frac{t}{1-jt}\right) \in SDR_{\infty},
$$
\n
$$
\left(\left(\frac{\frac{n+k}{2}}{2}\right)\right)_{n \ge k \ge 0} = \left(\frac{1}{1-t^2}, \frac{t}{1-t^2}\right) \in SDR_3,
$$
\n
$$
\left(\frac{1}{1-t^2}, \frac{t}{1-t^2}\right)^{-1} = \left(\frac{1-\sqrt{1-4t^2}}{2t^2}, \frac{1-\sqrt{1-4t^2}}{2t}\right) \in SDR_3,
$$
\n
$$
(d_{n-k})_{n \ge k \ge 0} = (d(t), t) \in SDR_{\infty}.
$$

Hence, it is natural to ask the following question.

Question 3.1. Given a formal power series $d(t)$, what conditions $h(t)$ should satisfy, such that $(d(t), h(t))$ forms an SDR-matrix.

Acknowledgements

The author is grateful to the anonymous referees for the helpful suggestions and comments. This work was supported by The National Science Foundation of China.

References

- [1] B. Butterworth, The twelve days of Christmas: Music Meets Math in a Popular Christmas Song, Inside Science News Service, December 17, 2002. <http://www.aip.org/isns/rep[orts/2002/058.html>.](http://www.research.att.com/sim {}njas/sequences)
- [2] W.Y.C. Chen, A general bijective algorithm for trees, Proc. Natl. Acad. Sci. USA, 87 (1990) 9635-9639.
- [3] L. Comtet, Advanced Combinatorics D, Reidel, Dordrecht, 1974.
- [4] N.Y. Li, T. Mansour, Identities involving Narayana numbers, Europ. J. Comb. 29:3 (2008) 672–675.
- [5] T. Mansour, Personal communicati[on.](http://mathdiscretionary {-}{}{}world.woldiscretionary {-}{}{}fram.com/Starofdiscretionary {-}{}{}Dadiscretionary {-}{}{}viddiscretionary {-}{}{}Thediscretionary {-}{}{}odiscretionary {-}{}{}rem.html)
- [6] D. Merlini, D.G. Roge[rs, R. Sprugnoli, M.C. Verri, On some alterna](http://en.widiscretionary {-}{}{}kidiscretionary {-}{}{}pediscretionary {-}{}{}dia.org/wiki/Starofdiscretionary {-}{}{}dadiscretionary {-}{}{}vid)tive characterization of Riordan arrays,Canadian J. Math. 49 (2) (1997) 301–320.
- [7] D. Merlini, R. Sprugnoli, M.C. Verri, Algebraic and combinatorial properties of simple coloured walks, Proceedings of CAAP'94, Lecture Notes in Computer Science, vol. 787, 1994 , pp. 218–233.
- [8] D. Merlini, M.C. Verri, Generating trees and proper Riordan arrays, Discrete Math. 218 (2000) 167–183.
- [9] L.W. Shapiro, S. Getu, W.J. Woan, L. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991) 229–239.
- [10] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences. <http://www.research.att.com/∼njas/sequences>.
- [11] R. Sprugnoli, Riordan arrays and combinatorical sums, Discrete Math. 132 (1994) 267–290.
- [12] R. Sprugnoli, Riordan arrays and the Abel–Gould identity, Discrete Math. 142 (1995) 213–233.
- [13] Y. Sun, Dyck paths with restrictions, Master Dissertation, Nankai University, 2003.
- [14] Y. Sun, The star of David theorem. <http://mathworld.wolfram.com/StarofDavidTheorem.html>.
- [15] Y. Sun, Star of David. <http://en.wikipedia.org/wiki/Starofdavid>.