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Chapter 1

Introduction and preliminaries

This dissertation studies various stochastic processes and compares them to their
quantum mechanical counterparts. An important role is played by locality, which
describes the property that a physical system cannot directly influence another
system that is far away. One of the most striking features of quantum mechanics
is entanglement and its nonlocal properties, which allows far-away systems to
be correlated in ways that are classically impossible. In 1964, John Stewart
Bell introduced his famous theorem [Bel64], showing that the predictions made
by quantum mechanics cannot be reproduced by a local hidden variable theory.
Using setups known as Bell tests, physicists have demonstrated violations of so-
called Bell inequalities [Hen+15], showing that local hidden variable theories do
not completely describe our physical world.

In theoretical computer science, Bell inequalities are often studied in the
framework of nonlocal games, which will be the topic of Chapter 2. Arguably
the most well-known nonlocal game in quantum information theory is the CHSH
game, named after Clauser, Horne, Shimnoy, and Holt [Cla+69]. Two players,
often called Alice and Bob, get bits x, y ∈ {0, 1} from a referee. Alice receives
the bit x, Bob receives y, and without communicating they have to provide an-
swers a, b ∈ {0, 1} to the referee. They win the game if their answers satisfy
the following winning condition: the bits a and b have to be equal except when
both x and y are 1. Before the game starts Alice and Bob can agree on a strat-
egy to try and maximize their probability of winning. The referee initially picks
the questions x, y uniformly at random and it is not difficult to prove that Alice
and Bob can never win with a probability greater than 3/4. When they share
an entangled quantum state, however, they can achieve a winning probability of
(2 +

√
2)/4 ≈ 0.85, still without communicating, and this is optimal. General

nonlocal games can have more players, and more general questions, answers, and
winning conditions. Communicating, however, is never allowed. The use of en-
tanglement can be helpful, as in the CHSH game, but there also exist games for
which this is not the case. Note that the players both in the classical and en-

1



2 Chapter 1. Introduction and preliminaries

tangled setting are allowed to use shared randomness, meaning they have access
to a global source of random bits. Whenever a player samples a random bit, the
other players will know that random value as well. Although this might seem
useful at first, one can show that for any such random strategy there always ex-
ists a deterministic strategy that achieves at least the same winning probability.
When proving upper bounds on winning probabilities, this fact allows one to re-
strict the analysis to deterministic strategies only, which we will do in Chapter 2.
Nonlocal games are not only utilized to study Bell inequalities but have other
wide-ranging applications in computer science, including the study of complexity
classes [Ben+88] and hardness of approximation results [Kho02]. They have an
especially important connection with communication complexity. The setup in
communication complexity is similar to that of a nonlocal game, but after re-
ceiving the inputs the players have to communicate until the first player knows
the correct answer with high probability. In this case, entanglement can reduce
the amount of communication required [CB97; BCW98; BCD00]. The number of
required bits is called the randomized communication complexity in the classical
case, and entangled communication complexity in the quantum case. There is
a close connection between the winning probability of a nonlocal game and the
amount of communication needed in a related communication complexity prob-
lem [LS09; SZ08]. A lower bound on the winning probability of a game implies
an upper bound on the communication complexity1, and an upper bound on the
winning probability also implies a lower bound on the communication complex-
ity. To study certain problems in the area of communication complexity, one can
focus on nonlocal games instead, which is done in Chapter 2. The main question
that is addressed concerns the existence of games for which the best-possible win-
ning probability using entanglement is equal to 1 but for which the best-possible
winning probability without entanglement is small. We study this because the
existence of such games would imply the existence of an unbounded separation
between randomized and entangled communication complexity.

Chapter 3 continues the comparison of the quantum and classical world, in the
context of quasirandom objects. The concept of quasirandomness was introduced
in 1989 by Chung, Graham, and Wilson [CGW89], who studied seven properties
possessed by typical random graphs. They proved that for any family of dense
graphs these properties are equivalent in the sense that having one property im-
plies all the others. As graphs with these properties do not have to be random,
they are called quasirandom graphs. Two of these properties are called spectral
expansion and uniformity. A graph is a spectral expander when the second largest
eigenvalue of its adjacency matrix is small. This is an important property be-
cause it implies, for example, that a random walk on this graph converges rapidly
to its stationary distribution. Uniformity on the other hand, is a combinatorial
statement about the density of edges between two arbitrary vertex subsets. In

1Caveat: the input distribution to the game has to be the hardest one.



3

a uniform graph, these densities, for any two vertex subsets, are all close to the
global edge density. It can be shown that any graph that is a spectral expander
is also uniform, and one of the results of Chung, Graham, and Wilson is that
for families of dense graphs, uniformity also implies expansion. Although there
exist counterexamples of sparse graphs that are uniform but not expanding, it
was shown by Conlon and Zhao [CZ17] that when a graph is vertex-transitive,
then the equivalence still holds. Graphs can be identified with their adjacency
matrix or transition matrix, and a natural generalization of a transition matrix in
the context of quantum information theory is a quantum channel. In Chapter 3
the notions of spectral expansion and uniformity are generalized to the quantum
setting, where we prove both the result of Chung, Graham, and Wilson as well
as that of Conlon and Zhao for quantum channels. We also prove the optimality
of the result of Conlon and Zhao. Our proofs make use of the non-commutative
Grothendieck inequality, which has also been used to prove communication com-
plexity bounds [LS09; Bri11].

One of the most famous random graph models is the Erdős-Rényi model, in
which each possible edge is present with probability p independent from every
other edge. As the number of vertices n becomes large, a graph sampled in this
way will indeed be uniform and a spectral expander with high probability. The
Erdős-Rényi graph is only one of many random graph models, and depending
on the application it may not be the most suitable. Random graphs are often
used to model real-world networks such as social networks (where there is an edge
between two people if they are friends) or the internet (where there is a directed
edge between two websites if one links to the other). Such graphs commonly have
interesting properties that are not present in typical Erdős-Rényi graphs, such as
degree distributions with heavy tails and a high amount of clustering. Therefore,
many other random graph models have been developed to more accurately predict
the behavior of real-world networks. One such model is the uniform random graph
with prescribed degrees2, in which one fixes a degree sequence and then takes a
uniform sample from the set of all graphs with those degrees. The difficulty of
this sampling task depends on the degree sequence that is chosen. In Chapter 4
this sampling problem is studied in the setting where the degrees follow a power-
law distribution: the fraction of degrees equal to d is proportional to d−τ , where
the constant τ is the degree exponent. When τ > 3 there are known methods
to uniformly sample such random graphs [Hof17], but they fail when τ < 3. In
Chapter 4 we numerically compare different sampling algorithms to tackle the
τ < 3 regime, the most important one being a Markov Chain based method.
This method starts with any graph with the correct degree sequence and each
time step slightly alters the graph. Although it is not difficult to prove that the
stationary distribution of this Markov Chain is the uniform distribution over the

2The word uniform in this context does not refer to the uniformity property studied in
Chapter 3.



4 Chapter 1. Introduction and preliminaries

desired graphs, bounds on the speed of convergence are very weak, and for some
types of degree sequences, bounds are not known at all. Chapter 4 studies this
convergence numerically by tracking the number of triangles in the graph, and
makes a conjecture regarding the asymptotic number of triangles in such graphs
when the number of vertices grows to infinity.

Chapter 5 studies another class of Markov Chains, and locality is used as
a crucial ingredient in the analysis. This class of Markov Chains includes the
contact process and the discrete Bak-Sneppen process. In the contact process n
individuals, represented by the vertices of a graph, can each be healthy or infected.
In every time step, one picks an infected individual uniformly at random, after
which with probability p a random neighbor of that individual is infected and
with probability 1 − p the individual is healed. It is crucial that this update
step is local, in the sense that it can only affect a vertex and its neighbors. The
discrete Bak-Sneppen process originates from a model for evolution and is of a
similar flavor. The vertices in the Bak-Sneppen process represent species and
they can have fitness value 0 (corresponding to infected in the contact process)
or fitness value 1 (corresponding to healthy). In every time step, a random 0-
vertex is picked and then all neighbors of this vertex including the vertex itself
are randomly assigned new values, 0 with probability p, 1 with probability 1− p,
independent of each other. This process will be introduced in more detail in
Chapter 5. Both these processes exhibit a phase transition in the parameter p.
This means that when p is below some critical value pc then the infection dies out
quickly. For p > pc however, this takes a long time, and in an infinite system (with
a finite number of infected individuals) there is even a nonzero probability that the
infection spreads infinitely far and never dies out. The contact process terminates
when it reaches a state where every individual is healthy, and the expected time
to reach that state is of great interest. To study the phase transition, and the
behavior of the system near the phase transition threshold, one would like to know
how this quantity behaves as a function of p when the number of vertices n goes
to infinity. Computing the expected time to termination can be done numerically
by inverting a 2n×2n matrix. This quickly becomes intractable even for relatively
small n for which the effects of the phase transition are not yet visible. Monte
Carlo simulations allow for probing of larger n but have trouble dealing with
values of p close to the threshold pc because the expected time goes to infinity.
When this quantity is written as a power series in the parameter p it turns out
that the power-series coefficients stabilize as the system size grows. In Chapter 5
this is proved by leveraging the locality of the update rule. This result allows one
to compute power-series coefficients of arbitrary large systems by only looking at
a finite system for which the matrix inversion is feasible. These coefficients are of
great interest in the theory of critical phenomena because they can then be used,
for example, to make estimates of the critical value pc and critical exponents.

A local stochastic process much simpler than the ones mentioned so far is the
random walk on a line. A natural quantum generalization of this is the quan-
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tum walk, a model for a quantum particle moving in a physical system. Quan-
tum walks have been extensively used as quantum algorithms [Amb04; Mon18;
Amb+19], but we will look at them through the lens of number theory. This is
the core of Chapter 6, in which the probabilities that arise in a quantum walk are
studied modulo prime numbers. We start with Pascal’s triangle, a well-known set
of numbers that can be thought of as probabilities of a symmetric random walk
on the line. When these numbers are colored according to their value modulo
a prime p, one obtains a fractal known as the Sierpinski triangle. We study a
quantum version of this phenomenon by replacing the random walk by a quan-
tum walk. The classical Pascal’s triangle always results in the Sierpinski triangle,
regardless of the chosen prime p. As it turns out, the quantum version can also
yield more interesting patterns, one of which is shown on the cover of this thesis.

1.1 Preliminaries

For an integer n > 0 we write [n] = {1, . . . , n}. For a finite set S, we use the
notation Es∈S for 1

|S|
∑

s∈S. We write Mn(R) and Mn(C) for the set of n × n

matrices with values in R and C respectively. Inner products 〈φ, ψ〉 are linear
in the right argument and conjugate-linear in the left argument. For a linear
operator M , we write M∗ for its adjoint. For finite-dimensional spaces this is
its conjugate transpose, that is, (M∗)ij = Mji where the bar denotes complex
conjugation. An operator M is Hermitian when M∗ = M and we say it is
positive semidefinite (PSD) when additionally 〈x,Mx〉 ≥ 0 for every vector x. In
this case we write M � 0. A Hermitian operator P is a projector when P 2 = P .
A complex square matrix U is unitary when U∗U = UU∗ = Id, and we write
U(n) for the set of all n× n unitary matrices. We write Eij for the matrix with
only a one at position ij, that is, Eij = eie

∗
j where ei ∈ {0, 1}n denotes the i-th

standard basis vector. The operator norm of a matrix M is denoted by ‖M‖ and
is given by the largest singular value of M . There are some other matrix norms
that we use, but they only appear in Chapter 3 so we will introduce them there
with distinct notation.

In Chapter 3 and Chapter 5 we use transition matrices, that is, matrices
describing the transition of a Markov Chain. For these, we will use the convention
of writing probability vectors as column vectors, so the transition matrices act on
them from the left.

1.1.1 Quantum mechanics

All quantum systems studied in this dissertation are finite-dimensional. Let H
be a finite-dimensional complex Hilbert space, i.e., H = Cd for some d ∈ N. For a
vector ψ ∈ H we will often use bra-ket notation, where we instead of ψ write |ψ〉
and use 〈ψ| for its adjoint ψ∗. For a linear operator M : H → H we then use the
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notation 〈φ|M |ψ〉 to mean 〈φ,Mψ〉. The norm of a vector |ψ〉 is the Euclidian
norm, induced by the inner product, ‖ψ‖ =

√
〈ψ|ψ〉.

A d-dimensional quantum system has an associated Hilbert space H = Cd
and the state of the system is described by a d × d matrix ρ called the density
matrix. It is positive semidefinite and satisfies Tr(ρ) = 1. Any such matrix
can be written in the form ρ =

∑d
i=1 pi|ψi〉〈ψi| where the states |ψi〉 form an

orthonormal basis and the pi are a probability distribution. When ρ has rank 1,
i.e., ρ = |ψ〉〈ψ| for some |ψ〉 ∈ H with unit norm, then we say ρ is a pure state,
otherwise it is a mixed state. For pure states, we often simply say that the state
of the system is |ψ〉 as opposed to |ψ〉〈ψ|. A mixed state can be thought of as a
probabilistic distribution over a set of pure states. The space corresponding to a
composite quantum system consisting of two subsystems with Hilbert spaces H1

and H2 is the tensor product H1 ⊗H2. For pure states we often omit the tensor
product notation and write |ψ1〉|ψ2〉 or |ψ1, ψ2〉 for |ψ1〉 ⊗ |ψ2〉. When a state
lives in a tensor product of n Hilbert spaces we say it is an n-partite state. In a
nonlocal game with n players, they share such an n-partite state when employing
an entangled strategy.

When a pure state |ψ〉 in a composite system H1 ⊗H2 can be written in the
form |ψ〉 = |ψ1〉 ⊗ |ψ2〉 then it is called a product state. If this is not the case
then it is entangled. An often used entangled state is the Bell state given by

1√
2
(|0〉|0〉 + |1〉|1〉). It can be used to achieve the optimal winning probability in

the CHSH game. Another well-known entangled state is the GHZ state, named
after Greenberger, Horne, and Zeilinger [GHZ89]. The d-dimensional n-partite
GHZ state, in (Cd)⊗n, is given by |GHZ〉 = 1√

d

∑d
i=1 |ei〉 ⊗ |ei〉 · · · ⊗ |ei〉.

Any pure state in H1⊗H2 can always be decomposed as |ψ〉 =
∑k

i=1 ci|ai〉|bi〉,
where ci > 0, the |ai〉 are orthogonal unit vectors inH1, and the |bi〉 are orthogonal
unit vectors inH2. This is known as a Schmidt decomposition, and the ci are called
the Schmidt coefficients. The number k of nonzero coefficients is the Schmidt rank
of the state. For n-partite states with n > 2 such a decomposition is not possible
in general.

Quantum mechanics dictates that coherent time evolution is limited to unitary
operations: a pure state |ψ〉 can evolve to U |ψ〉 where U is a unitary operator,
and a mixed state ρ becomes UρU∗. If a unitary operation U is applied to only
one part of a composite quantum state |ψ〉, then the result is (U ⊗ Id)|ψ〉.

More general, possibly non-coherent, operations are described by quantum
channels, which will play an important role in Chapter 3. A quantum channel
is a linear map Φ : Md(C) → Md(C), with the minimal conditions needed to
ensure that when Φ is applied to (a subsystem of) a density matrix, the result is
again a valid density matrix. Since density matrices ρ satisfy Tr(ρ) = 1, quantum
channels have to be trace-preserving. We also have ρ � 0 so we furthermore
require Φ to be positive, that is, Φ(X) � 0 whenever X � 0. This is not enough,
because we are allowed to only apply Φ to a part of a composite system and
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that operation should also be positive. We require that for any m ∈ N, the map
Id⊗ Φ : Mm(C)⊗Md(C)→Mm(C)⊗Md(C) maps positive matrices to positive
matrices. We then say Φ is completely positive. Quantum channels are therefore
completely positive trace-preserving (CPTP) linear maps. They are the most
general operations on quantum systems that are physically realizable.

Let {|b1〉, . . . , |bd〉} be an orthonormal basis of H and write |ψ〉 =
∑d

i=1 ψi|bi〉.
The coefficients ψi ∈ C are called amplitudes. We can measure the state |ψ〉 in
this basis and we get outcome i with probability |ψi|2. After measuring, the state
collapses to |bi〉. A mixed state ρ produces outcome i with probability 〈bi|ρ|bi〉.
One can more generally perform a projective measurement, which is described by
a set of projectors {P1, . . . , Pk} with the property that PiPj = 0 when i 6= j and∑k

i=1 Pi = Id. The probability of measuring outcome i when the system is in the
state ρ is given by Tr(Piρ), after which the state collapses to PiρPi/Tr(Piρ). When
a part of a composite system is measured, for example when a player measures
their part of a shared state in a nonlocal game, then we can describe such a
measurement by projectors of the form Pi⊗ Id. Measurements more general than
projective measurements exist, but any measurement can be implemented by a
projective measurement on a larger Hilbert space.

In Chapter 2 we use this fact in the setting of nonlocal games, where the
players of the game share a pure state |ψ〉 in a composite system and must each
do a measurement. The state is fixed beforehand, but the measurement performed
by a player can depend on the input they receive from the referee. The choice of
state and set of measurements of the players is called a strategy. One can always
assume that for a fixed input, the measurement of player i is described by a set
of projectors {P (i)

1 , · · · , P (i)
k }, and the probability that the m players collectively

output answers (a1, . . . , am) is given by 〈ψ|P (1)
a1 ⊗ · · · ⊗ P (m)

am |ψ〉 when they share
the pure state |ψ〉.

A mixed state ρ =
∑

j pj|ψj〉〈ψj| is more general than a pure state, but we
will now argue that the optimal winning probability can always be achieved using
a pure state only. We can write the winning probability of a strategy as

E
x1,...,xn

∑

a1,...,am
correct on x

P(strategy outputs a1, . . . , am on x),

where the xi are the inputs to the players and the second sum is over all answer
tuples that are correct for that input. Let {P (i,xi)

1 , . . . , P
(i,xi)
k } be the measurement

of player i on input xi. The winning probability can then be written as

E
x1,...,xn

∑

a1,...,am
correct on x

∑

j

pj 〈ψj|P (1,x1)
a1

⊗ · · · ⊗ P (m,xm)
am |ψj〉,

and we can take the sum over pj outside. This shows there must be a j0 such
that the players achieve at least the same winning probability using the pure
state |ψj0〉. In Chapter 2 we can therefore assume the players share a pure state.





Chapter 2

Nonlocal games

This chapter is based on joint work with Jop Briët, Harry Buhrman, Farrokh
Labib and Troy Lee [Ban+19a].

2.1 Introduction

This chapter studies separations between the entangled and classical values for
several classes of nonlocal t-player games. The study of multiplayer games has
been extremely fruitful in theoretical computer science across diverse areas, in-
cluding the study of complexity classes [Ben+88], hardness of approximation
[Kho02], and communication complexity [Ker+15]. They are also a great frame-
work in which to study Bell inequalities [Bel64] and analyze the nonlocal prop-
erties of entanglement. A particularly simple kind of multiplayer game is an
XOR game. An XOR game G = (f, π) between t-players is defined by a func-
tion f : X1 × X2 × · · · × Xt → {0, 1} and a probability distribution π over
X1 × · · · × Xt. An input (x1, . . . , xt) ∈ X1 × · · · × Xt is chosen by a referee
according to π, who then gives xi to player i. Without communicating, player i
then outputs a bit ai ∈ {0, 1} with the collective goal of the players being that
a1⊕ · · · ⊕ at = f(x1, . . . , xt). In a classical XOR game, the players’ strategies are
deterministic. In an XOR game with entanglement, players are allowed to share
a quantum state and make measurements on this state to produce their outputs.

As players can always win an XOR game with probability at least 1
2
, it is

common to study the bias of an XOR game, the probability of winning minus
the probability of losing. We use β(G) to denote the largest bias achievable by a
classical protocol for the game G, and β∗(G) to denote the best bias achievable
by a protocol using shared entanglement for the game G.

Our motivating question in this chapter is:

2.1.1. Question. Is there a family of t-player XOR games (Gn)n∈N such that
β∗(Gn) = 1 and β(Gn)→ 0 as n→∞?

9
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This question has important implications for multi-party communication com-
plexity. In this setting, after receiving their inputs the players communicate until
a player knows the answer with probability at least 1− ε. The answer is specified
by a function f : X1 × · · ·Xt → {0, 1}. Let Rε(f) denote the t-party random-
ized communication complexity of f and let R∗ε (f) denote the t-party randomized
communication complexity of f where the parties are allowed to share entangle-
ment. A positive answer to Question 2.1.1 gives a family of functions (fn)n∈N
with R∗(fn) = O(1) and R(fn) = ω(1), i.e. an unbounded separation between
these two communication models.

In the reverse direction, a family of functions (fn)n∈N with R∗(fn) = O(1) and
R(fn) = ω(1) gives a family of games Gn = (fn, πn) with β∗(Gn) ≥ c for some
constant c and β(Gn) → 0 as n → ∞. Thus there is a very close connection
between Question 2.1.1 and the existence of an unbounded separation between
randomized communication complexity with and without entanglement.

For the two-player case, it is known that the answer to Question 2.1.1 is nega-
tive. It was observed by Tsirelson [Tsi87] that Grothendieck’s inequality [Gro53b]
is equivalent to the assertion that β∗(G) ≤ KG · β(G).

Linial and Shraibman [LS09] and Shi and Zhu [SZ08] realized that the XOR
bias of a game (f, π) can be used to lower bound the communication complexity
of f , both in the randomized setting and the setting with entanglement. Together
with Grothendieck’s inequality they used this to show that R(f) = O(22R∗(f)) for
any partial two-party function f . Thus in the two-party case an unbounded
communication separation is not possible between the randomized model with
and without entanglement. Raz has given an example of a partial function f
with R(f) = 2Ω(R∗(f)) [Raz99], thus the upper bound of Linial-Shraibman and
Shi-Zhu is essentially optimal.

In the case of three or more parties, Question 2.1.1 and the corresponding
question of an unbounded separation between the entangled and non-entangled
communication complexity models remain open. A striking result of Pérez-García
et al. [Pér+08] shows that there is no analogue of Grothendieck’s inequality in
the three-player setting. In particular, they showed that there exists an infinite
family of three-player XOR games (Gn)n∈N with the property that the ratio of the
entangled and classical biases of Gn goes to infinity with n. This result was later
quantitatively improved by Briët and Vidick [BV13]. Both results rely crucially
on non-constructive (probabilistic) methods, and in both separating examples the
entangled bias β∗(Gn) also goes to zero with increasing n. These works leave open
the question, posed explicitly in [BV13], of whether there is such a family of games
in which the entangled bias does not vanish with n, but instead stays above a
fixed positive threshold while the classical bias decays to zero. Crucially, having a
separation in XOR bias where β∗(Gn) remains constant is what is needed to also
obtain an unbounded separation between randomized communication complexity
with and without entanglement.
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Our contribution to answering Question 2.1.1 One approach to Ques-
tion 2.1.1 is to look at different classes of games and identify which ones could
possibly lead to a positive answer.

Peréz-García et al. [Pér+08] show that in any XOR game where the entan-
gled strategy uses a GHZ state, there is a bounded gap between the classical and
entangled bias: namely, the bias with a GHZ state in a t-player XOR game G
is at most KG(2

√
2)t−1β(G). This bound is essentially tight as there are exam-

ples of t-player XOR games achieving a ratio between the GHZ state bias and
classical bias of π

2
t [Zuk93]. Briët et al. [Bri+13] later extended the Grothendieck-

type inequality of Peréz-García et al. to a larger class of entangled states called
Schmidt states (see Equation (2.1)). Thus any game where there is a perfect
strategy where the players share a Schmidt state cannot give a positive answer
to Question 2.1.1.

Watts et al. [Wat+18] recently investigated Question 2.1.1 and found that a
t-player XOR game G that is symmetric, i.e. invariant under the renaming of
players, and where β∗(G) = 1, always has a perfect entangled strategy where the
players share a GHZ state. Thus symmetric games also cannot give a positive
answer to Question 2.1.1.

We further study games that have a perfect strategy where players share a
GHZ or Schmidt state. We do this for a generalization of XOR games called
MOD-m games. In a MOD-m game the players output an integer between 0
and m − 1 and the goal is for the sum of the outputs mod m to equal a target
value determined by their inputs. We show that the classical advantage over
random guessing is at least m−1

m
t1−t in any t player MOD-m game that can be

won perfectly by sharing a Schmidt state (see Theorem 2.2.1).
We show this by introducing angle games, a class of games that can be won

perfectly sharing a GHZ state and are the hardest of all such games. Thus a
classical strategy in an angle game can be used to lower bound the winning
probability of any MOD-m game that has a perfect Schmidt state strategy.

For small values of t we can directly analyze angle games to give bounds that
are sometimes tight. One interesting consequence of our result is the following.
The Mermin game G is a three-party XOR game where by sharing a GHZ state
players can play perfectly, β∗(G) = 1, while classically β(G) = 1

2
. We show

that this is the maximal possible separation of any 3-party XOR game where
β∗(G) = 1 via a GHZ state. In particular, this means that when one looks at the
XOR repetition of the Mermin game the classical bias does not go down at all.

We rule out other types of games that could positively answer Question 2.1.1
as well. A t-player free XOR game G = (f, π) is a game where π is a product
distribution. For such games we show that β(G) ≥ β∗(G)2t , and thus they cannot
be used for a positive answer to Question 2.1.1.

We also look at extensions of Question 2.1.1 beyond XOR games to more gen-
eral classes of games like unique games [Kho02], which have been deeply studied
because of their application in hardness of approximation. For unique games we
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show that in fact if there is strategy with entanglement that can win a unique
game perfectly, then there is a perfect classical strategy as well. This can be
compared with the result of Cleve et al. [Cle+04] that if a two-player game with
binary outputs has a perfect strategy with entanglement then it also has a perfect
classical strategy. More generally, we show that if the winning probability with
entanglement is 1 − ε in a unique game with k outputs, then there is a classical
strategy that wins with probability 1−C√ε log k for some universal constant C.

Finally, we discuss generalizations of the well-known CHSH game [Cla+69],
discussed in the introduction. Although it is less relevant to Question 2.1.1, this
game is amongst the most well-studied games in quantum information theory.
Buhrman and Massar [BM05] introduced a family of games that generalizes the
CHSH game, which was further studied by Bavarian and Shor [BS15]. We study
the result of Bavarian and Shor in the framework of MOD parallel repetition,
and we distinguish between playing the game over Z/mZ and over Fq, a finite
field of size q. We show that the bound on the bias by Bavarian and Shor is
tight for the MOD parallel repetition of the field version of the game. We also
show that optimal strategies for the game over Z/mZ are not necessarily regular,
a property describing the output distribution of a strategy. We further prove a
result regarding a particular form of parallel repetition of these games and by a
brute-force search through all strategies we also show that the parallel repetition
result is not tight in general.

In the next section, we discuss our results in more detail.

2.2 Results and techniques

This section provides an overview of the results as well as the proof techniques
that we employed. We give sketches of the main ideas which are worked out in
full detail in later sections.

2.2.1 Perfect Schmidt strategies for MOD games

A MOD-m game is a generalization of XOR games to non-binary outputs. A
nonlocal game is a MOD-m game if the players are required to answer with inte-
gers from 0 to m− 1, and win if and only if the sum of their answers modulo m
equals the target value determined by their inputs. We denote the optimal win-
ning probability using classical strategies by ω(G), and we write ω∗(G) for the
entangled winning probability. Random play in such a game ensures that the
players can always win with probability at least 1

m
. As with XOR games, in

a MOD-m game one often considers the bias given by the maximum amount
by which the value can exceed 1

m
, scaled to be in the [0, 1] range. The bias is

β(G) = m
m−1

(ω(G) − 1
m

), and similar for the entangled version. This generalizes
the definition given for XOR games above.
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Define a t-partite Schmidt state as a t-partite quantum state that can be
written in the form

|ψ〉 =
d−1∑

i=0

ci|e(1)
i 〉|e(2)

i 〉 · · · |e(t)
i 〉, (2.1)

where ci > 0 and where the |e(j)
i 〉 (i = 0, 1, ..., d − 1) are orthogonal vectors in

the j-th system. For t = 2 any state can be written this way, by the Schmidt
decomposition. Note that the well-known GHZ state is a Schmidt state where
all the ci are equal to 1/

√
d. In the context of nonlocal games, define a Schmidt

strategy as a quantum strategy that uses (only) a Schmidt state. We say a strategy
is perfect if it achieves winning probability 1.

We consider t-player MOD-m games for which there is a perfect Schmidt
strategy (“perfect Schmidt games”) and for such games we give lower bounds on
the classical winning probabilities. One particular set of games with this property
is described by Boyer [Boy04]. Their entangled value is 1 but their classical value
goes to 0 as the number of players goes to infinity. The authors of [Wat+18]
define a closely-related class of games called noPREF games. This set of games
is equal to the set of perfect Schmidt games when m = 2 and the distribution on
the inputs is uniform. In [Wat+18] it is shown that checking whether a game is in
this class can be done in polynomial time. Furthermore, for symmetric t-player
XOR games they show that a game has entangled value 1 if and only if it falls in
this class of perfect Schmidt games. They also provide an explicit non-symmetric
XOR game with entangled value 1 that is not in this class. We introduce a t-
player MOD-m game called the uniform angle game, denoted UAGt,m (defined in
Section 2.3.1, Definition 2.3.6) for which there is a perfect Schmidt strategy and
show a lower bound on the classical winning probability.

2.2.1. Theorem. Any t-player MOD-m game G with perfect Schmidt strategy
satisfies ω(G) ≥ ω(UAGt,m). Furthermore we have β(UAGt,m) ≥ t1−t.

For t = 3,m = 2 (3-player XOR games) we have ω(UAG3,2) = 3/4. In Section 2.3
we provide bounds on ω(UAGt,m) for other values of t,m.

Let the inputs to a game come from a set X = X1×X2× ...×Xt where Xi is
the set of inputs for the i-th player. We say a game is total when all elements of
X have a non-zero probability of being asked (sometimes also called having full
support), similar to total functions in the setting of communication complexity.
On the other hand, we say that a game has a promise on the inputs when it is
not total. For the class of perfect Schmidt games we show that total games are
trivial.

2.2.2. Lemma. When a t-player MOD-m game G with perfect Schmidt strategy
is total then ω(G) = 1.
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Reduction to angle games. To prove Theorem 2.2.1 we introduce a new set
of t-player MOD-m games that we call angle games. We define a particular angle
game called the uniform angle game, denoted by UAGt,m and show that it is
the hardest of these games. In an angle game, players receive complex phases
eiφ (angles) satisfying a promise, and the winning answer depends only on the
product of the inputs eiφ1 · eiφ2 · · · eiφt . We prove the theorem by extracting
from any perfect Schmidt strategy a set of complex phases that satisfy such a
promise, and thereby reducing any such game to the UAGt,m game. Let us sketch
how this is accomplished. Assume that a perfect Schmidt strategy exists, and let
{P (j,xj)

1 , ..., P
(j,xj)
m } be the projective measurement done by player j on input xj so

that P (j,xj)
i corresponds to output i. Now define unitaries U (j,xj) =

∑
i ω

i
mP

(j,xj)
i ,

where ωm = e2πi/m is an m-th root of unity. Since the strategy is perfect we have
for every input (x1, ..., xt) that

ωM(x1,...,xt)
m = 〈ψ|U (1,x1) ⊗ U (2,x2) ⊗ ...⊗ U (t,xt)|ψ〉.

Using the definition of a Schmidt state, we show that this equality implies that
these unitaries must be of a simple form and their entries satisfy the promise of an
angle game. We prove Theorem 2.2.1 and Lemma 2.2.2 in Section 2.3, where we
also provide classical strategies for the uniform angle game and show that these
are tight in the case of 3-player XOR games.

2.2.2 Free XOR games

This subsection is concerned with free games, for which either the ratio of the
entangled and classical biases is small, or the entangled bias itself is small. Thus
these games will not be able to give a positive answer to Question 2.1.1. Free
games are a general and natural class of games in which the players’ questions are
independently distributed. Line games appear to be less studied (see below for
their definition), but turn out to be relevant in the context of parallel repetition
(also see below). The main idea behind these results is that a large entangled
bias implies that the games are in a sense far from random. This is quantified
by the magnitude of certain norms of the game tensors. The particular norms
of interest here are related to norms used in Gowers’ celebrated hypergraph- and
Fourier-analytic proofs of Szemerédi’s Theorem. A crucial fact of these norms is
that they are large if and only if there is “correlation with structure”, the opposite
of what one would expect from randomness. We show that this structure can be
turned into good classical strategies, thus establishing a relationship between the
entangled and classical biases.

2.2.3. Theorem (Polynomial bias bound for free XOR games). For any integer
t ≥ 2 and any free t-player XOR game with entangled bias β, the classical bias is
at least β2t.
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This result may be considered as an analogue of a well-known result on quan-
tum query algorithms for total functions. It is shown in [Bea+01] that the
bounded-error quantum and classical query complexities of total functions are
polynomially related.

Norming hypergraphs and quasirandomness. Our main tool for proving
Theorem 2.2.3 is a relation between the entangled and classical biases and a
norm on the set of game tensors. For t-tensors, this norm is given in terms
of a certain t-partite t-uniform hypergraph H. Recall that such a hypergraph
consists of t finite and pairwise disjoint vertex sets V1, . . . , Vt and a collection of
t-tuples E(H) ⊆ V1 × · · · × Vt, referred to as the edge set of H. For a t-tensor
T ∈ Rn1×···×nt , the norm has the following form:

‖T‖H =
(

E
φi:Vi→[ni]

[ ∏

(v1,...,vt)∈E(H)

T
(
φ1(v1), . . . , φt(vt)

)]) 1
|E(H)|

, (2.2)

where the expectation taken with respect to the uniform distribution over all t-
tuples of mappings φi from Vi to [ni]. Expressions such as (2.2) play an important
role in the context of graph homomorphisms [Bor+06]. If T is the adjacency
matrix of a bipartite graph with left and right node sets [n1] and [n2] respectively,
then each product in (2.2) is 1 if and only if the maps φ1 and φ2 preserve edges.

Criteria for H under which (2.2) defines a norm or a semi-norm were deter-
mined by Hatami [Hat10; Hat09] and Conlon and Lee [CL17]. Famous examples
of graph norms include the Schatten-p norms for even p ≥ 4 (in which case H is a
p-cycle) and a well-known family of hypergraph norms are the Gowers octahedral
norms. The latter were introduced for the purpose of quantifying a notion of
quasirandomness of hypergraphs as an important part of Gowers’ graph-theoretic
proof of Szemerédi’s theorem on arithmetic progressions. Having large Gowers
norm turns out to imply correlation with structure, as opposed to quasirandom-
ness. This is true also for the norm relevant for our setting. In particular, it
turns out that the structure with which a game tensor correlates can be turned
into a classical strategy for the game. As such, a large norm of the game ten-
sor implies a large classical bias of the game itself. At the same time, we show
that the entangled bias is bounded from above by the norm of the game tensor,
provided the game is free. Putting these observations together gives the proof of
Theorem 2.2.3, which we give in Section 2.4.

The particular hypergraph norm relevant here was introduced in [Con+12]
and can be obtained recursively as follows. Starting with a t-partite t-uniform
hypergraph H with vertex set V1 ∪ · · · ∪ Vt, write dbi(H) for the t-partite t-
uniform hypergraph obtained by making two vertex-disjoint copies of H and
gluing them together so that the vertices in the two copies of Vi are identified. We
obtain our hypergraph by starting with a single edge e = (v1, . . . , vt) (and vertex
sets of size 1), and applying this operation to all parts, forming the hypergraph



16 Chapter 2. Nonlocal games

db1(db2(. . . dbt(e))) with vertex sets of size 2t−1 and 2t edges. The fact that this
hypergraph defines a norm via (2.2) was proved in [CL17].

2.2.3 Unique games

We know that the answer to Question 2.1.1 is negative in the two-player case,
but we can generalize the question by dropping the XOR restriction. The set
of XOR games is part of a larger class of games called unique games for which
we investigate the relation between classical and entangled values. A two-player
nonlocal game is a unique game if for every pair of questions, for every possible
answer of the first player there is exactly one answer of the second player that
lets them win, and vice versa. Stated differently, for every question there is a
matching between the answers of the two players such that only the matching
pairs of answers let the players win.

The Unique Games Conjecture (UGC) of Khot [Kho02] states that for any
ε, δ > 0, for any k > k(ε, δ), it is NP-hard to distinguish instances of unique
games with winning probability at least 1− ε from those with winning probabil-
ity at most δ, where k is the number of possible answers. This conjecture has
important consequences because it implies several hardness of approximation re-
sults. For example, for the Max-Cut problem, Khot et al. [Kho+07] showed that
the UGC implies that obtaining an approximation ratio better than ≈ 0.878 is
NP-hard. Other results include inapproximability for Vertex Cover [KR08] and
graph coloring problems [DMR09].

Our results relate the quantum and classical winning probabilities in the
regime of near-perfect play and are based on a result in [CMM06].

2.2.4. Theorem. Let ε ≥ 0. There is an efficient algorithm that, given any two-
player unique game with entangled value 1 − ε, outputs a classical strategy with
winning probability at least 1 − C√ε log k, where C is a constant independent of
the game.

Note that for ε = 0 this means a perfect quantum strategy implies a perfect
classical strategy. Furthermore, the above result only beats a trivial strategy
when ε = O(1/ log k).

Work in a similar direction includes [KRT08]. They show that entangled
version of the UGC is false, by providing an efficient algorithm that gives an
explicit quantum strategy with winning probability at least 1− 6ε when the true
entangled value is 1 − ε. In the classical case, [CMM06] gives an algorithm that
outputs a classical strategy with winning probability 1 − O(

√
ε log k) when the

true classical value is 1− ε. We extend this result by showing that this classical
strategy also does the job when, not the classical, but the entangled value is 1−ε.
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Semidefinite programming relaxation. The proof of Theorem 2.2.4 is a
small modification of a proof in [CMM06]. They consider a semidefinite program-
ming (SDP) relaxation of the optimization problem for the classical value and
then give two algorithms for rounding the result of the SDP to a classical strat-
egy. In the SDP relaxation the objective is to optimize Ex,y

∑k
i=1〈u

(x)
i | v(y)

πxy(i)〉
where u(x)

i , v
(y)
j ∈ Rd are vectors corresponding to questions x, y and answers i, j.

Furthermore, πxy is the matching of correct answers on questions x, y. A classical
strategy would correspond to the case where the vectors are integers instead, such
that for each x exactly one u(x)

i is equal to 1 and all other u(x)
i are equal to zero

and similar for the v(y)
j . A quantum strategy also gives rise to a set of vectors,

but satisfying different constraints, see [KRT08]. One of the constraints of the
SDP considered in [CMM06] is 0 ≤ 〈ui | vπxy(i)〉 ≤ |ui|2 which is valid for classical
strategies, but in general not for quantum strategies. For our proof, we consider
the same SDP but with this constraint dropped. In that case it is also a relaxation
for the entangled case and with a few changes, one of the rounding algorithms
in [CMM06] is also valid when the constraint is dropped. Note that the result
only beats a trivial strategy when ε = O(1/ log k) whereas the other rounding
algorithm in [CMM06] is non-trivial for any ε. However this other algorithm is
more dependent on the extra constraint and it is not clear if it can be dropped
there as well.

To get some intuition for the rounding algorithm, we sketch a solution for
the special case ε = 0 here. In this case one can show that for each question
pair x, y the set of vectors |u(x)

i 〉 (i = 1, ..., k) known by the first player is the
same set of vectors as the set |v(y)

i 〉 (i = 1, ..., k) known to the second player.
In particular, the vector |u(x)

i 〉 is the same as the matching vector |v(y)
πxy(i)〉 of the

other player. Using shared randomness they can sample a random vector |g〉 and
compute the overlaps ξ(x)

i = 〈g|u(x)
i 〉 and ξ

(y)
i = 〈g|v(y)

i 〉 respectively. As they
have the same vectors, the players will have the same values for answers in the
matching: ξ(x)

i = ξ
(y)
πxy(i). Now both players simply output the answer i for which

|ξ(x)
i | (and |ξ(y)

i | for the other player) has the largest value. With probability one
this will yield correct answers. For ε > 0 the sets of vectors will not be exactly
equal and therefore the values ξ(x)

i , ξ
(y)
πxy(i) will be close but not exactly equal. The

discrepancy in these values will be bigger for vectors |u(x)
i 〉 with a small norm. In

Section 2.5 we provide the rounding algorithm in full detail and show how this
issue is solved.

2.2.4 Generalized CHSH games

The CHSH game is a two-player XOR game in which players get a single bit
x, y ∈ {0, 1} as input, say x for Alice and y for Bob, and the XOR of their
answers a, b ∈ {0, 1} has to be one if and only if both their inputs are one, i.e.
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they win if a⊕ b = x · y. There are two ways this can be generalized. One is by
interpreting the winning condition as an equivalence modulo 2 and generalizing
this to a MOD-m game where the inputs are now elements in Z/mZ and the
winning condition is a+b ≡ x·y mod m. This family of games was introduced by
Buhrman and Massar [BM05]. The other generalization was studied by Bavarian
and Shor [BS15] and is obtained by considering the same equation over a finite
field Fq for prime powers q. If the winning condition of a game is of the form
a + b = f(x, y) over some field F then we will refer to the game as a field game.
Denote by CHSHmod

m the game in Z/mZ and by CHSHfield
q the game in Fq. When

p is a prime, these two are equivalent and we sometimes write CHSHp. Bavarian
and Shor showed that for any prime power q we have ω∗(CHSHfield

q ) ≤ 1
q

+ q−1
q

1√
q
.

Although the true entangled value is not known, a numerical study using SDP
relaxations of the entangled value by Liang, Lim, and Deng [LLD09] yielded an
upper bound for ω∗(CHSH3) that is strictly smaller than 1

3
+ 2

3
√

3
, showing that

the bound by Bavarian and Shor is not tight.
As stated in Section 2.2.1, the bias E of a strategy for a game G with q outputs

is related to the winning probability pwin by pwin = 1
q

+ q−1
q
E, so we can also state

the bound as β∗(CHSHfield
q ) ≤ 1√

q
.

Following Bavarian and Shor, we say a strategy for an q-output game is regular
when the probability of giving a wrong answer is uniform over all the wrong
answers. More formally we have the following definition.

2.2.5. Definition (Regular strategy). A strategy with bias E, either classical
or with entanglement, for a two-player MOD-q game or field game over Fq is
called regular when

∀ k 6= 0 E
x,y
P[ a+ b = f(x, y) + k | x, y ] =

1

q
− E

q
.

Here f(x, y) is the correct answer on inputs x, y, the outputs are a, b and the
probability is taken over the shared randomness and any quantum measurements
used by the strategy.

Bavarian and Shor prove that any strategy for CHSHfield
q can be regularized,

meaning it can be transformed into another strategy that is regular and that
has the same winning probability. The new strategy uses shared randomness to
accomplish this. This proof does not directly carry over to the CHSHmod

m game
because it uses the fact that fields have no zero divisors. One could wonder if
MOD games can be regularized in some other way, but by an exhaustive search
through all possible strategies we show that this is not the case.

2.2.6. Lemma. Any optimal classical strategy for CHSHmod
8 or for CHSHmod

9 can
not be regular.
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Altough not formulated this way, the proof of β∗(CHSHfield
q ) ≤ 1√

q
by Bavarian

and Shor can be cast into the framework of MOD parallel repetition, which we
explain in Section 2.6. We state it in this framework, and show that the bounds
also hold for CHSHmod

m for any m, but only provided that the strategy is regular.

2.2.7. Lemma ([BS15]). Any regular strategy for CHSHmod
q (for any q ∈ N) or

CHSHfield
q (for any prime power q) satisfies E ≤ 1√

q
. Furthermore, regular strate-

gies for the two-fold MOD parallel repetition have a bias bounded by E ≤ 1
q
for

both games and for CHSHfield
q this is tight.

We show this in Section 2.6.
We further prove a result about combinations of the CHSHmod

m game for dif-
ferent values of m. For 2-player games G1 and G2, denote by G1 ∧ G2 the game
where the players receive inputs of both G1 and G2 in parallel and have to provide
answers to both games, winning if and only if they win both games simultane-
ously. Note that G ∧ G is known as the parallel repetition of the game G. By
simply playing an optimal strategy for G1 and G2 in parallel, we trivially have
ω(G1 ∧G2) ≥ ω(G1) · ω(G2).

2.2.8. Lemma. Let m1, . . . ,mn be pairwise coprime and M = m1 · ... ·mn. Then
we have ω(CHSHmod

M ) = ω(CHSHmod
m1
∧ · · · ∧ CHSHmod

mn ) and the same holds for
the entangled values. Therefore, ω(CHSHmod

M ) ≥ ω(CHSHmod
m1

) · ... · ω(CHSHmod
mn ),

both classical and entangled. For the classical value there exist mi such that this
inequality is strict, as well as mi such that it is an equality.

2.3 Perfect Schmidt strategies for MOD games
This section covers Theorem 2.2.1 and Lemma 2.2.2. We start by defining a set
of games that turn out to characterize the games we are interested in.

2.3.1. Definition (Angle game). Define an angle game as a t-player MOD-m
nonlocal game where player j gets an angle eiφj as input, with the promise that
eiφ1 · ... · eiφt = ω

M(φ1,...,φt)
m where M(φ1, ..., φt) ∈ {0, 1, ...,m− 1} and ωm = ei2π/m.

The players win if and only if the sum of their outputs modulo m is equal to
M(φ1, ..., φt).

Note that an angle game is completely defined by t, m and a probability dis-
tribution over angle tuples. Furthermore, t-player Boyer games [Boy04] with
parameters (D,M) are angle games where the (discrete) probability distribution
is uniform over all angles of the form ei2πx/(MD) with x = 0, 1, ..., D − 1 whose
product is an M -th root of unity. The promise

∑
xj ≡ 0 mod D as stated

in the Boyer games translates to
∏
ei2πxj/(MD) = ωlM in the angle game, where

l =
∑
xj/D.
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2.3.2. Lemma. Any angle game has entangled value 1 which can be obtained
using a shared GHZ state.

Proof:
Consider the following quantum strategy using a GHZ state of dimension m.
Every player applies the local diagonal unitary Ujj = ei j·φ on input eiφ. Then
every player applies an inverse Fourier transform F ∗ij = 1√

m
ω−i·jm , after which they

share the state

1√
mt−1

∑

a∈{0,1,...,m−1}t∑
j aj≡l mod m

|a1〉|a2〉 · · · |at〉,

where l is such that ei
∑
j φj = ωlm. They then measure in the computational basis

and output the result which sums to l modulo m with probability 1. 2

2.3.3. Lemma. Any t-player MOD-m game with a perfect Schmidt strategy can
be reduced to an angle game.

Proof:
Let {P (j,xj)

1 , ..., P
(j,xj)
m } be the projective measurement done by player j on input

xj so that P (j,xj)
i corresponds to output i. This set of projectors is pairwise

orthogonal and sums to identity. Now define unitaries U (j,xj) =
∑

i ω
i
mP

(j,xj)
i .

Since the strategy is perfect we have for every input (x1, ..., xt) that

ωM(x1,...,xt)
m = 〈ψ|U (1,x1) ⊗ U (2,x2) ⊗ ...⊗ U (t,xt)|ψ〉

=
∑

i,j

cicj〈e(1)
i |U (1,x1)|e(1)

j 〉 〈e(2)
i |U (2,x2)|e(2)

j 〉 · · · 〈e(t)
i |U (t,xt)|e(t)

j 〉

=
∑

i,j

cicjU
(1,x1)
ij U

(2,x2)
ij · · ·U (t,xt)

ij . (2.3)

where we entered the definition of a Schmidt state as given in Section 2.2.1 and
we shortened U (k,xk)

ij := 〈e(k)
i |U (k,xk)|e(k)

j 〉. Now apply Cauchy-Schwarz to obtain
∣∣∣∣∣
∑

i,j

cicjU
(1,x1)
ij U

(2,x2)
ij · · ·U (t,xt)

ij

∣∣∣∣∣ ≤
(∑

i,j

c2
i

∣∣U (1,x1)
ij

∣∣2
) 1

2
(∑

i,j

c2
j

∣∣U (2,x2)
ij · · ·U (t,xt)

ij

∣∣2
) 1

2

≤ 1
(∑

i,j

c2
j

∣∣U (2,x2)
ij

∣∣2
) 1

2
= 1.

Here we used that the U (j,xj) are unitary and therefore their rows and columns
are unit vectors. When |〈a, b〉| = ‖a‖·‖b‖ then we have |a〉 = λ|b〉 for some λ ∈ C.
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Keeping in mind the complex conjugation in the inner product, there is a λ ∈ C
such that

λciU
(1,x1)
ij = cjU

(2,x2)
ij · · ·U (t,xt)

ij

where z denote the complex conjugate of z. Plugging this into (2.3) gives λ =

ω
M(x1,...xt)
m . From the above equation it follows that when U (k,xk)

ij is non-zero for
k = 1 then it is non-zero for every k. Instead of the first player we could have
used any other player in the above derivation, so if any U

(k,xk)
ij is non-zero for

some k then it is non-zero for all k. Let i, j be such that U (k,xk)
ij 6= 0, then we can

take the argument of the above equation to find

2π

m
M(x1, ..., xt) = arg(U

(1,x1)
ij ) + arg(U

(2,x2)
ij ) + · · ·+ arg(U

(t,xt)
ij ).

On any input (x1, ..., xt), the players simply look at the first non-zero element of
their matrix U (k,xk) and look at the argument φk := arg(U

(k,xk)
ij ). These angles

have the property that eiφ1 · ... · eiφt = ω
M(x1,...,xt)
m . This reduces the game to an

angle game. 2

2.3.4. Definition (Connected inputs). For any game, define a graph where ev-
ery input (a t-tuple) with non-zero probability of being asked is a vertex. Two
inputs are connected via an edge if they differ on only one player and agree on
the other t− 1 coordinates. We say the game has connected inputs if this graph
is connected.

The same graph was considered by Dinur et al. [Din+16] who called it the
(t−1)-connection graph of the game. Total games and free games are examples of
games with connected inputs. Games that do not have connected imputs typically
have a promise on the inputs.

2.3.5. Lemma. Any angle game with connected inputs has classical value 1.

Proof:
Fix an input (eiα1 , ..., eiαt). Now define maps β1(eix) = eixeiα2eiα3 · · · eiαt and
βj(e

ix) = eixe−iαj for j ≥ 2. The product of the angles is left unchanged under
these maps as follows, β1(eiφ1)β2(eiφ2) · · · βt(eiφt) = eiφ1 · · · eiφt . We claim that
every input component is mapped to an m-th root of unity, i.e. βj(eiφj) = ω

lj
m

for all j. Therefore player j can output lj and
∑

j lj = M(eiφ1 , ..., eiφt) thus
winning the game with probability 1. First note that on the fixed input we have
β1(eiα1) = ω

M(eiα1 ,...,eiαt )
m and βj(eiαj) = 1 for j ≥ 2, so the claim holds on the fixed

input. By the connectivity we can obtain another input to the game by changing
only the input for a single player. We now show that when the claim holds for



22 Chapter 2. Nonlocal games

one input then it also holds when only one player’s value is changed. Using these
single-player edits we can eventually reach all inputs. Let (eiφ1 , ..., eiφj , ..., eiφt)
and (eiφ1 , ..., eiφ

′
j , ..., eiφt) be two inputs that only differ for player j. Now assume

that the claim holds for the first input. We then have

ωM(eiφ1 ,...,e
iφ′j ,...,eiφt )

m = β1(eiφ1) · · · βj(eiφ
′
j) · · · βt(eiφt)

= β1(eiφ1) · · · βj(eiφj) · · · βt(eiφt) · βj(eiφj)−1βj(e
iφ′j)

= ωM(eiφ1 ,...,eiφj ,...,eiφt )
m ω−ljm βj(e

iφ′j)

from which it follows that βj(eiφ
′
j) = ω

l′j
m for some l′j. 2

Lemma 2.2.2 follows directly from Lemma 2.3.3 and Lemma 2.3.5.

2.3.1 Classical strategies for angle games

Having characterized our class of games as angle games we proceed by presenting
classical strategies for these games. Our aim is to provide strategies that work
for any probability distribution on the set of inputs. In this section it will be
convenient to write the angles as ei

2π
m
φ so that φ runs from 0 to m instead of 0 to

2π.

2.3.6. Definition. Define the probability distribution πUt on the set

Ut =
{

(ei
2π
m
φ1 , ..., ei

2π
m
φt) | φj ∈ [0, 1), ei

2π
m
φ1 · · · ei 2πm φt = ωlm, l ∈ {0, 1, ...,m− 1}

}

as follows: for 1 ≤ j ≤ t − 1, draw φj independently uniformly at random
from [0, 1). Then define φt as the unique number in [0, 1) that makes the product
ei

2π
m
φ1 · · · ei 2πm φt an m-th root of unity. We define the uniform angle game, denoted

UAGt,m, as a t-player MOD-m angle game (Definition 2.3.1) where the input
distribution is πUt .

As stated before, in a t-player Boyer game [Boy04] with parameters (D,M) the
(discrete) probability distrubtion is uniform over all angles of the form ei2πx/(MD)

with x = 0, 1, ..., D − 1 whose product is an M -th root of unity. This is similar
to the πUt distribution but where the angles φj ∈ [0, 1) are now discrete φj ∈
{0, 1

D
, 2
D
, ..., D−1

D
}.

The distribution πUt is the hardest distribution as captured by the following
lemma.

2.3.7. Lemma. Let G be a t-player MOD-m angle game with input distribution
πG. Then ω(G) ≥ ω(UAGt,m).
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Proof:
Assume the players get an input (ei

2π
m
φ1 , ..., ei

2π
m
φt) with ei

2π
m
φ1 · · · ei 2πm φt = ωam from

πG. Using shared randomness, draw t−1 independent random angles eiα1 , ..., eiαt−1

where each αi is uniform on [0, 2π). Multiply the input ei
2π
m
φj of player j by eiαj

for j ≤ t − 1 and multiply ei
2π
m
φt by e−i(α1+...+αt−1) to preserve the product. The

resulting distribution is uniform on the set
{

(ei
2π
m
φ1 , ..., ei

2π
m
φt) | φj ∈ [0,m) , ei

2π
m
φ1 · · · ei 2πm φt = ωam

}
.

One can always write φj = lj + ϕj with lj ∈ {0, 1, ...,m − 1} and 0 ≤ ϕj < 1.
Note that (ei

2π
m
ϕ1 , ..., ei

2π
m
ϕt) is distributed according to πUt so the players can play

a strategy for UAGt,m to obtain answers (a1, ..., at). On input ei
2π
m

(lj+ϕj), player
j outputs aj + lj. They are correct if and only if the answers aj are correct for
UAGt,m on input (ei

2π
m
ϕ1 , ..., ei

2π
m
ϕt). This proves the lemma. 2

2.3.8. Lemma. The uniform angle game satisfies ω(UAGt,m) ≥ 1
m

+ m−1
m
t1−t.

Proof:
On input φi, player i computes xi = bt φic, so that xi ∈ {0, ..., t − 1}. We have
1
t

∑t
i=1 xi ≤

∑t
i=1 φi < 1 + 1

t

∑t
i=1 xi and since the correct answer l is given by

l =
∑t

i=1 φi, we see that l is uniquely determined by the sum of xi. Now using
shared randomness the players sample t− 1 random numbers from {0, ..., t− 1}.
With probability 1

tt−1 these numbers are exactly equal to x1, ..., xt−1. The last
player assumes that the random numbers are indeed x1, ..., xt−1 and outputs the
correct l. The other players output 0 if their xi matches the random sample and
output a random number otherwise. This yields a bias of 1

tt−1 , or winning proba-
bility of 1

m
+ m−1

m
t1−t. 2

Theorem 2.2.1 follows from Lemma 2.3.3, Lemma 2.3.7 and Lemma 2.3.8.
We proceed by describing a strategy for UAGt,m that improves on the bound

of Lemma 2.3.8. Let (φ1, ..., φt) be drawn from πUt . Define Φ = φ1 +φ2 + ...+φt−1

then by definition of πUt , Φ is the sum of t−1 independent uniform [0, 1) variables.
Furthermore, the last input φt satisfies φt = dΦe − Φ and the correct answer l
is defined by l ≡ dΦe mod m. The distribution of Φ is known as the Irwin-Hall
distribution [Irw27; Hal27]:

P(Φ ≤ x) =
1

(t− 1)!

bxc∑

j=0

(−1)j
(
t− 1

j

)
(x− j)t−1.

We consider a set of strategies that we call the semi-trivial strategies, in which the
first t−1 players always output 0. The last player then plays optimally when given
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Figure 2.1: Probability that the correct answer of the angle game is l, conditioned
on the last player receiving input x, as defined in (2.4).

the input x. We conjecture that this strategy is optimal for the uniform angle
game. In the semi-trivial strategy, the last player chooses the l that maximizes

P(correct answer is l | last input is x) = P(dΦe ≡ l mod m | φt = x). (2.4)

This probability is plotted as a function of x in Figure 2.1. The figure shows that
for a 4-player MOD-3 game (left plot) the optimal choice for the last player is
to ignore the input x and always output 2. Interestingly, we observe this for any
value of m for any even number of players (checked up to m = 10, t = 10), i.e. the
value of l for which this probability is maximal is independent of x. This means
that these strategies (for t even) are locally optimal in the sense that changing
any single player’s strategy will not improve the winning probability. The right
plot of the figure shows that for 5 players the optimal answer depends on whether
x ≤ 1

2
or x > 1

2
. This, too, is seems to be a general pattern for any m and any

odd number of players (checked up to m = 10, t = 11). The winning probabilities
provided by these semi-trivial strategies are given in Table 2.1 for m = 2 and
m = 3. The semi-trivial strategies are lower bounds for the winning probability
of all t-player angle games. We can find upper bounds by finding upper bounds
for particular angle games. The table provides some upper bounds obtained from
brute-force searching through all strategies for Boyer games.

For the case of 3-player XOR games, the upper bound ω(UAG3,2) = 3/4 is
tight. For the 4-player case we have ω(UAG4,2) ≥ 2/3 and it seems that searching
through Boyer games gives increasingly better bounds, approaching 2/3 as the
input size D is increased. However, one can show that for any finite D the lower
bound of 2/3 will not be reached, because when D = 2m there is a strategy that
achieves a winning probability of 2

3
+ 4−m

3
. The corresponding strategy is that

the first 3 players output 0 and the fourth player outputs 1 when their input is
0 or 1 and outputs 0 when their input is 2, ..., D − 1. This strategy is optimal
for D = 2, 4, 8. One can show that for values of D that are not a power of 2, i.e.
D = D′2m the game reduces to one with D = 2m.
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t (# players) 2 3 4 5 6 7 8 9
MOD 2
lower bound 1 3/4 2/3 29/48 17/30 781/1440 166/315 8341/16128

1 0.75 0.6667 0.6042 0.5667 0.5424 0.5270 0.5172
upper bound 1 3/4 43/64 155/256 583/1024 35/64 273/512 1056/1048

1 0.75 0.6719 0.6055 0.5693 0.5469 0.5332 0.5200
MOD 3
lower bound 1 3/4 2/3 115/192 11/20 785/1536 403/840 260451/573440

1 0.75 0.6667 0.5990 0.5500 0.5111 0.4798 0.4542
upper bound 1 61/81 163/243 17/27 47/81 131/243 41/81 349/729

1 0.7531 0.6708 0.6296 0.5802 0.5391 0.5062 0.4787

Table 2.1: Lower and upper bounds for the winning probabilities of the UAGt,m

games (Definition 2.3.6). The lower bounds are the semi-trivial strategies de-
scribed in the text. The upper bounds were found by iterating through all strate-
gies for t-player Boyer games with values of D up to D = 9 when computation
time allowed it.

2.4 Free XOR games
In this section we will define free XOR games and give the definition of hypergraph
norms (only for real-valued functions on discrete domains). For more details on
hypergraph norms we refer to [Hat09]. We will then relate the hypergraph norm,
with respect to a certain hypergraph, of the game tensor to the entangled bias
of free XOR games. Our main tool is a Cauchy-Schwarz type of inequality for
operators, that is why we will state it here.

2.4.1. Proposition. Let Ai, Bi ∈ End(Cn) for i = 1, . . . , k. Then

‖
∑

i∈[k]

AiBi‖ ≤ ‖
∑

i∈[k]

AiA
∗
i ‖1/2 ‖

∑

i∈[k]

B∗iBi‖1/2,

where all the norms are operator norms.

Proof:
Write

A =




A1 A2 · · · Ak
0 0 · · · 0
...

...
...

...
0 0 · · · 0


 and B =




B1 0 · · · 0
B2 0 · · · 0
...

...
...

...
Bk 0 · · · 0


 .

Then we use the fact that

AB =




∑
i∈[k] AiBi 0 · · · 0

0 0 · · · 0
...

...
...

...
0 0 · · · 0


 ,
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together with the properties

‖C ⊗ Eij‖ = ‖C‖,
‖C‖2 = ‖C∗C‖ = ‖CC∗‖,

to conclude

‖
∑

i∈[k]

AiBi‖ = ‖
∑

i∈[k]

AiBi ⊗ E11‖ = ‖AB‖ ≤ ‖A‖‖B‖

= ‖AA∗‖1/2‖B∗B‖1/2 = ‖
∑

i∈[k]

AiA
∗
i ‖1/2‖

∑

i∈[k]

B∗iBi‖1/2.

2

A t-player free XOR game G is given by finite non-empty sets X1, . . . , Xt, a
product distribution over X := X1 × · · · ×Xt and a game tensor

T : X → {±1}. (2.5)

The classical bias of the free XOR game G, which we denote by β(G) is given by

β(G) := max
ai : Xi→{±1}

| E
(x1,...,xt)∈X

T (x1, . . . , xt)
t∏

i=1

ai(xi)|.

The entangled bias of the free XOR game G, which we denote by β∗(G) is given
by the expression

β∗(G) := max
N∈N,Ai : Xi→Obs±(CN )

‖ E
(x1,...,xt)∈X

T (x1, . . . , xt)
t∏

i=1

Ai(xi)‖op, (2.6)

where the maximization is taken over {±1}-observable valued functions Ai such
that [Ai, Aj] = 0 for i 6= j, which corresponds to a quantum strategy of the
players. The expectation is taken over the given distribution.

Before we go into the detail of the proof of Theorem 2.2.3 for any number of
players, we first sketch the core idea of the proof for two players, for which we
do not yet need to resort to hypergraphs. For a two-player game G with game
tensor T , the commuting-operator strategies A,B yield a bias of

η = ‖ E
(x,y)∈X×Y

T (x, y)A(x)B(y)‖.

where the norm is the operator norm. Using Proposition 2.4.1 we peel off the
operator B(y)

η =
∥∥∥ E
y∈Y

(
E
x∈X

T (x, y)A(x)
)
B(y)

∥∥∥. (independent questions)

≤
∥∥∥ E
y∈Y

(
E
x∈X

T (x, y)A(x)
)(

E
x′∈X

T (x′, y)A(x′)
)∗∥∥∥

1/2 ∥∥∥ E
y∈Y

B(y)∗B(y)
∥∥∥

1/2

≤
∥∥∥ E
y∈Y

E
x,x′∈X

T (x, y)T (x′, y)A(x)A(x′)∗
∥∥∥

1/2

. (using ‖B(y)‖ ≤ 1)
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Now we apply the inequality again on the sum over (x, x′) to get rid of the A
operator.

η ≤
∥∥∥ E
x,x′∈X

(
E
y∈Y

T (x, y)T (x′, y)
)
A(x)A(x′)∗

∥∥∥
1/2

≤
∣∣∣ E
x,x′

(
E
y
T (x, y)T (x′, y)

)(
E
y′
T (x, y′)T (x′, y′)

)∣∣∣
1
4
∥∥∥ E
x,x′

A(x)A(x′)∗A(x′)A(x)∗
∥∥∥

1
4

≤
∣∣∣ E
x,x′∈X

E
y,y′∈Y

T (x, y)T (x′, y)T (x, y′)T (x′, y′)
∣∣∣
1/4

. (2.7)

We proceed by rewriting the last expression and applying the triangle inequality

η4 ≤
∣∣∣ E

(x′,y′)∈X×Y
T (x′, y′) E

(x,y)∈X×Y
T (x, y)T (x′, y)T (x, y′)

∣∣∣

≤ E
(x′,y′)∈X×Y

∣∣∣ E
(x,y)∈X×Y

T (x, y)T (x′, y)T (x, y′)
∣∣∣.

By the pigeonhole principle there must be choices of x′, y′ such that

η4 ≤
∣∣∣ E

(x,y)∈X×Y
T (x, y)T (x′, y)T (x, y′)

∣∣∣,

which is the expression for the bias of the classical strategies a(x) = T (x, y′) and
b(y) = T (x′, y), proving Theorem 2.2.3 for t = 2 players. For t ≥ 3 we can apply
the same idea, peeling off the operators one by one, but the final expression is more
involved. We will now develop the techniques to deal with this. In particular,
we need the notion of hypergraph norms. For our purposes, we only consider
t-uniform hypergraphs which are also t-partite.

2.4.2. Definition. For t ≥ 2, let V1, . . . , Vt be finite non-empty sets and V :=
V1 × · · · × Vt. Given a subset E ⊂ V , we say that the pair H = (V1 ∪ · · · ∪ Vt, E)
is a t-partite t-uniform hypergraph with vertex set V1 ∪ · · · ∪ Vt and edge set E.

2.4.3. Definition. Let t ≥ 2 and X1, . . . , Xt be finite non-empty sets and sup-
pose a product distribution on X := X1× · · · ×Xt is given to us. Let T : X → R
be a function and H = (V1 ∪ · · · ∪Vt, E) be a t-partite t-uniform hypergraph. We
define a non-negative function ‖ · ‖H on the function T by

‖T‖H :=

∣∣∣∣∣∣
E

φi : Vi→Xi

∏

(v1,...,vt)∈E

T (φ1(v1), . . . , φt(vt))

∣∣∣∣∣∣

1
|E|

. (2.8)

The expectation is taken with respect to the following distribution: a particular
map φi : Vi → Xi occurs with probability

∏
v∈Vi pi(φi(v)) where pi is the proba-

bility distribution on Xi.
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The particular hypergraph which arises naturally when we study the entangled
bias of free XOR games is constructed as follows. Starting with a t-partite t-
uniform hypergraph H, write dbi(H) for the t-partite t-uniform hypergraph ob-
tained by making two vertex-disjoint copies ofH and gluing them together so that
the vertices in the two copies of Vi are identified. To construct our hypergraph, we
start with the hypergraph given by a single edge e = (v1, . . . , vt) and vertex sets of
size 1 and apply the doubling operation to all parts, i.e. db1(db2(. . . dbt(e))). We
denote this hypergraph by H(t). A more useful way to define H(t) is as follows.
We will do this first for t = 2 and explain how to do it for any t afterwards. We
use 2-bit strings to identify vertices. We start with the hypergraph with a single
edge (x00, y00) ∈ V1 × V2. As we will start using the doubling operator, we make
copies of the vertex sets. We can use a table to visualize it.

V1 V2

starting position x00 y00

db2 x01 y00

db1 x00 y10

x01 y10

The table may be read as follows; the rows are the edges of the hypergraph and
columns are the vertex sets. In this example we have that V1 = {x00, x01} and V2 =
{y00, y10} and the edge set consists of {(x00, y00), (x01, y00), (x00, y10), (x01, y10)}.
The algorithm for constructing the table is as follows: we start with the starting
position row, which corresponds to the (hyper)graph with a single edge (x00, y00),
and as we apply the doubling operator db2, we add a new row (which corresponds
to making a vertex-disjoint copy) where we increase the 2nd bit in the subscript
of x but leave y alone (so we have a new copy of V1 but not of V2). After this
first step we have a graph with vertex sets V1 = {x00, x01} and V2 = {y00} and
edge set {(x00, y00), (x01, y00)}. Next we apply db1 and we get a new copy of V2,
but leave V1 alone.
For arbitrary t ≥ 2; we label the vertices of our hypergraphs by an index i ∈ [t]
and a t-bit string ω ∈ {0, 1}t. The vertex set is V = V1 ∪ ... ∪ Vt and we write viω
for vertices in Vi. We define for any j ∈ [t] a map ∆j : V → V as

∆j(v
i
ω) :=

{
viω1,...,ωj+1,...,ωt when j 6= i

viω when j = i

where we add modulo 2. The table then looks like
V1 V2 . . . Vt

starting position v1
0t v2

0t . . . vt0t
dbt ∆t(v

1
0t) ∆t(v

2
0t) . . . ∆t(v

t
0t)

dbt−1 ∆t−1(v1
0t) ∆t−1(v2

0t) . . . ∆t−1(vt0t)
∆t−1(∆t(v

1
0t)) ∆t−1(∆t(v

2
0t)) . . . ∆t−1(∆t(v

t
0t))

. . . . . . . . . . . . . . .
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At step k, the algorithm takes all the rows of the previous steps together and
applies ∆t−k+1 on each of the formal variables in the rows. We also write dbi(e)
for the row where we apply ∆i on each variable of the row e. We see in this
way that, for example, the edge set of H(t) has cardinality 2t and the number of
vertices in each Vi is 2t−1. In the following proposition we list some properties of
H(t) which we prove using this description. We will be using the terms row and
edge interchangeably as they mean the same in this context.

2.4.4. Proposition. The hypergraph H(t) has the following properties: (1) it is
t-partite and t-uniform, (2) it is 2-regular and (3) for all vertices v the following
holds: let e, e′ be the unique edges such that v ∈ e, v ∈ e′ and e 6= e′. For
w ∈ e \ {v}, denote by e, e′′ the unique edges such that w ∈ e, w ∈ e′′ and e 6= e′′.
Then e′ ∩ e′′ = ∅.

Proof:
(1) follows directly from the algorithm described above using the table. We can
prove (2) as follows. Suppose in column Vi we have a vertex in some row/edge
which we denote by viω, here ω is a t-bit string. First we note that applying dbj
with j 6= i will change ω as it will flip the j-th bit. There are two cases; either
we have already applied dbi in which case viω appears in exactly one more row
above the current row, or we have not applied dbi yet in which case there is no
viω in an earlier row. It will appear exactly once in a later row since applying dbi
will not change ω. For (3), choose again some vertex viω in Vi and denote by e
the row which appears first in the table containing viω. The other row/edge which
contains viω is e′ := dbi(e). Now, let vjτ be a vertex in Vj with j 6= i and vjτ ∈ e,
i.e. it is in the same row as viω. There are two cases; either j > i in which case
e = dbj(e

′′) where e′′ is the other (unique) edge containing vjτ . Or j < i and the
other edge which contains vjτ is e′′ := dbj(e). In both cases, a moments thought
shows that e′ ∩ e′′ = ∅. 2

The next ingredient is the following lemma.

2.4.5. Lemma. For a t-player free XOR game G with game tensor T , we have
that

β∗(G) ≤ ‖T‖H(t).

Proof:
For convenience, we write the hypergraph in a slightly different way. Write
φi : Vi → Xi and we define an operation ∆j on such maps by precomposing
with the map ∆j given above, i.e. (∆jφi)(v) = φi(∆j(v)). Also, using the same
symbol, we define on functions T : X1 × · · · ×Xt → C

∆jT (φ1(v1
ω1

), . . . , φt(v
t
ωt)) := T (φ1(v1

ω1
), . . . , φt(v

t
ωt))

× T ∗((∆jφ1)(v1
ω1

), . . . , (∆jφt)(v
t
ωt)),
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one could think of this operation as a kind of multiplicative derivative. If T were
an operator-valued map, we still define it in this way. It is then not hard to see
that

∆1 . . .∆tT (φ1(v1
0t), . . . , φt(v

t
0t)) =

∏

(v1ω1 ,...,v
t
ωt

)∈E(H(t))

T (φ1(v1
ω1

), . . . , φt(v
t
ωt)),

using the table as a description of H(t). So we can write

‖T‖H(t) = |E∆1 . . .∆tT (φ1(v1
0t), . . . , φt(v

t
0t))|1/|E|,

where the expectation is taken over all maps φi : Vi → Xi with the particular
distribution given in Definition 2.4.3.

In the text below Proposition 2.4.1 we showed, in the two player case, how to
derive (2.7), i.e.

‖ E
(x,y)∈X×Y

T (x, y)A(x)B(y)‖op ≤
∣∣ E
x,x′∈X
y,y′∈Y

T (x, y)T (x′, y)T (x, y′)T (x′, y′)
∣∣1/4.

Now, to see that the right hand side is equal to ‖T‖H(2), we write the ex-
pectation in a a different way. Instead of writing Ex,x′ we write Eφ : V→X where
V = {v0, v1} is a vertex set, so that x = φ(v0) and x′ = φ(v1). Similarly, instead
of Ey,y′ we write Eψ : W→Y where W = {w0, w1} and we view H(2) to be on this
vertex sets. Then, we evaluate T on the edges of H(2), so the right hand side
above is equal to

| E
φ : V→X,ψ : W→Y

∏

(v,w)∈E(H(2))

T (φ(v), ψ(w))|1/4.

In general, for t players, the proof is as follows

η ≤ ‖ E
(x1,...,xt)∈X

T (x1, . . . , xt)
∏

i∈[t]

Ai(xi)‖op

= ‖ E
φi:Vi→Xi

T (φ1(v1
0t), . . . , φt(v

t
0t))


 ∏

i∈[t−1]

Ai(φi(v
i
0t))


At(φt(v

t
0t))‖op

≤ ‖ E
φi:Vi→Xi

∆tT (φ1(v1
0t), . . . , φt(v

t
0t))

∏

i∈[t−1]

∆tAi(φi(v
i
0t))‖1/2

op .

Now assume that we have applied the Cauchy-Schwarz inequality 1 < n < t times
to peel off the last n operators and we have obtained the expression

η ≤ ‖E∆t−n+1 · · ·∆tT (φ1(v1
0t), . . . , φt(v

t
0t))

∏

i∈[t−n]

∆t−n+1 · · ·∆tAi(φi(v
i
0t))‖1/2n

op .
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We can then apply the Cauchy-Schwarz inequality another time to remove the
operator ∆t−n+1 · · ·∆tAt−n(φi(v

i
0t)) so that we obtain

η ≤ ‖E∆t−n · · ·∆tT (φ1(v1
0t), . . . , φt(v

t
0t))

∏

i∈[t−n−1]

∆t−n · · ·∆tAi(φi(v
i
0t))‖1/2n+1

op .

This completes the induction. Putting n = t− 1 we have the inequality

η ≤ |E∆1 · · ·∆tT (φ1(v1
0t), . . . , φt(v

t
0t))|1/2

t

.

Since β∗(G) is the supremum of η over all strategies Ai we obtain the required
inequality. 2

We are now ready to give a proof of Theorem 2.2.3.
Proof of Theorem 2.2.3:
Let η = β∗(G) so ‖T‖H(t) ≥ η by Lemma 2.4.5. To construct a classical strategy,
choose any edge e∗ = (v∗1, . . . , v

∗
t ) ∈ E(H(t)). H(t) is 2-regular (by Proposi-

tion 2.4.4), so denote by e∗i the unique edge different from e∗ such that v∗i ∈ e∗i .
Write e∗i = (v

(i)
1 , . . . , v∗i , . . . , v

(i)
t ) and V ′i := Vi \ {v∗i }. Using Proposition 2.4.4 we

see that v∗j /∈ e∗i whenever i 6= j. Then

η2t ≤
∣∣ E
φi : Vi→Xi

∏

(v1,...,vt)∈E

T (φ1(v1), . . . , φt(vt))
∣∣

=
∣∣ E
φ′i : V

′
i→Xi

E
φ∗i :{v∗i }→Xi

∏

(v1,...,vt)∈E

T (φ1(v1), . . . , φt(vt))
∣∣

=
∣∣ E
φ′i : V

′
i→Xi

[ ∏

(v1,...,vt)∈E\{e∗,e∗1,...,e∗t }

T (φ1(v1), . . . , φt(vt))

E
φ∗i : {v∗i }→Xi

T (φ∗1(v∗1), . . . , φ∗t (v
∗
t ))

T (φ∗1(v∗1), . . . , φt(v
(1)
t )) · · ·T (φ1(v

(t)
1 ), . . . , φ∗t (v

∗
t ))
]∣∣

≤ E
φ′i : V

′
i→Xi

∣∣ E
φ∗i : {v∗i }→Xi

T (φ∗1(v∗1), . . . , φ∗t (v
∗
t ))T (φ∗1(v∗1), . . . , φt(v

(1)
t ))

· · ·T (φ1(v
(t)
1 ), . . . , φ∗t (v

∗
t ))
∣∣.

On the second line we used that any map φi : Vi → Xi can be written as two maps
φ′i : V ′i → Xi and φ∗i : {v∗i } → Xi where we understand φi to be the combination
of φ′i and φ∗i . We then explicitly split the product into the factors that depend on
v∗i . After this we use the triangle inequality. We see that there must now exist
specific choices of maps φ′i : Vi → Xi such that the average on the last line is at
least η2t . The expectation over t-tuples of maps φ∗i : {v∗i } → Xi is the same as
the expectation over t-tuples x∗i ∈ Xi and by defining

ai(x
∗
i ) := T (φ1(v

(i)
1 ), . . . , x∗i , . . . , φt(v

(i)
t ))
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we see that

| E
x∗1,...,x

∗
k

T (x∗1, . . . , x
∗
k)

k∏

i=1

ai(x
∗
i )| ≥ η2t ,

in other words, the classical bias is at least η2t . 2

2.5 Strategies for 2-player unique games

In this section we prove Theorem 2.2.4. Consider a unique game where πxy is
the matching between the players’ answers on inputs x, y, so that when the first
player answers i they win if the second player answers j = πxy(i). Let us start
by writing down an expression for the entangled winning probability when the
players use a shared state |ψ〉 and projectors Π

(x)
i ,Π

(y)
j for inputs x, y and outputs

i, j. For finite-dimensional systems we can always assume that a strategy is of
such a form. The winning probability is given by

E
x,y

k∑

i=1

Pr(answer i, πxy(i) | input x, y) = E
x,y

k∑

i=1

〈ψ|Π(x)
i ⊗ Π

(y)
πxy(i)|ψ〉.

Now define vectors |u(x)
i 〉 = (Π

(x)
i ⊗ Id)|ψ〉 and |v(y)

j 〉 = (Id ⊗ Π
(y)
j )|ψ〉, then we

can write the winning probability as

E
x,y

k∑

i=1

〈u(x)
i |v(y)

πxy(i)〉 ≥ 1− ε (2.9)

where we use the assumption that there is a strategy with entangled value at
least 1− ε. The vectors have the following properties:

∀x, y,∀i 6= j 〈u(x)
i |u(x)

j 〉 = 〈v(y)
i |v(y)

j 〉 = 0 (orthogonal projectors)

∀x, y
k∑

i=1

‖u(x)
i ‖2 =

k∑

i=1

‖v(y)
i ‖2 = 1 (projectors sum to identity)

∀x, y,∀i, j 〈u(x)
i |v(y)

j 〉 ≥ 0 (projectors are Hermitian)

By using ‖u− v‖2 = ‖u‖2 + ‖v‖2− 2〈u|v〉 (for real-valued inner products) we can
write (2.9) as

1

2
E
x,y

k∑

i=1

‖u(x)
i − v(y)

πxy(i)‖2 ≤ ε. (2.10)
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It is possible to maximize expression (2.9) (or equivalently minimize (2.10)) over
vectors with the given properties. This optimization problem is an SDP and can
be solved in polynomial time but will generally not yield a quantum strategy as
not all such vectors can be attained by quantum strategies. Our goal will be to
extract from the vectors a classical strategy, something known as rounding, such
that its winning probability is high.

As stated in the introduction, one can get some intuition by considering the
ε = 0 case. There (2.10) yields |u(x)

i 〉 = |v(y)
πxy(i)〉 for each x, y and i. Using shared

randomness the players sample a random vector |g〉 and compute the overlaps
ξ

(x)
i = 〈g|u(x)

i 〉 and ξ
(y)
i = 〈g|v(y)

i 〉 respectively. The players will have the same
values ξ(x)

i = ξ
(y)
πxy(i) so both players can output the answer i for which their overlap

has the largest value.
For ε > 0 the sets of vectors will not be exactly equal and therefore the values

ξ
(x)
i , ξ

(y)
πxy(i) will be close but not exactly equal. The discrepancy in these values will

be bigger for vectors |u(x)
i 〉 with a small norm. In Section 2 of [CMM06] a rounding

algorithm is provided that solves these issues. Note that we write u(x)
i , v

(y)
j for the

vectors belonging to questions x, y and answers i, j whereas in [CMM06] these
vectors are instead denoted by ui, vj where u, v are the questions and i, j the
answers. The only difference between their SDP and the above one is that they
have an additional constraint 0 ≤ 〈u(x)

i |v(y)
πxy(i)〉 ≤ |u

(x)
i |2 (constraint (5) in their

paper). This constraint does not necessarily hold in the quantum setting so we
will drop it and adapt their proofs to work without this constraint.

The following isRounding Algorithm 2 from Section 4 of [CMM06], adapted
to our notation.
Rounding algorithm
Input: A solution of the SDP with objective value 1− ε.
Output: A classical strategy: a(x) and b(y)
Define [x]r as the function that rounds x up or down depending on whether the
fractional part of x is greater or less than r. If r is uniform random on [0, 1] then
the expected value of [x]r is x.

1. Define |ũ(x)
i 〉 = |u(x)

i 〉/‖u(x)
i ‖ if ‖u(x)

i ‖ 6= 0, otherwise |ũ(x)
i 〉 = 0.

2. Pick r ∈ [0, 1] uniformly at random.

3. Pick random independent Gaussian vectors |g1〉, ..., |g2k〉 with independent
components distributed as N (0, 1).

4. For each question x:

(a) Set s(x)
i =

[
2k · ‖u(x)

i ‖2
]
r
.
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(b) For each i project s(x)
i vectors |g1〉, ..., |gs(x)i

〉 to |ũ(x)
i 〉:

ξ
(x)
i,s = 〈gs|ũ(x)

i 〉, s = 1, 2, ..., s
(x)
i

(c) Select the ξ(x)
i,s with the largest absolute value. Assign a(x) = i.

5. Repeat the previous step for each question y but with the vectors |v(y)
j 〉 to

obtain b(y).

The intuition behind the algorithm is as follows. Similar to the ε = 0 case, the
values ξ(x)

i,s and ξ(y)
πxy(i),s will be close. Vectors |u

(x)
i 〉 and |u(x)

j 〉 for different answers
i 6= j are orthogonal and their corresponding values ξ(x)

i,s and ξ
(x)
j,s are therefore

independent. For vectors with small norm, the values ξ(x)
i,s and the matching

ξ
(x)
πxy(i),s will be less correlated. Therefore we sample more Gaussian vectors for
answers corresponding to a high norm (step 4a).

To prove Theorem 2.2.4 we have to show that the result of the above round-
ing algorithm is a strategy with winning probability 1 − O(

√
ε log k). This is

exactly the result of Theorem 4.5 of [CMM06] with the exception of the addi-
tional constraint mentioned before. This modification requires a different proof
of Lemma 4.2 and 4.3 in [CMM06] but leaves the remaining part of their proof un-
changed. We therefore only prove these Lemma’s and refer the reader to Section 4
of [CMM06] for the remainder of the proof.

We adopt their definitions

εxy =
1

2

k∑

i=1

‖u(x)
i − v(y)

πxy(i)‖2,

εixy =
1

2
‖ũ(x)

i − ṽ(y)
πxy(i)‖2,

where ũ(x)
i and ṽ(y)

i were defined in step 1 of the rounding algorithm. Note that
Ex,y εxy ≤ ε.

2.5.1. Lemma (Originally Lemma 4.2). The probability that the rounding algo-
rithm gives a correct assignment to the questions x, y is 1−O(

√
εxy log k).

Proof:
If εxy ≥ 1/128 then the statement follows trivially since this can be hidden in the
big-O. Therefore assume εxy ≤ 1/128. Define

M =
{

(i, s) : i ∈ [k] , s ≤ min(s
(x)
i , s

(y)
πxy(i))

}
,

Mc =
{

(i, s) : i ∈ [k] , min(s
(x)
i , s

(y)
πxy(i)) < s ≤ max(s

(x)
i , s

(y)
πxy(i))

}
.
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The set M contains the pairs (i, s) for which both ξ
(x)
i,s and ξ

(y)
πxy(i),s are defined

and the set Mc contains the pairs for which only one of these is defined.
We need the following two lemmas to continue.

2.5.2. Lemma. When εxy ≤ 1/128 then Er[|Mc|] ≤ 4k
√

2εxy and |M | ≥ k/2.

This was originally Lemma 4.3 and it stated Er[|Mc|] ≤ 4kεxy.
Proof:
The expected value of |s(x)

i − s(y)
πxy(i)| is given by

E
r

∣∣∣
[
2k · ‖u(x)

i ‖2
]
r
−
[
2k · ‖v(y)

πxy(i)‖2
]
r

∣∣∣ = 2k
∣∣∣‖u(x)

i ‖2 − ‖v(y)
πxy(i)‖2

∣∣∣ .

By the triangle inequality
∣∣∣‖u(x)

i ‖2 − ‖v(y)
πxy(i)‖2

∣∣∣ =
∣∣∣‖u(x)

i ‖ − ‖v(y)
πxy(i)‖

∣∣∣
(
‖u(x)

i ‖+ ‖v(y)
πxy(i)‖

)

≤ ‖u(x)
i − v(y)

πxy(i)‖
(
‖u(x)

i ‖+ ‖v(y)
πxy(i)‖

)
,

and by using Cauchy-Schwarz twice we have

E
r
[|Mc|] =

k∑

i=1

E
r

[
|s(x)
i − s(y)

πxy(i)|
]

≤
k∑

i=1

‖u(x)
i − v(y)

πxy(i)‖
(
‖u(x)

i ‖+ ‖v(y)
πxy(i)‖

)

≤

√√√√
k∑

i=1

‖u(x)
i − v(y)

πxy(i)‖2

√√√√
k∑

i=1

(
‖u(x)

i ‖+ ‖v(y)
πxy(i)‖

)2

=
√

2εxy

√√√√
k∑

i=1

(
‖u(x)

i ‖2 + ‖v(y)
πxy(i)‖2 + 2‖u(x)

i ‖‖v(y)
πxy(i)‖

)

≤
√

2εxy
√

1 + 1 + 2 = 2
√

2εxy.

This completes the first part of the lemma. For the second part, observe that

min(s
(x)
i , s

(y)
πxy(i)) ≥ 2k min(‖u(x)

i ‖2, ‖v(y)
πxy(i)‖2)− 1

≥ 2k
(
‖u(x)

i ‖2 −
∣∣∣‖u(x)

i ‖2 − ‖v(y)
πxy(i)‖2

∣∣∣
)
− 1.

Therefore we have

|M | =
k∑

i=1

min(s
(x)
i , s

(y)
πxy(i)) ≥

k∑

i=1

(
2k ‖u(x)

i ‖2 − 2k
∣∣∣‖u(x)

i ‖2 − ‖v(y)
πxy(i)‖2

∣∣∣− 1
)

≥ 2k − 4k
√

2εxy − k ≥ k/2,

where we used εxy ≤ 1/128. 2
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2.5.3. Lemma. The following inequality holds

E
r


 1

|M |
∑

(i,s)∈M

εixy


 ≤ 4εxy

Proof:
This is Lemma 4.4 in [CMM06]. The number of (i, s) ∈M for fixed i is given by
min(s

(x)
i , s

(y)
πxy(i)), which has expected value 2k ·min(‖u(x)

i ‖2, ‖v(y)
πxy(i)‖2). This is at

most k ·
(
‖u(x)

i ‖2 + ‖v(y)
πxy(i)‖2

)
. By the previous lemma, we know |M | ≥ k/2, so

we have

E
r


 1

|M |
∑

(i,s)∈M

εixy


 ≤ 1

k/2

k∑

i=1

k
(
‖u(x)

i ‖2 + ‖v(y)
πxy(i)‖2

)
εixy

By using that all inner products 〈u(x)
i |v(y)

j 〉 are real and positive, we have

εixy =
1

2
‖ũ(x)

i − ṽ(y)
πxy(i)‖2 = 1−

〈u(x)
i |v(y)

πxy(i)〉
‖u(x)

i ‖ ‖v(y)
πxy(i)‖

= 1−
‖u(x)

i ‖2 + ‖v(y)
πxy(i)‖2 − ‖u(x)

i − v(y)
πxy(i)‖2

2‖u(x)
i ‖ ‖v(y)

πxy(i)‖
.

This implies that
(
‖u(x)

i ‖2 + ‖v(y)
πxy(i)‖2

)
εixy ≤ ‖u(x)

i − v(y)
πxy(i)‖2,

and now the lemma follows from the definition of εxy. 2

We now continue the proof of Lemma 2.5.1. First consider a fixed value of r
(picked in step 2 of the rounding algorithm. Consider the sequences ξ(x)

i,s and
ξ

(y)
πxy(i),s where the indices (i, s) run over all (i, s) ∈M . We now apply the following
theorem to these sequences.

2.5.4. Theorem (Theorem 4.1 of [CMM06]). Let ξ1, . . . , ξm and η1, . . . , ηm be two
sequences of standard normal random variables. Suppose that the random vari-
ables in each of the sequences are independent, the covariance of every ξi and ηj
is nonnegative, and the average covariance of ξi and ηi is at least 1− ε:

cov(ξ1, η1) + · · ·+ cov(ξm, ηm)

m
≥ 1− ε.

Then the probability that the largest random variable in absolute value in the first
sequence has the same index as the largest random variable in absolute value in
the second sequence is 1−O(

√
ε logm).
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Since cov(ξ
(x)
i,s , ξ

(y)
πxy(i),s) ≥ 1 − εixy, we get that the probability that the largest

absolute value in the first sequence has the same index as the largest absolute
value in the second sequence is

1−O



√

log |M | · 1

|M |
∑

(i,s)∈M

εixy


 .

By Jensen’s inequality we have

E
r

[
1−O

(√√√√ log |M |
|M |

∑

(i,s)∈M

εixy

)]
≥ 1−O

(√√√√E
r

[ log |M |
|M |

∑

(i,s)∈M

εixy

])

≥ 1−O
(√

εxy log k
)

where the second inequality follows from |M | ≤ 3k and Lemma 2.5.3. In the
rounding algorithm, the largest ξ(x)

i,s is picked not only among the (i, s) ∈ M but
also (i, s) ∈ Mc. However, the probability that the index for the largest value is
in Mc is at most

E
r

[ |Mc|
|M |

]
≤ 4k

√
2εxy

k/2
= 8
√

2εxy,

by Lemma 2.5.2. Therefore by the union bound, the probability that the answers
match is at least

1−O(
√
εxy log k)− 8

√
2εxy = 1−O(

√
εxy log k),

which finishes the proof. 2

The result of Lemma 2.5.1 holds for each question pair x, y, so by taking the
expectation over all x, y and using Jensens’s inequality, we get that the rounding
algorithm gives a classical strategy with winning probability 1−O(

√
ε log k).

2.6 Generalized CHSH games

In this section we prove Lemmas 2.2.6 to 2.2.8.
For a q-output game, the bias E can be viewed as being awarded one point

for winning and −1
q−1

points for losing and taking the expectation value of the
points. Instead we can consider a complex version of this where one gets a com-
plex penalty depending on how far off the answer is. This yields the following
definition.
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2.6.1. Definition (Complex bias). The complex bias of a strategy (either clas-
sical or entangled) for CHSHmod

q (for any q ∈ N) or CHSHfield
q (for any prime

power q) with answers a, b is defined as

γ = E[ω−x·yωaωb] =
∑

a,b,x,y

P[x, y ] P[ a, b | x, y ]ωa+b−x·y.

where for CHSHmod
q we define ω = e2πi/q. For CHSHfield

q , for z ∈ Fq we write
ωz := χq(z). Here χq : Fq → C is such that for all z, z′ ∈ Fq we have |χq(z)| = 1,
χq(z + z′) = χq(z)χq(z

′) and
∑

z χq(z) = 0.

Note that such a function χq can be constructed, see [BS15], and it satisfies
many properties one expects from roots of unity. In particular, the q × q matrix
Fx,y = 1√

q
ω−x·y is unitary, which we will use below.

2.6.2. Remark. For regular strategies (Definition 2.2.5), γ = E because the
average of the wrong answers gives 1

q−1

∑q−1
i=1 ω

i = −1
q−1

just as for the bias E. For
non-regular strategies, |γ| could be smaller or larger than E.

It should be noted that when analysing nonlocal games it is common to ignore
shared randomness because there always exists a deterministic strategy that is at
least as good. For a strategy to be regular, however, shared randomness can be
required. The proof of the following lemma is a slight simplification of the one
by Bavarian and Shor [BS15].

2.6.3. Lemma. The entangled complex bias γ of both CHSHmod
q and CHSHfield

q is
bounded by |γ| ≤ 1√

q
.

In Table 2.2 we show optimal classical winning probabilities for low values of q
for both types of the game. Combining Remark 2.6.2 and Lemma 2.6.3, the table
shows that CHSHmod

8 and CHSHmod
9 can not be regularized, proving Lemma 2.2.6.

Proof of Lemma 2.6.3:
In the following, X can be either Z/qZ for any q ∈ N or Fq for any prime
power q. Let F : Cq → Cq be the discrete Fourier transform, Fx,y = 1√

q
ω−x·y

where x, y ∈ X. This is a unitary operator and hence for any v, w : X → C we
have

∣∣∣ 1√
q

∑

x,y∈X

ω−x·yv(x)w(y)
∣∣∣ = |〈v, Fw〉| ≤

(∑

x∈X

|v(x)|2
)1/2(∑

y∈X

|w(y)|2
)1/2

,

using Cauchy-Schwarz. If we have vector-valued functions v : X → Cd and
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CHSHmod
q CHSHfield

q

q ω E 1/
√
q ω E

2 3/4 0.750 1/2 0.500 0.707 same
3 2/3 0.667 1/2 0.500 0.577 same
4 5/8 0.625 1/2 0.500 0.500 9/16 0.563 5/12 0.417
5 12/25 0.480 7/20 0.350 0.447 same
6 1/2 0.500 2/5 0.400 0.408 n.a.
7 19/49 0.388 2/7 0.286 0.378 same
8 15/32 0.469 11/28 0.393 0.354 3/8 0.375 2/7 0.286
9 4/9 0.444 3/8 0.375 0.333 29/81 0.358 5/18 0.278
10 19/50 0.380 14/45 0.311 0.316 n.a.

Table 2.2: Optimal classical winning probabilities for the different CHSH games.
The values are exact and rounded numbers are only shown for easier comparison.
For primes the two games coincide and for numbers that are not a prime power
the field version does not exist.

w : X → Cd for some d, where ‖v(x)‖`2 = ‖w(x)‖`2 = 1 for all x ∈ X, then
∣∣∣∣∣
∑

x,y∈X

ω−x·y〈v(x)|w(y)〉
∣∣∣∣∣ ≤

d∑

i=1

∣∣∣∣∣
∑

x,y∈X

ω−x·yv(x)iw(y)i

∣∣∣∣∣

≤ √q
d∑

i=1

(∑

x∈X

|v(x)i|2
)1/2(∑

y∈X

|w(y)i|2
)1/2

≤ √q
(∑

i,x

|v(x)i|2
)1/2(∑

i,y

|w(y)i|2
)1/2

≤ q
√
q.

where we used Cauchy-Schwarz to get the last line. We proceed by using the
same trick as in Section 2.3: Assume P (x)

1 , ..., P
(x)
q is the projective measurement

done by the first player on input x and Q(y)
1 , ..., Q

(y)
q that of the second player on

input y. Then the operators U (x) =
∑

a ω
aP

(x)
a and V (y) =

∑
b ω

bQ
(y)
b are unitary

and we have

γ = E
x,y∈X

ω−x·y〈ψ|U (x) ⊗ V (y)|ψ〉 = E
x,y∈X

ω−x·y〈v(x)|w(y)〉

where |ψ〉 is the state shared by the players and where |v(x)〉 = U (x)∗ ⊗ Id|ψ〉
and |w(y)〉 = Id⊗ V (y)|ψ〉. By unitarity these vectors have unit norm and by the
inequality above we find |γ| ≤ 1√

q
. 2

Together with Remark 2.6.2, this proves the first part of Lemma 2.2.7. The
second part regarding the MOD parallel repetition will be covered in the next sub-
section. As stated in Section 2.2.4, Bavarian and Shor showed that any strategy
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for CHSHfield
q can be made regular while keeping the same winning probability,

and therefore this proves the upperbound of 1√
q
on the entangled bias of the field

version of the game. Note that while this regularization leaves the winning prob-
ability the same, it might alter |γ|. It could therefore be true that there exists
a non-regular strategy that achieves a complex bias of |γ| = 1√

q
while the true

bound on the bias E might be smaller than this.

2.6.1 Parallel repetition

The MOD parallel repetition of a MOD game is defined as a natural generalization
of XOR parallel repetition. Players get inputs of multiple copies of the game in
parallel and they win if the sum of their ouputs equals the sum of all the correct
answers modulo m, i.e.

a(x1, x2) + b(y1, y2) ≡ f(x1, y1) + f(x2, y2) mod m,

for two-fold repetition where f(x, y) is the correct answer for the original game on
inputs x, y. We define the same for the field version of the game, where the above
equation has to hold in Fq, and we will still call this MOD parallel repetition. By
playing a strategy twice for the normal game and adding the result, we trivially
have Erepetition ≥ E2

single. Let us now prove the second part of Lemma 2.2.7. The
proof of Lemma 2.6.3 can easily be extended to the repeated version of CHSHmod

q

and CHSHfield
q . The map F : Cq2 → Cq2 given by Fx1x2,y1y2 = 1

q
ω−x1·y1−x2·y2 is also

unitary and therefore
∣∣ ∑

x1,x2,y1,y2∈X

ω−x1·y1−x2·y2〈v(x)|w(y)〉
∣∣ ≤ q3.

The two-fold MOD parallel repetition therefore has a complex bias bounded in
absolute value by 1/q, for both types of CHSH games. The MOD parallel repeti-
tion of the field version of the game can be regularized, and therefore 1/q is not
only a bound on |γ| but also on the bias E. Let us now argue this is tight.

Consider the following classical strategy for the MOD parallel repetition of
CHSHfield

q : a(x1, x2) = x1 ·x2 and b(y1, y2) = y1 ·y2. Plugging this into the winning
condition shows that the players win if and only if (x1− y2) · (y1− x2) = 0 in Fq.
For uniformly random x, y ∈ Fq and fixed k ∈ Fq we have

P[x · y = k] =

{
2q−1
q2

k = 0
q−1
q2

k 6= 0
.

so for uniformly random inputs, this strategy yields a winning probability of
(2q − 1)/q2 which corresponds to a bias of 1/q which is optimal. Interestingly,
the classical and entangled values of the repeated game are equal and attain the
1/q bound by Bavarian and Shor, whereas for the single-round game the upper
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bound is not attained and the classical value does not coincide with the entangled
one.

It should be noted that in the repeated CHSHmod
q game, for non-prime q, the

above strategy performs better than the 1/q bound, since there are zero-divisors
in Z/qZ when q is not prime. The value of |γ| is still bounded by 1/q, but E
can be higher since there can be non-regular strategies that perform better than
regular ones.

Instead of looking at γ, consider a relaxation where we allow ωa(x) and ωb(x)

to be any complex number of unit norm.

E
x,y
ω−x·yf(x)g(y)

where f, g : X → C, |f(x)| = |g(x)| = 1, are the strategies that take complex
units as values. The norm of this expression is bounded by 1/

√
q by the same

proof as the bound on |γ|. In this relaxation, however, this bound can be matched
by f(x) = ω−x

2 and g(y) = (
∑

x ω
xy+x2)/(|∑x ω

xy+x2 |). Although f is a q-th root
of unity, g is not hence this is not a valid strategy for the normal game.

We now consider parallel repetition where players have to give multiple an-
swers that all have to be correct.

Recall Lemma 2.2.8.

2.2.8. Lemma. Let m1, . . . ,mn be pairwise coprime and M = m1 · ... ·mn. Then
we have ω(CHSHmod

M ) = ω(CHSHmod
m1
∧ · · · ∧ CHSHmod

mn ) and the same holds for
the entangled values. Therefore, ω(CHSHmod

M ) ≥ ω(CHSHmod
m1

) · ... · ω(CHSHmod
mn ),

both classical and entangled. For the classical value there exist mi such that this
inequality is strict, as well as mi such that it is an equality.

Proof:
For shorter notation, we write G = CHSHmod

m1
∧ · · · ∧ CHSHmod

mn . By the Chi-
nese remainder theorem, the map φ : Z/MZ → Z/m1Z × · · · × Z/mnZ given
by φ(x) = (x mod m1, . . . , x mod mn) is a ring isomorphism. First assume
we have an optimal strategy, possibly entangled, for CHSHmod

M and want to
play G. On inputs (x1, . . . , xn) and (y1, . . . , yn) for G, players use the isomor-
phism to obtain x = φ−1(x1, . . . , xn) and y = φ−1(y1, . . . , yn). Now use these x, y
to play the strategy for CHSHmod

M to obtain answers a, b ∈ Z/MZ and output
φ(a) and φ(b) to the game G. We have a + b ≡ x · y mod M if and only if
ai + bi ≡ xi · yi mod mi for all i by the isomorphism. This is exactly the winning
condition for G and therefore, ω(G) ≥ ω(CHSHmod

M ). In the other direction, on
inputs x, y to CHSHmod

M players compute φ(x), φ(y) and play a strategy for G to
get answers (a1, . . . , an) and (b1, . . . , bn). The outputs a = φ−1(a1, . . . , an) and
b = φ−1(b1, . . . , bn) win CHSHmod

M exactly when all the ai, bi win the CHSHmod
mi

games, so we have ω(G) = ω(CHSHmod
M ). To show that the inequality in the
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lemma statement can be both an equality or a strict inequality, we simply ob-
serve that

ω(CHSHmod
6 ) = ω(CHSHmod

2 ) · ω(CHSHmod
3 ),

ω(CHSHmod
10 ) > ω(CHSHmod

2 ) · ω(CHSHmod
5 ),

by explicitly computing the winning probabilities, see Table 2.2. 2

When the mi are not pairwise coprime, the above proof does not apply but
we conjecture that the inequality ω(CHSHmod

M ) ≥ ω(CHSHmod
m1

) · ... · ω(CHSHmod
mn )

still holds. To support this, note that from Table 2.2 we can see

ω(CHSHmod
4 ) > ω(CHSHmod

2 ) · ω(CHSHmod
2 ),

ω(CHSHmod
8 ) = ω(CHSHmod

4 ) · ω(CHSHmod
2 ),

ω(CHSHmod
9 ) = ω(CHSHmod

3 ) · ω(CHSHmod
3 ).

This also shows that ω(CHSHmod
pk ) is not always ω(CHSHmod

p )k. For the field
version of the game we observe something similar, i.e.

ω(CHSHfield
4 ) = ω(CHSHfield

2 ) · ω(CHSHfield
2 ),

ω(CHSHfield
9 ) > ω(CHSHfield

3 ) · ω(CHSHfield
3 ).



Chapter 3
Quasirandom quantum channels

This chapter is based on joint work with Jop Briët, Farrokh Labib and Hans
Maassen [Ban+19b].

3.1 Introduction
This chapter is about a quantum generalization of quasirandom graphs. In a
seminal work [CGW89], Chung, Graham and Wilson — building on work of
Thomason [Tho87a; Tho87b] — proved that several seemingly distinct notions of
quasirandomness for graphs are equivalent. In particular, they identified seven
properties found in random graphs with high probability, that always coexist si-
multaneously in any large dense graph. Two of these properties are spectral expan-
sion and uniformity (defined below). A question of Chung and Graham [CG02]
on the equivalence of these two properties in sparse graphs resulted in a line of
research culminating in recent work of Conlon and Zhao [CZ17], which introduced
a surprising new item to the armory of combinatorics: the famous Grothendieck
inequality [Gro53a]. In this chapter, we draw a parallel line in the context of
quantum information theory, where quantum channels take the place of graphs.
In addition, we give a streamlined proof of the main result of [CZ17] and show
that the use of Grothendieck’s inequality yields an optimal constant. Similarly,
we show that the non-commutative Grothendieck inequality gives an optimal
constant in the quantum setting.

Spectral expansion and uniformity. Spectral expansion is a linear-algebraic
property given in terms of the transition matrix of a graph. This transition matrix
is the normalized adjacency matrix, which for a d-regular graph G = (V,E)
is given by Auv = e({u}, {v})/d, where e(S, T ) denotes the number of edges
connecting subsets S, T ⊆ V . We say that the graph G is an (n, d, λ) graph if
|V | = n, it is d-regular and all but the largest eigenvalue of A, which is always 1,
have modulus at most λ. The smallest value of λ for which this holds is denoted

43
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by λ(G). Spectral expansion then refers to the property that λ(G) is much
smaller than 1, in which case G is referred to as a (spectral) expander. Expanders
have many important applications in mathematics and computer science (we refer
to [HLW06] for an extensive survey). One such application is in randomized
algorithms, which can exploit the fact that a random walk on an expander rapidly
mixes (i.e., quickly converges to its limit distribution) to significantly reduce the
amount of randomness needed.

Uniformity is a combinatorial property of the configuration of the edges. An
n-vertex d-regular graph G = (V,E) is ε-uniform if for all S, T ⊆ V ,

∣∣∣e(S, T )− d

n
|S| |T |

∣∣∣ ≤ εdn (3.1)

and ε(G) denotes the smallest value of ε for which this holds. Uniformity then
refers to the property that this parameter is much smaller than 1; trivially any
graph is 1-uniform. Intuitively, this says that for any two vertex subsets, the
number of edges between those sets is close to the expected number of edges in a
random graph with the same edge density.

A basic result known as the Expander Mixing Lemma [HLW06] shows that
for any regular graph G we have ε(G) ≤ λ(G), which is to say that spectral ex-
pansion implies uniformity. A sequence Gn of dn-regular graphs is called dense if
dn ≥ Ω(n), and sparse if dn/n −→ 0. It was shown in [CGW89] that in the dense
case, a converse to the Expander Mixing Lemma ε(Gn) ≤ o(1) ⇒ λ(Gn) ≤ o(1)
also holds. In contrast, Krivelevich and Sudakov [KS06] showed that this is
false for sparse graphs, thereby answering the question posed in [CG02]. Their
counterexample is not regular, however (and a later one from [BN04] is not con-
nected). But in [CZ17] it was shown that even regular sparse graphs (where
dn ≤ o(n)) can simultaneously satisfy ε(Gn) ≤ o(1) and λ(Gn) ≥ Ω(1). Sur-
prisingly, Kohayakawa, Rödl, and Schacht [KRS16] showed that Cayley graphs
over abelian groups, including sparse ones, do again admit such a converse. Cay-
ley graphs are an important class of regular graphs that include for instance the
famous Ramanujan graphs of Margulis [Mar88] and Lubotzky, Phillips and Sar-
nak [LPS88]. Conlon and Zhao [CZ17] generalized this to all Cayley graphs and
showed that this implies the same for all vertex-transitive graphs in general, for
which they showed that λ(G) ≤ 4KG ε(G), where 1.6769 . . . ≤ KG < 1.7822 . . .
is the famous Grothendieck constant, whose exact value is currently unknown;
the bounds shown here are the best known and were shown by Davie and Reeds
(independently) in [Dav84; Ree91] and Braverman et al. in [Bra+13], respectively.

Spectral expansion and uniformity are thus equivalent notions of quasiran-
domness for dense graphs and vertex-transitive graphs.

Quasirandomness in quantum information theory. A transition matrix,
such as the normalized adjacency matrix of a graph, maps probability vectors to
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probability vectors, i.e., it preserves the sum of the entries of the vector. A natu-
ral non-commutative generalization of a transition matrix is a quantum channel,
which maps quantum states to quantum states, as defined in Chapter 1. They
encapsulate the “classical” transition matrices by restricting them to diagonal
matrices whose diagonals form probability vectors; we discuss this in more de-
tail in Section 3.3. In quantum information theory, general linear maps from
Mn(C) to itself are referred to as superoperators. Since superoperators are in
one-to-one correspondence with bilinear forms on Mn(C)×Mn(C), they also ap-
pear in the context of (generalizations of) Bell inequalities from physics in the
form of quantum XOR games [RV15; Coo+15], as well as in combinatorial opti-
mization [NRV14]. The graph-theoretic concepts mentioned above have natural
analogues for superoperators, which we discuss next.

In independent work, Hastings [Has07] and Ben-Aroya, Schwartz and Ta-
Schma [BST10] introduced quantum expanders as a special class of quantum
channels defined analogously to spectral expanders. For a unital1 quantum chan-
nel Φ, the expansion parameter is given by

λ(Φ) = ‖Φ− Π‖S2→S2 = sup
{
‖(Φ− Π)(X)‖S2 : ‖X‖S2 ≤ 1

}
, (3.2)

where Π : X 7→ 1
n
Tr(X)Id is the projection onto the identity, ‖X‖S2 =

√
〈X,X〉

is the Frobenius (or Schatten-2) norm and 〈X, Y 〉 = 1
n
Tr(Y ∗X) is the normal-

ized trace inner product. A quantum channel is an expander if λ(Φ) is much
smaller than 1. Also quantum expanders found many applications, one of which
is again randomness reduction, where randomness takes on the form of random
unitary matrices. Since a k-qubit unitary requires 4k real parameters, sampling
one from the uniform distribution (Haar probability measure) is very expensive.
A 1-design is a fixed collection of unitaries U1, . . . , Um such that the superop-
erator Φ(X) = 1

m

∑m
i=1 UiXU

∗
i exactly effects the projection Π, thus mimicking

in a finite way the Haar measure on U(n). Quantum expanders can be used
to construct approximate 1-designs, meaning that Φ(X) and Π(X) are close in
trace distance2 instead of precisely equal. Another application is in cryptography
where Ambainis and Smith [AS04] used quantum expanders to construct short
quantum one-time pads. It was shown in [Has07] that truly random quantum
channels (given by independent Haar-uniform Ui as described above) are quan-
tum expanders with high probability, supporting the idea that this is a notion
of quasirandomness. In this work we introduce a natural notion of uniformity
for superoperators, informally given by how well they mimic the action of Π on
projectors on subspaces, which may be thought of as generalizations of vertex
subsets in graphs. In particular, we say that Φ is ε-uniform if for any two sub-
spaces V,W ⊆ Cn with associated projections PV , PW , it holds that

|〈PV , (Φ− Π)(PW )〉| ≤ ε. (3.3)
1This is the superoperator analogue of regularity for graphs, defined in Section 3.2.
2The trace distance is the distance induced by the Schatten-1 norm, defined in Section 3.2.
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Let ε(Φ) denote the smallest ε for which this holds. As we show in Section 3.3.3,
the parameters λ(Φ) and ε(Φ) reduce to their graphical analogs under a suitable
embedding of graphs into quantum channels. Finally, also symmetry, which for
graphs takes the form of vertex transitivity, is an important property of quantum
channels. In particular, irreducibly covariant quantum channels, which turn out
to generalize vertex-transitive graphs (see Section 3.3), play an important role in
questions about the capacity of quantum channels as noisy transmitters of quan-
tum information [Hol06]. A now famous result of Hastings [Has09] shows that the
minimum output capacity in general does not have the intuitively natural prop-
erty of being sub-additive under tensor products. However, it was shown earlier
by Holevo [Hol02], that the capacity is additive for the subclass of irreducibly
covariant quantum channels.

Summary of our results. In this work we make a first step in the study of the
equivalence of quasirandom properties for quantum channels, or superoperators in
general, and show optimality in the case of vertex-transitive graphs and covariant
quantum channels.

• (Section 3.3.2) Our main result shows that under a slightly weaker condition
than irreducibly covariance, which we will refer to as “weak” irreducibly
covariance, expansion and uniformity are equivalent for superoperators. In
particular, while a simple analogue of the classical Expander Mixing Lemma
implies that ε(Φ) ≤ λ(Φ) in general, we show using a non-commutative
version of Grothendieck’s inequality due to Haagerup [Haa85], that for this
class of superoperators, also λ(Φ) ≤ 2π2ε(Φ) always holds. This implies the
same result for vertex-transitive graphs with C-weighted edges, essentially
proved in [CZ17] with the factor 2 replaced by the complex Grothendieck
constant 1.3380 . . . ≤ KC

G ≤ 1.4049 . . . .

• (Section 3.3.3) We show that a construction of sparse regular graphs in [CZ17]
can be embedded to give a sequence of quantum channels Φn that are not
weakly irreducibly covariant and for which ε(Φn) ≤ o(1) and λ(Φn) ≥ Ω(1).

• (Section 3.3.4) We show that for randomizing channels, introduced in [Aub09],
the two notions of quasirandomness are also equivalent. This can be seen as
a generalization of the same statement for dense graphs proved in [CGW89].

• (Section 3.4.1) We show that the result of [CZ17] cannot be improved in
the sense that the factors 4KG and π2KC

G are optimal in the case of vertex-
transitive graphs with R-weighted and C-weighted edges, respectively.

• (Section 3.4.2) Similarly, we show that the factor 2 in our main result is in
a sense optimal, which we prove by showing that an example of Haagerup
and Ito [HI95] for the non-commutative Grothendieck inequality is weakly
irreducibly covariant, which uses some basic representation theory of SU(n).
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3.2 Preliminaries
For a compact set S, write C(S) for the set of continuous functions from S to
C. For a compact group Γ, write Eg∈Γ for the the integral with respect to the
(unique) Haar probability measure on Γ. In this chapter, all maps of the form
Φ : Mn(C) → Mn(C) are linear, and we refer to these as superoperators. A
superoperator Φ is unital if Φ(Id) = Id. In this chapter only, we normalize inner
products so that for x, y ∈ Cn we define 〈y, x〉 = Ei∈[n] yixi and for matrices
X, Y ∈Mn(C) we have 〈Y,X〉 = 1

n
Tr[Y ∗X].

Norms. For p ∈ [1,∞), x ∈ Cn and X ∈Mn(C), the Lp norm and (normalized)
Schatten-p norm are defined by

‖x‖Lp =
(
E
i∈[n]
|xi|p

)1/p

and ‖X‖Sp =
( 1

n
Tr
[
(X∗X)p/2

])1/p

and ‖x‖L∞ = maxi |xi| and ‖X‖S∞ = sup{|〈Xx, y〉| : ‖x‖L2 , ‖y‖L2 ≤ 1}. Note
that for the identity matrix Id ∈Mn we have ‖Id‖Sp = 1 for all p ∈ [1,∞].

3.2.1. Proposition. Let p ≥ 1 and let X ∈Mn(C). Then

‖X‖Sp ≥ ‖(X11, . . . , Xnn)‖Lp .

Proof:
For a vector x ∈ Cn, denote by Diag(x) the n× n matrix with x on the diagonal
and for a matrix X denote by diag(X) the matrix where we set the off-diagonal
elements to 0. A small computation shows that

E
s∈{±1}n

Diag(s)X Diag(s) = diag(X).

Since the Schatten-p norms are invariant under conjugation with a unitary matrix,
applying the above with the triangle inequality gives

‖(X11, . . . , Xnn)‖Lp = ‖diag(X)‖Sp ≤ E
s∈{±1}n

‖Diag(s)X Diag(s)‖Sp = ‖X‖Sp .

2

For q ∈ [1,∞], define q′ ∈ [1,∞] to be its dual given by 1
q

+ 1
q′

= 1. For
p, q ∈ [1,∞], a matrix A ∈ Mn(C) and a superoperator Φ : Mn(C) → Mn(C),
define

‖A‖Lp→Lq = sup{|〈y, Ax〉| : ‖x‖Lp ≤ 1, ‖y‖Lq′ ≤ 1}
‖Φ‖Sp→Sq = sup{|〈Y,Φ(X)〉| : ‖X‖Sp ≤ 1, ‖Y ‖Sq′ ≤ 1}.
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Also define the cut norms by

‖A‖cut = max{|〈y, Ax〉| : x, y ∈ {0, 1}n}
‖Φ‖cut = sup{|〈Y,Φ(X)〉| : X, Y projectors}.

It is then not hard to see that if G is a d-regular graph with normalized adjacency
matrix A, then ε(G) = ‖A− 1

n
J‖cut, where J is the all-ones matrix. Similarly, we

have ε(Φ) = ‖Φ− Π‖cut.
We have the following relation between these norms, the proof of which is a

simple generalization of the same result from [CZ17] for matrices.

3.2.2. Lemma. For any superoperator Φ, we have ‖Φ‖cut ≤ ‖Φ‖S∞→S1 ≤ π2‖Φ‖cut

and π2 is the best possible constant.

Proof:
First note that the cut norm as defined above can also be written as

‖Φ‖cut = sup{|〈Y,Φ(X)〉| : X, Y � 0 , ‖X‖∞, ‖Y ‖∞ ≤ 1}, (3.4)

because the set {X : X � 0, ‖X‖S∞ ≤ 1} is the convex hull of the set of
projectors. Hence, by linearity the supremum in (3.4) will always be attained by
projectors.

The first inequality of the lemma follows by dropping the positive semidefinite
constraint. For the second inequality, let z be a complex number of norm 1, and
w a uniform random complex number of norm 1. Then

z = π Ew[w 1{<(zw̄)≥0} ].

Note that Ew[f(w)] = 1
2π

∫ 2π

0
f(eiθ)dθ, therefore the equality follows by using∫ π/2

−π/2 cos(θ)dθ = 2. Note that

‖Φ‖S∞→S1 = sup{|〈Y,Φ(X)〉| : ‖X‖S∞ , ‖Y ‖S∞ ≤ 1}.
The set of matrices X such that ‖X‖S∞ ≤ 1 is the convex hull of the set of
unitary matrices, so by linearity we can assume that the supremum in ‖Φ‖S∞→S1

is obtained by unitary X, Y . Unitary matrices are diagonalizable, so we can write
X = UAU∗ and Y = V BV ∗ with U, V unitary and A,B diagonal. Let u,w ∈ C,
|u| = |w| = 1 be uniform random complex numbers and define diagonal matrices
A′, B′ as A′ii(w) = 1{<(Aiiw̄)≥0} and B′ii(u) = 1{<(Biiū)≥0}. By the above we have
A = π Ew[wA′(w)] and similar for B, so we have X = π Ew[wUA′(w)U∗] and
Y = π Eu[uV B′(u)V ∗]. Now, UA′(w)U∗ and V B′(u)V ∗ are projections for all
values of w and u, as required in the definition of the cut norm. Therefore

‖Φ‖S∞→S1 = |〈Y,Φ(X)〉| = π2|Eu,wūw〈V B′(u)V ∗,Φ(UA′(w)U∗)〉|
≤ π2Eu,w|〈V B′(u)V ∗,Φ(UA′(w)U∗)〉|
≤ π2Eu,w‖Φ‖cut

= π2‖Φ‖cut,
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completing the first part of the proof. Conlon and Zhao show that π2 is the
best possible constant in the commutative case, using the matrix A ∈ Mn(C)
given by Ast = e2πi(s−t)/n. This matrix satisfies ‖A‖L∞→L1 = n and one can show
‖A‖cut = (π−2 + o(1))n. By Proposition 3.3.7 in Section 3.3.3, their example can
be embedded into a superoperator with the same norms so π2 is also the best
possible constant here. 2

Define the Grothendieck norm of of a matrix A ∈Mn(C) by

‖A‖G := sup
{∣∣∣ 1
n

n∑

i,j=1

Aij〈xi, yj〉
∣∣∣ : d ∈ N, xi, yj ∈ Cd, ‖xi‖L2 ≤ 1, ‖yj‖L2 ≤ 1

}
.

Then, the complex Grothendieck constant is given by

KC
G := sup

{ ‖A‖G
‖A‖L∞→L1

: n ∈ N, A ∈Mn(C)
}
.

The current best upper and lower bounds on KC
G are 1.4049, by [Haa87], and

1.338 by [Dav84], respectively. The real version of the Grothendieck constant,
denoted by KG and mentioned in the introduction, is obtained by replacing the
underlying field in the above quantities by the reals.

Groups. Given a graph G = (V,E), a permutation π : V → V is an automor-
phism of G if for all u, v ∈ V , we have {π(u), π(v)} ∈ E ⇔ {u, v} ∈ E. The
automorphisms of G form a group under composition, which we call Aut(G).
Then, G is said to be vertex transitive if for every u, v ∈ V , there is a π ∈ Aut(G)
such that π(u) = v. For superoperators, we have the following analogous defini-
tions. A unitary representation of a group Γ on Cn is a homomorphism from Γ
to U(n). The representation is irreducible if the only subspaces of Cn that are left
invariant by the group action are the zero-dimensional subspace and Cn itself.

3.2.3. Definition ((Weak) irreducible covariance). Let Φ : Mn(C) → Mn(C)
be a superoperator, then Φ is weakly irreducibly covariant if there exist a compact
group Γ and continuous irreducible unitary representations U1, U2, V1, V2 of Γ
on Cn such that for all g ∈ Γ and X ∈Mn(C), we have

Φ(U1(g)XU∗2 (g)) = V1(g)Φ(X)V ∗2 (g),

and irreducibly covariant if the above holds with U1 = U2 = U and V1 = V2 = V .

3.3 Converse expander mixing lemmas
In this section, we prove the “converse expander mixing lemmas” announced in
the first and third bullet in the introduction of this chapter. As a warm-up,
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we start with a proof of the commutative case due to Conlon and Zhao, which
we reprove in a slightly different manner analogous to how we will prove the
non-commutative case.

3.3.1 Commutative case

In the following, let S be a compact set and Γ be a compact group acting con-
tinuously and transitively on S. The Haar probability measure on Γ induces a
measure on S (by pullback) according to which the Lp-norm (for p ∈ [1,∞)) and
inner product of f, g ∈ C(S) are given by

‖f‖Lp =
(
E
π∈Γ

∣∣f
(
π(s0)

)∣∣p
) 1
p and 〈f, g〉 = E

π∈Γ
f
(
π(s0)

)
g
(
π(s0)

)
, (3.5)

where (by transitivity) s0 can be taken to be some arbitrary but fixed element
of S. We lift the action of Γ on S to an action on C(S) by precomposition,
that is, for any function f ∈ C(S) and element π ∈ Γ, define the function fπ by
fπ(s) := f(π(s)). Furthermore, for a linear map A : C(S) → C(S) define Aπ by
Aπf := (Afπ)π

−1 and say that A is transitive covariant with respect to Γ if for
any π ∈ Γ we have Aπ = A.3 We sometimes omit the group and simply say A is
transitive covariant if such a transitive group Γ exists.

In [CZ17], the following result is proved (over the real numbers) for the
case S = [n], in which case transitive covariant linear maps A are simply n × n
matrices which commute with the permutation matrices of a transitive subgroup
Γ of Sn. However, their proof easily implies the more general version below.

3.3.1. Theorem (Conlon–Zhao). Let S be as above and let A : C(S) → C(S)
be a linear map that is transitive covariant with respect to Γ. Then,

‖A‖L2→L2 ≤ KC
G‖A‖L∞→L1 .

Here we give a somewhat more streamlined proof of this result based on
a well-known factorization version of Grothendieck’s inequality [Gro53a] (see
also [Pis12]), which will serve as a stepping stone to the proof of the non-
commutative case.4 In our setting the inequality asserts the following

3.3.2. Theorem (Commutative Grothendieck inequality (factorization)). Let S
be as above and let A : C(S)→ C(S) be a linear map. Then, there exist probability
measures λ, ν on S such that for all f, g ∈ C(S), we have

|〈g, Af〉| ≤ KC
G‖A‖L∞→L1

(∫

S

|f(s)|2 dλ(s)

)1/2(∫

S

|g(s)|2dν(s)

)1/2

.

3In general one says A is covariant with respect to Γ, but we say transitive to emphasize
that we require Γ to act transitively on S.

4The main difference is that in [CZ17], the result is first proved for weighted Cayley graphs,
after which it is shown that this implies the result for transitive covariant matrices.
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Proof of Theorem 3.3.1:
It follows from the triangle inequality and transitivity that

|〈g, Af〉| ≤ E
π∈Γ
|〈g, Aπf〉| = E

π∈Γ
|〈gπ, Afπ〉|.

By Theorem 3.3.2 and the AM-GM inequality there are probability measures λ, ν
on S such that the above right-hand side is at most

KC
G‖A‖L∞→L1

2
E
π∈Γ

(∫

S

|fπ(s)|2dλ(s) +

∫

S

|gπ(s)|2dν(s)

)
.

Now we switch the order of the integrals (using Tonelli’s theorem) and use the
expression (3.5) for the L2 norm. This yields

KC
G‖A‖L∞→L1

2
(‖f‖2

L2
+ ‖g‖2

L2
).

For ‖f‖L2 = ‖g‖L2 = 1 this shows ‖A‖L2→L2 ≤ KC
G‖A‖L∞→L1 . 2

3.3.2 Non-commutative case

Our main technical result is as follows.

3.3.3. Theorem. Let Φ : Mn(C) → Mn(C) be a weakly irreducibly covariant
superoperator. Then, ‖Φ‖S∞→S1 ≤ ‖Φ‖S2→S2 ≤ 2‖Φ‖S∞→S1.

Since the supremum in ‖Φ‖S∞→S1 is taken overX, Y both with S∞-norm equal
to 1, the first inequality of the theorem follows from the fact that ‖X‖S2 ≤ ‖X‖S∞ .
As projectors have Schatten-∞ norm 1, the above fact easily implies the analogue
of the Expander Mixing Lemma, that is, ε(Φ) ≤ λ(Φ), where λ(Φ) and ε(Φ) are as
in (3.2) and (3.3), respectively; note that when Φ is weakly irreducibly covariant,
so is Φ − Π. The second inequality is proved at the end of this section, and
in Section 3.4.2 we show that the factor 2 in the theorem is optimal. A simple
lemma relating the uniformity parameter ε(Φ) to ‖Φ − Π‖S∞→S1 (Lemma 3.2.2)
then immediately gives the following result stated in the introduction of this
chapter.

3.3.4. Corollary (Converse Quantum Expander Mixing Lemma). Any weakly
irreducibly covariant superoperator Φ : Mn(C)→Mn(C) satisfies λ(Φ) ≤ 2π2ε(Φ).

In this non-commutative setting we use the following analog of Theorem 3.3.2
(a factorization version of the non-commutative Grothendieck inequality), proved
by Haagerup in [Haa85]; see also [Pis12].
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3.3.5. Theorem (Haagerup). Let Φ: Mn(C)→Mn(C) be a superoperator. There
exist density matrices ρ1, ρ2, σ1, σ2 such that for all X, Y ∈ Mn(C) the following
inequality holds

|〈Y,Φ(X)〉| ≤ ‖Φ‖S∞→S1 (Tr[ρ1X
∗X] + Tr[ρ2XX

∗])
1
2 (Tr[σ1Y

∗Y ] + Tr[σ2Y Y
∗])

1
2 .

(3.6)

We also use the following lemma.

3.3.6. Lemma. Let Γ be a compact group. A unitary representation U : Γ→ U(n)
is irreducible if and only if for any X ∈Mn(C), we have

E
g∈Γ

U(g)XU(g)∗ = Tr(X)
1

n
Id.

Proof:
By Schur’s lemma, if U is an irreducible representation, then for J ∈Mn(C)

[
∀g ∈ Γ U(g)JU(g)∗ = J

]
⇐⇒

[
∃λ ∈ C J = λ Id

]
.

Let JX = Eg∈Γ U(g)XU(g)∗, then for all g ∈ Γ we have U(g)JXU(g)∗ = JX by
the group structure. Therefore, if U is irreducible then JX = λX Id. By taking
the trace, it follows that λX = Tr(X)/n. In the other direction, if U is reducible
then there exists a projector P onto an irreducible subspace that is left invariant,
i.e., U(g)PU(g)∗ = P for all g ∈ Γ, so JP 6= λId. 2

Proof of Theorem 3.3.3:
Denote by Γ and U1, U2, V1, V2 : Γ → U(n) the group and irreducible representa-
tions such that Φ is weakly irreducibly covariant with respect to Γ (see Defini-
tion 3.2.3). For any X, Y ∈ Mn(C) write Xg = U1(g)XU∗2 (g) and similarly write
Yg = V1(g)Y V ∗2 (g). We then have

|〈Y,Φ(X)〉| = E
g∈Γ
|〈Yg,Φ(Xg)〉|.

By Theorem 3.3.5 and the AM-GM inequality, there exist density matrices ρ1, ρ2

and σ1, σ2 such that the right hand side is bounded from above by
1

2
‖Φ‖S∞→S1 E

g∈Γ

(
Tr[ρ1X

∗
gXg] + Tr[ρ2XgX

∗
g ] + Tr[σ1Y

∗
g Yg] + Tr[σ2YgY

∗
g ]
)
.

By Lemma 3.3.6, Eg∈ΓX
∗
gXg = Eg∈Γ U2(g)X∗XU∗2 (g) = 1

n
Tr[X∗X]Id = ‖X‖2

S2
Id.

Let ρ be a density matrix, then Eg∈Γ Tr[ρX∗gXg] = ‖X‖2
S2
. The same holds for

Eg∈Γ Tr[ρXgX
∗
g ] but with U1, and for Y with V1, V2, so we see that the above

quantity is equal to

‖Φ‖S∞→S1

(
‖X‖2

S2
+ ‖Y ‖2

S2

)
.

If ‖X‖S2 = ‖Y ‖S2 = 1 we obtain ‖Φ‖S2→S2 ≤ 2‖Φ‖S∞→S1 . 2
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3.3.3 Embedding graphs into quantum channels

In this subsection, we elucidate the claim that quantum channels generalize graphs
and prove the result stated in the second bullet in the introduction of this chap-
ter, namely that there are non-weakly-irreducible quantum channels for which
a converse expander mixing lemma does not hold. We consider the following
embeddings. For A ∈Mn(C), define ΦA : Mn(C)→Mn(C) as

ΦA(X) =
∑

i,j

AijXjjEii, (3.7)

where Eij is the matrix with a single 1 at position (i, j). When A is a transi-
tion matrix, i.e., its column sums are 1, then it is not hard to see that ΦA is
completely positive and trace preserving and that Φ 1

n
J = Π. Several other ways

exist to create quantum expanders from expander graphs, see for example [HH09]
and [Har08], but as we show below, our embedding given above carries over all
relevant properties of the graph we consider here.

Conlon and Zhao [CZ17] describe an infinite sequence sequence of d-regular
graphs Gn that are o(1)-uniform but for which λ(Gn) ≥ 1/2. Combined with
the following proposition, this immediately gives the result stated in the second
bullet in the introduction.

3.3.7. Proposition. Let A ∈Mn(C) and p, q ∈ [1,∞], then for ΦA as in (3.7),
we have

‖ΦA − Π‖Sp→Sq = ‖A− 1

n
J‖Lp→Lq and ‖ΦA − Π‖cut = ‖A− 1

n
J‖cut.

Proof:
Let B = A− 1

n
J , then ΦA−Π = ΦB. By compactness and definition of ‖·‖Sp→Sq we

can assume there is an X ∈ Mn(C) such that ‖ΦB‖Sp→Sq = ‖ΦB(X)‖Sq/‖X‖Sp .
Write X = diag(x) + Xother where x ∈ Cn is the diagonal of X, and Xother are
the off-diagonal entries. By definition of ΦB we have ΦB(X) = diag(Bx). By
definition of Schatten norms, ‖diag(x)‖Sp = ‖x‖Lp and by Proposition 3.2.1 we
have ‖X‖Sp ≥ ‖x‖Lp . Therefore

‖B‖Lp→Lq ≥
‖Bx‖Lq
‖x‖Lp

≥ ‖diag(Bx)‖Sq
‖X‖Sp

=
‖ΦB(X)‖Sq
‖X‖Sp

= ‖ΦB‖Sp→Sq .

Now let y ∈ Cn be such that ‖B‖Lp→Lq = ‖By‖Lq/‖y‖Lp . Then

‖ΦB‖Sp→Sq ≥
‖ΦB(diag(y))‖Sq
‖diag(y)‖Sp

=
‖diag(By)‖Sq
‖y‖Lp

=
‖By‖Lq
‖y‖Lp

= ‖B‖Lp→Lq .

This proves the first part.
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The cut norm of a matrix takes the supremum over all x, y ∈ {0, 1}n. In-
stead we can relax this to x, y ∈ [0, 1]n, since by linearity the supremum will
always be attained by the extreme points. Similarly, for superoperators we
use (3.4). Then, there exist x, y ∈ [0, 1]n such that ‖B‖cut = |〈Bx, y〉|. We
have diag(x), diag(y) � 0 and ‖diag(x)‖S∞ , ‖diag(y)‖S∞ ≤ 1. Therefore

‖ΦB‖cut ≥ |〈diag(y),ΦB(diag(x))〉| = |〈diag(y), diag(Bx)〉| = |〈y,Bx〉| = ‖B‖cut.

In the other direction, letX, Y ∈Mn(C) such thatX, Y � 0 and ‖X‖∞, ‖Y ‖∞ ≤ 1.
Define x, y to be the diagonals of X, Y , i.e. xi = Xii and yi = Yii. By Proposi-
tion 3.2.1 we have ‖x‖L∞ , ‖y‖L∞ ≤ 1. SinceX, Y � 0 we know all diagonal entries
of X and Y are real and non-negative, so we have x, y ∈ [0, 1]n. We conclude

‖B‖cut ≥ |〈y,Bx〉| = |〈diag(y), diag(Bx)〉| = |〈Y,ΦB(X)〉| = ‖ΦB‖cut,

completing the proof. 2

The following proposition shows that the embedding (3.7) preserves transi-
tivity. This shows that our Theorem 3.3.3 generalizes the main result of [CZ17],
albeit with a slightly worse constant.

3.3.8. Proposition. For any A ∈ Mn(C), A is vertex transitive if and only if
ΦA is irreducibly covariant, where the representations U, V (as in Definition 3.2.3)
are equal.

Proof:
SupposeA is vertex transitive. Let π : [n]→ [n] be a permutation and Pπ ∈Mn(C)
be the associated permutation matrix, defined by (PπAP

∗
π )π(i)π(j) = Aij. If

π ∈ Aut(A) then by definition PπAP ∗π = A, and

ΦA(PπXP
∗
π ) =

∑

i,j

Aij(PπXP
∗
π )jjEii

=
∑

i,j

AijXπ−1(j)π−1(j)Eii

=
∑

i,j

Aiπ(j)XjjEii

=
∑

i,j

Aπ(i)π(j)XjjEπ(i)π(i)

=
∑

i,j

Aπ(i)π(j)Xjj(PπEiiP
∗
π ) = PπΦA(X)P ∗π .

This shows that for all π ∈ Aut(A) we have ΦA(PπXP
∗
π ) = PπΦA(X)P ∗π .
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Let T = {c ∈ C : |c| = 1} be the complex unit circle. For α ∈ Tn, define Uα :=
diag(α). We have UαEiiU∗α = |αi|2Eii = Eii and (UαXU

∗
α)ii = Xii. Therefore

ΦA(UαXU
∗
α) =

∑

i,j

Aij(UαXU
∗
α)jjEii =

∑

i,j

AijXjjUαEiiU
∗
α = UαΦA(X)U∗α.

We combine these two observations as follows. First we have that
(
E

α∈Tn
UαXU

∗
α

)

ij

= E
α∈Tn

αiXijαj =

∫ 2π

0

∫ 2π

0

αiXijαj dαidαj = Xiiδij

If A is vertex transitive then for all x ∈ Cn we have Eπ∈Aut(A) Pπ diag(x)P ∗π =
(Ei xi) Id. Therefore

E
π∈Aut(A)
α∈Tn

(PπUα)X(PπUα)∗ = E
π∈Aut(A)

Pπ

(
E

α∈Tn
UαXU

∗
α

)
P ∗π =

Tr(X)

n
Id.

Letting G ⊂Mn(C) be the subgroup generated by the Uα and Pπ for π ∈ Aut(A),
we see that for any g ∈ G

ΦA(gXg∗) = gΦA(X)g∗

and by the previous equation and Lemma 3.3.6, G acts irreducibly on Cn (and
it is unitary). This proves Φ is irreducibly covariant with respect to the group G
where both representations are the same.

For the other direction, let U : G → U(n) be the irreducible representation
such that ΦA is irreducibly covariant, i.e. ΦA(U(g)XU∗(g)) = U(g)ΦA(X)U∗(g)
for all g ∈ G. Define Pg ∈Mn(C) as (Pg)ij = |U(g)ij|2 so that (U(g)EjjU(g)∗)ii =
(Pg)ij. Then

Akl = Tr[EkkΦA(Ell)] = Tr[U(g)EkkU(g)∗ ΦA(U(g)EllU(g)∗)]

=
∑

ij

Aij(Pg)jl(Pg)ik = (P T
g APg)kl,

showing P T
g APg = A. Since U(g) is unitary, Pg is doubly stochastic so by

Birkhoff’s Theorem Pg is a convex combination of permutation matrices, i.e.,
Pg = Ei Πi for some (not necessarily uniform) probability distribution and where
Πi is a permutation matrix. We have

Akl = (P T
g APg)kl = E

i
E
j
(ΠT

i AΠj)kl = E
i
E
j
Aπi(k) πj(l).

Since A is {0, 1}-valued, it follows that if Akl = 1 then all elements of the convex
combination on the right-hand side must be 1, and if Akl = 0 then all elements
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of the right hand side must be 0. Therefore, for all i we have ΠT
i AΠi = A. By

irreducibility, we have for all k, l that

1

n
=

Tr[Ekk]

n
Idll =

(
E
g∈G

U(g)EkkU
∗(g)

)

ll

= E
g∈G
|U(g)lk|2 ,

showing Eg∈G(Pg)lk = 1/n. It follows that there is a g ∈ G such that (Pg)lk > 0.
Decomposing Pg into permutation matrices shows there is a Π ∈ Aut(A) such
that Πlk = 1. This holds for all k, l, proving the lemma. 2

3.3.4 Randomizing superoperators

We prove the following analogue of one of the results of Chung, Graham and
Wilson [CGW89] who showed that for any d-regular graph G, it holds that
λ(G) ≤ (2ε(G)/δ2)

1/4, where δ = d/n is the edge density. This in particular es-
tablishes a tight relation between spectral expansion and uniformity for sequences
of graphs with δn ≥ Ω(1). For A ∈ Mn(C), we have ‖A‖L1→L∞ = n supij |Aij|,
and for an n-vertex d-regular graph with normalized adjacency matrix A we have
supij |Aij| = 1

d
so ‖A‖L1→L∞ = 1

δ
. Therefore a sequence of graphs with normalized

adjacency matrices An is dense exactly when ‖An‖L1→L∞ ≤ O(1).
A superoperator Φ is said to be η-randomizing if ‖Φ‖S1→S∞ ≤ η, which when

η ≤ O(1), may thus be seen as an analogue of density. Note that by Theorem 3.3.7
the embedding of any dense graph is is O(1)-randomizing.

3.3.9. Proposition. Let Φ : Mn(C)→ Mn(C) be a unital superoperator that is
O(1)-randomizing. Then, λ(Φ) ≤ O(ε(Φ)1/4).

To prove Proposition 3.3.9, we require the following lemma.

3.3.10. Lemma. Let Φ : Mn(C)→Mn(C) be a superoperator and C = ‖Φ‖S1→S∞.

Then we have ‖Φ‖S2→S2 ≤
(
C3‖Φ‖S∞→S1

)1/4

.

Proof:
By definition of C we have |〈Q,Φ(P )〉| ≤ C‖Q‖S1‖P‖S1 . Let X, Y ∈ Mn(C)
be such that 〈Y,Φ(X)〉 = ‖Φ‖S2→S2 with ‖X‖S2 = ‖Y ‖S2 = 1. We can always
write X = 1

n

∑n
i=1 λiPi and Y = 1

n

∑n
i=1 µiQi with Pi, Qi rank-1 matrices with

‖Qi‖S1 = ‖Pi‖S1 = 1 and ‖λ‖L2 = ‖µ‖L2 = 1. Now we apply Cauchy-Schwarz,

|〈Y,Φ(X)〉|4 =
∣∣∣E
ij
λiµj〈Qj,Φ(Pi)〉

∣∣∣
4

≤
(
E
i
λ2
i

)2 (
E
i

∣∣µj〈Qj,Φ(Pi)〉
∣∣2
)2

=
(
E
i,j,j′

µjµj′〈Qj,Φ(Pi)〉〈Pi,Φ∗(Qj′)〉
)2

,
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where all indices are averaged from 1 to n. Applying Cauchy-Schwarz to the sum
over j, j′ then gives

|〈Y,Φ(X)〉|4 ≤
(
E
j,j′
µ2
jµ

2
j′

)(
E
j,j′

∣∣∣E
i
〈Qj,Φ(Pi)〉〈Pi,Φ∗(Qj′)〉

∣∣∣
2)

= E
i,i′,j,j′

〈Qj,Φ(Pi)〉〈Pi,Φ∗(Qj′)〉〈Qj′ ,Φ(Pi′)〉〈Pi′ ,Φ∗(Qj)〉

= E
i,j
〈Qj,Φ(Pi)〉

〈
E
j′
〈Qj′ ,Φ(Pi)〉Qj′ ,Φ

(
E
i′
〈Pi′ ,Φ∗(Qj)〉Pi′

)〉
.

Note that the Pi, Qi matrices have S∞-norm equal to n, so

‖E
j′
〈Qj′ ,Φ(Pi)〉Qj′‖S∞ ≤ max

j′
|〈Qj′ ,Φ(Pi)〉| ≤ C

‖E
i′
〈Pi′ ,Φ∗(Qj)〉Pi′‖S∞ ≤ max

i′
|〈Qj,Φ(Pi′)〉| ≤ C.

Now we see

|〈Y,Φ(X)〉|4 ≤ E
i,j
|〈Qj,Φ(Pi)〉|

∣∣∣
〈
E
j′
〈Qj′ ,Φ

∗(Pi)〉Qj′ ,Φ
(
E
i′
〈Pi′ ,Φ∗(Qj)〉Pi′

)〉∣∣∣

≤ E
i,j
|〈Qj,Φ(Pi)〉| ‖Φ‖S∞→S1C

2

≤ C3‖Φ‖S∞→S1

which completes the proof. 2

Proof of Theorem 3.3.9:
Let Π(X) = 1

n
Tr[X]Id and E = Φ − Π, then ‖E‖cut ≤ ε by assumption. De-

fine C = ‖Φ‖S1→S∞ . We have ‖Π‖S1→S∞ = 1 so by the triangle inequality,
‖E‖S1→S∞ ≤ C + 1. Using Lemma 3.2.2 and Lemma 3.3.10 applied to E we find
‖E‖S2→S2 ≤ ((C + 1)3π2ε)1/4. 2

3.4 Optimality of constants

3.4.1 Commutative case

In this section we prove the fourth bullet point in our introduction. Theorem 3.3.1
shows that KC

G bounds the ratio of the L2 → L2 and L∞ → L1 norms, and
Lemma 3.2.2 (the matrix version) shows that π2 bounds the ratio of the L∞ → L1

norm and the cut norm. We now prove the optimality of the combined inequality.
Let Sm−1 = {x ∈ Cm : ‖x‖L2 = 1} denote the (m−1)-dimensional unit sphere

endowed with its Haar probability measure µ.

3.4.1. Theorem. For any ε > 0 there exist positive integers m, k and a transitive
covariant linear map M : C(Sm−1× [k])→ C(Sm−1× [k]) such that ‖M‖L2→L2 ≥
(π2KC

G − ε)‖M‖cut.
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The optimality of π2 between the L∞ → L1 norm and the cut norm is already
covered in Lemma 3.2.2. We show that KC

G is optimal in the sense that The-
orem 3.3.1 cannot be improved (despite the fact that the exact value of the
Grothendieck constant KC

G is unknown). We do this in Lemma 3.4.2 below. Then
in Lemma 3.4.3 we show that any map can be lifted to one on a bigger space with
appropriately bounded cut norm. The combination of these lemmas proves our
theorem.

3.4.2. Lemma. For any ε > 0 there exists a positive integer m and a transitive
covariant linear map B : C(Sm−1)→ C(Sm−1) that satisfies

‖B‖L2→L2 ≥ (KC
G − ε)‖B‖L∞→L1 .

Proof:
By definition of the Grothendieck constant, for any ε > 0 there exists an n ∈ N
and a linear map A ∈ Mn(C) such that ‖A‖G ≥ (KC

G − ε)‖A‖L∞→L1 . This
map A might not be transitive covariant, so from it we will now construct a
transitive covariant linear map B : C(S2n−1) → C(S2n−1) of which the norms
satisfy ‖B‖L∞→L1 ≤ ‖A‖L∞→L1 and ‖B‖L2→L2 ≥ ‖A‖G. This idea is based on a
lemma found in [Bri11].

Let xi, yj ∈ S2n−1 be the vectors that attain the Grothendieck norm for A,
which can always be assumed to be 2n-dimensional since there are only 2n of
them, so

‖A‖G =
∣∣∣ 1
n

∑

i,j

Aij〈xi, yj〉
∣∣∣.

Define the map B by

〈f,B(g)〉 =
1

n

∑

i,j

Aij

∫

U(2n)

f(Uxi)g(Uyj)dU.

To bound ‖B‖L∞→L1 we have to bound |〈f,B(g)〉| for f, g : S2n−1 → [−1, 1]. By
the triangle inequality,

|〈f,B(g)〉| ≤
∫

U(2n)

∣∣∣ 1
n

∑

i,j

Aijf(Uxi)g(Uyj)
∣∣∣dU ≤

∫

U(2n)

‖A‖L∞→L1dU ≤ ‖A‖L∞→L1 .

Now for each i ∈ [2n] let fi ∈ C(S2n−1) be given by fi(x) = xi (i.e. the i-th
coordinate). Then,

1

2n

2n∑

i=1

〈fi, B(fi)〉 ≤
1

2n

2n∑

i=1

‖B‖L2→L2‖fi‖2
L2

= ‖B‖L2→L2

∫

S2n−1

1

2n

2n∑

i=1

x2
i dµ(x)

= ‖B‖L2→L2 .
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On the other hand,

1

2n

2n∑

i=1

〈fi, B(fi)〉 =
1

n

∑

i,j

Aij

∫

U(2n)

〈Uxi, Uyj〉dU =
1

n

∑

i,j

Aij〈xi, yj〉 = ‖A‖G,

so we conclude ‖B‖L2→L2 ≥ ‖A‖G. We will show B is transitive covariant with
respect to Γ = U(2n). To show B is invariant, we have to prove that for all
V ∈ U(2n) we have 〈fV , B(gV )〉 = 〈f,B(g)〉. Indeed,

〈fV , B(gV )〉 =
1

n

∑

i,j

Aij

∫

U(2n)

f(V Uxi)g(V Uyj)dU

=
1

n

∑

i,j

Aij

∫

U(2n)

f(U ′xi)g(U ′yj)dU ′ = 〈f,B(g)〉,

which completes the proof. 2

3.4.3. Lemma. Let S be a compact set and B : C(S)→ C(S) a linear map. For
any ε > 0 there exists a k ∈ N and a linear map M : C(S × [k]) → C(S × [k])
such that

‖M‖cut

‖M‖L2→L2

≤
( 1

π2
+ ε
)‖B‖L∞→L1

‖B‖L2→L2

,

and if B is transitive covariant then so is M .

Proof:
We will choose k large enough, to be determined later. For any f, g ∈ C(S × [k])
define f i ∈ C(S) as f i(s) := f(s, i), and similar for gi. Define ω = e2πi/k. Define
a linear map M : C(S × [k])→ C(S × [k]) as

(
M(f)

)
(t, j) :=

1

k

k∑

i=1

ωi−jB(f i)(t), for t ∈ S and j ∈ [k].

We then have

〈g,M(f)〉S×[k] =
1

k2

〈∑

i

ωigi, B
(∑

j

ωjf j
)〉

S

where one factor of 1
k
comes from our normalization of the inner product. This

implies

∣∣〈g,M(f)〉S×[k]

∣∣ ≤ ‖B‖L∞→L1

∥∥∥1

k

k∑

i=1

ωigi
∥∥∥
L∞

∥∥∥1

k

k∑

j=1

ωjf j
∥∥∥
L∞
. (3.8)
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If f, g ∈ C(S × [k]) are the [0, 1]-valued functions that attain the cut norm of M ,
then by (3.8)

‖M‖cut ≤
( 1

π2
+ ε
)
‖B‖L∞→L1 ,

where we used Lemma 3.4.4 (below) to bound
∥∥∥ 1
k

∑k
i=1 ω

igi
∥∥∥
L∞

.

Let u, v ∈ C(S) with ‖u‖L2 = ‖v‖L2 = 1 be such that ‖B‖L2→L2 = 〈v,B(u)〉S.
Define f(u), g(v) ∈ C(S×[k]) as f(u)(s, i) :=

∑
i ω
−iu(s) and g(v)(s, i) :=

∑
i ω
−iv(s),

which also have L2-norm equal to 1. We then see

‖M‖L2→L2 ≥
〈
g(v),M(f(u))

〉
S×[k]

= 〈v,B(u)〉S = ‖B‖L2→L2 .

The combination of these observations completes the first part of the proof. Now
assume B is transitive covariant with respect to Γ, so B(fπ)(π−1(s)) = B(f)(s)
for all s ∈ S and π ∈ Γ. Define a new group Γ′ as the cartesian product
Γ′ = Γ × Zk. For (π,m) ∈ Γ′ define the action (π,m) : S × [k] → S × [k] as
(π,m)(s, i) = (π(s), i+m). By entering f (π,m) into the definition of M it follows
that M (π,m) = M , so M is transitive covariant with respect to Γ′, completing the
proof. 2

3.4.4. Lemma. Let ε > 0, then there exists a k0 ∈ N such that for all k > k0 and
for all x ∈ [0, 1]k we have

∣∣∣1
k

k∑

j=1

e2πi j/kxj

∣∣∣ ≤ 1

π
+ ε.

Proof:
First let k0 be arbitrary, to be determined later. Define y ∈ [−1, 1]k as yi = 2xi−1,
then

∣∣∣1
k

k∑

j=1

e2πi j/kxj

∣∣∣ =
1

2

∣∣∣1
k

k∑

j=1

e2πi j/kyj

∣∣∣ =
1

2
e2πiφ 1

k

k∑

j=1

e2πi j/kyj.

In the first equality we used that
∑k

j=1 e
2πi j/k = 0. In the second equality we used

that there exists a φ such that the full expression becomes real and positive. Since
eiθ = cos(θ) + i sin(θ) and the full expression is real, we know the sin component
vanishes and therefore

1

2

1

k

k∑

j=1

e2πi(φ+j/k)yj =
1

2

1

k

k∑

j=1

cos(2π(φ+ j/k))yj.
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Now note that cos(2π(φ+ j/k))yj ≤
∣∣ cos(2π(φ+ j/k))

∣∣ and hence

1

2

1

k

k∑

j=1

∣∣ cos(2π(φ+ j/k))
∣∣ k→∞−→ 1

2

∫ 1

0

∣∣ cos
(
2π(φ+ x)

)∣∣dx =
1

π
.

This completes the proof. 2

3.4.2 Non-commutative case

In the non-commutative case we can also show optimality.

3.4.5. Proposition. For any ε > 0, there exists a positive integer n and a
weakly irreducibly covariant superoperator Φ : Mn(C) → Mn(C) that satisfies
‖Φ‖S2→S2 ≥ (2− ε)‖Φ‖S∞→S1.

One of the forms of the non-commutative Grothendieck inequality, equivalent
to the one in Theorem 3.3.5, is the following. Let Φ : Mn(C) → Mn(C) be a
linear map and xi, yj ∈Mn(C) finite sets of matrices. Then

∣∣∣
∑

i

〈xi,Φ(yi)〉
∣∣∣ ≤K ′G‖Φ‖S∞→S1

(‖∑i x
∗
ixi‖+‖

∑
i xix

∗
i ‖

2
· ‖
∑

i y
∗
i yi‖+‖

∑
i yiy

∗
i ‖

2

) 1
2

(3.9)

whereK ′G ≤ 2 and the norms on the right hand side are operator norms ‖·‖S∞ . To
show tightness, i.e. K ′G ≥ 2, Haagerup and Itoh [HI95] (see [Pis12] for a survey)
gave an explicit family of operators for which (3.9) gives a lower bound of K ′G
approaching 2. We will show that these operators are weakly irreducibly covariant
which implies that the constant in Theorem 3.3.3 is tight. It is instructive to
repeat their construction, and then prove the weak irreducible covariance.

3.4.6. Lemma ([HI95]). For any n ∈ N there exists a Φ : Md(C) → Md(C) with
sets of matrices {xi}, {yi} such that (3.9) yields K ′G ≥ (2n+ 1)/(n+ 1).

Proof:
This proof uses techniques familiar in the context of the antisymmetric Fock
space, but the proof aims to be self contained. Let H = C2n+1 and consider the
antisymmetric k-fold tensor product H∧k which is a linear subspace of the k-fold
tensor product H⊗k. A basis of H∧k is formed by vectors ei1 ∧ ei2 ∧ · · · ∧ eik with
i1 < · · · < ik where the ei are standard basis vectors of H. Here ∧ is the wedge
product or exterior product, which has the property x ∧ y = −y ∧ x and is given
by x ∧ y = x⊗ y − y ⊗ x, for x, y ∈ H. We will consider k = n and k = n+ 1 so
that the dimension of H∧k is d =

(
2n+1
n

)
for both k = n and k = n+ 1.
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For 1 ≤ i ≤ (2n + 1), define ci : H∧n → H∧(n+1) as ci(x) := ei ∧ x, which
physicists call the fermionic creation operator. Its adjoint c∗i : H∧(n+1) → H∧n

is known as the annihilation operator. By the antisymmetric property, ci(x) = 0
whenever ei was present in x, i.e., when x = ei∧x′. The operator cic∗i , also known
as the number operator, is a projector onto the space spanned by basis vectors
in which ei is present. The operator c∗i ci is a projector onto the space where ei is
not present. Since there are always (n+ 1) vectors present in H∧(n+1) and (n+ 1)
vectors not present in H∧n, we have

2n+1∑

i=1

cic
∗
i = (n+ 1)IdH∧(n+1) and

2n+1∑

i=1

c∗i ci = (n+ 1)IdH∧n .

We will now argue that

〈ci, cj〉 :=
1

d
Tr(c∗i cj) = δi,j

n+ 1

2n+ 1
, (3.10)

‖
2n+1∑

i=1

αici‖S1 = ‖α‖L2

n+ 1√
2n+ 1

for α ∈ C2n+1. (3.11)

The δi,j in (3.10) follows because 〈x, c∗i cjx〉 = 0 for any x = ek1 ∧ · · · ∧ ekn when
i 6= j. The factor n+1

2n+1
follows by taking the trace of one of the sums above and

noting that by symmetry in i, every term of the sum must have the same trace.
To prove (3.11), first note that for any U ∈ U(2n+ 1) we have

U∧(n+1) · ci · (U∧n)−1 =
∑

j

Ujicj, (3.12)

which can be shown by proving it for all basis states:

U∧(n+1)ci(U
∧n)−1(ek1 ∧ ... ∧ ekn) = U∧(n+1)ci(U

−1ek1 ∧ ... ∧ U−1ekn)

= U∧(n+1)(ei ∧ U−1ek1 ∧ ... ∧ U−1ekn)

= (Uei ∧ ek1 ∧ ... ∧ ekn)

= (
∑

j

Ujiej ∧ ek1 ∧ ... ∧ ekn)

=
∑

j

Ujicj(ek1 ∧ ... ∧ ekn).

The trace-norm is unitarily invariant, so (3.12) implies ‖ci‖S1 = ‖∑j Ujicj‖S1 .
Since c∗i ci is a projector, we have

√
c∗i ci = c∗i ci and hence ‖ci‖S1 = 1

d
Tr(c∗i ci).

Now let α ∈ C2n+1 with
∑

i |αi|2 = 1, then there is a unitary U ∈ U(2n + 1)
such that the i-th row of U is α. Note that ‖α‖L2 = 1/

√
2n+ 1 since we use

normalized L2-norms, which implies (3.11).
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Since the dimensions of H∧n and H∧(n+1) are equal, we can identify the space
of linear maps L(H∧n, H∧(n+1)) with Md(C), and define the following operator
Φ : Md(C)→Md(C),

Φ(x) =
2n+1∑

i=1

〈ci, x〉 ci.

Consider (3.9) for Φ with xi = yi = ci. For the left hand side, note that by (3.10)
we have

∣∣∣
2n+1∑

j=1

〈cj,Φ(cj)〉
∣∣∣ =

∣∣∣
2n+1∑

i,j=1

〈ci, cj〉 〈cj, ci〉
∣∣∣ =

(n+ 1)2

2n+ 1
.

For the right-hand side of (3.9), we require ‖Φ‖S∞→S1 = sup‖x‖S∞=1‖Φ(x)‖S1 . For
any x, define v(x) ∈ C2n+1 as v(x)

i = 〈ci, x〉. Note that ‖v‖L2 = sup‖α‖L2
=1 |〈v, α〉|.

First apply (3.11) to obtain

‖Φ(x)‖S1 = ‖
2n+1∑

i=1

〈ci, x〉ci‖S1 = ‖v(x)‖L2

n+ 1√
2n+ 1

= sup
‖α‖L2

=1

|〈v(x), α〉| n+ 1√
2n+ 1

.

Using (3.11) again, we compute sup‖x‖S∞=1 |〈v(x), α〉| for fixed α with ‖α‖L2 = 1,

sup
‖x‖S∞=1

|〈v(x), α〉| = sup
‖x‖S∞=1

1

2n+ 1

∣∣〈x,
∑

i

αici〉
∣∣

=
1

2n+ 1
‖
∑

i

αici‖S1 =
n+ 1

(2n+ 1)
√

2n+ 1
.

We obtain ‖Φ‖S∞→S1 = (n + 1)2/(2n + 1)2. Now it follows from (3.9) that
(n+1)2

2n+1
≤ K ′G

(n+1)2

(2n+1)2
· (n+ 1) and therefore 2n+1

n+1
≤ K ′G. 2

3.4.7. Lemma. The operator Φ constructed in Lemma 3.4.6 is weakly irreducibly
covariant with respect to U(2n+1) and therefore the constant 2 in Theorem 3.3.3
is tight.

Proof:
Let Rk : U(2n + 1) → H∧k be the representation U 7→ U∧k, which is irreducible
by Lemma 3.4.8 below. We want to show that for all U we have

Φ(Rn+1(U)xR∗n(U)) = Rn+1(U) Φ(x) R∗n(U).

For the left hand side, note that

1

d
Tr(c∗iRn+1(U)xR∗n(U)) =

1

d
Tr
((
R∗n+1(U)ciRn(U)

)∗
x
)

=
1

d
Tr
((∑

j

U ijcj
)∗
x
)
,
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where we used (3.12) from the proof of Lemma 3.4.6. Using (3.12) again for the
right hand side, we have

Rn+1(U) Φ(x) R∗n(U) =
∑

ij

1

d
Tr(c∗ix)Ujicj,

showing they are equal. 2

The two representations Rn and Rn+1 in the above proof are not equivalent.
It can be shown that they are equivalent to each others complex conjugate. We
can therefore only show that this Φ is weakly irreducibly covariant.

3.4.8. Lemma. Let N, k ∈ N and let R : U(N)→ (CN)∧k be given by U 7→ U∧k.
This representation is irreducible.

Proof:
Consider the diagonal matrix Z ∈ U(N) defined as Zei = ω2iei where ω = e2πi/2N .
On the anti-symmetric space, R(Z)(ei1 ∧ · · · ∧ eik) = ω2i1+···+2ik (ei1 ∧ · · · ∧ eik).
Therefore all vectors of the form (ei1∧· · ·∧eik) are eigenvectors of R(Z) and they
all have distinct eigenvalues because each ei can only appear once. Now assume
V ⊆ (CN)∧k is a non-trivial invariant subspace for this representation. We want
to show that V = (CN)∧k. First note that since R(Z) leaves V invariant, we
can block-diagonalize R(Z) with respect to V and its orthogonal complement,
and those blocks can then further be diagonalized. However, since R(Z) only
has distinct eigenvalues, this means V must be spanned by eigenvectors of R(Z).
Therefore there exists at least one ei1 ∧· · ·∧eik in V . Let ej1 ∧· · ·∧ejk be another
vector and define a matrix U as Uei1 = ej1 , Uei2 = ej2 and so on. Since all eil and
ejl are distinct, this matrix can be extended to a unitary matrix (a permutation
matrix). We see that R(U)(ei1 ∧ · · · ∧ eik) = ej1 ∧ · · · ∧ ejk and since this must
leave V invariant we see that all such basis vectors are in V and we conclude that
V must be the entire anti-symmetric space. 2



Chapter 4

Triangle counting using the switchchain

This chapter is based on joint work with Remco van der Hofstad and Clara
Stegehuis [BSH18]

4.1 Introduction

This chapter is about the classical task of sampling random graphs. In particular,
it is about taking a uniform sample from the set of all simple graphs with a
fixed degree sequence. The difficulty of this problem depends on the particular
degree sequence, and when the degrees follow a power-law distribution with degree
exponent τ ∈ (2, 3) then this problem is non-trivial. Many real-world networks
have been found to have a power-law degree distribution in this category [AJB99;
FFF99; VPV02]. A uniform random graph (URG) with prescribed degrees serves
as a null model for real-world networks, and has attracted enormous attention
in network physics [NSW01; Rob00; BC78; CAR17]. The configuration model is
used frequently to generate URGs [Bol80]. The configuration model starts with
n vertices and a degree sequence (di)i=1,...,n such that the sum of the degrees is
even. All vertices i start with di half-edges, where di is the degree of vertex i.
Then, these half-edges are paired one by one, uniformly at random. This creates
a random graph with the desired degree distribution. When the configuration
model results in a simple graph, this is a uniform sample of all simple graphs
with that degree sequence. As long as the degree exponent τ satisfies τ > 3,
the probability that the configuration model creates a simple graph is strictly
positive and can be expressed in terms of the first and second moment of the
degree distribution, see for example [Hof17, Theorem 7.12]. Thus, in this regime,
the configuration model can be effectively repeated until it results in a simple
graph. When τ < 3, the probability that the configuration model results in a
simple graph vanishes instead. Thus, the configuration model cannot be used to
generate uniform simple graphs for τ ∈ (2, 3).

Several models exist to generate graphs with approximately the desired degree

65
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sequence [BDM06]. One such model is the erased configuration model (ECM),
where after the construction of the configuration model, all self-loops and multiple
edges are removed. Another option is to use models with soft constraints on the
degrees, such as hidden-variable models [CL02; BP03]. Other methods to sample
uniform graphs are based on maximizing entropy [SMG15].

A method to sample random graphs with exactly the desired degree sequence
is to use Markov Chains. These methods start with an initial graph with the
desired degree sequence. Then, at every time step, some edges of the graph may be
rewired in such a way that the stationary distribution is uniform [Mil+03; CDA09;
GS17; CH17]. When the number of rewirings (or switches) tends to infinity, the
result is a uniformly sampled random graph from all simple graphs with the
same degree sequence. These Markov Chain methods can be adapted to generate
directed graphs [AS05; RC12], connected graphs [CZ03] or graphs with fixed
degree-degree correlations [RC12]. It is also possible to allow more sophisticated
kinds of switches to possibly speed up the convergence to the uniform graph such
as the curveball algorithm [CBS16], or to define acceptance probabilities for the
switches [CDA09].

The Markov Chain methods require an initial graph with the desired degree
sequence, and there are several ways of creating it, one of which is by using the
Havel-Hakimi algorithm. The Havel-Hakimi algorithm is known to be an ineffi-
cient starting point for the switch chain when the degree distribution does not
follow a power law [MP04]. Other algorithms include the Knight’s Tour algo-
rithm [GE01] which is similar to the configuration model with the modification
that the algorithm backtracks when it gets stuck. For power-law degree distribu-
tions with infinite variance, we introduce a new algorithm that uses a constrained
version of the configuration model where self-loops and multiple edges are avoided.
Compared to the Knight’s Tour algorithm, this algorithm prevents “getting stuck”
instead of backtracking when that happens. We experimentally study the effect of
the choice of initial graph on the number of switches needed to reach equilibrium.
We show that the new algorithm does not let the Markov Chain produce uniform
random graphs any faster than the Havel-Hakimi algorithm.

We analyze the influence of the starting configuration in the context of the
presence of triangles, similar to [Mil+03]. Triangles are the smallest nontriv-
ial subgraphs of networks, and indicate the presence of communities or hierar-
chies [Col+13; RB03] or geometry in networks [Kri16] and influence the behavior
of spreading processes of networks [SB06]. We therefore experimentally study
the number of Markov Chain switches required until the density of the number
of triangles reaches equilibrium from different starting states.

In the ECM with τ ∈ (2, 3), the number of triangles scales as n
3
2

(3−τ) [HLS17a].
We numerically investigate the scaling of the number of triangles in URGs, using
the switch chain. We find that finite-size effects play a role even at n = 10.000,
and the data suggests that the scaling present in the ECM is the same in URG,
but with different multiplicative constants.
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In proofs related to the triangle counts in uniform random graphs, the switch
chain has been used as a combinatorial method. We show that these type of
proofs can likely not be used in the regime τ ∈ (2, 3).

The outline of this chapter is as follows. In Section 4.2 we define the switch
chain in more detail and in Section 4.3 we define the canonical degree sequences
for which we run simulations. In Section 4.4 we give the different algorithms that
we use to create the initial state of the switch chain. We then present our results
starting with the mixing time in Section 4.5. This is followed by an analysis of the
number of triangles in Section 4.6 and in Section 4.7 we comment on the switch
chain as a proof method. Section 4.8 covers the different starting states that we
have compared. Finally in Section 4.9 we give a conclusion.

4.2 Switch chain

We now explain the Markov Chain switching method we study in more detail.
It is a Markov Chain on the state space of all simple graphs with the desired
degree distribution (di)i=1,...,n. At every time step t, it selects two vertex-distinct
edges of the graph uniformly at random, say {u1, v1} and {u2, v2}. These edges
are replaced by {u1, v2} and {u2, v1} if this results in a simple graph (that is, if
the new edges were absent before), and otherwise the switch is rejected so that
the graph remains the same. In both cases we set t = t + 1. The number of
vertex-distinct edges is

(
E
2

)
− 1

2

∑
i di(di − 1) where E = 1

2

∑
i di is the number

of edges. This only depends on the degree sequence and hence the transition
probabilities are symmetric so the stationary distribution is uniform, see [GS17].
Setting t = t + 1 also when a switch is rejected is crucial: if we do not increase
the time after a rejected switch, the stationary state of the switch chain may
not be uniform [CH17]. On the other hand, when we do increase the time step
after a rejected switch, the stationary state of the switch chain is the uniform
distribution. As long as the proportion of vertices of degree at least 2 is strictly
positive, this Markov Chain is aperiodic with high probability [CH17]. When the
degree sequence behaves like a power law, bounds on the mixing time of the switch
chain are large (for example n9 in [GS17]) when the degree exponent τ > 3, and
unknown in the case where τ < 3. Experimental results suggest that the mixing
time is much smaller than the bounds that have been proven [RB16; RPS14].

4.3 Degree distribution

We study networks with power law degree distribution D in the infinite variance
regime, so that D satisfies

P (D > k) = 1− Fτ (k) = Ck−τ+1, (4.1)
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Figure 4.1: Time evolution of the number of triangles in the switch chain
(n = 1000, τ = 2.2). The horizontal axis shows steps of the Markov Chain and
the vertical axis shows the number of triangles. Four degree sequences sampled
from D given by (4.1) are shown. For each degree sequence, the Havel-Hakimi
construction was performed and three runs of the switch chain with that same
starting point are shown. The overlapping lines in the plot correspond to the
different runs on the same starting graph.

for some constant C and with τ ∈ (2, 3) and k large. One can sample a de-
gree sequence by sampling n i.i.d. copies from (4.1). Then, the variability in the
degree sequence is the largest contributor to the variance of several network ob-
servables [Ost14]. This is also visible in Figure 4.1, where the number of triangles
varies enormously between different sampled degree sequences from the same dis-
tribution. However, when we create a null model corresponding to a real-world
network, the degree sequence of this null model is usually fixed, and there is no
variability in the degree sequence. Therefore, we define

d
(n,τ)
i = [1− Fτ ]−1(i/n) (4.2)

for i ∈ [n]. Then, the degree sequence d(n,τ)
i converges to the desired distribution

as n→∞. Note that the degrees d(n,τ)
i are indeed deterministic so the only uncer-

tainty in the resulting random graph is from the random connection of the edges,
similar to what we encounter when creating a null model for a particular obser-
vation of a real-world network. We will refer to the degree sequence (d

(n,τ)
i )i=1,...,n

given by (4.2) as the canonical degree sequence for a given (n, τ), see also Chapter
7 of [Hof17]. See [CSN09] for more details on sampling from power-law degree
distributions.
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4.4 Initial graphs for the switch chain
The switch chain needs an initial graph to start switching. We investigate three
different methods to obtain a simple graph with a given degree distribution, and
see what the effect is of this initial graph on the performance of the switch chain.

4.4.1 Constrained configuration model (CCMd)

The constrained configuration model (CCMd) is defined as follows:

Algorithm: Constrained configuration model
Input: A degree sequence (d1, . . . , dn) with corresponding vertices (v1, . . . , vn).
Output: A simple graph with degree sequence (d1, . . . , dn) or fail.

1. Let V = {v1, . . . , vn} be the set of vertices. Set W = ∅. Equip vertex vi
with di half-edges for every i.

2. while there are half-edges do

(a) LetW = {v} where v is the vertex with the highest amount of remain-
ing half-edges incident to it. Ties are broken arbitrarily.

(b) while v has half-edges and V \W has incident half-edges do
• Pair a half-edge adjacent to v to a uniformly chosen half-edge

adjacent to V \W . Denote the vertex to which v is paired by w
and remove both half-edges.
• Set W = W ∪ {w}.

(c) If v has unpaired half-edges, output fail.

Thus, the algorithm works as the configuration model, except that it keeps track
of a list W of ‘forbidden vertices’ that guarantees that no self-loops or multiple
edges are created. Note that this algorithm may fail and not produce a simple
graph with the desired degree sequence. For example, the last vertex may have
two unpaired half-edges incident to it. Then, the only way to finish the pairing
is to create a self-loop, which we have forbidden. First choosing the vertex v
with the highest number of half-edges aims at avoiding the algorithm to fail:
pairing the highest-degree vertices without conflicts is the most difficult. When
we pair these vertices at the start of the algorithm, the probability that these are
paired successfully is larger. Note that this algorithm does not create a uniformly
sampled simple graph, as the regular configuration model would.

4.4.2 Constrained configuration model, updated (CCMdu)

A variation on the constrained configuration model is the updated constrained
configuration model (CCMdu). Where the constrained configuration model al-
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gorithm pairs all half-edges incident to the chosen vertex v before proceeding to
the next vertex v′, the updated constrained configuration model only does one
pairing before replacing v by the vertex with the highest amount of remaining
half-edges. Just like the previous algorithm, this algorithm is not guaranteed to
finish successfully, and does not create uniformly sampled graphs.

4.4.3 Havel-Hakimi - Erdős-Gallai

The Havel-Hakimi algorithm is a simple deterministic algorithm to create simple
graphs [Hak62]. This algorithm sorts the degree sequence as d1 ≥ d2 ≥ · · · ≥ dn.
Then it pairs vertex v1, with the highest degree d1, to v2, . . . , vd1+1. The degrees
of these vertices are reduced by 1 (vertex v1 is now done) and the procedure is
repeated by re-sorting the degrees and pairing the new vertex with the highest
degree. The Erdős-Gallai theorem states that this algorithm always finishes in a
simple graph with the desired degree sequence if such a graph exists.

Triangles in the Havel-Hakimi construction

A graph constructed by the Havel-Hakimi algorithm is highly unlike a uniform
sample of all graphs with the same degree sequence. The majority of triangles
in such graphs is due to the high-degree vertices pairing up with each other.
By construction, the Havel-Hakimi algorithm pairs up the high-degree vertices
only with the other high-degree vertices, and therefore the number of triangles
and other complete graphs in the resulting graph is larger than the average. In
fact, the data suggested that this construction might yield the maximum possible
number of triangles of all graphs with a given degree sequence. However, the
number of triangles can be less than maximal depending on the sorting that is
being used. To investigate this, we iterated over all possible graphs with n vertices
(2(n2) graphs) for n ∈ {5, 6, 7, 8} to compute the maximum number of triangles for
every valid degree sequence of size n. Then for every valid degree sequence we did
the Havel-Hakimi construction to compare the number of triangles. We found that
for most degree sequences (1022 out of 1213 valid degree sequences for n = 8) the
Havel-Hakimi construction indeed gave the highest possible number of triangles.
However there were some degree sequences for which the construction yielded a
graph with fewer triangles than the maximum. This happened for example for
the degree sequence {4, 4, 3, 3, 3, 2, 1} for which the maximum number of triangles
possible is 5. However, in the Havel-Hakimi construction, one first pairs up a
degree-4 vertex after which the remaining degrees are {0, 3, 2, 2, 2, 2, 1}. Then
the degree-3 vertex (which was first a degree-4 vertex) is paired up, to three
of the four degree-2 vertices. The Havel-Hakimi construction does not specify
which three vertices to pick in this case (any ordering will work). Depending
on how the vertices are now sorted relative to each other, the construction can
result in a graph with 3 triangles instead of 5. This shows that the Havel-Hakimi
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construction does not always result in the maximum number of triangles if we fix
a certain sorting method. However, on the other hand it is still possible that by
choosing a specific ordering of vertices, the Havel-Hakimi construction does yield
the maximum number of triangles possible. For the 191 out of 1213 valid degree
sequences where the maximum was not obtained, on average the Havel-Hakimi
construction produced 1.57 fewer triangles than the maximum possible (average
only over those 191). Overall we can conclude that the Havel-Hakimi algorithm
produces graphs with close-to-maximum number of triangles.

4.5 (Empirical) mixing time

As stated before, the switch chain mixing time for degree sequences sampled
from a power-law degree distribution with τ ∈ (2, 3) is unknown. Yet, we want
to stop the switch chain at some point and get a sample graph from the uniform
distribution. A common thing to do is computing graph properties like cluster-
ing coefficients, number of triangles, diameters and graph eigenvalues [Mil+03;
RPS12]. The number of triangles in a network is an important observable, since it
indicates the presence of communities or hierarchies [Col+13; RB03] or geometry
in networks [Kri16] and it influences the behavior of spreading processes of net-
works [SB06]. We therefore study the time evolution of the number of triangles
in the switching process and stop when this quantity has sufficiently stabilized,
similar to [Mil+03]. Note that this does not necessarily mean that the network
samples have converged to uniform random graphs, it may be possible that higher
order properties of the network have not stabilized yet.

Figure 4.1 shows the time evolution of the number of triangles for several
samples of a degree distribution for n = 1000. First of all the figure shows
that the number of triangles is highly dependent on the degree sequence, even if
sampled from the same distribution. For runs of the switch chain with the same
degree sequence, the number of triangles seems to evolve very similarly and in
each run it takes about the same time for the number of triangles to stabilize.

To quantify the time it takes for the number of triangles to stabilize, we
have computed an estimate of the distribution of the number of triangles at
several timesteps for runs with the same starting point. One instance of this is
shown in Figure 4.2. For each of these distributions we have computed the total
variation distance between it and the uniform distribution, and we look at the
number of steps that it takes for the distance to become less than 0.1. Based on
simulations up to n = 20.000 we conclude that this empirical mixing time is at
most O(n log2 n) for constant τ ∈ (2, 3).
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Figure 4.2: The distribution of triangles at different timesteps of the switch
chain using the same (Havel-Hakimi) starting point. The degree sequence is the
canonical degree sequence for n = 1000 and τ = 2.5. The data is obtained by
recording the number of triangles at t = 0.1n, t = 0.2n, ..., t = 20n and repeating
this procedure 100.000 times. For the approximate uniform sample we record the
number of triangles at t = 2000n.
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Figure 4.3: Distribution of the number of triangles in the ECM and URG. For
every n, τ , the canonical degree sequence was used and the ECM construction
was performed 5000 times, shown together with 5000 samples from the uniform
distribution.
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4.6 The number of triangles in uniform graphs

In the ECM the number of triangles scales as n
3
2

(3−τ) [HLS17a]. To compare the
number of triangles in the ECM to the number of triangles URGs, Figure 4.3
shows the distribution of the number of triangles for many values of n and τ , for
both the ECM and the URG. Interestingly, the figure shows that for n = 10.000
and τ = 2.5 the average number of triangles in the ECM is higher than in a
uniform random graph. This is quite counterintuitive, as the number of edges in
the ECM is smaller than that in the URG. On the other hand, when τ is close
to 2, the ECM contains fewer triangles than the URG in Figure 4.3. It is also
known that for τ > 3 the ECM and the URG are similar (see for example [Hof17,
Chapter 7]), so that for τ = 2.9, the difference between the number of triangles
in the ECM and the URG is expected to be small, which is indeed confirmed by
Figure 4.3.

We predict that, for any τ ∈ (2, 3), for n very large, the number of triangles in
the ECM is on average larger than that in the URG, but this may only be visible
when n is extremely large (see Figure 4.3 for τ = 2.5). This prediction is due the
fact that the edge probabilities in the ECM are close to 1−e−didj/Ln (see [HHM05;
HLS17b]), while in the URG it is didj

Ln+didj
(see [McK10]), which is a little larger.

Here di are the degrees and Ln is the sum over all degrees. Furthermore, the
edges are close to being independent, so that the triangle counts are close to those
in a hidden-variable model with the vertex weights being given by the degrees.
For τ > 3, this is worked out in detail in [Hof17, Chapter 7]. In fact, the clustering
coefficient of the hidden-variable model with connection probabilities didj

Ln+didj
is

lower than the clustering coefficient for the hidden-variable model with connection
probabilities e−didj/Ln [Hof+17], which is consistent with our prediction.

Intuitively, high degree vertices in uniform random graphs are forced to con-
nect to low degree vertices, because otherwise the simplicity constraint on the
graph would be violated. These low degree vertices barely participate in trian-
gles. In the ECM, high degree vertices will be connected more frequently. Because
high degree vertices participate in more triangles, this suggests that the ECM con-
tains more triangles than a uniform random graph. However, Figure 4.3 suggests
that this effect only kicks in for very high n, particularly when τ is close to 2 or 3.
For τ close to 3, the convergence is slow because the number of triangles scales
as n3(3−τ)/2. The exponent 3(3− τ)/2 is small when τ ≈ 3, so that n needs to be
very large for n3(3−τ)/2 to be large compared to smaller error terms. To show that
the convergence of the number of triangles in the ECM to the asymptotic scaling
of n3(3−τ)/2 is slow indeed, we have fitted the function log(triangles) = a·log(n)+b
for several values of τ in Figure 4.4. The data points lie above the line 3

2
(3− τ),

in particular for τ ≈ 3. Since 3
2
(3 − τ) is known to be the correct exponent for

the ECM, this shows that the asymptotic scaling of the number of triangles only
kicks in at very large n, which may also be a reason why our prediction that ECM
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Figure 4.4: Values of the exponent in the triangle power law. The dashed line
is 3

2
(3 − τ) which is the theoretical exponent for the number of triangles in the

ECM. The blue and orange lines were obtained from fitting the data shown in
Figure 4.5. The line labelled average is from a similar process but where the
average was taken over 2000 sampled degree sequences instead of the canoni-
cal degree sequence. The error bars show the uncertainty of the fit parameters
without taking into account the uncertainty of the data points themselves.
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Figure 4.5: The datapoints show the average number of triangles in a log-log
plot for several values of n and τ for the canonical degree sequence. The solid
markers correspond to the URG distribution, and the open markers correspond
to the ECM. The lines show a fit of the function log(triangles) = a log(n) + b.
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contains more triangles than URG only holds for very large values of n.
For τ close to 2, the convergence of the number of triangles to the large network

limit is extremely slow in the hidden-variable model [Hof+17]. Since the ECM
as well as the URG seem to behave as hidden-variable models, this may explain
why the asymptotics also kicks in late for τ close to 2 in the URG and the ECM.
Determining the size of n when the URG starts having more triangles than the
ECM, as a function of τ , remains of substantial interest.

Figure 4.5 checks whether the ECM indeed has more triangles than the URG
for several values of n and τ and the canonical degree sequence. For τ = 2.3
the figure supports our conjecture as indeed the number of triangles in the ECM
overtakes that of the URG as n becomes large. For τ closer to 2, we see that n
needs to be of a much larger order of magnitude for our prediction that ECM
contains more triangles than the URG to hold.

4.7 Switch chain as a proof method
The switch chain has also been used as a combinatorial method for counting
triangles [MWW04; McK11; GSW12] in uniform random graphs. In these works,
variations of the switch chain are studied where different edge rewiring rules are
used but the Markov Chain still converges to the desired uniform distribution
over the graphs. The idea is to count the number of triangles that a move of
the Markov Chain can create or destroy when a switch is performed on certain
vertices. Such proofs usually [MWW04; GSW12] assume that such a move only
creates or destroys at most one triangle with high probability. These proofs do
not directly apply in the regime τ ∈ (2, 3), so here we investigate this assumption
numerically. Figure 4.6 shows histograms of the number of triangles that were
created or destroyed by the switch chain moves in equilibrium. The plots show
that the probability of creating or destroying k > 0 triangles becomes lower
as τ increases. It is important to keep in mind that these plots only show the net
number of created triangles, so the proportion of moves that create or destroy any
triangle might be considerably higher. We see that the probability that 2 or more
triangles are created or destroyed can be large, especially when τ approaches 2.
This suggests that these types of switch chain proofs cannot be used to count
triangles for τ ∈ (2, 3).

4.8 Constrained Configuration Model
In this section we discuss the results for the two variants of the Constrained
Configuration Model (CCM). Unlike the Havel-Hakimi construction, the CCM
construction has a non-zero probability of failing and thereby not producing a
simple graph with the desired degree sequence. On the other hand, the always-
successful Havel-Hakimi starting state is far from uniform and it might be that the
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Figure 4.6: Triangle creation and destruction frequencies in equilibrium for
n = 10000 and three values of τ using the canonical degree sequence. Rejected
switches are not counted here. The plots on the right are zoomed-in versions of
the same plot. Note that it is possible that a move creates l triangles and destroys
m other triangles which shows up as a net creation of l − m triangles in these
plots.

CCM construction provides a starting state that requires less switch chain moves
to get good samples. We wish to investigate this and see whether the overhead
of the CCM constructions is worth the (computational) time. In this section we
use the abbreviations CCMd and CCMdu to distinguish the two constructions
introduced earlier.

4.8.1 Construction success rate

We looked at the construction success rates for CCMd and CCMdu, for graphical
degree sequences. This means we only look at degree sequences for which a
simple graph exists, checked using the Erdős-Gallai theorem. It turns out that
the construction success rate for CCMdu was lower than that of CCMd. For
n = 1000 and several values of τ , we sampled 200 graphical degree sequences
from the distribution given by (4.1) and did 1000 CCMd construction attempts
per sequence. We only found a single degree sequence with any failed attempts
(4 out of 1000). All other degree sequences had 0 failed attempts and always
successfully produced simple graphs.

Figure 4.7 shows the construction success rates for the CCMdu construction.
Interestingly, for τ close to 2, a degree sequence is either very ‘good’ or very ‘bad’.
The success rate is less than 0.05 for some degree sequences (meaning less than
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Figure 4.7: Construction success rate of the CCMdu construction for n = 1000
and τ ∈ {2.1, 2.5, 2.9}. The distribution is over 5000 graphical sampled degree
sequences (so not the canonical degree sequence) for each τ , with 200 construction
attempts per sequence to determine the successrate. The rightmost column (with
label 1.) corresponds to successrates of at least 0.95.

10 out of 200 attempts succeeded) and higher than 0.95 for most. The figure also
shows that the success rate increases with τ .

Comparing the CCMd and CCMdu algorithms, we can conclude that finishing
all pairings of a single vertex (CCMd) yields higher success rates. In a way
CCMd is more similar to the Havel-Hakimi construction than CCMdu, because
the Havel-Hakimi construction also finishes one vertex completely before moving
on.

4.8.2 Number of triangles

Figure 4.8 shows the distribution of the number of triangles in the graphs gen-
erated using the constrained configuration model, compared to the distribution
of triangles in a uniform random graph. The initial number of triangles in both
CCMdu and CCMd is near the uniform average, though slightly higher, whereas
the Havel-Hakimi construction generates graphs where the number of triangles is
usually many times higher than average. Starting the switch chain process using
the CCM construction may therefore give a starting point closer to equilibrium
in number of triangles.
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Figure 4.8: Distribution of the number of triangles in the CCMd/CCMdu con-
struction as well as in the uniform distribution. For every n, τ , the canonical
degree sequence was used and 5000 samples are shown from each distribution.
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Figure 4.9: Time evolution of the number of triangles for different initial graphs.
The computational time is measured in seconds and the same canonical degree
sequence was used for all runs. HH stands for the Havel-Hakimi algorithm and
is done twice: using insertion sort (sort 1) and using the C++ standard library
sorting algorithm (sort 2), see also Section 4.4.3. The CCMdu construction took
more than 2 full seconds so falls outside the plotrange.
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4.8.3 Mixing time

Figure 4.9 shows the time evolution of the number of triangles for both the Havel-
Hakimi starting point and the CCMd and CCMdu starting points, where time is
measured in seconds instead of switch chain steps. The plot shows that the con-
struction of the initial graphs takes up a significant portion of the time compared
to the switches needed to reach equilibrium. We see that the number of trian-
gles in the Havel-Hakimi starting point lies much further away from the average
than that in the CCMd and CCMdu starting points, but still the Havel-Hakimi
construction including the mixing time is faster than the CCMd construction,
provided a proper sorting algorithm is used. Note that the sorting algorithm
influences the number of triangles in the starting graph. The reasons for this are
explained in Section 4.4.3. The CCM construction (both the CCMd and CCMdu
variant) is more computationally intensive and more complicated than the Havel-
Hakimi algorithm because it has to keep track of which vertices can be paired
to and select a random vertex weighted by the number of remaining half-edges
it has. Depending on the implementation (and things like the pseudorandom
number generator that is used) it can be faster to start with the simple Havel-
Hakimi algorithm and do some extra switches which are much simpler. Note that
it might be possible that a faster implementation of the CCMd algorithm beats
the Havel-Hakimi algorithm.

4.9 Conclusion

We propose triangle counts as a measure to quantify how close a distribution of
simple graphs is to the stationary distribution. Triangles form the simplest non-
trivial subgraphs, and contain a large amount of information about the structure
of the graph. Figure 4.1 clearly shows that for scale-free networks with degree
exponent τ ∈ (2, 3), the number of triangles is fluctuating wildly for different
degree sequences with the same value of τ . When two uniform random graphs
with the same degree sequences are created, the number of triangles in these two
graphs will be close.

The method of choice to simulate a uniform graph with prescribed degrees
is the switch chain. When the switch chain is set up properly, its stationary
distribution is uniform. We investigate the role of the starting point of the switch
chain. As can perhaps be expected, Havel Hakimi starts from a triangle count that
is much higher than for uniform random graphs (even quite close to its maximal
value). Instead, we investigated the constrained configuration model CCMd as a
starting point. CCMd mimics the configuration model, while ensuring simplicity
of the graph, whereas the configuration model could potentially fail to produce
a simple graph. Our simulations show that CCMd almost always succeeds, but
is computationally heavier and therefore it is faster to use the Havel-Hakimi
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algorithm and do extra switches. The related CCMdu construction, in which the
vertices are ordered by their remaining degrees, is computationally even heavier,
while remarkably also having a lower success probability.

Our simulations clearly show that the triangle count for τ ∈ (2, 3) in the
uniform random graph substantially deviates from the often used erased configu-
ration model, where self-loops and multiple edges in the configuration model are
removed. We conjecture that the number of triangles in the ECM is higher than
the number of triangles in uniform random graphs when the graph size is large
enough. Thus, care is needed in the analysis of uniform graphs in the omnipresent
scale-free regime when τ ∈ (2, 3).

In the mathematical literature, the switch chain is also used as a key method-
ology to rigorously prove properties of uniform graphs. This technique is limited
to cases where at most one triangle is created or destroyed per switch chain move.
Our simulations clearly show that this often fails, particularly for τ small, thus
implying that such proofs are doomed to fail.



Chapter 5

The Interaction Light Cone of stochastic
processes

This chapter is based on joint work with Harry Buhrman, András Gilyén and
Mario Szegedy [Ban+19c].

5.1 Introduction

This chapter is about a class of local random processes on graphs that include
the discrete Bak-Sneppen (DBS) process and the several versions of the contact
process (CP), with a focus on the former. In physics, critical behavior involves
systems in which correlations decay as a power law with distance. It is an impor-
tant topic in many areas of physics and can also be found in stochastic processes
on graphs. Often, such systems have a parameter (e.g. temperature) and when
it is set to a critical value, the system exhibits critical behavior. Power series
expansion techniques have been used in the physics literature to numerically ap-
proximate critical values and associated exponents. It was often observed that
the coefficients of such power series stabilize when the system size grows, and we
provide a rigorous proof of this for a large class of stochastic processes.

Self-organized criticality is a name common to models where the critical be-
havior is present but without the need of tuning a parameter. This concept has
been widely studied, see for example [Pru12]. A simple model for evolution and
self-organized criticality was proposed by Bak and Sneppen [BS93] in 1993. In
this random process there are n vertices on a cycle each representing a species.
Every vertex has a fitness value in [0, 1] and the dynamics is defined as follows.
Every time step, the vertex with the lowest fitness value is chosen and that vertex
together with its two neighbors get replaced by three independent uniform ran-
dom samples from [0, 1]. The model exhibits self-organized criticality, as most of
the fitness values automatically become distributed uniformly in [fc, 1] for some
critical value 0 < fc < 1. This process has received a lot of attention [Boe+94;

81
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Mar94; Bak96; MDM98], and a discrete version of the process has been intro-
duced in [BK01]. The model actually appeared earlier in [Jov+94] (“model 3”)
although formulated in a different way and it was also studied in [DG05] (“CP 3”).
In the discrete Bak-Sneppen (DBS) process, the fitness values can only be 0 or 1.
At every time step, choose a uniform random vertex with value 0 and replace it
and its two neighbors by three independent values, which are 0 with probability
p and 1 with probability 1 − p. The DBS process has a phase transition with
associated critical value pc [MZ02; Ban05].

The Bak-Sneppen process was originally described in the context of evolution-
ary biology but its study has much broader consequences, e.g., the process was
rediscovered in the regime of theoretical computer science [Cat+17] as well. To
study the limits of a randomized algorithm for solving satisfiability, the discrete
Bak-Sneppen process turned out to be a natural process to analyze.

The DBS process is closely related to the so-called contact process (CP), orig-
inally introduced in [Har74]. Sometimes referred to as the basic contact process,
this process models the spreading of an epidemic on a graph where each vertex (an
individual) can be healthy or infected. Infected individuals can become healthy
(probability 1 − p), or infect a random neighbor (probability p). The contact
process has also been studied in the context of interacting particle systems and
many variants of it exist, such as a parity-preserving version [Inu95] and a contact
process that only infects in one direction [TIK97]. Depending on the particular
flavor of the processes, the CP and DBS processes are closely related [Ban05] and
in certain cases have the same critical values. The processes are similar in the
sense that vertices can be active (fitness 0 or infected) or inactive (fitness 1 or
healthy). The dynamics only update the state in the neighborhood of active ver-
tices with a simple local update rule. In this chapter we consider a wide class of
processes that fit this description, and our proofs are valid in this general setting.
We will, however, focus on the DBS process when we present explicit examples.

In this chapter we take a power-series approach and represent several proba-
bilities and expectation values as a power series in the parameter p. There is a
wealth of physics literature on series analysis in the theory of critical phenomena,
see for example [HB73; BH73; HB79] for an overview. Processes typically only
have a critical point when the system size is infinite, but numerical simulations
often only allow for probing of finite systems. Our main theorem proves, for our
general class of processes, that one can extract coefficients of the power series for
an arbitrary large system by computing quantities in only a finite system. One
can then apply series analysis techniques to these coefficients of the large system.
Series expansion techniques have been extensively used for variants of the contact
process as well as for closely related directed percolation models [Dic89; JD93;
Inu95; IK96; TIK97; Inu98; Kat+99] in order to extract information about criti-
cal values and exponents. For example, in [TIK97] the contact process on a line
is studied where infection only happens in one direction. In [Inu95] a process is
studied where the parity of the number of active vertices is preserved. In both
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articles, the power series of the survival probability is computed up to 12 terms
and used to find estimates for the critical values and exponents. However, in all
this work the stabilization of coefficients has been observed1 but not proven.

Our main contribution is a definition of a general class of processes that
encapsulates most of the above processes (Definition 5.2.1) and an in-depth un-
derstanding of the stabilization phenomenon, complete with a rigorous proof
(Lemma 5.2.8, Theorem 5.2.12). The results are illustrated with examples.

Layout of this chapter. In Section 5.1.1 we will provide two example power
series that exhibit the stabilization phenomenon. In Section 5.1.2 we will sketch
our results without going into technicalities and explain the intuition behind
them, something that we call the Interaction Light Cone. In Section 5.2 we
define our general class of processes in more detail and provide our theorems
with their proofs. In Section 5.3 we apply our result to the DBS process, and
we compute power-series coefficients for several quantities. As an application,
we use the method of Padé approximants to extract an estimate for pc and we
estimate a critical exponent that suggests that the DBS process is in the directed
percolation universality class. Section 5.4 covers some technical details that are
required in our proofs.

5.1.1 Stabilization of coefficients

There are different ways of defining the DBS process. These definitions are es-
sentially equivalent and only differ in their notion of time, but map to each other
in straightforward ways. For example, one can pick a random vertex in each
step, and only perform an update when it is active, but always count it as a time
step. To study infinite-sized systems, one can consider a continuous-time version
with exponential clocks at every vertex. Resampling of a vertex and its neigh-
bors happens when the clock of the vertex rings and the vertex is active. When
calculating time averages, the subtle differences in these definitions can lead to
incorrect estimates and should not be overlooked in simulations.

The common in all definitions is that an update is applied if and only if the
picked vertex was active. In order to treat the three models equivalently we will
count the number of updates instead of time steps. That is, we count the number
of times when an active vertex is selected to perform a local update (we count all
such occasions even if the update ends up not changing the actual state).

Numerical simulations clearly show the phase transition in the DBS process
when p goes from 0 to 1. There is some critical probability pc such that for p < pc
the active vertices quickly die out and the system is pushed toward a state with no
active vertices. However for p > pc, the active vertices have the upper hand and
dominate the system. This phase transition can clearly be seen in Figure 5.1 from

1Some work uses stabilization in the number of time steps instead of system size. However,
for understanding the critical behavior, system size is the relevant parameter.
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Figure 5.1: (a) Plot of R(n)(p), see (5.1), the expected number of updates per
vertex before the all-inactive state is reached, for the DBS process on a cycle with
n vertices. The process was started in a random initial state with each vertex
being active independently with probability p. (b) Plot of S[n](p), see (5.2): the
DBS process on a non-periodic chain of size n is started with a single active vertex
at position 1 (denoted by start {1}) and we plot the probability that vertex n
ever becomes active (denoted BA(n)) before the all-inactive state is reached. For
n = 5000 the result was obtained with a Monte Carlo simulation. For the lower
n, the results were computed symbolically. The inset shows a zoomed in version
of the Monte Carlo data, showing that pc ≈ 0.635.
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Figure 5.2: Plot of the function |S(6)(p)|, defined in (5.2), over the complex plane
with p = 0 at the origin. The poles of the function are shown as red dots. The
unit circle is shown in black, and the dashed green circles have radius pc around
the origin, and radius 1− pc around p = 1.
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two quantities: (a) The expected number of updates per vertex before reaching
the all-inactive state on a cycle of length n, after initializing the vertices to active
with probability p independently. (b) The probability that the end of a (non-
periodic) chain eventually gets activated when the process is started with only
one active vertex on the other end.

Let us write these quantities as a power-series in p and in q = 1−p respectively.

R(n)(p) :=
1

n
E(total updates | start i.i.d.) =

∞∑

k=0

a
(n)
k pk, (5.1)

S[n](q) := P(vertex n becomes active | start {1}) =
∞∑

k=0

b
[n]
k q

k. (5.2)

We will study these functions in more detail in Section 5.3, where we show,
amongst other things, that they are rational functions for each n. For example

R(4)(p) =
p(6− 12p+ 10p2 − 3p3)

6(1− p)4
=

(1− q)(1 + q + q2 + 3q3)

6q4
.

Although these quantities only have an operational meaning for p ∈ [0, 1], we give
a plot of such a function over the complex plane, see Figure 5.2. The plot shows
the poles of S(6)(p), which seem to approach the value pc on the real line (for larger
n see Figure 5.6). Similar phenomena can be observed for partition functions
in statistical physics. The partition function is usually in the denominator of
observable physical quantities, so that its zeros are the poles of such quantities.
A classic result on the partition function for certain gasses [YL52] shows that when
an open region around the real axis is free of (complex) zeros, then many physical
quantities are analytic in that region and therefore there is no phase transition.
Now known as Lee-Yang zeros, they have been widely studied and for example
linked to large-deviation statistics [DBF18]. In [PR18] the hardcore model on
graphs with bounded degree is studied, and it is proven that the partition function
has zeros in the complex plane arbitrary close to the critical point.

Now we would like to highlight the behavior of the coefficients a(n)
k and b[n]

k .
Table 5.1 and Table 5.2 show numerical values of the coefficients a(n)

k and b
[n]
k

respectively.2 A quick look at the table immediately reveals the stabilization of
coefficients:

a
(n)
k = a

(k+1)
k ∀n ≥ k + 1 and b

[n]
k = b

(k+1)
k ∀n ≥ k + 1.

2At first sight one is tempted to conjecture that the coefficients a(n)k are all non-negative and
are monotone increasing with n. Unfortunately neither of these conjectures hold since a(10)1114 < 0.
We found this counterexample by observing that the radius of convergence for R10(p) is less
than 0.96. Since R10(p) is bounded on [0, 0.96], this implies that there must be a negative
coefficient in its power series.



86 Chapter 5. The Interaction Light Cone of stochastic processes

Table 5.1: Table of the coefficients a(n)
k of the power series defined in (5.1). Al-

though displayed with finite precision, they were computed symbolically.

n
k 0 1 2 3 4 5 6 7 8 9

3 0 1 2 3+1/3 5.0 7.0 9.3 12.0 15.0 18.3
4 0 1 2 3+2/3 6.2 9.7 14.3 20.3 27.8 37.0
5 0 1 2 3+2/3 6.4 10.8 17.3 26.7 39.4 56.5
6 0 1 2 3+2/3 6.4 11.0 18.5 30.0 47.1 71.7
7 0 1 2 3+2/3 6.4 11.0 18.7 31.2 50.8 80.8
8 0 1 2 3+2/3 6.4 11.0 18.7 31.4 52.1 85.0
9 0 1 2 3+2/3 6.4 11.0 18.7 31.4 52.3 86.3
10 0 1 2 3+2/3 6.4 11.0 18.7 31.4 52.3 86.5

Table 5.2: Table of the coefficients b[n]
k of the power series defined in (5.2). Al-

though displayed with finite precision, they were computed symbolically.

n
k 0 1 2 3 4 5 6 7 8 9

3 1 0 -2 -2 0 4 6 2 -8 -16
4 1 0 -2 -4 -3.5 5.8 22.3 31.3 1.9 -89.1
5 1 0 -2 -4 -8.3 -2.5 23.9 76.9 127.9 50.1
6 1 0 -2 -4 -8.3 -13.7 2.1 76.6 239.5 422.2
7 1 0 -2 -4 -8.3 -13.7 -24.6 19.2 221.4 689.4
8 1 0 -2 -4 -8.3 -13.7 -24.6 -44.7 69.28 599.0
9 1 0 -2 -4 -8.3 -13.7 -24.6 -44.7 -84.2 197.0
10 1 0 -2 -4 -8.3 -13.7 -24.6 -44.7 -84.2 -172.3
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Therefore, we now know the first few terms of the power series for arbitrary large
systems and we can proceed to use methods of series analysis. By applying the
method of Padé approximants, we can estimate pc ≈ 0.6352. More details on this
can be found in Section 5.3.

5.1.2 Locality of update rule implies stabilization

We rigorously prove that the coefficients stabilize, based on an observation that
we call the Interaction Light Cone. Let X be a set of vertices, and let LX be an
event that is local on X, meaning that the event depends only on what happens
to the vertices in X. For example, when X = {v0} and LX is the event that
vertex v0 is picked at least r times, then LX is local on X. In Section 5.2 we
will give a more precise definition of local events. We now wish to compare the
probability P(LX) when the process is initialized in two different starting states,
A and A′. When A and A′ differ only on vertices that are at least a distance d
away from X, then we have

P(LX | start in A)− P(LX | start in A′) = O(pd).

By the notation O(pd) we mean that when this quantity is written as power series
in p, then the first d− 1 terms of the series are zero. It only has non-zero terms
of order pd and higher, i.e., the two probabilities agree on at least the first d− 1
terms of their power series. This is the essence of the Interaction Light Cone. A
vertex that is a distance d away from the set X will only influence probabilities
and expectation values of X-local events with terms of order pd or higher. The
intuition behind this is that the probability of a single activation is O(p) and
in order for such a vertex to influence the state of a vertex in X, a chain of
activations of size d needs to be formed in order to reach X. This observation
will also allow us to compare the process on systems of different sizes.

5.1.1. Lemma (Informal version of Lemma 5.2.8). Let G and G′ be two graphs
and let X be a set of vertices present in both graphs such that the d-neighborhood
of X and the local update process (where a single update may only affect a vertex
and its neighbors) on it is the same in both graphs. Then for any event LX that
is local on X we have

PG(LX) = PG′(LX) +O(pd).

This idea applies to expectation values as well. Consider the expected number
of updates per vertex on a cycle. By translation invariance, we have

1

n
E(total updates) = E(#times vertex 1 was updated),

making it a {1}-local quantity. If we add an extra vertex to the cycle, the ex-
pectation value only changes by a term of order O(pn/2) since the new vertex has
distance n/2 to vertex 1.
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5.2 Parametrized local-update processes

The class of parametrized (discrete) local-update processes, introduced in this sec-
tion, includes the DBS, the CP and many other natural processes. We prove a
general ‘stabilization of the coefficients theorem’ for them, suggesting the useful-
ness of the power-series approach for members of the class.

Let G = (V,E) be an undirected graph with vertex set V and edge set E. We
consider processes where every vertex of G is either active or inactive. A state is a
configuration of active/inactive vertices, denoted by the subset of active vertices
A ⊆ V . For v ∈ V let us denote by Γ(v) the neighbors of v in G including v
itself. A local update process subsequently picks a random active vertex v ∈ A
and resamples the state of its neighbors Γ(v). If the state is ∅ (there are no active
vertices) then the process stops and all vertices remain inactive afterwards.

5.2.1. Definition (PLUP - Parametrized local-update process). We say thatMG

is a parametrized local-update process on the graph G = (V,E) with param-
eter p ∈ [0, 1] if it is a time-independent Markov chain on the state space
{inactive, active}V that satisfies the following:

(i) Initial state. The initial value of a vertex is picked independently from the
other vertices. The probability of initializing v ∈ V as active is a polynomial
in p with constant term equal to zero.3

(ii) Selection dynamics. Each vertex v ∈ V has a fixed positive weight
wv. A vertex v ∈ V is selected using one of the three rules4 below, and
if the selected vertex was active, then its neighborhood Γ(v) is resampled
using the parametrized local-update rule of vertex v, else the state remains
unchanged.

(a) Discrete-time active sampling. In each discrete time step, an ac-
tive vertex v ∈ A is selected with probability wv∑

u∈A wu
, where A is the

current state.

(b) Discrete-time random sampling. In each discrete time step, a
vertex v ∈ V is selected with probability wv∑

u∈V wu
.

(c) Continuous-time clocks. Every vertex v ∈ V has an exponential
clock with rate wv. When a clock rings, that vertex is selected, and a
new clock is set up for the vertex.

(iii) Update dynamics. The parametrized local-update rule of a vertex v ∈ V
describes a (time-independent) probabilistic transition from state A to A′

3The zero constant term is used, for example, in Lemma 5.2.7. The independence is used in
Lemma 5.2.6.

4The properties of the selection dynamics are used in the proof of Lemma 5.2.6
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such that the states only differ on the neighborhood Γ(v), i.e., A4A′ ⊆ Γ(v).
The probability PR of obtaining active vertices R = A′∩Γ(v) is independent
of A \ Γ(v). The probability PR is a polynomial in p such that for p = 0
we get A′ ( A with probability 1, i.e., when any previously inactive vertex
becomes active ( |A′ \ A| > 0) or when A′ = A then the constant term in
PR must be zero.5

(iv) Termination. The process terminates when the all-inactive state ∅ is
reached.

With slight abuse of notation we write PG and EG for probabilities and ex-
pectation values associated to the PLUP MG, when MG is clear from context.

5.2.2. Definition (Local events). LetG = (V,E) be a (finite) graph and letMG

be a PLUP. Let S ⊆ V be any subset of vertices, and let v ∈ V be any vertex.

• Let II(S) be the event that all vertices in S get initialized as inactive.

• Let RI(S) be the event that all vertices in S remain inactive during the entire
process (including initialization).

• Define BA(S) as the complement of RI(S): the event that there exists a
vertex in S that becomes active at some point during the process, including
initialization.

• Let #Asel (v) be the number of times that v was selected while it was
active.

• Let #toggles (v) be the number of times that the value of v was changed.

If S = {v} we simply write II(v), RI(v) and BA(v) for the above events. We say an
event L is local on the vertex set S if it is in the sigma algebra generated by the
events

II(v),RI(v),BA(v), (#Asel (v) = k), (#toggles (v) = k) : v ∈ S, 0 ≤ k <∞.

5.2.3. Lemma (Time equivalence). The three versions of the selection dynamics
of a PLUP, described in property (ii) of Definition 5.2.1, are equivalent for local
events. That is, for any local event L the probability P(L) is independent of the
chosen selection dynamics in property (ii).

5The condition |A′ \ A| > 0 =⇒ PR = O(p) is used in the proof of Lemma 5.2.7: a fresh
activation is at least one power of p so one needs pk to cover a distance k. The extra condition
A′ = A =⇒ PR = O(p) is used for absolute convergence in Lemma 5.4.3 because without it
you can have infinitely many paths with a finite power of p.
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Proof:
The three selection dynamics only differ in the counting of time, and the presence
of self loops in the Markov Chain. The definition of local events only includes
events that are independent of the way time is counted. They only depend on
which active vertices are selected and the changes to the state of the graph.

It is easy to see that (ii)b implements the dynamics of (ii)a via rejection sam-
pling, therefore they give rise to the same probabilities. One can also see that on
a finite graph the selection rule (ii)c induces the same selection rule as (ii)b. This
is because the exponential clocks induce a Poisson process at each vertex. The n
independent Poisson processes with rates wv are equivalent to one single Poisson
process with rate W =

∑
v∈V wv but where each point of the single process is of

type v with probability wv/W . One can simulate (ii)c by sampling a time value
from an exponential distribution with parameter W and then sampling a random
vertex with probability wv/W (as in (ii)b). Since the time is not relevant for
local events we can ignore the sampled time value and this gives rise to the same
probabilities. 2

Our lemmas and theorems only concern local events and therefore we can use
any one of the three selection dynamics when proving them.

5.2.4. Definition (Induced process). Suppose that V ′ ⊆ V , then we define the
induced process MG′ on the induced subgraph G′ = (V ′, E ′) such that we run the
process MG on G and after each step we deactivate all vertices in V \V ′. We can
then view this as a process on G′. Let L be a local event on V ′. We denote the
probability of L under the induced process MG′ with PG′(L). Similarly we use
the notation EG′ for expectation values induced by the process MG′ .

It is easy to see that the induced process of a PLUP is also a PLUP.

5.2.5. Definition (Graph definitions). Let G = (V,E) be a graph, S ⊆ V be
any subset of vertices and v ∈ V be any vertex.

• Define G \ S as the induced subgraph on V \ S and G ∩ S as the induced
subgraph on S.

• Define the d-neighborhood Γ(S, d) of S as the set of vertices that are con-
nected to S with a path of length at most d. In particular Γ({v}; 1) = Γ(v).

• Define the distant-k boundary ∂(S, k) := Γ(S, k) \ Γ(S, k − 1) as the set of
vertices lying at exactly distance k from S, and let ∂S := ∂(S, 1).

The following lemma says that if a set S splits the graph into two disconnected
parts, then those two parts become independent under the condition that the
vertices in S never become active.
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Figure 5.3: The set S of permanently inactive vertices splits the graph in parts
X and Y , rendering them effectively independent. See Lemma 5.2.6.

5.2.6. Lemma (Splitting lemma). Let MG be a parametrized local-update process
on the graph G = (V,E). Let S,X, Y ⊆ V be a partition of the vertices, such
that X and Y are disconnected in the graph G \ S. Furthermore, let LX and LY
be local events on X and Y respectively. Then we have (see Figure 5.3)

PG(RI(S) ∩ LX ∩ LY | II(S)) = PG\Y (RI(S) ∩ LX | II(S)) · PG\X(RI(S) ∩ LY | II(S)).

The condition of initializing S to inactive is present only to prevent counting the
initialization probabilities twice. Equivalently we could write the condition only
once:

PG(RI(S) ∩ LX ∩ LY ) = PG\Y (RI(S) ∩ LX) · PG\X(RI(S) ∩ LY | II(S)),

and by Bayes rule
(
P(L | RI(S)) = P(L | RI(S) ∩ II(S)) = P(L∩RI(S)|II(S))

P(RI(S)|II(S))

)
we also

have

PG(LX ∩ LY | RI(S)) = PG\Y (LX | RI(S)) · PG\X(LY | RI(S)).

Proof:
We will use the ‘continuous-time clocks’ version of selection dynamics (PLUP
property (ii)c). By Lemma 5.2.3 the statement will then hold for all versions.
We proceed with a coupling argument. There are three processes, one on G and
the induced ones on G \ Y and G \X. We couple them by letting all three pro-
cesses use the same source of randomness. Every vertex in G has an exponential
clock that is shared by all three processes, and the randomness used for the local
updates for each vertex will also come from the same source. This means that
when the clock of a vertex v rings, and the neighborhood Γ(v) is equal in different
processes, then the update result will also be equal. Now we simply observe that
LX ∩ LY ∩ RI(S) holds in the G-process if and only if LX ∩ RI(S) holds in the
(G \ Y )-process and LY ∩RI(S) holds in the (G \X)-process. This is because all
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vertices in S are initialized as inactive (all three probabilities are conditioned on
this), so a vertex in S can only be activated by an update from a vertex in X or Y .
To check if the event RI(S) holds, it is sufficient to trace the process up to the first
activation of a vertex in S. Before this first activation, anything that happens to
the vertices in X only depends on the clocks and updates of vertices in X, and
similar for Y . Since S splits X and Y in disconnected parts, these parts can not
influence each other unless a vertex in S is activated. Because of the coupling,
the evolution of the X vertices in G \Y will be exactly the same as the evolution
in G, and similar for Y . Once a vertex in S does get activated, the evolution of
the three processes is no longer the same but in that case the event RI(S) does not
hold, regardless of any further updates in any system. The clocks and updates of
each vertex are independent sources of randomness, and when RI(S) holds then
all the randomness of the S vertices is ignored. Therefore the probability of RI(S)

in the (G \Y )-process and (G \X)-process depends only on independent random
variables, corresponding to the vertices in X and Y respectively, and we get the
required equality. 2

5.2.1 Interaction Light Cone results

Now we present the results that exhibit the interaction light cone. The intuition
is that if two vertices have distance d in the graph, then the only way they can
affect each other is that an interaction chain is forming between them, meaning
that every vertex gets activated at least once in between them.

When we write f(p) = O(pk) for some function f then we mean the following:
f(p) is analytic in a neighborhood of 0 and when f(p) is written as a power-series
in p, i.e., f(p) =

∑∞
i=0 αip

i, then αi = 0 for 0 ≤ i ≤ k − 1.

5.2.7. Lemma. Let MG be a parametrized local-update process on the graph G
with vertex set V . Let X ⊆ V be a subset of vertices and let E be an event.
If E ⊆ ⋂

v∈X BA(v), then P(E) = O(p|X|). Furthermore if S ⊆ V then also
P(E | II(S)) = O(p|X|).

When the event E holds, all vertices in X become active, and by PLUP proper-
ties (i) and (iii) any activation is O(p). Therefore the probability of activating at
least |X| vertices is of order p|X| or higher. We give the full proof in Section 5.4.1.

5.2.8. Lemma (Graph surgery). Let MG be a parametrized local-update process
on the graph G = (V,E). If X, Y ⊆ V , X ∩ Y = ∅ and LX is a local event on X,
then

PG(LX)− PG\Y (LX) = O(pd(X,Y )).

Proof:
We can assume without loss of generality, that X 6= ∅ 6= Y , otherwise the state-
ment is trivial. Also we can assume without loss of generality that d(X, Y ) ≤ ∞,
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i.e., X, Y are in the same connected component of G, otherwise we can use
Lemma 5.2.6 with S = ∅.

The proof goes by induction on d(X, Y ). For the base case, d(X, Y ) = 1, first
note that when p = 0, the process initializes everything to inactive by property (i).
Depending on whether this atomic event is included in LX , the probability P(LX)
for p = 0 (i.e. the constant term) is either 0 or 1 and independent of the graph.

Now we show the inductive step, assuming we know the statement for d, and
that d(X, Y ) = d+1. First we assume that RI(X) ⊆ LX , i.e., LX ⊆ BA(X). Define

LiX := LX ∩ RI(∂(X,i)) ∩
⋂

j∈[i−1]

BA(∂(X,j)) for i ∈ [d],

Ld+1
X := LX ∩

⋂

j∈[d]

BA(∂(X,j)).

When LiX holds for some i ∈ [d], then all vertices at distance i remain inactive,
but for all j ≤ i− 1 there exists a vertex at distance j that become active. These
events form a partition LX =

⋃̇
i∈[d+1]L

i
X . Below we depict LiX graphically:

? ? ? ? ? ?
X Y

3 3 3 7

BA BA BA RI

Γ(X, i) G \ Γ(X, i− 1)

It is easy to see that for all i ∈ [d+ 1] we have LiX ⊆ BA(X) ∩⋂j∈[i−1] BA(∂(X,j)),
and therefore by Lemma 5.2.7 we get

PG(LiX | II(∂(X,i))) = O(pi). (5.3)

Now we use, for all i ∈ [d], the Splitting lemma with S = ∂(X, i) to split Γ(X, i−1)
from G \ Γ(X, i). We get

PG(LiX) = PΓ(X,i)(L
i
X | II(∂(X,i))) · PG\Γ(X,i−1)(RI(∂(X,i))) (by Lemma 5.2.6)

= PΓ(X,i)(L
i
X | II(∂(X,i))) ·

(
PG\Y \Γ(X,i−1)(RI(∂(X,i))) +O(pd+1−i)

)

(by induction)

= PΓ(X,i)(L
i
X | II(∂(X,i))) · PG\Y \Γ(X,i−1)(RI(∂(X,i))) +O(pd+1) (by (5.3))

= PG\Y (LiX) +O(pd+1) (by Lemma 5.2.6)

= PG\Y (LiX) +O(pd(X,Y )). (5.4)

Therefore

PG(LX)
(5.3)
=
∑

i∈[d]

PG(LiX) +O(pd(X,Y ))
(5.4)
=
∑

i∈[d]

PG\Y (LiX) +O(pd(X,Y ))

(5.3)
= PG\Y (LX) +O(pd(X,Y )).
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We finish the proof by observing that RI(X) is an atomic event of the sigma
algebra of the local events of X, so if RI(X) * LX , then we necessarily have
RI(X) ⊆ LX . Therefore we can use the above proof with CX := LX and use that
P(LX) = 1− P(CX). 2

5.2.9. Corollary (Decay of correlations). LetMG be a parametrized local-update
process on the graph G = (V,E). If X, Y ⊆ V and LX , LY are local events on X
and Y respectively, then

Cov(LX , LY ) = PG(LX ∩ LY )− PG(LX)PG(LY ) = O(pd(X,Y )−1), (5.5)

and
PG(BA(X) ∩ BA(Y ))− PG(BA(X))PG(BA(Y )) = O(pd(X,Y )+1). (5.6)

Proof:
First observe that if d(X, Y ) =∞, it means that either X and Y are in different
connected components of G, or one of them is the empty set, in which case LX
and LY are independent events, so the statement holds.

Note that by PLUP Property (i) the only path which has a non-zero constant
term is the trivial path, when every vertex is initialized as inactive, thus the
constant term of the probability of any local event is either 0 or 1. The constant
term of PG(LX ∩ LY ) is 1 if and only if the constant terms of both PG(LX) and
PG(LY ) are 1, which concludes the d(X, Y ) = 0 case.

Note that by De Morgan’s law, (5.6) is equivalent with

PG(RI(X) ∩ RI(Y ))− PG(RI(X))PG(RI(Y )) = O(pd(X,Y )+1). (5.7)

We proceed by induction on d(X, Y ). Assume (5.5)-(5.6) hold for d(X, Y ) = d−1.
We will prove the statement for d(X, Y ) = d. We apply a similar idea as in the
proof of Lemma 5.2.8. Define

LiX := LX ∩ RI(∂(X,i)) ∩
⋂

j∈[i−1]

BA(∂(X,j)) for i ∈ [d− 1],

LdX := LX ∩
⋂

j∈[d−1]

BA(∂(X,j)).

When LiX holds, everything at distance i remains inactive, but for all distances j
with j ≤ i − 1 there exist vertices that become active at that distance. These
events form a partition LX =

⋃̇
i∈[d]L

i
X , and we define this similar for LiY . Below

we depict LiX ∩ LjY graphically.

? ? ? ? ? ?
X Y

3 3 37 7

BA BA RI RI BA

Γ(X, i) Γ(Y, j)

Grest
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We will show the inductive step for both (5.5)-(5.6) at the same time, for which
we introduce a number c such that c = 1 if LX = BA(X) and LY = BA(Y ), and
c = −1 otherwise. By Lemma 5.2.7

P(LiX ∩ LjY ) = O(pi+j−1+c) and P(LiX) · P(LjY ) = O(pi+j−1+c), (5.8)

for any graph on which the events are defined. Since the events form a partition,
we have

PG(LX ∩ LY ) =
∑

i,j∈[d]

PG(LiX ∩ LjY ),

PG(LX) · PG(LY ) =
∑

i,j∈[d]

PG(LiX) · PG(LjY ),

so it is sufficient to prove the statement for each i, j separately, i.e. we want to
show

PG(LiX ∩ LjY )− PG(LiX)PG(LjY ) = O(pd+c).

When i+ j− 1 ≥ d then it is trivial by (5.8). Now fix i, j such that i+ j ≤ d and
define Gi,j

rest := G \ ( Γ(X, i− 1) ∪ Γ(Y, i− 1) ), as indicated in the diagram. The
RI(..) events split the graph in three parts, so we have

PG(LiX ∩ LjY ) = PΓ(X,i)(L
i
X | II(∂(X,i))) · PΓ(Y,j)(L

j
Y | II(∂(Y,j)))

· PGi,jrest(RI(∂(X,i)) ∩ RI(∂(Y,j))) (using Lemma 5.2.6 twice)

= PΓ(X,i)(L
i
X | II(∂(X,i))) · PΓ(Y,j)(L

j
Y | II(∂(Y,j)))

·
[
PGi,jrest(RI(∂(X,i))) · PGi,jrest(RI(∂(Y,j))) +O(p(d−i−j)+1)

]

(by induction of (5.7))

= PΓ(X,i)(L
i
X | II(∂(X,i))) · PΓ(Y,j)(L

j
Y | II(∂(Y,j)))

· PGi,jrest(RI(∂(X,i))) · PGi,jrest(RI(∂(Y,j))) +O(pd+c) (by (5.8))

= PΓ(X,i)(L
i
X | II(∂(X,i))) · PΓ(Y,j)(L

j
Y | II(∂(Y,j)))

· PG\Γ(X,i−1)(RI(∂(X,i))) · PG\Γ(Y,j−1)(RI(∂(Y,j))) +O(pd+c)
(by Lemma 5.2.8 and (5.8))

= PG(LiX) · PG(LjY ) +O(pd+c). (using Lemma 5.2.6 twice)

This completes the proof. 2

In order to state our general result about the stabilization of the coefficients
in the power series we define a notion of isomorphism between different PLUPs.
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5.2.10. Definition (PLUP isomorphism). We say that the PLUPsMG andMG′

are isomorphic with the fixed setsX,X ′ if there is a graph isomorphism i : G→ G′

such that i(X) = X ′. Moreover, the probability of transitioning in one step from
a state A to A′ is preserved under the isomorphism:

PG(A is transformed to A′) = PG′(i(A) is transformed to i(A′)),

and similarly the probability of initializing to a particular state A is preserved:

PG(graph state is initially A) = PG′(graph state is initially i(A′)).

We denote such an isomorphism relation by

MG
X'
X′
MG′ .

Now we define convergent families of PLUPs. Our requirements for such a
family of processes imply that the underlying graphs converge locally, in the
neighborhood of a fixed point, to a common graph limit, also called graphing,
therefore justifying the term “convergent”. Examples of convergent families of
PLUPs include DBS and CP on tori of any dimension, when the limit graphing
is just the infinite grid. Less regular examples are also included, such as toroid
ladder graphs or discrete Möbius strips of fixed width.

5.2.11. Definition (Convergent family of PLUPs). We say a family of rooted
PLUPs {(MGj , vj) : j ∈ N} is convergent, if for all d ∈ N and for all j, k ≥ d we

have MΓGj ({vj},d)

vj'
vk
MΓGk ({vk},d).

We are ready to state our generic result about the stabilization of coefficients.
5.2.12. Theorem (Power series stabilization). Suppose that {(MGj , vj) : j ∈ N}
is a convergent family of rooted PLUPs, then the coefficients of the power series of
RGi = EGi(#Asel (vi)) stabilize. In particular, RGi(p) = RGj(p) +O(pmin(i,j)+1)

Note that for vertex-transitive graphs, this implies RGi = 1
|Gi| EGi(total updates)

stabilizes.
Proof:
Note that

E
Gi

(#Asel (vi)) =
∑

k≥0

k · PGi(#Asel (vi) = k).

Let d = min(i, j), then

PGi(#Asel (vi) = k) = PGi∩ΓGi (vi,d) (#Asel (vi) = k) +O(pd+1)

(by Lemma 5.2.8)
= PGj∩ΓGj (vj ,d) (#Asel (vj) = k) +O(pd+1)(

MGi∩ΓGi (vi,d)
vi'
vj
MGj∩ΓGj (vj ,d)

)

= PGj (#Asel (vj) = k) +O(pd+1). (by Lemma 5.2.8)
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In Lemma 5.4.4 in Section 5.4.1, we prove that these types of sums are absolutely
convergent for small enough p. Therefore the equality holds when the left- and
right-hand side are considered as a power series in p. 2

5.3 The discrete Bak-Sneppen process

In Section 5.1.1 we introduced two quantities that exhibit a phase transition in
the DBS process. We saw that the coefficients of their power series stabilize. In
this section we will look at them in more detail.

5.3.1 Notation

We denote by MG the DBS process on the graph G = (V,E). With a slight
abuse of notation we also denote by MG the leaking transition matrix of this
time-independent Markov Chain, where the row and column that correspond to
the all-inactive configuration is set to zero. We will index vectors (and matrices)
by sets A ⊆ V , where A is the set of active vertices, as in Section 5.2. We
will denote probability column vectors by ρ ∈ R2n so that MG · ρ is the state
of the system after one time step (one update). Setting the all-inactive row
and column to zero corresponds to the property that for every A ⊆ V we have
(MG)∅,A = (MG)A,∅ = 0. We will use the notation M(n) for the matrix of the
process on the cycle of length n andM[n] for the process on the chain (not periodic)
of length n. In both case we identify vertices with V := [n] = {1, 2, ..., n}.

5.3.2 Expected number of resamples per site

The first quantity of interest is the expected number of updates per vertex to
reach the all-inactive state. Consider the DBS process on the cycle of length
n. We start the process by letting each vertex be active with probability p and
inactive with probability 1− p, independently for each vertex. Denote this initial
state by ρ(0), so its components have values ρ(0)

A = p|A|(1− p)n−|A|. Let J be the
vector with all entries equal to 1, except for the entry of the all-inactive state
which is zero. Then JT ·Mk

(n) · ρ(0) is the probability that after exactly k updates
there is at least one active vertex, i.e. the all-inactive state is reached after at
least k+1 updates, starting from ρ(0). Now define R(n)(p) as the expected number
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of updates per vertex, before reaching the all-inactive state:

R(n)(p) =
1

n

∞∑

k=1

k · P(reach all-inactive in exactly k updates)

=
1

n

∞∑

k=1

P(reach all-inactive in k updates or more)

=
1

n

∞∑

k=1

JT ·Mk−1
(n) · ρ(0) (5.9)

=
1

n
JT · (Id−M(n))

−1 · ρ(0) (by the geometric series)

=
P(n)(p)

P ′(n)(p)
, (5.10)

where P(n), P
′
(n) are polynomials as can be seen by using Cramer’s rule for matrix

inversion. Therefore we can conclude that R(n)(p) is a rational function. For small
n we can compute R(n)(p) by symbolically inverting the matrix Id−M(n), which
is how we obtained the expression for R(4)(p) in Section 5.1.1 and the coefficients
in Table 5.1. For n ≥ 9 we computed the matrix inverse for rational values of p
exactly (p = k/1000 for k ∈ [1000]), and then computed the rational function
using Thiele’s interpolation formula.

The power-series of R(n)(p)

As we have seen in the previous subsection, R(n)(p) is a rational function. Since
a rational function is analytic, and R(n)(p) has no pole at p = 0 (it actually takes
value 0), we can write it as

R(n)(p) =
∞∑

k=0

a
(n)
k pk, (5.11)

where the (non-zero) radius of convergence of the above power series equals the
absolute value of the closest pole of R(n)(p) to 0. In order to get some intuition
about the radius of convergence we plotted the location of the poles of R(n)(p) on
the complex plane in Figure 5.4. For n = 10 there is a pole at a point with absolute
value ≈ 0.9598, hence R(10)(p) has a radius of convergence strictly smaller than
1 even though the rational function R(n)(p) is well-defined for all p ∈ [0, 1).

As was shown in Section 5.1.1, Table 5.1, the coefficients a(n)
k stabilize as n

grows. This is proven by Theorem 5.2.12, since the family of DBS processes on
the cycles, indexed by n, is a convergent family of PLUPs. The theorem only
guarantees the stabilization for n > 2k since going from a cycle of size n to n+ 1
adds a vertex at a distance n/2 to any fixed vertex. In the table, however, we saw
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Figure 5.4: Location of the poles of R(n)(p) in the complex plane for different n.
The solid circle is the complex unit circle and the dashed circles have radius pc
around p = 0 and 1− pc around p = 1. There is always a pole at p = 1 because
R(n)(1) is always infinite.

that the stabilization already holds for n ≥ k + 1. In Theorem 5.3.2 below, we
prove this more precise version of the stabilization that holds for cycles. We define
the ‘stabilized’ coefficients a(∞)

k := a
(k+1)
k . We then define RZ(p) = R(∞)(p) =∑∞

k=0 a
(∞)
k pk and make the following conjecture.

5.3.1. Conjecture (Radius of convergence). The radius of convergence of R(∞)(p)
is equal to the critical probability pc of the DBS process.

In Section 5.4.1 we explain an alternative method to compute coefficients of
the R(∞)(p) power series (see the text below Lemma 5.4.5). As an application,
we can apply known methods of series analysis. For example, Figure 5.5 shows
estimates for pc using the ratio method and the Padé approximant method. For
details on these methods, see for example [HB73]. The ratio method can be used
to estimate the critical value when the singularity that determines the radius of
convergence is at pc, i.e. there are no other singularities closer to the origin, which
is what we suggest in Conjecture 5.3.1. The figure also shows estimates based
on the power-series coefficients of the functions TN and SZ. The function TN is
the expected number of total updates on a semi-infinite chain with one end, with
a single active vertex at that end as a starting state. It is included because we
can compute more terms for it. The function SZ is the probability of survival
on the infinite line with a single active vertex as a starting state. This is a se-
ries in q = 1 − p and it is included because other work studies the equivalent
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Figure 5.5: Estimates for pc based on the two methods. On the horizontal axis,
n is the number of power-series coefficients used for the estimate. The function
RZ, TN and SZ are defined in the text below Conjecture 5.3.1. The numbers
[m,m′] (with m+m′ = n) refer to the degree of the numerator and denominator
respectively of the rational functions used in the Padé approximant method. The
gray shaded region shows our estimate pc = 0.63523± 0.00005.

function for the contact process and this allows for comparison of critical expo-
nents [Dic89]. The Padé approximant method suggests that the critical value
is pc ≈ 0.63523 ± 0.00005, in complete agreement with [DG05], and that the
critical exponent for SZ(q)

q↑qc∼ (qc − q)β is β ≈ 0.277, which suggests that it is in
the directed-percolation (DP) universality class alongside several variants of the
contact process [Dic89; Inu95; TIK97].

We now prove the more precise version of the stabilization of the R(n)(p) series.

5.3.2. Theorem. For all m ≥ n ≥ 3 we have

R(n) = E
[−m,m]

(#Asel (0)) +O(pn),

and therefore R(n) −R(m) = O(pn).

Proof:
For v, w ∈ [n] with v + w ≤ n+ 1, let

Pv,w := RI({−v,w}) ∩
⋂

−v<i<w

BA({i})

be the event that every vertex in [−v+ 1, w− 1] becomes active, and the bound-
ary {v, w} remains inactive. We have R(n)(p) = E(n)(#Asel (0)) by translation
invariance, and this expectation is equal to

∑∞
k=1 P(n)(#Asel (0)≥k). Let us ab-
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breviate the event as X = (#Asel (0) ≥ k). We consider all vertices modulo n.

P(n)(X) =
∑

v,w∈[n]
v+w≤n+1

P(n)(X ∩ Pv,w) (partition)

=
∑

v,w∈[n]
v+w≤n

P(n)(X ∩ Pv,w) +O(pn)

=
∑

v,w∈[n]
v+w≤n

P[−v,w](X ∩ Pv,w | II({−v,w}))P[w,n−v](RI({w,n−v})) +O(pn)

(by Lemma 5.2.6)

=
∑

v,w∈[n]
v+w≤n

P[−v,w](X ∩ Pv,w | II({−v,w}))

·
[(
P[w,n−v](RI(w))

)2
+O(pn−v−w+1)

]
+O(pn)

(Corollary 5.2.9 and Equation (5.7))

=
∑

v,w∈[n]
v+w≤n

P[−v,w](X ∩ Pv,w | II({−v,w}))

·
[
P[−m,−v](RI(−v))P[w,m](RI(w))+O(pn−v−w+1)

]
+O(pn)

(by Lemma 5.2.8)

=
∑

v,w∈[n]
v+w≤n

P[−v,w](X ∩ Pv,w | II({−v,w}))P[−m,−v](RI(−v))P[w,m](RI(w)) +O(pn)

(since P(Pv,w) = O(pv+w−1))

=
∑

v,w∈[n]
v+w≤n

P[−m,m](X ∩ Pv,w) +O(pn) (by Lemma 5.2.6)

= P[−m,m](X) +O(pn) (partition)

We conclude the proof by observing

∞∑

k=1

P[−m,m](#Asel (0)≥k) +O(pn) = E
[−m,m]

(#Asel (0)) +O(pn).

2

5.3.3 Reaching one end of the chain from the other

Another quantity we considered in Section 5.1.1 is the probability of ever activat-
ing one end point of a finite chain, when we start the process with only a single
active vertex at the other end. Let us consider the length-n chain, and suppose we
start the DBS process with a single active vertex at site 1. As in Equation (5.2),
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we consider

S[n](p) = P(BA({n}) | start {1}).

Note that in order to satisfy property (i) of the PLUP definition, the initial state
needs to be {1} with probability p and ∅ with probability 1 − p. To get the
above definition of S[n](p) with a deterministic starting state one can then simply
divide by p. The power-series coefficients of S[n](p) stabilize, which follows from
Lemma 5.2.8 by letting X = {n} and Y = {1}. However, as suggested by Figure
5.1, the limiting power series around p = 0 will become the zero function and
it is therefore not so interesting. Instead, we can take the power series centered
around p = 1 and it turns out that also there the coefficients stabilize. We prove
this below. Define q = 1− p.
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Figure 5.6: Location of the poles of S[n] as a function of p in the complex
plane for different n. The solid circle is the complex unit circle and the dashed
circles have radius pc around p = 0 and 1− pc around p = 1.

Similarly to what we did for R(n)(p) we can write S[n](q) using a matrix inverse.
We will start the process in the (deterministic) state with a single active vertex at
location 1, denoted by the probability vector δ{1}. DefineAn = {A ⊆ [n] | n ∈ A},
the set of all states where vertex n is active. Let M[n] be the transition matrix
for the DBS process on the chain of length n. Define the matrix M̃[n] as M[n] but
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with some entries set to zero. Set the row and column of the all-inactive state ∅
to zero, (M̃[n])A,∅ = (M̃[n])∅,A = 0 for all A ⊆ [n]. Furthermore set all columns
A ∈ An to zero: (M̃[n])A′,A = 0 for all A′ ⊆ [n]. That is, whenever vertex n is
active there is no outgoing transition. Denote by χAn the vector that is 1 for all
A ∈ An and zero everywhere else. We have

S[n](q) = P(vertex n becomes active)

=
∑

k≥0

P(vertex n activates for the first time at update k)

=
∑

k≥0

χAn · M̃k
[n] · δ{1}

= χAn · (Id− M̃[n])
−1 · δ{1} (by the geometric series)

=
∑

k≥0

b
[n]
k q

k (5.12)

With the same argument as before we see that S[n] must be a fraction of two
polynomials in p (and also in q). The poles of S[n] are shown in Figure 5.6 where
S[n] is considered a function of p to be comparable with R(n)(p). The coefficients
b

[n]
k of the q power series are shown in Table 5.2.

5.3.3. Lemma. The coefficients b[n]
k of the power series of S[n](q) in Equation (5.12)

stabilize.

Proof:
Let RI({n}) and its complement BA({n}) be as defined in Definition 5.2.2. In the fol-
lowing we assume that the starting state is {1} with probability p and ∅ with prob-
ability 1−p, so the process is a PLUP. We have S[n](p) = 1

p
·P(BA(n)), since S[n](p)

has a deterministic starting state. By Lemma 5.2.6 we have P[n](RI({n−1})) =

P[n−1](RI({n−1})). Consider 1 − pS[n], i.e. the probability that the n-th vertex is
not activated. We have

1− pS[n] = P[n](RI({n})) (definition of S[n])

= P[n](RI({n−1}) ∩ RI({n})) + P[n](BA({n−1}) ∩ RI({n}))
(partition of events)

= P[n−1](RI({n−1})) + P[n](BA({n−1}) ∩ RI({n})) (Lemma 5.2.6)

= 1− pS[n−1] + P[n](BA({n−1}) ∩ RI({n})).

Note that for the event (BA({n−1}) ∩ RI({n})) to hold, all vertices 1, ..., n − 1
must have been active. Since the process terminates with probability 1, this
means all those vertices must also have been deactivated at least once. In the
DBS process a deactivation is O(q), so every terminating path of the Markov
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Chain that is in this set has a factor of at least qn−1 associated to it, hence
P[n](BA({n−1}) ∩ RI({n})) = O(qn−1). Here we use the absolute convergence of
certain power series in q, which we prove in Lemma 5.4.6 in Section 5.4.2. We
see that S[n](q)− S[n−1](q) = O(qn−1) so the coefficients stabilize. 2

5.4 Absolute convergence

In this section we cover the technicalities related to the convergence of the infinite
sums that appear in several proofs.

5.4.1 Convergence of the p series

Recall Lemma 5.2.7.

5.2.7. Lemma. Let MG be a parametrized local-update process on the graph G
with vertex set V . Let X ⊆ V be a subset of vertices and let E be an event.
If E ⊆ ⋂

v∈X BA(v), then P(E) = O(p|X|). Furthermore if S ⊆ V then also
P(E | II(S)) = O(p|X|).

When E holds, all vertices in X become active. By PLUP property (i) any
activation in the initial state is O(p) and by property (iii) any subsequent activa-
tion is also O(p). Therefore, for any path ξ of the Markov Chain with ξ ∈ E we
have P(ξ) = O(p|X|), where P(ξ) is a polynomial in p. We have P(E) =

∑
ξ∈E P(ξ)

by definition. This is a sum over infinitely many polynomials, and by considering
P(E) as a power series in p we are effectively regrouping terms in this sum. In
this section we prove the absolute convergence of certain series that allows for
this regrouping. Note that the same holds when everything is conditioned on the
event II(S). We start with some notation.

5.4.1. Definition (Paths). Define a path of length k as an initialization and
sequence of k updates, where we only count steps in which an active vertex was
selected. We write a path ξ as

ξ = ((initialize to A0), (v1, R1), (v2, R2), ..., (vk, Rk)) .

Here vi denotes the vertex that was selected in the i-th step and Ri ⊆ Γ(vi) is
the result of the corresponding update that happened afterwards. After t steps,
the state of the process is At = (At−1 \ Γ(vt))∪Rt. We say a path is terminating
if Ak = ∅. Denote by pathsA,k the set of all paths ξ that initialize to A and have
length k.
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For a general PLUP we have

P(ξ) = P(A0)P((v1, R1) | A0)P((v2, R2) | A1) · · ·P((vk, Rk) | Ak−1) (5.13)

where the polynomial P(A0) is the probability of starting in state A0 and the
polynomials P((vt, Rt) | At−1) satisfy property (iii) of the PLUP definition. In
case of the DBS process on the cycle these polynomials take the specific form
P(ξ) = P(A0)Zξp

|R1|+...+|Rk|(1 − p)3k−|R1|+...+|Rk| where Zξ is some p-independent
factor.

5.4.2. Definition (Polynomials). Let Q(p) = amp
m + am+1p

m+1 + ... + aMp
M

be a polynomial where am 6= 0 and aM 6= 0. Define mindeg(Q(p)) = m,
maxdeg(Q(p)) = M and define by ‖Q‖abs the polynomial obtained by taking
the absolute values of the coefficients:

‖Q‖abs (p) = |am|pm + |am+1|pm+1 + ...+ |aM |pM .

By the triangle inequality we have ‖f · g‖abs (p) ≤ ‖f‖abs (p) · ‖g‖abs (p) for any
polynomials f, g and p ≥ 0.

5.4.3. Lemma. For any A ⊆ [n], k ≥ 0 and ξ ∈ pathsA,k, the polynomials
P(pathsA,k) and P(ξ) satisfy

mindeg(·) ≥ c · (k − |A|) + mindeg(P(A)) , maxdeg(·) ≤ c′ · k + maxdeg(P(A)).

Here 0 < c < c′ are constants depending on the particular process and P(A) is the
probability of starting in state A (a polynomial).

Proof:
Note that

P(pathsA,k) =
∑

ξ∈pathsA,k

P(ξ)

is a sum over finitely many polynomials. It is sufficient to prove the statement
for each ξ and it then follows for the sum. Let ξ be a path as described in
Definition 5.4.1. We write P(ξ) as in (5.13) where At ⊆ [n] is the state after t
steps and A0 = A. Let c′ be the degree of the highest order term of any possible
local-update step of this process (finitely many possibilities) then maxdeg(P(ξ)) ≤
c′ · k + maxdeg(P(A)).

Note that

mindeg(P(ξ)) = mindeg(P(A)) +
k∑

t=1

mindeg(P((vt, Rt) | At−1)).

If |At| − |At−1| ≥ 0 then either At = At−1 or |At \ At−1| > 0. By property
(iii) of the PLUP definition we therefore have that |At| − |At−1| ≥ 0 implies
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mindeg(P((vt, Rt) | At−1)) ≥ 1. Furthermore, |At| − |At−1| ≤ dmax where dmax is
the maximum degree of the vertices in G. Therefore we have

mindeg(P((vt, Rt) | At−1)) ≥ 1

dmax + 1
(1 + |At| − |At−1|)

Summing this over t gives mindeg(P(ξ))−mindeg(P(A)) ≥ 1
dmax+1

(k+ |Ak|−|A|).
This proves the lemma with c = 1

dmax+1
. 2

5.4.4. Lemma. There is a constant δ > 0 such that, for any polynomial f(k),
the following series is absolutely convergent for p ∈ [0, δ]:

∞∑

k=0

∑

A⊆[n]

∑

ξ∈pathsA,k

f(k) ‖P(ξ)‖abs <∞.

Note that the sum is over all paths, not only the terminating ones.
Proof:
Write P(ξ) as in (5.13). The polynomials Pt := P((vt, Rt) | At−1) come from
a finite set of polynomials: for each vertex v there are at most 2|Γ(v)| possible
updates and there are at most n vertices. Therefore there is a constant C such
that for all these polynomials

‖Pt‖abs (p) ≤ C pmindeg(Pt), ∀p ∈ [0, 1].

By Lemma 5.4.3 there is a c such that

‖P(ξ)‖abs ≤ ‖P(A0)‖abs ‖P1‖abs · · · ‖Pk‖abs ≤ ‖P(A0)‖absC
k pmindeg(P1)+···mindeg(Pk)

≤ ‖P(A)‖absC
kpc·(k−|A|).

There are at most (2dmaxn)k paths of length k for a fixed starting state so we have

∞∑

k=0

∑

A⊆[n]

∑

ξ∈pathsA,k

f(k) ‖P(ξ)‖abs ≤
∞∑

k=0

∑

A⊆[n]

f(k) ‖P(A)‖abs (2dmaxn)kCkpc(k−|A|)

Since there are finitely many (2n) starting states A, the whole expression is ab-
solutely convergent for p <

(
2dmaxnC

)−1/c. 2

Denote by tpathsA,k the set of all terminating paths that initialize to A and
have length k. By the above lemma, the process terminates with probability 1
for small enough p, i.e. for p ∈ [0, δ]

∞∑

k=0

∑

A⊆[n]

∑

ξ∈tpathsA,k

P(ξ) = 1.
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This also implies that, up to measure zero events, any local event E is a subset
of the set of all terminating paths. Therefore the powerseries P(E) =

∑
ξ∈E P(ξ)

is absolutely convergent and we are allowed to rearrange the polynomials in this
sum. We can now finish the proof of Lemma 5.2.7.
Proof:
For all ξ ∈ E we have P(ξ) = O(pk). For p ∈ [0, δ] we have P(E) =

∑∞
j=k ajp

j

by Lemma 5.4.4. By uniqueness of power series, this equality holds for all p up
to the radius of convergence. We conclude P(E) = O(pk). When the process is
conditioned on II(S) then it is simply a new PLUP so the same proof holds. 2

For the DBS process, in the context of Section 5.3.2, we can slightly refine
Lemma 5.4.3.

5.4.5. Lemma. Let ρ(0), M(n) and J be as defined in Section 5.3.2. The polyno-
mial ρ(0) ·Mk

(n) · JT =
∑

A⊆[n] P(pathsA,k) in p has lowest-order term at least pk

and highest-order term at most pn+3k.

Proof:
We repeat the proof of Lemma 5.4.3, but we now use the fact that for the DBS
process, mindeg(P((vt, Rt) | At−1)) ≥ 1 + |At| − |At−1|, so c = 1. For DBS on the
line, c′ = 3 which is the maximum degree of the local update rule (p3 occurs when
all three resampled vertices become active). The lemma then follows by noting
that P(A) = p|A|(1− p)n−|A| in the starting state ρ(0). 2

This lemma is convenient for the computation of the R(n)(p) power series. It
implies that the term pj is only present in those polynomials JT ·Mk

(n) · ρ(0) for
which d j−n

3
e ≤ k ≤ j. To compute the power-series coefficient a(n)

j it is sufficient
to consider this finite set of polynomials. In other words, in order to compute
R(n)(p) up to k-th order in p, it suffices to consider only the first k steps of the
DBS process. We use this observation to compute the coefficients of the n ≥ 18
series, see Table 5.1, by computing matrix powers symbolically in p, instead of
matrix inversion.

5.4.2 Convergence of the q series

We now turn our attention to the S[n](q) series defined in Equation (5.12). This
process starts with a single active vertex at position 1, i.e. A = {1}, and we
look at the probability that vertex n is never activated, P(RI({n}) | start A), as a
function of q = 1−p. To prove the absolute convergence of such series for general
PLUPs we introduce some additional assumptions. We now consider the update
polynomials as a function of q = 1 − p. The update rule for a single time step
should satisfy the following additional two properties.
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• For q = 0 the probability that an active vertex becomes inactive is zero.
This implies that any inactivation has probability O(q).

• There is a c > 0 such that if q = 0, then for all inactive vertices v with an
active neighbor, the probability of activating v is at least c.

These properties are satisfied by the CP and DBS processes. Note that c is
independent of q but will generally depend on the system size n.

5.4.6. Lemma. Consider a PLUP that satisfies the above two properties. Let
X ⊂ V be any subset of vertices such that its boundary B = ∂̄(X; 1) is not
empty. Let the starting state be A ⊆ X. Define RI

(B)
k as the set of all lenght-k

paths for which all vertices in B remained inactive. Then the following series
converges for small enough q

∑

k≥0

∑

ξ∈RI
(B)
k

‖P(ξ)‖abs (q) <∞.

Moreover, RI(B) ⊂ ⋃k≥0 RI
(B)
k , up to zero-probability events, so we can regroup

terms in the series P(RI(B)).

Proof:
In each state A, the process can do at most a finite amount (2dmaxn, where dmax is
the maximum degree of the graph) of possible transitions, including both selection
and update dynamics. LetQ(A)

j (q) be the j-th possible transition polynomial (now
including selection dynamics) so that

∑
j Q

(A)
j (q) = 1. This holds for all q and in

particular for q = 0, so the constant terms of Q(A)
j (q) are non-negative and sum

to 1. Hence, there is a constant such that for all states A and all q ∈ [0, 1] we
have

Z(A)(q) :=
∑

j

∥∥Q(A)
j

∥∥
abs

(q) ≤ 1 + const · q.

Define new normalized functions Q̃(A)
j (q) = 1

Z(A)(q)

∥∥Q(A)
j

∥∥
abs

(q) and consider the

same process but with the transition polynomials Q(A)
j (q) replaced by the rational

functions Q̃(A)
j (q). We will denote probabilities for this process by P̃.

For any path ξ of length k we now have ‖P(ξ)‖abs ≤ P̃(ξ)
∏k−1

j=0 Z
(Aj) where Aj

is the state after the j-th transition. This allows us to bound the sum as follows
∑

ξ∈RI
(B)
k

‖P(ξ)‖abs (q) ≤ (1 + const · q)k P̃(RI
(B)
k )(q).
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We proceed by bounding P̃(RI
(B)
k ). Define the following random variables. Let

It ∈ {0, 1} be 1 if any active vertex got inactivated in step t. Let Gt ∈ {0, 1} be 1
if any inactive vertex got activated in step t (G stands for grow). Let I =

∑k
t=1 It

and G =
∑k

t=1Gt. We always have G ≤ |X| + (1 + dmax)I, because after |X|
activations any other activation requires a deactivation first, and in a single step
the process could deactivate at most 1 + dmax vertices at once.

By the second additional property there is a c such that any inactive neighbor
of an active vertex can be activated with probability at least c when q = 0, i.e.,
if there are inactive vertices in step t then P(Gt = 1) ≥ c. The tilde process
coincides with the regular one for q = 0, and by continuity there is a q0 > 0 such
that for all q ∈ [0, q0] we have P̃(Gt = 1) ≥ c/2.

5.4.7. Claim. For all q ∈ [0, q0], the random variable G satisfies

P̃
(

RI
(B)
k ∩ (G ≤ c

4
k)
)

(q) ≤ exp (−ck/16) .

Proof:
Since RI

(B)
k holds there is always at least one inactive vertex with an active neigh-

bor. We have P̃(Gt = 1) ≥ c/2. Define k i.i.d. Bernoulli variables Ct with success
probability c/2 and C =

∑k
t=1 Ct. The expectation of C is E(C) = c

2
k and using

the Chernoff bound we can bound the probability that C deviates far from its
mean:

P
(
C ≤ c

4
k
)

= P
(
C ≤ 1

2
E(C)

)
≤ e−

1
8
E(C) = e−ck/16.

We use a coupling argument to compare the Gt variables with the Ct’s. Let Ut be
i.i.d. uniform [0, 1] variables. Define Ct to be 1 if Ut < c/2 so the Ct’s are indeed
i.i.d. Bernoulli variables with the correct distribution.

For Gt run the process, and in each step first compute the true probability
pt = P̃(Gt = 1 | history), so pt ≥ c/2. Now use the randomness of Ut to decide
what happens, i.e. define Gt = 1 if and only if Ut < pt. Then continue the process
conditioned on the value of Gt. This way, the Gt variables come from the correct
distribution but they are coupled to the Ct’s. We see Ct = 1 implies Gt = 1 so
G ≥ C and therefore P(G ≤ c

4
k) ≤ P(C ≤ c

4
k) ≤ e−ck/16. 2

Now we continue the proof of Lemma 5.4.6. We partition the RI
(B)
k event as

P̃(RI
(B)
k ) = P̃(RI

(B)
k ∩ (G ≤ c

4
k)) + P̃(RI

(B)
k ∩ (G >

c

4
k)).

The first term is bounded by the claim above. FromG ≤ |X|+(1+dmax)I it follows
that I ≥ G−|X|

1+dmax
. By the first property every deactivation has an update step that

is O(q), in the original process, so there is a constant such that Q(A)
j (q) ≤ const′ ·q

for the corresponding transition polynomials. This implies there is also a constant
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such that Q̃j(q) ≤ const′′ · q. Therefore, there is a constant such that for a single
step of the tilde process we have P̃(deactivation) ≤ const′′′ · q. The probability of
I deactivations is therefore at most (const′′′ · q)I . The second term is therefore
bounded by

P̃(RI
(B)
k ∩ (G >

c

4
k))(q) ≤ (const′′′ · q) 1

1+dmax
( c
4
k−|X|).

We see that for small enough q
∑

k≥0

∑

ξ∈RI
(B)
k

‖P(ξ)‖abs (q) ≤
∑

k≥0

(1 + const · q)k P̃(RI
(B)
k )

≤
∑

k≥0

(1 + const · q)k

·
(

exp(− c

16
k) + (const′′′ · q) 1

1+dmax
( c
4
k−|X|)

)

is convergent. 2



Chapter 6

Quantum Pascal’s Triangle

This chapter is based on joint work with Harry Buhrman [BB17].

6.1 Introduction

In this chapter we consider a quantum version of Pascal’s triangle. Pascal’s tri-
angle is a well-known triangular array of numbers that exhibits many interesting
properties, one of which is the appearance of a fractal when the numbers are col-
ored by their value modulo a prime p [Wol84; Ste95]. This is shown in Figure 6.2,
and for p = 2 the fractal is known as the Sierpinski triangle or Sierpinski gasket.
The numbers in Pascal’s triangle can be obtained by scaling the probabilities of
the simple symmetric random walk on the line. This chapter explores the results
of replacing the 1-dimensional random walk by a quantum walk known as the
Hadamard walk. This too yields the Sierpinski triangle when the numbers are
considered modulo 2, but more interestingly one can find another fractal known
as the Sierpinski carpet hidden in the amplitudes modulo 3 which is not present
in Pascal’s triangle. When these quantum walk numbers are plotted modulo p,
more general fractals appear.

Pascal’s triangle Hadamard walk General quantum walk
mod 2 Triangle2 Triangle2 Triangle2

mod 3 Triangle3 Carpet Carpet or Triangle3

mod p Trianglep See Figure 6.11 See Figure 6.11
mod pk Trianglep level k More complicated fractal

Table 6.1: Summary of the fractals that result from considering various sets of
numbers modulo a prime p or prime power. Trianglep refers to the version of
the Sierpinski triangle where p(p+ 1)/2 copies of the triangle are found in every
recursion level. See Figure 6.2 for p ∈ {2, 3, 5, 7}. The level k triangle is discussed
in Section 6.2.2. Carpet refers to the Sierpinski carpet as shown in Figure 6.8.

111
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Table 6.1 provides a summarizing overview of the different fractals that are
obtained from these different sources. Whereas the quantum walk probabilities
contain the Sierpinski carpet, the classical set of numbers only gives various ver-
sions of the Sierpinski triangle and the carpet is never found. We therefore suggest
that the carpet might be a signature of the quantum properties which the classical
random walk does not possess.

There are other possible notions of a quantum version of Pascal’s triangle
that can be found in the literature. For instance, one can consider a triangle
consisting of the so-called q-deformed binomial coefficients. This can be thought
of as representing a Galton board but where the particles are subject to a magnetic
field [Bae02]. This triangle is sometimes called the q-Pascal’s triangle, studied for
example in [Car+09] and [GO09]. However, these approaches are different from
ours and give rise to different sets of numbers.

Section 6.2 provides background information on how Pascal’s triangle is re-
lated to the Sierpinski triangle when the numbers are regarded modulo a prime.
In Section 6.2.2 we provide a proof of the appearance of a more general version of
the Sierpinski triangle when instead we take prime powers. Then, in Section 6.3,
quantum walks are introduced with an emphasis on a walk that is commonly
known as the Hadamard walk. We derive an expression for the probabilities of
these walks and then the appearance of both the Sierpinski triangle and Sierpinski
carpet is shown as well as some other properties. In Section 6.4 we argue that the
appearance of the carpet can be a sign of the quantum nature of the probability
distribution.

6.2 Pascal’s triangle
Pascal’s triangle is an array of integers arranged in a triangle, where the k’th
value in the n’th row (both n and k start at zero) is the binomial coefficient(
n
k

)
. As shown in Figure 6.1, it can be thought of as probabilities of a symmetric

random walk on Z scaled by a factor 2n in the n’th row.

6.2.1 Pascal’s triangle modulo a prime

One of the interesting features of Pascal’s triangle comes from coloring the num-
bers in the triangle by their value modulo a prime p [Wol84] as shown in Figure 6.2.
The appearing figure approaches the fractal known as the Sierpinski triangle (or
the Sierpinski gasket). This can be proven by showing that for all n, the shape
given by the first pn+1 rows contains exactly p(p+1)/2 copies of the first pn rows,
and nothing more than those copies, i.e. with ‘white’ in-between. For p = 2 this
is depicted in the following diagram.
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(a)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

(b)

1
1
2

1
2

1
4

2
4

1
4

1
8

3
8

3
8

1
8

1
16

4
16

6
16

4
16

1
16

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0

0

0 0

0 0 0

0 0 0 0 0

Figure 6.1: The top five rows of Pascal’s triangle (a) and the probabilities of the
first 5 steps of a random walk (b). The probabilities equal to zero in (b) are in
light-grey for clarity.

2n

2n+1

row r
column c

row r + 2n

columns c and c+ 2n

If we index Pascal’s triangle by row r and column c then we need to show that

(“copies”) ∀ 0 ≤ q ≤ l < p, 0 ≤ c ≤ r < pn
(
r

c

)
≡
(
r + l · pn
c+ q · pn

)
mod p, (6.1)

(“empty”) ∀ 0 ≤ q < l < p, 0 ≤ r < c < pn 0 ≡
(
r + l · pn
c+ q · pn

)
mod p. (6.2)

The values of (l, q) index the p(p + 1)/2 copies. These equations follow easily
from Lucas’s theorem. We represent a number by it’s base-p digits as

n = [nmnm−1 · · ·n0]p =
m∑

j=0

nj p
j with 0 ≤ ni < p for each i.

6.2.1. Theorem (Luc1878). Let p be prime and n, k non-negative integers. Let
n = [nm · · ·n0]p and k = [km · · · k0]p. Define

(
a
b

)
= 0 for a < b. Then

(
n

k

)
≡
(
nm
km

)(
nm−1

km−1

)
· · ·
(
n0

k0

)
mod p.

This famous theorem knows many extensions and generalisations, see for exam-
ple [Meš14]. A moments thought shows the following corollaries.

6.2.2. Corollary (Anton’s Lemma). If n, k < pm and then for all l, q ≥ 0,
(
l · pm + n

q · pm + k

)
≡
(
l

q

)(
n

k

)
mod p.
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mod 2 mod 3

mod 4 mod 5

mod 6 mod 7

Figure 6.2: The first 180 of rows of Pascal’s triangle shown modulo n where
n ∈ {2, 3, 4, 5, 6, 7}. If a value was zero modulo n it is colored white, otherwise it
is given a different color.
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mod 3 mod 32 mod 33

Figure 6.3: Pascal’s triangle plotted modulo powers of 3. The colors give the
3-adic valuation ν3(

(
r
c

)
), where black is 0, orange is 1 and red is 2.

6.2.3. Corollary. For any prime p,
(
n

k

)
≡ 0 mod p ⇐⇒ ∃i : ki > ni

Corollary 6.2.2 adds the extra digits l to n and q to k and by induction it implies
Lucas’s theorem. Now (6.1) follows from Corollary 6.2.2 and (6.2) follows from
Corollary 6.2.3 by noting that for r < c there is an i such that ci > ri.

6.2.2 Pascals triangle modulo general integers

One can plot Pascal’s triangle modulo general n, shown in Figure 6.2 for several
values of n. Primes were discussed in the previous section. When n = pk11 · · · pkmm
then the shape is the union of the ones for the prime powers pkii albeit with
different colors. For example, at n = 6, shown in Figure 6.2, one can see the
union of the shapes of p = 2 and p = 3. This is simply because x ≡ 0 mod n if
and only if for all i we have x ≡ 0 mod pkii .

When n = pk is a prime power then the pattern becomes more involved.
Figure 6.3 shows what happens for powers of 3 from which we can see the general
pattern which we capture in the following definition.

6.2.4. Definition. For prime p and k ≥ 1, define the level-k Sierpinski-p tri-
angle as follows. For k = 1 it is defined as the normal Sierpinski triangle with
p(p+ 1)/2 copies at each recursion step. The level k+ 1 triangle is obtained from
the level k triangle by adding p(p − 1)/2 copies of the level-1 triangle in every
empty region of the level-k triangle.

6.2.5. Lemma. For prime p and k ≥ 1, the values of Pascal’s triangle colored
modulo pk converge to the level-k Sierpinski-p triangle.

To prove this we require the following definition.
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ν3
(
r
c

)

ν3
(
pn+r

c

)
= ν3

(
r
c

)
ν3
(
pn+r
pn+c

)
= ν3

(
r
c

)

ν3
(
r′

c′
)
= ν3

(
r
c

)
+ 2

ν3
(
r′

c′
)
= ν3

(
r
c

)
+ 1

pn

pn−1
pn−2

Figure 6.4: Schematic overview of the statements of Lemma 6.2.5, here shown
for p = 3. We show that any number

(
r
c

)
has the same p-adic valuation as its

neighbor in the other size-pn triangles, i.e.
(
l·pn+r
q·pn+c

)
. For the smaller triangles of

size pn−k, the p-adic valuation of the corresponding number is at least k higher.

6.2.6. Definition. The p-adic valuation νp(n) of n is the largest power of p that
divides n.

When coloring the triangle we only care about whether or not a number is zero
modulo pk. Since n ≡ 0 mod pk if and only if νp(n) ≥ k we have

6.2.7. Fact. If νp(n) = νp(m) then for any k ≥ 1 we have: n ≡ 0 mod pk if and
only if m ≡ 0 mod pk.

This reduces the problem to showing that the p-adic evaluation of certain binomial
coefficients are equal. The statements that we want to prove are most easily
explained with a picture, shown in Figure 6.4. We will show that at each recursion
level of the triangle, the p-adic valuation of the numbers

(
r′

c′

)
in a copy is the same

as that of the corresponding number
(
r
c

)
in the original region. Furthermore, we

show that the smaller triangles of size pn−k inside the regions that were empty in
the ‘mod p triangle’ have p-adic valuations that are k higher than their original.

Repeating what we did before for the mod p triangle, we can see that at
recursion level n, the “copies” and “empty regions” correspond to the following
binomial coefficients:

(
l · pn + r

q · pn + c

)
“copies” → 0 ≤ q ≤ l < p , 0 ≤ c ≤ r < pn

“empty” → 0 ≤ q < l < p , 0 ≤ r < c < pn
.
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Here (l, q) index the different copies or empty regions whereas r and c index points
within those regions. The proof for the copies is done below in Claim 6.2.9. The
proof for the empty regions is done in Claim 6.2.10 and Claim 6.2.11.

We first require Kummer’s theorem.

6.2.8. Theorem (Kum1852). Let p be any prime and let n, k be non-negative
integers such that n ≥ k. Then the p-adic valuation νp(

(
n
k

)
) of

(
n
k

)
is equal to the

number of “carries” when k and n− k are added in base-p arithmetic.

To find the number of carries that occur when k is added to n − k in base-p,
consider the base-p digits of n and k, and define

cn,k−1 = 0, cn,ki =





1 ni < ki

0 ni > ki

cn,ki−1 ni = ki

.

The number of carries is then equal to
∑

i≥0 c
n,k
i . Kummer’s theorem can therefore

be stated as νp(
(
n
k

)
) =

∑
i≥0 c

n,k
i .

6.2.9. Claim. Let p any be prime and let n, k, q, l,m be non-negative integers
with 0 ≤ k ≤ n < pm and 0 ≤ q ≤ l < p. Then

νp(

(
l · pm + n

q · pm + k

)
) = νp(

(
n

k

)
)

Proof:
Define n′ = l · pm + n and k′ = q · pm + k, which differ only from n, k in the m-th
digit in base p. Therefore cn,ki = cn

′,k′

i for i < m, and

cn
′,k′

m =





1 l < q

0 l > q

cn,km−1 l = q

.

By Kummer’s theorem it remains to show that cn′,k′m = 0. By assumption we
know q ≤ l so the only non-trivial case is l = q where cn′,k′m = cn,km−1. If n = k

then all the cn,ki are zero so we are done. If n 6= k then the consider the most
significant digit where n and k differ, i.e. take the highest i for which ni 6= ki and
call it i∗. Since k < n by assumption, it must be true that ki∗ < ni∗ and therefore
cn,ki∗ = 0. For all i > i∗ we have ni = ki so cn,km−1 = cn,ki∗ . 2

6.2.10. Claim. Let r′, c′ be the row and column of a point in a size-pn−k triangle
that lies in the empty region of the base triangle, see the darker shaded triangles
in Figure 6.4. Then νp(

(
r′

c′

)
) = νp(

(
r
c

)
) + k where r, c are the row and column in

the original smaller triangle.
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Proof:
The points in the smaller triangles of size pn−k, see Figure 6.4, can be indexed as
follows. Let 0 ≤ c ≤ r < pn−k represent a point within a size-pn−k triangle. The
location of the copy at r′, c′ somewhere in the empty region of the larger triangle
can be written as r′ = [r′n · · · r′n−krn−k−1 · · · r0]p and c′ = [c′n · · · c′n−kcn−k−1 · · · c0]p
with the following constraints on the newly added digits. Similar to the proof of
Claim 6.2.9 we consider the carries cr

′,c′

i .

0 ≤ c′n < r′n < p cr
′,c′

n = 0

0 ≤ r′n−1 ≤ c′n−1 < p cr
′,c′

n−1 = 1 or cr
′,c′

n−1 = cr
′,c′

n−2

...
...

0 ≤ r′n−k+1 ≤ c′n−k+1 < p cr
′,c′

n−k+1 = 1 or cr
′,c′

n−k+1 = cr
′,c′

n−k

0 ≤ r′n−k < c′n−k < p cr
′,c′

n−k = 1

0 ≤ c ≤ r < pn−k ν3

(
r

c

)
.

The extra carries sum to k, so by Kummer’s theorem this proves the claim. 2

We still have to show that the empty regions in the ‘mod pk triangle’ are
indeed empty.

6.2.11. Claim. Let r′, c′ be the row and column of a point in an empty region of
the ‘mod pk triangle’. Then νp(

(
r′

c′

)
) ≥ k + 1.

Proof:
These values of r′, c′ have the same constraints on the digits as in the proof of
Claim 6.2.10 except for 0 ≤ r′n−k ≤ c′n−k < p and 0 ≤ r < c < pn−k. We can
apply the same idea as in the proof of Claim 6.2.9 by noting that the first digit
where r and c differ will satisfy ri∗ < ci∗ and hence all the carries cr

′,c′

i are 1 for
i ≥ i∗. This gives ν3

(
r′

c′

)
≥ k + 1. 2

6.3 Hadamard Walk

Quantum walks are models for a quantum particle moving through some system.
A simple example of a quantum walk on a one-dimensional line is the Hadamard
walk [Amb+01] on the Hilbert space H = span{|n, c〉 | n ∈ Z, c ∈ {↑, ↓}}. The
particle has an internal degree of freedom c ∈ {↑, ↓} other than its position n ∈ Z,
often called the coin state of the particle. The dynamics of the particle are given
by repeated application of a unitary operator U that consists of two steps. The
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first step is a ‘coin flip’, in this case the Hadamard matrix, that is only applied
to the internal state

H =
1√
2

(
1 1
1 −1

)
, where |↑〉 =

(
1
0

)
and |↓〉 =

(
0
1

)
.

The second step updates the position conditioned on the outcome of the coin,

S|n, ↑〉 = |n+ 1, ↑〉, S|n, ↓〉 = |n− 1, ↓〉.

The time evolution operator U is then given by U = S · (Idposition ⊗ H) In this
chapter we will always use |0, ↑〉 as the starting state. The amplitudes of the first
five steps of the resulting walk are shown in Figure 6.6.

6.3.1 Expressions for amplitudes

Meyer [Mey96] gave explicit expressions for the amplitudes of the Hadamard walk.
We will give a slightly shorter proof of this for a general coin operator, i.e. replace
H by some general matrix C. This proof also allows us to make an additional
observation stated in the lemma below. Let C be any unitary 2x2 matrix. Any
such matrix can be written as follows

C =

(
cr cu
cd cl

)
=

( √
p eiα

√
1− p eiβ

−√1− p eiγ √p ei(γ+β−α)

)
, with 0 ≤ p ≤ 1.

6.3.1. Lemma. Let ψ↑(n, t) and ψ↓(n, t) be the amplitudes of the |n, ↑〉 and |n, ↓〉
components at time t for the quantum walk with coin operator C starting in the
state |0, ↑〉. When t + n is odd or when |n| > t we have ψ↑(n, t) = ψ↓(n, t) = 0.
Otherwise the amplitudes are given by

ψ↑(n, t) =




eiαn
√
pt n = t

ei(αn+(γ+β)(t−n)/2)
√
pt
∑

k≥1

(
(t+n)/2

k

)(
(t−n)/2−1

k−1

) (
−1−p

p

)k
n < t

ψ↓(n, t) = −ei(αn+(γ+β)(t−n)/2−β)

×
√

(1− p)pt−1
∑

k≥0

(
t+n

2

k

)(
t−n

2
− 1

k

)(
−1− p

p

)k
.

The probabilities |ψ↑(n, t)|2 and |ψ↓(n, t)|2 associated to these amplitudes are in-
dependent of the complex phases α, β, γ of the coin operator.

Note that for a more general starting state, not equal to |0, ↑〉, the probabilities
do depend on the complex phases present in the coin operator.
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cr

cd cu

cl

cr

cd cu

cl

cr

cd cu

cl

cr

cd cu

cl

cr

cd cu

cl

−3

−3

−2

−2

−1

−1

0

0

1

1

2

2

3

3

|↑〉

|↓〉

Figure 6.5: Schematic representation of one step U of the walk with generic coin.

Proof:
We sum over all possible paths on the directed graph shown in Figure 6.5, start-
ing at |0, ↑〉 and ending at the desired state, where each path gets a complex
amplitude.

Up component. If n = t there is exactly one path from |0, ↑〉 to |n, ↑〉 and
it has amplitude (cr)

t. Now assume −t < n < t and let r, l, u, d be the number of
times a path uses the right, left, up and down edges respectively. For the path to
end at |n, ↑〉 we require

r + l + u+ d = t total number of steps,
r − l = n ending column,

u = d start up and end up.

Let k = u = d, then we have r = t+n
2
−k and l = t−n

2
−k. We have k ≥ 1 (we need

to go down and up at least once) and k ≤ t−n
2
, t+n

2
. For fixed r, l, u, d, the particle

is in the |↑〉 state (top layer of the graph) k+ r = t+n
2

times, out of which r times
it goes right and k times it goes down. This can be done in

(
(t+n)/2

k

)
possible

ways. Likewise, the particle is in the | ↓〉 state (bottom layer) l + k = t−n
2

times
and has to choose between left and up. The last of these choices should always
be up, so this gives

(
(t−n)/2−1

k−1

)
possibilities. These choices uniquely determine the

path, and the amplitude of such a path is (cr)
r(cl)

l(cu)
u(cd)

d, therefore

ψ↑(n, t) =

{
(cr)

t n = t∑
k≥1

(
(t+n)/2

k

)(
(t−n)/2−1

k−1

)
c

(t+n)/2−k
r c

(t−n)/2−k
l ckuc

k
d n < t

.

The sum above in terms of p and α, β, γ is equal to

ei(αn+(γ+β)(t−n)/2)
√
pt
∑

k≥1

(
(t+ n)/2

k

)(
(t− n)/2− 1

k − 1

)(
−1− p

p

)k
,

as claimed. Note that −1−p
p

is always a real (negative) number, regardless of the
complex phases present in the entries of the coin matrix.
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Down component. For the down component, the equations are similar:

r + l + u+ d = t total number of steps,
r − l = n+ 1 ending column (tilted),
u+ 1 = d start up and end down.

The argument is the same as before, but now the last choice in the top layer has
to be ‘down’ with no restrictions on the last choice in the bottom layer, which
yields

ψ↓(n, t) =
∑

k≥0

(
(t+ n)/2

k

)(
(t− n)/2− 1

k

)
ckuc

k+1
d c

(t−n)/2−k−1
l c(t+n)/2−k

r .

Rewriting this in terms of p, α, β, γ gives the expression given in the claim. The
probabilities |ψ↑(n, t)|2 and |ψ↓(n, t)|2 are independent of α, β, γ as they only ap-
pear as global phases. 2

6.3.2 Hadamard triangle

When we scale either the amplitudes or probabilities of the Hadamard walk by
a factor of

√
2n they become integer and we obtain a quantum analogue of Pas-

cal’s triangle. Note that we could either use the amplitudes or the probabilities.
However, since we are primarily interested in whether or not they are divisible
by some prime p, squaring the amplitudes does not make a difference. We there-
fore continue with the (unsquared) amplitudes. Figure 6.6 shows the start of the
Hadamard triangle.

6.3.3 Hadamard walk modulo 2 - Sierpinski triangle

When the amplitudes of the (scaled) Hadamard walk are plotted modulo two,
the Sierpinski triangle appears in a similar fashion to Pascal’s triangle. To see
why, note that the amplitudes modulo two at time t can be found by considering
a process where every time-step is done modulo two. The scaled Hadamard
operator becomes

√
2H ≡

(
1 1
1 1

)
mod 2,

and we can immediately see that the amplitude sent to the right is the same as
the amplitude sent to the left, as shown in Figure 6.7. In the figure an ellipse is
drawn around pairs of the form |n − 1, ↓〉 and |n + 1, ↑〉. They are always equal
modulo two, and are the sum of the values in the two neighboring ellipses above
it. This is the same rule with which Pascal’s triangle can be constructed. Indeed,
taking one value out of every ellipse gives the Sierpinski triangle.
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1√
20

1√
21

1√
22

1√
23

1√
24

(1 , 0)

(0 , 1) (1 , 0)

(0 , −1) (1 , 1) (1 , 0)

(0 , 1) (−1 , 0) (2 , 1) (1 , 0)

(0 , −1) (1 , −1) (−1 , 1) (3 , 1) (1 , 0)

Figure 6.6: The up- and down-amplitudes of the first steps of the Hadamard walk,
starting in |0, ↑〉, where every row is one time-step with normalisation shown on
the left. At even timesteps, only the even positions are shown and at odd time-
steps only the odd positions are shown, similar to Figure 6.1. The arrows represent
the time-step: a dotted arrow means the incoming amplitude is multiplied by −1
before being added to the other incoming amplitude. The set of amplitudes used
in Sections 6.3.3 and 6.3.4 is shown in blue.

(1 , 0)

(0 , 1) (1 , 0)

(0 , 1) (1 , 1) (1 , 0)

(0 , 1) (1 , 0) (0 , 1) (1 , 0)

(0 , 1) (1 , 1) (1 , 1) (1 , 1) (1 , 0)

Figure 6.7: Amplitudes of the first steps of the scaled Hadamard walk modulo
two, starting in |0, ↑〉, similar to Figure 6.6. The dotted arrow in Figure 6.6
became a normal arrow because −1 ≡ 1 mod 2. The ellipses indicate pairs of
values that are equal and form Pascal’s triangle modulo two.
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Figure 6.8: The start of the Sierpinski carpet resulting from coloring the scaled
Hadamard walk amplitudes modulo 3. The horizontal direction is position and
the vertical direction is time. The shape drawn at each point is a diamond instead
of a square because this gives a better visualisation of the x, y coordinates.

6.3.4 Hadamard walk modulo 3 - Sierpinski carpet

We will now show that the |↓〉 components of the scaled walk (the blue values in
Figure 6.6), modulo three, give rise to the Sierpinski carpet. We color a square
white if and only if the amplitude is divisible by 3. Figure 6.8 shows the start
of the resulting fractal. The top of the carpet is at t = 1 and n = −1 so row r
and column c correspond to t = r + 1 and n = 2c − r − 1. For the structure of
the Sierpinski carpet, however, it is more convenient to consider x, y coordinates
that are aligned with the square structure of the carpet. The choice of these
directions is indicated in Figure 6.8 and we define Φ(x, y) as the amplitude at
these coordinates

Φ(x, y) = (−1)y
min(x,y)∑

k=0

(
x

k

)(
y

k

)
(−1)k,

as follows from Lemma 6.3.1. A pixel at coordinates x, y is now colored white
when Φ(x, y) ≡ 0 mod 3 and a different color otherwise.

6.3.2. Lemma. The down components of the scaled Hadamard walk colored by
their value modulo 3 give rise to the Sierpsinski carpet.

To show this we will first prove a Lucas’-like theorem for the quantum triangle.
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6.3.3. Definition. For any m ∈ Z define fm : N× N→ Z as

fm(x, y) =

min(x,y)∑

k=0

(
x

k

)(
y

k

)
(−m)k

The following could be seen as Corollary 6.2.2 but for fm:

6.3.4. Claim. Let p be a prime and let 0 ≤ l, q ≤ p− 1. Then for all m ∈ Z and
for all 0 ≤ x, y ≤ pn − 1 we have

fm(l · pn + x , q · pn + y) ≡ fm(l, q) · fm(x, y) mod p.

Proof:
Any sum can be split in the following way,

pn+1−1∑

k=0

g(k) =

p−1∑

s=0

pn−1∑

k=0

g(s · pn + k),

where s takes the role of the most significant digit and k that of the other digits.
We apply this idea to the sum in fm(x, y). We can let the original sum over k
run to pn+1 − 1 instead of min(lpn + x, qpn + y) because the summand is zero in
this extra range. Therefore we have

fm(l · pn + x , q · pn + y) =

pn+1−1∑

k=0

(
l · pn + x

k

)(
q · pn + y

k

)
(−m)k

=

p−1∑

s=0

pn−1∑

k=0

(
l · pn + x

s · pn + k

)(
q · pn + y

s · pn + k

)
(−m)s·p

n+k

Fermat’s little theorem tells usmp ≡ m mod p and thereforems·pn ≡ ms mod p.
We apply Corollary 6.2.2 to the binomial coefficients to obtain

fm(l · pn + x , q · pn + y) ≡
p−1∑

s=0

pn−1∑

k=0

(
l

s

)(
q

s

)(
x

k

)(
y

k

)
(−m)s+k

≡
(
p−1∑

s=0

(
l

s

)(
q

s

)
(−m)s

)
fm(x, y)

≡ fm(l, q) · fm(x, y) mod p,

as required. 2
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Just as Corollary 6.2.2 implies Lucas’s theorem, we can apply this claim in-
ductively on the number of digits to arrive at a result very similar to Lucas’s
theorem but now for the function fm.

6.3.5. Corollary (Lucas’-like theorem for fm). Let p be prime and x, y non-
negative integers. Let x = [xnxn−1 · · · x0]p and y = [ynyn−1 · · · y0]p. Then for all
m ∈ Z we have

fm(x, y) ≡ fm(xn, yn) fm(xn−1, yn−1) · · · fm(x0, y0) mod p.

We can now prove Lemma 6.3.2.
Proof:
We have to show that for all n ≥ 1 and 0 ≤ l, q ≤ 2 with (l, q) 6= (1, 1),

Φ(x, y) ≡ ±Φ(l · 3n + x, q · 3n + y) mod 3 for all 0 ≤ x, y ≤ 3n − 1 (6.3)

where this means that for every x, y, l, q the equivalence should hold with either
a plus or minus sign. For (l, q) = (1, 1) we require

Φ(3n + x, 3n + y) ≡ 0 mod 3 for all 0 ≤ x, y ≤ 3n − 1 (6.4)

Figure 6.8 shows this graphically. The values (l, q) = (1, 1) corresponds to the
empty square in the middle, and all other values of (l, q) should be copies of the
square at (l, q) = (0, 0), up to exchanging the non-white colors. These equations
simply follow from Claim 6.3.4 by noting that Φ(x, y) = (−1)yf1(x, y) so

Φ(l · 3n + x, q · 3n + y) ≡ (−1)q·3
n

f1(l, q)Φ(x, y) ≡ Φ(l, q)Φ(x, y) mod 3.

where we used that (−1)q·3
n

= (−1)q. Note that Φ(1, 1) = 0 which proves (6.4)
and Φ(l, q) ≡ ±1 mod 3 for the other values of l, q which proves (6.3). 2

6.3.5 Results for a more general quantum walk

In this section we generalise the results of the previous section. We can consider
the same triangle modulo any prime p, but more generally, the Hadamard operator
H could be replaced by any matrix C ∈ U(2),

C =

(
cr cu
cd cl

)
=

( √
p eiα

√
1− p eiβ

−√1− p eiγ √p ei(γ+β−α)

)
, with 0 ≤ p ≤ 1.

In Lemma 6.3.1 we gave expressions for the amplitudes, and in x, y coordinates
they read:

ΦC(x, y) = cdc
x
rc
y
l

∑

k≥0

(
x

k

)(
y

k

)(
−1− p

p

)k
= cdc

x
rc
y
l fm(x, y).
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where m = (1 − p)/p ≥ 0 and where we extend the definition of fm for non-
integer m. As these amplitudes can become complex valued, we now consider the
probabilities

|ΦC(x, y)|2 = |cdcxrcyl |2 (fm(x, y))2 ,

a distinction that was irrelevant for the Hadamard walk. For |ΦC(x, y)|2 to be
integer, we assume that the coin matrix is such that m = (1 − p)/p is integer,
i.e. p = 1

1+m
with m ∈ N. This can not be achieved by scaling the entire matrix

because m is invariant under such scalings. The complex phases α, β, γ do not
influence |ΦC(x, y)|2, hence the most general form of the matrix we can consider
to obtain integer probabilities is the unitary matrix

Cm =

(√
1/(1 +m)

√
m/(1 +m)√

m/(1 +m) −
√

1/(1 +m)

)
for m ∈ Z, m ≥ 0,

where have set α = β = 0 and γ = π such that C1 = H, but any other setting of
phases would be equally valid. If we want to scale the matrix by a factor λ such
that |cdcxrcyl |2 is integer, then this requires λ =

√
n(1 +m) for any integer n ≥ 1.

This gives a scaled matrix

√
n(1 +m)Cm =

√
n

(
1
√
m√

m −1

)
, (6.5)

and for this scaled matrix, |cdcxrcyl |2 = mnx+y+1. By Claim 6.3.4 we have for this
scaled coin matrix that

|ΦC(l · pn + x, q · pn + y)|2 ≡ n(l+q)(pn−1)−1

m
|ΦC(l, q)|2 |ΦC(x, y)|2 mod p

≡ 1

mn
|ΦC(l, q)|2 |ΦC(x, y)|2 mod p,

where we used Fermat’s little theorem in the second step. Let us now see which
fractals appear when the values |Φ(x, y)|2 are colored according to their divisibility
by p. For m = 1 and n = 1 we recover the exact same rules as for the Hadamard
matrix. This class also includes the commonly used coin operator

1√
2

(
1 i
i 1

)
.

When n or m is divisible by p, then |Φ(x, y)|2 is as well so there is no fractal.
When both n,m are non-zero modulo p then we have |Φ(x, y)|2 ≡ 0 mod p if and
only if fm(x, y) ≡ 0 mod p, independent of n. Now we can apply the quantum
version of Lucas’ theorem. By Corollary 6.3.5, fm(x, y) ≡ 0 mod p if and only
if there is an i such that fm(xi, yi) ≡ 0 mod p, where xi, yi are the base-p digits
of x, y.
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To find the fractal generated by a quantum walk with coin operator given
by (6.5) for some n,m that are non-zero modulo p, we compute fm(x, y) mod p
for only 0 ≤ x, y < p to find what we call the base image. Figure 6.9 shows these
base images for several values of m and p. From this the fractal can be con-
structed in a simple recursive way, shown in Figure 6.10, resulting in the fractals
shown in Figure 6.11. This recursive method is valid because each recursion step
corresponds to adding another digit to x and y, and as mentioned above, a pixel
will be white if and only if there are digits (i.e. a recursion step) in which the
region corresponding to those digits is white.

6.3.6 Other properties of the Hadamard triangle

One can add the probabilities in each row of the triangle and this sum will always
be equal to one (or 2t after rescaling) since they are probabilities. When summing
the amplitudes in a row one finds the sums 1, 2, 2, 4, 4, 8, 8, .... To see why, define
the column vector Ψ(t) = (Ψ↑(t) Ψ↓(t))

T where Ψ↑(t) is the sum of the up
amplitudes at time t, i.e. Ψ↑(t) =

∑t
n=−t ψ↑(n, t), and similar for Ψ↓(t). Looking

at the definition of the Hadamard walk, we see Ψ(t+1) = HΨ(t). Since H2 = Id,
the sum over all amplitudes only depends on the parity of t. After rescaling H
by a factor

√
2, starting in |0, ↑〉 gives

Ψ′↑(t) + Ψ′↓(t) =

{
2t/2 t even,
2(t+1)/2 t odd.

Pascal’s triangle has the property that summing over the so-called shallow di-
agonals yields the Fibonacci sequence. The n’th shallow diagonal dn corresponds
to the sum dn =

∑bn/2c
c=0

(
n−c
c

)
, and by

(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
one obtains a recur-

sion relation dn = dn−1 + dn−2, i.e., the Fibonacci sequence. We can consider
the same diagonals in our Hadamard triangle. In particular we will consider the
same numbers that gave rise to the Sierpinski triangle, namely down components
indicated by the blue numbers in Figure 6.6. The number at row r and column c
is given by

T (r, c) = (−1)r−c
min(c,r−c)∑

k=0

(
c

k

)(
r − c
k

)
(−1)k.

Unlike the case of Pascal’s triangle, the direction of the diagonal matters. We
denote the � sums by An and the � sums by Bn, defined as

An =
∑

c≥0 T (n− c, c) and Bn =
∑

c≥0 T (n− c, n− 2c).

Using the same property of binomial coefficients, we find

An = −An−1 + An−2 + 2An−3 and Bn = Bn−1 −Bn−2 + 2Bn−3.
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Figure 6.9: Base images: plots of fm(x, y) mod p for 0 ≤ x, y < p for different
values of m and p.

=⇒ =⇒ =⇒

Figure 6.10: Construction of the fractal from a base image from Figure 6.9.
At each step, every black pixel is replaced by a copy of the base image. Infinite
recursion steps yield the fractal. Some of these fractals are shown in Figure 6.11.
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Figure 6.11: Fractals obtained from general 1-dimensional quantum walks plot-
ted modulo a prime. The number m on the left represents the coin class, where
m = 1 includes the Hadamard coin.
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6.4 Quantum signature
We have seen that different versions of the Sierpinski triangle can appear when
the scaled classical random walk probabilities are plotted modulo a prime. The
quantum walk, however, can also give rise to the carpet.

Let us argue that a more general classical walk will only give the Sierpinski
triangle and not the carpet. A random walk with probabilities p, 1 − p of mov-
ing right and left can be scaled to integer probabilities precisely when p ∈ Q.
Therefore assume p = u/(v + w) with u, v, w ∈ N, then scaling all values by
(v + w)n will yield a triangle with the integer

(
r
c

)
vcwr−c at row r and column c.

When v or w is divisible by p, then all these values are zero modulo p and hence
there is no fractal. On the other hand, when both v, w are non-zero modulo p
then

(
r
c

)
vcwr−c is zero modulo p if and only if

(
r
c

)
is zero modulo p. The fractal

will therefore always be the Sierpinski triangle and never the Sierpinski carpet.
It can be argued that a more fair comparison would allow the classical walk to
take place on the directed graph shown in Figure 6.5, since that is the underlying
graph of the quantum walk. Doing so is easily seen to be equivalent to changing
the coin matrix to one that is stochastic as opposed to unitary, and one then finds
the function fm (Definition 6.3.3) but now for m < 0 and with some additional
prefactors. An exhaustive search through all valid stochastic matrices, however,
reveals that the carpet can not be found in the probabilities modulo 3. When
the classical numbers are taken modulo higher primes, one does obtain fractals
different from the Sierpinski triangle, but the carpet is not observed.

The appearance of the Sierpinski carpet can therefore be considered a sign of
the quantum nature of the probability distribution.
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Samenvatting

In dit proefschrift worden resultaten gepresenteerd voor verscheidene quantum en
stochastische processen.

Hoofdstuk 2 In dit hoofdstuk bekijken we nonlokale spellen. Dit zijn theoretis-
che spellen waarmee de verschillen tussen de klassieke en quantummechanische
wereld kunnen worden aangetoond. We onderzoeken hoe ver de klassieke winkans
kan afwijken van de verstrengelde winkans; de kans om te winnen met het gebruik
van het quantummechanische verschijnsel verstrengeling. De hoofdvraag is of er
een familie van t-speler XOR spellen bestaat waarvoor de verstrengelde winkans
1 is, maar waarvoor de klassieke winkans zo laag mogelijk is, voor vaste t. Het
beantwoorden van deze vraag heeft belangrijke consequenties op het gebied van
communicatiecomplexiteit, omdat een positief antwoord betekent dat er een on-
begrensde scheiding is tussen de benodigde communicatie in het klassieke en het
quantum geval. Onze bijdrage aan deze vraag is het identificeren van algemene
klassen spellen waarvoor het antwoord op de vraag negatief is. Van de eerste
klasse spellen die we bekijken was het al bekend dat ze geen positief antwoord
op de hoofdvraag konden geven: XOR spellen waarvoor er een quantum strategie
bestaat die een winkans van 1 behaalt met een zogeheten Schmidt-toestand. We
breiden dit uit naar mod-m spellen en we laten zien dat de klassieke winkans hi-
ervan altijd minimaal 1

m
+ m−1

m
t1−t is. De tweede klasse spellen zijn de vrije XOR

spellen, waarbij de kansen van de vragen die de spelers ontvangen onafhankelijk
van elkaar zijn verdeeld. Voor deze spellen tonen we aan dat β(G) ≥ β∗(G)2t ,
waar β(G) en β∗(G) de zogeheten klassieke en verstrengelde bias zijn. Als laatste
bekijken we twee-speler unieke spellen, en bewijzen we dat als de verstrengelde
winkans 1−ε is, dan is de klassieke winkans minimaal 1−O(

√
ε log k) waarbij k het

aantal antwoorden is. In onze bewijzen gebruiken we semidefinite-programming
technieken en hypergraaf normen.
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Hoofdstuk 3 Het volgende hoofdstuk gaat over quasirandom eigenschappen
van transitiematrices van grafen, en een quantumgeneralisatie ervan. Quasiran-
dom eigenschappen zijn eigenschappen die typische random grafen hebben. Twee
van dat soort eigenschappen zijn expansie en uniformiteit, en deze kunnen worden
gekwantificeerd door de afstand van de transitiematrix tot de matrix van de com-
plete graaf, onder verschillende normen. Voor dichte grafen (met veel kanten) zijn
expansie en uniformiteit equivalent, aangetoond in 1989 door Chung, Graham en
Wilson. Recent is deze equivalentie uitgebreid door Conlon en Zhao, die hebben
laten zien dat het ook voor ijle grafen geldt, mits deze knoop-transitief zijn. In
dit hoofdstuk bekijken we een quantum generalisatie van deze resultaten, waarbij
de transitiematrix van een graaf vervangen wordt door een quantum kanaal. We
bewijzen dat voor irreducibel covariante kanalen, expansie equivalent is met een
analoog van uniformiteit, wat een uitbreiding is van het resultaat van Conlon
en Zhao. Verder laten we ook zien dat in zowel het klassieke als het quantum
geval, de commutatieve en niet-commutative Grothendieck ongelijkheden, respec-
tievelijk, de best mogelijke constanten opleveren.

Hoofdstuk 4 Na het bestuderen van eigenschappen van random grafen gaan
we in dit hoofdstuk verder met het probleem van het genereren van een random
graaf. Het genereren van uniforme random simpele grafen waarvan de graden een
machtsverband vertonen is een niet-triviaal probleem. Als eerste bekijken we een
methode om uniforme simpele grafen te genereren door middel van een aangepaste
versie van het zogeheten configuratiemodel, samen met een Markovketenmeth-
ode. We testen de convergentie van die algoritme numeriek, in de context van
de aanwezigheid van kleine subgrafen, en we schatten dat het algoritme maxi-
maal O(n log2 n) stappen kost. Daarnaast bekijken we het aantal driehoeken in
uniforme random grafen en vergelijken we dit met het erased-configuratiemodel,
waarin de parallelle kanten uit het configuratiemodel worden weggehaald. Door
middel van simulaties en heuristieke argumenten schatten we dat het aantal
driehoeken in het erased-configuratiemodel groter is dan het aantal driehoeken
in een uniforme random graaf, als het aantal knopen groot genoeg is. Als laatste
bekijken we bestaande bewijstechnieken die gebruik maken van de bestudeerde
Markovketenmethode. We beredeneren dat deze technieken niet bruikbaar zijn
als het machtsverband van de graden een exponent heeft tussen 2 en 3.

Hoofdstuk 5 In dit hoofdstuk bekijken we een klasse stochastische processen
op grafen, waaronder het discrete Bak-Sneppen proces en verschillende versies
van het contact proces. Deze processen worden geparametriseerd door een kans
0 ≤ p ≤ 1 die een lokale update regel beschrijft. In numerieke simulaties is het
meteen duidelijk dat deze processen faseovergangen hebben als p van 0 naar 1
gaat, maar het is lastig om hier analytische uitspraken over te doen. In dit hoofd-
stuk bekijken we machtsreeksen van verscheidene functies van p, zoals de overlev-
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ingskans of het verwachte aantal stappen om een zekere toestand te bereiken. We
bewijzen dat de coëfficiënten van deze reeksen stabiliseren als de grootte van het
systeem groeit. Dit fenomeen is al eerder geobserveerd binnen de natuurkunde,
maar was nog niet bewezen. We tonen aan dat voor lokale gebeurtenissen die
minimaal een afstand d tot elkaar hebben er geldt dat cor(A,B) = O(pd). De sta-
bilisatie maakt het mogelijk om coëfficiënten te berekenen van willekeurig grote
systemen, en deze kunnen vervolgens met bekende methoden worden geanaly-
seerd.

Hoofdstuk 6 Het laatste hoofdstuk gaat over een quantum versie van de wel-
bekende driehoek van Pascal. Als de getallen in de driehoek van Pascal geplot
worden modulo 2, dan verschijnt er een fractal die bekend staat als de Sierpinski
driehoek. We bewijzen dat deze en algemenere fractals verschijnen als de getallen
modulo priemmachten worden bekeken. De getallen kunnen ook worden opgevat
als herschaalde kansen van een random wandeling op een lijn. De quantum versie
van de driehoek verkrijgen we door deze random wandeling te vervangen door de
zogeheten Hadamard wandeling. We bewijzen dat als de getallen in deze quantum
driehoek modulo 3 worden geplot, er een hele andere fractal ontstaat, namelijk
het tapijt van Sierpinski. Verder identificeren we een algemene klasse quantum
wandelingen waarvoor dit fenomeen optreedt.





Abstract

In this dissertation we present results for various quantum and stochastic pro-
cesses.

Chapter 2 In this chapter we bound separations between the entangled and
classical values for several classes of nonlocal t-player games. Our motivating
question is whether there is a family of t-player XOR games for which the entan-
gled bias is 1 but for which the classical bias goes down to 0, for fixed t. Answer-
ing this question would have important consequences in the study of multi-party
communication complexity, as a positive answer would imply an unbounded sep-
aration between randomized communication complexity with and without entan-
glement. Our contribution to answering the question is identifying several general
classes of games for which the classical bias can not go to zero when the entan-
gled bias stays above a constant threshold. This rules out the possibility of using
these games to answer our motivating question. A previously studied set of XOR
games, known not to give a positive answer to the question, are those for which
there is a quantum strategy that attains value 1 using a so-called Schmidt state.
We generalize this class to mod-m games and show that their classical value is
always at least 1

m
+ m−1

m
t1−t. Secondly, for free XOR games, in which the input

distribution is of product form, we show β(G) ≥ β∗(G)2t where β(G) and β∗(G)
are the classical and entangled biases of the game respectively. Finally we look
at two-player unique games and show that if the entangled value is 1 − ε then
the classical value is at least 1−O(

√
ε log k) where k is the number of outputs in

the game. Our proofs use semidefinite-programming techniques and hypergraph
norms.

Chapter 3 The next chapter studies quasirandom properties of the natural
transition matrix associated to a graph, and extends this to the quantum realm.
Quasirandom properties are properties possessed by typical random graphs.
These properties can be quantified by the distance of the transition matrix to
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that of the complete graph, using different norms. For dense graphs, two such
properties known as spectral expansion and uniformity were shown to be equiv-
alent in seminal 1989 work of Chung, Graham, and Wilson. Recently, Conlon
and Zhao extended this equivalence to the case of sparse vertex transitive graphs
using the famous Grothendieck inequality. Here we generalize these results to
the quantum case, where a transition matrix becomes a quantum channel. In
particular, we show that for irreducibly covariant quantum channels, expan-
sion is equivalent to a natural analog of uniformity for graphs, generalizing the
result of Conlon and Zhao. Moreover, we show that in both the classical and
quantum case, the commutative and non-commutative Grothendieck inequalities,
respectively, yield the best-possible constants.

Chapter 4 Having studied properties of typical random graphs, the next chap-
ter concerns the task of sampling random graphs. Sampling uniform simple
graphs with power-law degree distributions with degree exponent τ ∈ (2, 3) is
a non-trivial problem. Firstly, we propose a method to sample uniform simple
graphs that uses a constrained version of the so-called configuration model to-
gether with a Markov Chain switching method. We test the convergence of this
algorithm numerically in the context of the presence of small subgraphs and we
estimate the mixing time to be at most O(n log2 n). Secondly, we compare the
number of triangles in uniform random graphs with the number of triangles in the
erased configuration model where double edges and self-loops of the configuration
model are removed. Using simulations and heuristic arguments, we conjecture
that the number of triangles in the erased configuration model is larger than the
number of triangles in the uniform random graph, provided that the graph is
sufficiently large. Lastly we argue that certain switch-chain-based proof methods
can not be used in the regime τ ∈ (2, 3) due to the possibility of creating many
triangles with a single switch.

Chapter 5 In this chapter we study a class of random processes on graphs
that include the discrete Bak-Sneppen (DBS) process and the several versions
of the contact process (CP), with a focus on the former. These processes are
parametrized by a probability 0 ≤ p ≤ 1 that controls a local update rule.
Numerical simulations reveal a phase transition when p goes from 0 to 1, but
analytically little is known about the phase transition threshold, even for one-
dimensional chains. In this chapter we consider a power-series approach based on
representing certain quantities, such as the survival probability or the expected
number of steps per site to reach the steady state, as a power-series in p. We
prove that the coefficients of those power series stabilize as the number of vertices
grows, for various families of graphs. This phenomenon has been used in the
physics community but was not yet proven. We show that for local events A,B
of which the support is a distance d apart we have cor(A,B) = O(pd). The
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stabilization allows for the (exact) computation of coefficients for arbitrary large
systems which can then be analyzed using the wide range of existing methods of
power series analysis.

Chapter 6 In the final chapter we consider a quantum version of Pascal’s trian-
gle. Pascal’s triangle is a well-known triangular array of numbers and when these
numbers are plotted modulo 2, a fractal known as the Sierpinski triangle appears.
We first prove the appearance of more general fractals when Pascal’s triangle is
considered modulo prime powers. The numbers in Pascal’s triangle can be ob-
tained by scaling the probabilities of the simple symmetric random walk on the
line. We study a quantum version of Pascal’s triangle by replacing the random
walk by the quantum walk known as the Hadamard walk. We show that when
the amplitudes of the Hadamard walk are scaled to become integers and plotted
modulo three, a fractal known as the Sierpinski carpet emerges and we provide
a proof of this using Lucas’s theorem. We furthermore give a general class of
quantum walks for which this phenomenon occurs.
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