7 research outputs found

    Un flou adaptatif en fonction du point de focalisation pour réduire la fatigue visuelle en vision stéréoscopique

    No full text
    National audienceDepuis quelques années, de plus en plus de contenus stéréoscopiques sont disponibles au grand public. Si l'impression de relief est remarquable, il n'en reste pas moins que la vision artificielle stéréoscopique demeure fatigante. Une cause de cette fatigue est le conflit accommodation convergence. Dans cet article, nous proposons d'ajouter un flou dans la vision périphérique (le point de focalisation étant déterminé avec un eye-tracking) pour limiter ce conflit et donc limiter la fatigue visuelle

    An artificial remote tactile device with 3D depth-of-field sensation

    Get PDF

    Improved Displaying System for HMD with Focusing on Gazing Point Using Photographed Panorama Light Field

    Get PDF
    We improve a displaying system for HMD which displays a photographed image focused on user’s gazing point. By showing an image focused on user’s gazing point, we’ve displayed image which is more similar to the human view. The refocused image is generated from a rendered and trimmed panorama light field image. Our system is realized by displaying a refocus image according to the depth information of the gazing point obtained from the HMD having the gaze tracking. By combining our system with the depth estimation method, we generated a consistent depth map between multiple light fields. This makes our system possible to display a more correct image matching the gazing point. We also experimented on whether we can augment the depth perception of the user by displaying images which focused on gazing point, and show that we can extend the depth perception of the user like ordinary displays with gaze detection

    직접 볼륨 렌더링에서 점진적 렌즈 샘플링을 사용한 피사계 심도 렌더링

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2021. 2. 신영길.Direct volume rendering is a widely used technique for extracting information from 3D scalar fields acquired by measurement or numerical simulation. To visualize the structure inside the volume, the voxels scalar value is often represented by a translucent color. This translucency of direct volume rendering makes it difficult to perceive the depth between the nested structures. Various volume rendering techniques to improve depth perception are mainly based on illustrative rendering techniques, and physically based rendering techniques such as depth of field effects are difficult to apply due to long computation time. With the development of immersive systems such as virtual and augmented reality and the growing interest in perceptually motivated medical visualization, it is necessary to implement depth of field in direct volume rendering. This study proposes a novel method for applying depth of field effects to volume ray casting to improve the depth perception. By performing ray casting using multiple rays per pixel, objects at a distance in focus are sharply rendered and objects at an out-of-focus distance are blurred. To achieve these effects, a thin lens camera model is used to simulate rays passing through different parts of the lens. And an effective lens sampling method is used to generate an aliasing-free image with a minimum number of lens samples that directly affect performance. The proposed method is implemented without preprocessing based on the GPU-based volume ray casting pipeline. Therefore, all acceleration techniques of volume ray casting can be applied without restrictions. We also propose multi-pass rendering using progressive lens sampling as an acceleration technique. More lens samples are progressively used for ray generation over multiple render passes. Each pixel has a different final render pass depending on the predicted maximum blurring size based on the circle of confusion. This technique makes it possible to apply a different number of lens samples for each pixel, depending on the degree of blurring of the depth of field effects over distance. This acceleration method reduces unnecessary lens sampling and increases the cache hit rate of the GPU, allowing us to generate the depth of field effects at interactive frame rates in direct volume rendering. In the experiments using various data, the proposed method generated realistic depth of field effects in real time. These results demonstrate that our method produces depth of field effects with similar quality to the offline image synthesis method and is up to 12 times faster than the existing depth of field method in direct volume rendering.직접 볼륨 렌더링(direct volume rendering, DVR)은 측정 또는 수치 시뮬레이션으로 얻은 3차원 공간의 스칼라 필드(3D scalar fields) 데이터에서 정보를 추출하는데 널리 사용되는 기술이다. 볼륨 내부의 구조를 가시화하기 위해 복셀(voxel)의 스칼라 값은 종종 반투명의 색상으로 표현된다. 이러한 직접 볼륨 렌더링의 반투명성은 중첩된 구조 간 깊이 인식을 어렵게 한다. 깊이 인식을 향상시키기 위한 다양한 볼륨 렌더링 기법들은 주로 삽화풍 렌더링(illustrative rendering)을 기반으로 하며, 피사계 심도(depth of field, DoF) 효과와 같은 물리 기반 렌더링(physically based rendering) 기법들은 계산 시간이 오래 걸리기 때문에 적용이 어렵다. 가상 및 증강 현실과 같은 몰입형 시스템의 발전과 인간의 지각에 기반한 의료영상 시각화에 대한 관심이 증가함에 따라 직접 볼륨 렌더링에서 피사계 심도를 구현할 필요가 있다. 본 논문에서는 직접 볼륨 렌더링의 깊이 인식을 향상시키기 위해 볼륨 광선투사법에 피사계 심도 효과를 적용하는 새로운 방법을 제안한다. 픽셀 당 여러 개의 광선을 사용한 광선투사법(ray casting)을 수행하여 초점이 맞는 거리에 있는 물체는 선명하게 표현되고 초점이 맞지 않는 거리에 있는 물체는 흐리게 표현된다. 이러한 효과를 얻기 위하여 렌즈의 서로 다른 부분을 통과하는 광선들을 시뮬레이션 하는 얇은 렌즈 카메라 모델(thin lens camera model)이 사용되었다. 그리고 성능에 직접적으로 영향을 끼치는 렌즈 샘플은 최적의 렌즈 샘플링 방법을 사용하여 최소한의 개수를 가지고 앨리어싱(aliasing)이 없는 이미지를 생성하였다. 제안한 방법은 기존의 GPU 기반 볼륨 광선투사법 파이프라인 내에서 전처리 없이 구현된다. 따라서 볼륨 광선투사법의 모든 가속화 기법을 제한없이 적용할 수 있다. 또한 가속 기술로 누진 렌즈 샘플링(progressive lens sampling)을 사용하는 다중 패스 렌더링(multi-pass rendering)을 제안한다. 더 많은 렌즈 샘플들이 여러 렌더 패스들을 거치면서 점진적으로 사용된다. 각 픽셀은 착란원(circle of confusion)을 기반으로 예측된 최대 흐림 정도에 따라 다른 최종 렌더링 패스를 갖는다. 이 기법은 거리에 따른 피사계 심도 효과의 흐림 정도에 따라 각 픽셀에 다른 개수의 렌즈 샘플을 적용할 수 있게 한다. 이러한 가속화 방법은 불필요한 렌즈 샘플링을 줄이고 GPU의 캐시(cache) 적중률을 높여 직접 볼륨 렌더링에서 상호작용이 가능한 프레임 속도로 피사계 심도 효과를 렌더링 할 수 있게 한다. 다양한 데이터를 사용한 실험에서 제안한 방법은 실시간으로 사실적인 피사계 심도 효과를 생성했다. 이러한 결과는 우리의 방법이 오프라인 이미지 합성 방법과 유사한 품질의 피사계 심도 효과를 생성하면서 직접 볼륨 렌더링의 기존 피사계 심도 렌더링 방법보다 최대 12배까지 빠르다는 것을 보여준다.CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Dissertation Goals 5 1.3 Main Contributions 6 1.4 Organization of Dissertation 8 CHAPTER 2 RELATED WORK 9 2.1 Depth of Field on Surface Rendering 10 2.1.1 Object-Space Approaches 11 2.1.2 Image-Space Approaches 15 2.2 Depth of Field on Volume Rendering 26 2.2.1 Blur Filtering on Slice-Based Volume Rendering 28 2.2.2 Stochastic Sampling on Volume Ray Casting 30 CHAPTER 3 DEPTH OF FIELD VOLUME RAY CASTING 33 3.1 Fundamentals 33 3.1.1 Depth of Field 34 3.1.2 Camera Models 36 3.1.3 Direct Volume Rendering 42 3.2 Geometry Setup 48 3.3 Lens Sampling Strategy 53 3.3.1 Sampling Techniques 53 3.3.2 Disk Mapping 57 3.4 CoC-Based Multi-Pass Rendering 60 3.4.1 Progressive Lens Sample Sequence 60 3.4.2 Final Render Pass Determination 62 CHAPTER 4 GPU IMPLEMENTATION 66 4.1 Overview 66 4.2 Rendering Pipeline 67 4.3 Focal Plane Transformation 74 4.4 Lens Sample Transformation 76 CHAPTER 5 EXPERIMENTAL RESULTS 78 5.1 Number of Lens Samples 79 5.2 Number of Render Passes 82 5.3 Render Pass Parameter 84 5.4 Comparison with Previous Methods 87 CHAPTER 6 CONCLUSION 97 Bibliography 101 Appendix 111Docto

    Doctor of Philosophy in Computing

    Get PDF
    dissertationThe aim of direct volume rendering is to facilitate exploration and understanding of three-dimensional scalar fields referred to as volume datasets. Improving understanding is done by improving depth perception, whereas facilitating exploration is done by speeding up volume rendering. In this dissertation, improving both depth perception and rendering speed is considered. The impact of depth of field (DoF) on depth perception in direct volume rendering is evaluated by conducting a user study in which the test subjects had to choose which of two features, located at different depths, appeared to be in front in a volume-rendered image. Whereas DoF was expected to improve perception in all cases, the user study revealed that if used on the back feature, DoF reduced depth perception, whereas it produced a marked improvement when used on the front feature. We then worked on improving the speed of volume rendering on distributed memory machines. Distributed volume rendering has three stages: loading, rendering, and compositing. In this dissertation, the focus is on image compositing, more specifically, trying to optimize communication in image compositing algorithms. For that, we have developed the Task Overlapped Direct Send Tree image compositing algorithm, which works on both CPU- and GPU-accelerated supercomputers, which focuses on communication avoidance and overlapping communication with computation; the Dynamically Scheduled Region-Based image compositing algorithm that uses spatial and temporal awareness to efficiently schedule communication among compositing nodes, and a rendering and compositing pipeline that allows both image compositing and rendering to be done on GPUs of GPU-accelerated supercomputers. We tested these on CPU- and GPU-accelerated supercomputers and explain how these improvements allow us to obtain better performance than image compositing algorithms that focus on load-balancing and algorithms that have no spatial and temporal awareness of the rendering and compositing stages

    Fortgeschrittene Entrauschungs-Verfahren und speicherlose Beschleunigungstechniken für realistische Bildsynthese

    Get PDF
    Stochastic ray tracing methods have become the industry's standard for today's realistic image synthesis thanks to their ability to achieve a supreme degree of realism by physically simulating various natural phenomena of light and cameras (e.g. global illumination, depth-of-field, or motion blur). Unfortunately, high computational cost for more complex scenes and image noise from insufficient simulations are major issues of these methods and, hence, acceleration and denoising are key components in stochastic ray tracing systems. In this thesis, we introduce two new filtering methods for advanced lighting and camera effects, as well as a novel approach for memoryless acceleration. In particular, we present an interactive filter for global illumination in the presence of depth-of-field, and a general and robust adaptive reconstruction framework for high-quality images with a wide range of rendering effects. To address complex scene geometry, we propose a novel concept which models the acceleration structure completely implicit, i.e. without any additional memory cost at all, while still allowing for interactive performance. Our contributions advance the state-of-the-art of denoising techniques for realistic image synthesis as well as the field of memoryless acceleration for ray tracing systems.Stochastische Ray-Tracing Methoden sind heutzutage der Industriestandard für realistische Bildsynthese, da sie einen hohen Grad an Realismus erzeugen können, indem sie verschiedene natürliche Phänomene (z.B. globale Beleuchtung, Tiefenunschärfe oder Bewegungsunschärfe) physikalisch korrekt simulieren. Offene Probleme dieser Verfahren sind hohe Rechenzeit für komplexere Szenen sowie Bildrauschen durch unzulängliche Simulationen. Demzufolge sind Beschleunigungstechniken und Entrauschungsverfahren essentielle Komponenten in stochastischen Ray-Tracing-Systemen. In dieser Arbeit stellen wir zwei neue Filter-Methoden für erweiterte Beleuchungs- und Kamera-Effekte sowie ein neuartiges Verfahren für eine speicherlose Beschleunigungsstruktur vor. Im Detail präsentieren wir einen interaktiven Filter für globale Beleuchtung in Kombination mit Tiefenunschärfe und einen generischen, robusten Ansatz für die adaptive Rekonstruktion von hoch-qualitativen Bildern mit einer großen Auswahl an Rendering-Effekten. Für das Problem hoher geometrischer Szenen-Komplexität demonstrieren wir ein neuartiges Konzept für die implizierte Modellierung der Beschleunigungsstruktur, welches keinen zusätzlichen Speicher verbraucht, aber weiterhin interaktive Laufzeiten ermöglicht. Unsere Beiträge verbessern sowohl den aktuellen Stand von Entrauschungs-Verfahren in der realistischen Bildsynthese als auch das Feld der speicherlosen Beschleunigungsstrukturen für Ray-Tracing-Systeme
    corecore