38 research outputs found

    Fast simulation of large-scale growth models

    Full text link
    We give an algorithm that computes the final state of certain growth models without computing all intermediate states. Our technique is based on a "least action principle" which characterizes the odometer function of the growth process. Starting from an approximation for the odometer, we successively correct under- and overestimates and provably arrive at the correct final state. Internal diffusion-limited aggregation (IDLA) is one of the models amenable to our technique. The boundary fluctuations in IDLA were recently proved to be at most logarithmic in the size of the growth cluster, but the constant in front of the logarithm is still not known. As an application of our method, we calculate the size of fluctuations over two orders of magnitude beyond previous simulations, and use the results to estimate this constant.Comment: 27 pages, 9 figures. To appear in Random Structures & Algorithm

    Challenges in Developing Great Quasi-Monte Carlo Software

    Full text link
    Quasi-Monte Carlo (QMC) methods have developed over several decades. With the explosion in computational science, there is a need for great software that implements QMC algorithms. We summarize the QMC software that has been developed to date, propose some criteria for developing great QMC software, and suggest some steps toward achieving great software. We illustrate these criteria and steps with the Quasi-Monte Carlo Python library (QMCPy), an open-source community software framework, extensible by design with common programming interfaces to an increasing number of existing or emerging QMC libraries developed by the greater community of QMC researchers

    Quantum and stochastic processes

    Get PDF

    Quantum and stochastic processes

    Get PDF

    Third International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC98)

    Full text link

    Actions and Invariants of Residually Finite Groups: Asymptotic Methods

    Get PDF
    The workshop brought together experts in finite group theory, L2-cohomology, measured group theory, the theory of lattices in Lie groups, probability and topology. The common object of interest was residually finite groups, that each field investigates from a different angle

    A Study of Adaptation Mechanisms for Simulation Algorithms

    Get PDF
    The performance of a program can sometimes greatly improve if it was known in advance the features of the input the program is supposed to process, the actual operating parameters it is supposed to work with, or the specific environment it is to run on. However, this information is typically not available until too late in the program’s operation to take advantage of it. This is especially true for simulation algorithms, which are sensitive to this late-arriving information, and whose role in the solution of decision-making, inference and valuation problems is crucial. To overcome this limitation we need to provide the flexibility for a program to adapt its behaviour to late-arriving information once it becomes available. In this thesis, I study three adaptation mechanisms: run-time code generation, model-specific (quasi) Monte Carlo sampling and dynamic computation offloading, and evaluate their benefits on Monte Carlo algorithms. First, run-time code generation is studied in the context of Monte Carlo algorithms for time-series filtering in the form of the Input-Adaptive Kalman filter, a dynamically generated state estimator for non-linear, non-Gaussian dynamic systems. The second adaptation mechanism consists of the application of the functional-ANOVA decomposition to generate model-specific QMC-samplers which can then be used to improve Monte Carlo-based integration. The third adaptive mechanism treated here, dynamic computation offloading, is applied to wireless communication management, where network conditions are assessed via option valuation techniques to determine whether a program should offload computations or carry them out locally in order to achieve higher run-time (and correspondingly battery-usage) efficiency. This ability makes the program well suited for operation in mobile environments. At their core, all these applications carry out or make use of (quasi) Monte Carlo simulations on dynamic Bayesian networks (DBNs). The DBN formalism and its associated simulation-based algorithms are of great value in the solution to problems with a large uncertainty component. This characteristic makes adaptation techniques like those studied here likely to gain relevance in a world where computers are endowed with perception capabilities and are expected to deal with an ever-increasing stream of sensor and time-series data

    Efficient Pricing of High-Dimensional American-Style Derivatives: A Robust Regression Monte Carlo Method

    Get PDF
    Pricing high-dimensional American-style derivatives is still a challenging task, as the complexity of numerical methods for solving the underlying mathematical problem rapidly grows with the number of uncertain factors. We tackle the problem of developing efficient algorithms for valuing these complex financial products in two ways. In the first part of this thesis we extend the important class of regression-based Monte Carlo methods by our Robust Regression Monte Carlo (RRM) method. The key idea of our proposed approach is to fit the continuation value at every exercise date by robust regression rather than by ordinary least squares; we are able to get a more accurate approximation of the continuation value due to taking outliers in the cross-sectional data into account. In order to guarantee an efficient implementation of our RRM method, we suggest a new Newton-Raphson-based solver for robust regression with very good numerical properties. We use techniques of the statistical learning theory to prove the convergence of our RRM estimator. To test the numerical efficiency of our method, we price Bermudan options on up to thirty assets. It turns out that our RRM approach shows a remarkable convergence behavior; we get speed-up factors of up to over four compared with the state-of-the-art Least Squares Monte Carlo (LSM) method proposed by Longstaff and Schwartz (2001). In the second part of this thesis we focus our attention on variance reduction techniques. At first, we propose a change of drift technique to drive paths in regions which are more important for variance and discuss an efficient implementation of our approach. Regression-based Monte Carlo methods might be combined with the Andersen-Broadie (AB) method (2004) for calculating lower and upper bounds for the true option value; we extend our ideas to the AB approach and our technique leads to speed-up factors of up to over twenty. Secondly, we research the effect of using quasi-Monte Carlo techniques for producing lower and upper bounds by the AB approach combined with the LSM method and our RRM method. In our study, efficiency has high priority and we are able to accelerate the calculation of bounds by factors of up to twenty. Moreover, we suggest some simple but yet powerful acceleration techniques; we research the effect of replacing the double precision procedure for the exponential function and introduce a modified version of the AB approach. We conclude this thesis by combining the most promising approaches proposed in this thesis, and, compared with the state-of-the-art AB method combined with the LSM method, it turns out that our ultimate algorithm shows a remarkable performance; speed-up factors of up to over sixty are quite possible

    Rumor spreading: robustness and limiting distributions

    Get PDF
    In this thesis, we study mathematical aspects of information dissemination. The four collected works investigate randomized rumor spreading with regard to its robustness and asymptotic runtime as well as adversarial effects on opinion forming. In the first contribution, Robustness of Randomized Rumor Spreading, we investigate the popular randomized rumor spreading algorithms push, pull and pushpull. These are used to spread information quickly through large networks, typically modelled by graphs. Starting with one informed vertex and depending on the used algorithm the information is spread in a round based manner. Using push, every informed vertex chooses a random neighbour and passes the information forward. With pull, each vertex yet uninformed connects to a randomly chosen neighbor and receives the information, if the vertex it connected to is informed. pushpull is a combination of push and pull. Every vertex chooses a random neighbour, if one of them is informed then the other will be informed as well. Their advantages over deterministic algorithms are, that they are easy to implement, fast and very robust against failures. However, there is only sporadic information available to substantiate the claimed robustness. The aim of this work is to close this gap. To that end, three orthogonal properties and their effects on the speed of the dissemination are studied. First, we show that the density of the graph does not play an important role. For fast dissemination it is not relevant how many edges there are, but how evenly they are distributed in the graph. Thus, a network could have many faulty connections, but as long as the remaining ones are spread evenly the speed of the dissemination is not significantly impacted. This begs the question how evenly the remaining edges need to be spread to guarantee a fast dissemination. Surprisingly, the answer to this question is not the same for all three rumor spreading algorithms. pull and pushpull are very robust. Starting from a graph with evenly distributed edges and thus fast dissemination one may introduce irregularities by deleting up to one half of all edges at each node and the dissemination remains fast. However, for push the dissemination already slows down significantly if only few irregularities are introduced. Lastly, we additionally consider random message transmission failures. From previous works, we know that on "nice" graphs all three algorithms only slow down proportionally to the failure probability. However, when considering the effect of density and irregularities together with transmission failures, the picture changes once more. pull alone retains its fast dissemination. With a suitable choice of parameters, pushpull similar to \push can be slowed down significantly. Thus, we can not unconditionally confirm the claimed robustness for all three rumor spreading algorithms, only pull proved to be robust against all introduced challenges, push and pushpull, however, did not. In the second contribution, Asymptotics for Push on the Complete Graph, we move from the general approach of quantifying the robustness of all three randomized rumor spreading algorithms on a broad range of networks to very precisely describing the runtime of push on complete graphs only. Thereby, the runtime is defined as the time until the information is disseminated to all vertices in the graph. In this work, we completely describe the limiting distribution of the runtime of push on the complete graph in terms of a Gumbel distributed random variable. We made a surprising observation, the asymptotic distribution does not converge everywhere, only on suitable subsequences. This results in the phenomena, that the expected runtime is not constant either but infimum and supremum over all n differ by about 10^-4. After successfully solving push on the complete graph, a natural question is to ask whether the same can be achieved for other rumor spreading algorithms. The third contribution, Asymptotics for Pull on the Complete Graph, answers this question for pull, describing the asymptotic distribution of the runtime of pull on the complete graph in terms of a martingale limit. Again we observed that the limiting distribution only exists on suitable subsequences. We study the expected runtime numerically, finding strong evidence that it is not constant either. The last contribution, The Effect of Iterativity on Adversarial Opinion Forming, deviates from the previously considered model and introduces a second competing piece of information. We interpret them as opinions and assume one to be the truth and the other one to be a falsehood. The opinions are spread through the network by a simple majority rule, i.e. uninformed vertices take the majority opinion of their informed neighbours. Known properties that guarantee robustness are the degree being sufficiently bounded or the edges being evenly distributed. The question considered in this contribution is whether an alternative iterative dissemination process influences robustness. Alon et al. conjecture that iterativity is always beneficial for the adversary. We refute that conjecture by giving a graph where iterativity benefits robustness.In dieser Arbeit beschäftigen wir uns mit mathematischen Aspekten der Informationsverbreitung in Netzwerken. Die vier gesammelten Beiträge untersuchen randomisierte Gerüchteverbreitungsalgorithmen hinsichtlich ihrer Robustheit und asymptotischen Laufzeit, sowie gegnerische Auswirkungen auf die Meinungsbildung. Der erste Beitrag, Robustness of Randomized Rumor Spreading, befasst sich mit den populären randomisierten Gerüchteverbreitungsalgorithmen Push, Pull und Push&Pull. Diese werden dazu verwendet, um Informationen schnell durch große, als Graphen modellierte Netzwerke zu verteilen. Beginnend mit einem informierten Knoten und in Runden verfahrend, werden die Informationen abhängig vom verwendeten Algorithmus verteilt. Wird \push benutzt, so wählt jeder informierte Knoten einen zufälligen Nachbarn und gibt die Information weiter. Mit Pull wählen uninformierte Knoten zufällige Nachbarn und werden informiert, falls der gewählte Nachbar informiert ist. Push&Pull ist eine Kombination aus Push und Pull. Jeder Knoten wählt einen zufälligen Nachbarn aus, ist einer der beiden informiert, so wird auch der andere informiert. Mit einer einfachen Implementierung, hohen Geschwindigkeit und einer starken Robustheit heben sich die randomisierten Gerüchteverbreitungsalgorithmen positiv von deterministischen Algorithmen ab. Bisher liegen jedoch nur sporadische Informationen vor, um die beobachtete Robustheit auch rigoros zu belegen. Ziel dieser Arbeit ist es, diese Lücke zu schließen. Dafür betrachten wir drei verschiedene, strukturelle Eigenschaften der Graphen, um deren Auswirkungen auf die Geschwindigkeit der Verbreitung zu studieren. Als erstes Ergebnis zeigen wir, dass die Dichte des Netzwerks keinen nennenswerten Einfluss hat. Für eine schnelle Verbreitung der Informationen ist nicht die Anzahl der Kanten relevant, sondern deren gleichmäßige Verteilung. Ein Netzwerk könnte folglich viele fehlerhafte Verbindungen haben, aber solange die verbleibenden Verbindungen gleichmäßig verteilt sind, wird die Verbreitung nicht wesentlich verlangsamt. Dies regt die Untersuchung an, wie gleichmäßig die verbleibenden Kanten sein müssen, um eine schnelle Verbreitung zu gewährleisten. Wider Erwarten konnten wir Unterschiede in Abhängigkeit des gewählten Gerüchteverbreitungsalgorithmus aufzeigen. Pull und Push&Pull sind sehr widerstandsfähig. Denn ausgehend von einem „schönen“ Graph mit gleichmäßig verteilten Kanten können durch Löschen von Kanten Unregelmäßigkeiten eingebracht werden durch die sich die Geschwindigkeit der Gerüchteverbreitung nicht nennenswert verändert. Im Gegensatz dazu verlangsamt sich die Verbreitung mit Push bereits erheblich, wenn nur wenige Unregelmäßigkeiten auftreten. Abschließend befassen wir uns ergänzend mit zufällig auftretenden Übertragungsfehlern. Aus früheren Arbeiten wissen wir, dass sich bei „schönen“ Graphen alle drei Algorithmen nur proportional zur Ausfallswahrscheinlichkeit verlangsamen. Betrachten wir hingegen die Auswirkungen der Dichte und der Unregelmäßigkeiten mit Übertragungsfehlern zusammen, entsteht eine neue Sachlage. Dabei behält nur Pull seine schnelle Verbreitung bei, Push&Ppull kann bei einer entsprechenden Wahl der Parameter ähnlich wie Push verlangsamt werden. Somit ist eine Bestätigung der behaupteten Robustheit der drei Gerüchteverbreitungsalgorithmen nicht bedingungslos möglich. Lediglich Pull erwies sich als widerstandsfähig gegenüber allen betrachteten Problemen, Push und Push&Pull jedoch nicht. Im zweiten Beitrag, Asymptotics for Push on the Complete Graph, gehen wir vom allgemeinen Ansatz der Beschreibung der Robustheit aller drei randomisierten Gerüchteverbreitungsalgorithmen auf einem breiten Spektrum von Netzwerken zu einer sehr präzise Beschreibung der Laufzeit von Push auf vollständigen Graphen über. Dabei definiert sich die Laufzeit als die Zeit, in der die Information an alle Knoten im Graph verteilt wird. In dieser Arbeit beschreiben wir die Grenzverteilung der Laufzeit von Push auf dem vollständigen Graph. Dabei haben wir eine überraschende Beobachtung gemacht, denn die asymptotische Verteilung konvergiert nicht überall, sondern nur auf geeigneten Teilfolgen. Dies resultiert in dem Phänomen, dass die erwartete Laufzeit nicht konstant ist, vielmehr unterscheiden sich Supremum und Infimum über alle n um ungefähr 10^-4. Nach dieser erkenntnisreichen Arbeit stellt sich die natürliche Frage, ob dasselbe für die anderen Gerüchteverbreitungsalgorithmen gilt. Die daran anschließende Arbeit Asymptotics for Pull on the Complete Graph bejaht die aufgeworfene Frage für Pull, indem die asymptotische Verteilung der Laufzeit von Pull auf vollständigen Graph mit Hilfe eines Martingalgrenzwertes beschrieben wird. Ferner wird beobachtet, dass die Grenzverteilung nur auf geeigneten Teilfolgen existiert. Die erwartete Laufzeit wird mit Hilfe dieser Beschreibungen empirisch untersucht, wobei es eine starke Evidenz gibt, dass auch diese nicht konstant ist. Der letzte Beitrag, The Effect of Iterativity on Adversarial Opinion Forming, weicht vom bisher betrachteten Modell ab und führt eine zweite, konkurrierende Information ein. Diese interpretieren wir als Meinungen und nehmen eine davon als wahr an. Die Meinungen werden durch eine einfache Mehrheitsregel im Netzwerk verbreitet, d.h. uninformierte Knoten nehmen die Mehrheitsmeinung ihrer informierten Nachbarn an. Dabei sehen wir ein Netzwerk als robust an, wenn selbst ein Kontrahent die anfangs informierten Knoten nur so wählen kann, dass am Ende der Verbreitung stets die Mehrheit der Knoten von der Wahrheit überzeugt ist. Bekannte Beispiele robuster Netzwerke sind solche mit hinreichend beschränkten Knotengraden oder mit ausreichend gleichmäßig verteilten Kanten. In unserem Beitrag betrachten wir die Frage, inwiefern Robustheit durch einen alternativen, iterativen Verbreitungsprozess beeinflusst wird. Alon et al. vermuten eine negative Auswirkung von Iteration auf Robustheit. Wir widerlegen diese Vermutung durch Konstruktion eines Graphen, auf welchem ein iterativer Prozess die Verbreitung der Wahrheit begünstigt
    corecore