
INVESTIGATING DEPTH OF FIELD IN VOLUME

RENDERING AND DISTRIBUTED VOLUME

RENDERING ON HIGH PERFORMANCE

COMPUTING SYSTEMS

by

Pascal Grosset

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

August 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276267013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © Pascal Grosset 2016

All Rights Reserved

The U n i v e r s i t y o f Ut ah G r a d u a t e S c ho o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Pascal Grosset

has been approved by the following supervisory committee members:

Charles Hansen Chair 5-5-2016
Date Approved

Mary Hall Member 4-25-2015
Date Approved

Christopher Johnson Member 4-25-2016
Date Approved

Valerio Pascucci Member 4-25-2016
ate pproved

Georges-Pierre Bonneau Member 4-25-2016
ate pproved

and by Ross Whitaker Chair/Dean of

the Department/College/School o f ___________________Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

The aim of direct volume rendering is to facilitate exploration and understand­

ing of three-dimensional scalar fields referred to as volume datasets. Improving

understanding is done by improving depth perception, whereas facilitating explo­

ration is done by speeding up volume rendering. In this dissertation, improving

both depth perception and rendering speed is considered. The impact of depth

of field (DoF) on depth perception in direct volume rendering is evaluated by

conducting a user study in which the test subjects had to choose which of two

features, located at different depths, appeared to be in front in a volume-rendered

image. Whereas DoF was expected to improve perception in all cases, the user study

revealed that if used on the back feature, DoF reduced depth perception, whereas it

produced a marked improvement when used on the front feature. We then worked

on improving the speed of volume rendering on distributed memory machines.

Distributed volume rendering has three stages: loading, rendering, and composit­

ing. In this dissertation, the focus is on image compositing, more specifically, trying

to optimize communication in image compositing algorithms. For that, we have

developed the Task Overlapped Direct Send Tree image compositing algorithm,

which works on both CPU- and GPU-accelerated supercomputers, which focuses

on communication avoidance and overlapping communication with computation;

the Dynamically Scheduled Region-Based image compositing algorithm that uses

spatial and temporal awareness to efficiently schedule communication among

compositing nodes, and a rendering and compositing pipeline that allows both

image compositing and rendering to be done on GPUs of GPU-accelerated super­

computers. We tested these on CPU- and GPU-accelerated supercomputers and

explain how these improvements allow us to obtain better performance than image

compositing algorithms that focus on load-balancing and algorithms that have no

spatial and temporal awareness of the rendering and compositing stages.

CONTENTS

A B ST R A C T .. iii

LIST OF F IG U R E S .. vii

LIST OF TABLES .. x

NOTATION AND SY M B O L S... xi

A CKN OW LEDGM EN TS.. xiii

CHAPTERS

1...... IN TRO D U CTIO N ... 1
1.1 M otivation.. 1
1.2 Evaluation of Depth of Field for Depth Perception in Direct Volume

R end ering.. 2
1.3 Image Compositing for OpenMP/Hybrid MPI Parallelism on CPU-

Enhanced Supercomputers .. 3
1.4 Distributed Volume Rendering Pipeline With Image Compositing

on GPU-Enhanced Supercomputers .. 4
1.5 Dynamically Scheduled Region-Based Image Com positing................ 5
1.6 Thesis Statem ent.. 5
1.7 Dissertation Contributions.. 6
1.8 Outline... 7

2. RELATED W O R K ... 9

2.1 Direct Volume Rendering.. 9
2.2 Depth Perception C ues... 9
2.3 Depth of Field in Computer Graphics... 10
2.4 Depth of Field Implementation... 11
2.5 Perceptive Studies for Depth of Field ... 11
2.6 Distributed Volume R endering... 12
2.7 Image Compositing A lgorithm s... 12
2.8 Image Compositing With Spatial Aw areness.. 14
2.9 Image Compositing on Specific Hardware.. 15
2.10 Rendering and Compositing on the G P U .. 15

3. EVALUATING DEPTH OF FIELD FOR DEPTH PERCEPTION IN DVR 23
3.1 Introduction... 23

3.1.1 Main Contributions.. 24
3.2 Depth of Field ... 24

3.3 Depth of Field for D V R .. 25
3.4 User Study Setup 25

3.4.1 Stimuli Description 26
3.4.2 Environment Setup 28
3.4.3 Apparatus .. 28
3.4.4 Participants and Design 28
3.4.5 Experimental Procedure 29

3.5 Static Experiment 30
3.5.1 Results 31
3.5.2 Discussion 31

3.6 Dynamic Experiment 34
3.6.1 Results 34
3.6.2 Discussion 34

3.7 Guidelines ... 35
3.8 Summary 36

4. TASK-OVERLAPPED DIRECT SEND TREE IMAGE COM POSITING
FOR HYBRID MPI PA RA LLELISM 45
4.1 Introduction 45

4.1.1 Main Contribution .. 46
4.2 Methodology... ... 46

4.2.1 A lgorithm .. 46
4.2.2 Theoretical C o s t 50

4.3 Testing and Results ... 52
4.3.1 Test S e tu p .. 52
4.3.2 Scalability on Stampede 53
4.3.3 Scalability on E d iso n 55
4.3.4 Stampede versus Edison 56

4.4 Summary 56

5. DISTRIBUTED VOLUME RENDERING WITH COM POSITING ON
GPU-ENHANCED SU PER C O M PU TER S... ... 66
5.1 Introduction 66

5.1.1 Main Contribution .. 67
5.2 Methodology... ... 68

5.2.1 Workflow for Rendering on the G P U 68
5.2.2 Compositing Algorithm 70

5.3 Testing and Results ... 71
5.3.1 Test S e tu p .. 71
5.3.2 Scaling on Piz D aint.. ... 72
5.3.3 Scaling Across M achines... ... 73

5.4 Summary 74

6. DYNAMICALLY SCHEDULED REGION-BASED IMAGE
C O M P O SIT IN G 78
6.1 Introduction 78

6.1.1 Main Contribution.. 78
v

6.2 Methodology... ...79
6.2.1 Compositing A lg o rith m81
6.2.2 Choosing Number of Regions.. ...83

6.3 Testing and Results...85
6.3.1 Experiment Setup... ...85
6.3.2 Scheduler C o s t86
6.3.3 Scaling Stu dies... ...86

6.4 Sum m ary.. ...87

7. CONCLUSION AND FUTURE W O R K ...94

APPENDIX: PU BLICA TIO N S... ...96

R EFER EN C ES... ...98

vi

LIST OF FIGURES

1.1 Categorization of depth cues.. 8

2.1 Splatting for DVR. The arrows show the direction each sample is
splatted onto an image plane... 17

2.2 Texture-based volume rendering. The top view is shown on the left
and the camera aligned slices are shown on the right................................ 17

2.3 Rays are sent through each pixel of the image plane and blended in a
back-to-front or front-to-back manner... 17

2.4 Schematic representation of the human eye.. 18

2.5 Geometric setup of the DVR implementation of DoF. 18

2.6 Types of parallel rendering: left diagram is sort-first; middle diagram
is sort-middle, and right diagram is sort-last.. 18

2.7 Parallel direct send: the green rectangle shows the region each process
is authoritative on. The arrows show the direction of the image
exchanges. The gray rectangle indicates the region for which the
process has data that it is not authoritative on, and will be sending out. 19

2.8 Tree compositing: the green rectangle shows the region each process
is authoritative on. The arrows show the direction of the image
exchanges. The gray rectangle indicates the region for which the
process has data that it is not authoritative on, and will be sending out. 19

2.9 Binary swap: the green rectangle shows the region each process
is authoritative on. The arrows show the direction of the image
exchanges. The gray rectangle indicates the region for which the
process has data that it is not authoritative on, and will be sending
out, and the white sections indicates regions for which a process has
no data... 20

2.10 Radix-k: the green rectangle shows the region each process is author­
itative on. The arrows show the direction of the image exchanges.
The gray rectangle indicates the region for which the process has data
that it is not authoritative on, and will be sending out, and the white
sections indicates regions for which a process has no data. Vector k
in this case is 4 and 2... 20

2.11 Inter-node GPU communication with and without GPU Direct RDMA.
The yellow circles show the copies: 1, copy from the GPU memory
to the CPU memory in node 1; 2, copy from the CUDA Driver buffer
to the network dirver buffer in the system memory of node 1; 3, copy
across the interconnect from node 1's network driver buffer to node
2's network driver buffer; 4, copy from the network driver buffer to
the CUDA driver buffer in node 2; and finally 5, copy from CUDA
driver buffer to the GPU memory of the GPU in node 2 21

3.1 Flame dataset: (a) original rendering and (b) with occlusion shading.
We see that having ambient occlusion does not improve relative depth
perception in this type of image.. 37

3.2 Depth of field for camera imaging padlocks. Left: diagrammatic
representation, right: actual photo... 37

3.3 Mechanics of depth of field: (a) lens setup and (b) circle of confusion. 38

3.4 Geometric setup of the DVR implementation of D oF................................ 38

3.5 The backpack dataset displayed from the side in (a) and from the front
in (b) where the focus plane is shown as a dashed line. The features
from which to choose from have been circled and we can see that the
features are quite far apart.. 39

3.6 The six datasets used: (a) aneurysm, (b) backpack, (c) bonsai, (d)
flame, (e) Richtmyer-Meshkov instability, and (f) thorax.......................... 39

3.7 Results for the static experiment: (a) average correctness for the differ­
ent conditions (with static images) of the experiment with standard
error, and (b) average response time for the different datasets and
conditions (with static images) of the experiment with standard error. 40

3.8 Results for the static experiment per dataset: (a) average correctness
for the different datasets, including static and dynamic, and (b) mean
response time taken for the different datasets and conditions. Note:
the 0 value for the flame dataset for perspective DoF Back indicates
that all answers were wrong... 41

3.9 Average correctness for the different datasets... 42

3.10 The datasets from left to right shows the ordering in which the videos
were shown to the participants.. 42

4.1 The three stages of the compositing algorithm with r=4, k=4, and the
number of nodes p=25. Red, blue, yellow, and green represent the
first, second, third, and fourth quarter of the image................................... 58

4.2 Profile for 64 nodes for 2048x2048 (64MB) image on Edison at NERSC
with r=16, k=8. Red: compositing, green: sending, light blue:
receiving, dark blue: receiving on the display process. Total time:
0.012s... 59

4.3 Breakdown of different tasks in the algorithm.. 59

viii

4.4 The two test datasets used for testing: a synthetic dataset on the left
and a combustion dataset on the right.. 59

4.5 Scaling for the artificial data on Stampede..60

4.6 Varying number of rounds for the artificial dataset for 4096x4096......... ...61

4.7 Scaling for combustion data on Stampede... ...62

4.8 Scaling for artificial dataset on Edison.. ...63

4.9 Modelling TOD-Tree using the network latency, bandwidth, and
compute capability of Edison for 4Kx4K images.. 64

4.10 Comparing Stampede and Edison for up to 1024 nodes for the artificial
dataset at 4096x4096 resolution... 64

4.11 Comparing Stampede and Edison for up to 1024 nodes for combustion
at 8192x10418 resolution.. 65

5.1 Workflow for GPU rendering... 75

5.2 Comparing scaling for Edison and Piz Daint.. 76

5.3 Comparing scaling on Edison and Piz Daint for 4096 MPI processes. . 77

5.4 Comparing Stampede and Edison for up to 1024 nodes for the artificial
dataset at 4096x4096 resolution... 77

6.1 Two commonly used test datasets: the Bonsai dataset on the left and
Backpack dataset on the right with numerous empty regions in each
dataset... 89

6.2 Rendering and compositing timeline... 89

6.3 The first round of Radix-k for eight processes. The processes in green
are done with rendering and are compositing. The processes in red
are still rendering. The blue rectangle shows the region for which
each node is responsible.. 89

6.4 Nodes sorted by depth in a chain... 90

6.5 Four chains, one for each of the four regions (purple, blue, yellow,
and gray) into which the final image is split.. 90

6.6 The datasets: box (left), sphere (middle), and combustion (right).......... 90

6.7 Scaling of the combustion dataset on Edison - showing rendering and
compositing... 91

6.8 Scaling of the combustion dataset on Edison - showing compositing
o n ly ... 92

6.9 Scaling of the artificial box and sphere datasets on Edison - showing
compositing only. .. 93

ix

LIST OF TABLES

2.1 Monocular static depth cues... ...22

3.1 Images and their associated depth cues. We have three levels for each:
high, medium (Med), and low to indicate how useful each depth cue
is expected to be in each volume-rendered image....................................... ...43

3.2 Description of the images.. ...43

3.3 The range of separation...44

3.4 Age range of test subjects.. ...44

NOTATION AND SYMBOLS

Central Processing Unit (CPU)

Swiss National Supercomputing Centre (CSCS)

X-ray Computed Tomography (CT)

Compute Unified Device Architecture (CUDA)

Depth of Field (DoF)

Directional Occlusion Shading (DOS)

Direct Volume Rendering (DVR)

Dynamically Scheduled Region-Based (DSRB)

OpenGL Shading Language (GLSL)

General Purpose computing on GPU (GPGPU)

Graphics Processing Unit (GPU)

High Performance Computing (HPC)

Institute of Electrical and Electronics Engineers (IEEE)

Image Composition Engine for Tiles (IceT)

Message Passing Interface (MPI)

Magnetic Resonance Imaging (MRI)

National Energy Research Scientific Computing Center (NERSC)

Open Graphics Library (OpenGL)

Open Multi-Processing (OpenMP)

Remote Direct Memory Access (RDMA)

Single Instruction Multiple Data (SIMD)

Texas Advanced Computing Center (TACC)

Task-Overlapped Direct Send Tree Image Compositing (TOD-Tree)

Three-Dimensional (3D)

xii

ACKNOWLEDGMENTS

My principal thanks goes to my adviser, Professor Charles (Chuck) Hansen, for

his patience and guidance and for finding funding and supercomputing time to

allow me to do the many scaling studies that were essential for my Ph.D.

I would also like to thank the members of my Ph.D. committee: Mary Hall,

for mentoring me on my first publication; Chris Johnson, for providing the nicest

possible environment for graduate students at the SCI Institute; Valerio Pascucci,

from whom I learned about topology; and Georges-Pierre Bonneau, from whom I

learned about depth perception during the three months I spent at INRIA.

Many other people have supported me indirectly in this endeavor. The list is

long but some deserve a special mention here: Aaron Knoll, who has always been

keen to discuss ideas and review my publications; Bill Thompson, whose class

taught me how to make presentations; Karen Feinauer and Ann Carlstrom, for

providing me with the documentation I constantly needed for my J-1 visa; Begum

Durgahee and Anwar Chutoo, who have always been around when the going got

tough; Manasa Prasad, who has been so much fun to hang around with and still is;

Avinash Meetoo, who was an unofficial mentor in my first job and introduced me

to much of the Linux I know. Lastly, thanks to my parents who, though far away,

have always been supportive.

Finally, my research was made possible by the Fulbright program and the

U.S. Department of State for funding me during the first three years of my Ph.D,

and the following grants: DOE NNSA Award DE-NA0000740, KUS-C1-016-04

made by King Abdullah University of Science and Technology (KAUST), Award

DE-NA0002375: (PSAAP) Carbon-Capture Multidisciplinary Simulation Center,

DOE SciDAC Institute of Scalable Data Management Analysis and Visualization

DOE DE-SC0007446, NSF OCI-0906379, NSF IIS-1162013, NIH-1R01GM098151-01,

and NSF ACI-1339881.

CHAPTER 1

INTRODUCTION

1.1 Motivation
Volume rendering for visualization has become increasingly popular among

researchers and scientists since its introduction in the mid-1980s [2] [3]. It can

be used to visualize volumetric data acquired through simulations, such as com­

bustion and climate simulation, or through a scanning process, such as Magnetic

resonance imaging (MRI) and X-ray computed tomography (CT) scans. Volume

rendering is now available in many commonly used visualization packages such

as Paraview [4] and VisIt [5].

Volume data is usually visualized using either direct or indirect volume ren­

dering. Approaches that generate an intermediate representation and use the

intermediate representation to create an image are referred to as indirect volume

rendering. An example is the Marching Cubes [6] algorithm, which generates

a polygonal representation of an isosurface and is then rendered to an image. In

direct volume rendering, volume data is directly used to generate an image without

any intermediate stage. For example, in ray casting direct volume rendering, an

image is created by sending a ray through each pixel of the image. Data is sampled

at regular intervals along the ray and each sample is mapped to a color and opacity

using a transfer function. The colors are then blended to produce one color for each

pixel. In this dissertation, the focus is on direct volume rendering (DVR).

The goal of volume rendering is to allow scientists to explore and understand

datasets. In practice, this is achieved by improving the quality and speed of volume

rendering. Increasing the quality, by adding techniques such as global illumination

and shadows, makes it easier for scientists to see the features present in a dataset,

thereby improving understanding. Increasing the rendering speed enables better

interaction with a dataset, thereby improving exploration of the dataset. In this

2

dissertation, improving both the quality and speed of rendering is considered.

More precisely, a user study was carried out to determine how depth of field can

be used to improve depth perception of volume-rendered images, and new image

compositing techniques have been developed for distributed volume rendering to

improve rendering speeds.

1.2 Evaluation of Depth of Field for Depth
Perception in Direct Volume

Rendering
The human visual system is able to perceive depth because of a number of depth

cues. The more depth cues available to us, the easier it is for us to understand the

depth relation of objects in an image. However, volume-rendered images usually

have a limited set of depth cues. Very often, the only depth cues present in a

volume-rendered image are interposition, close objects overlap far away objects;

perspective, far away objects appear closer than when close to us; and occasionally

shadows, objects are in front of the shadows they cast.

For solid surfaces, shadows are useful in helping us estimate the relative

ordering of features. Lindemann et al. [7] conducted a user study on the use

of different illumination methods in DVR and found that directional occlusion

shading [8] brings about 20% improvement in ordinal depth perception. However,

for highly translucent surfaces, directional occlusion shading is less effective as

it will only darken a translucent image. As pointed out by Boucheny et al. [9],

estimating depth in a highly transparent scene can be very difficult, and DVR

images often have highly transparent features. In Fig. 1.1, the "static" subtree shows

the depth cues available in a volume-rendered image. Shadow and interposition

will not help for very translucent surfaces. Aerial, texture, and familiar size apply

to objects that are far away, which is not applicable in a volume-rendered image.

Perspective is usually already available. Therefore, we will try to add focusing

by using depth of field, which will make objects not in focus appear blurry. Since

depth of field (DoF) is a quite recent addition to direct volume rendering, its

impact in volume-rendered images has not been extensively studied. The only

study available looked at the impact of depth of field in angiography images [10]. In

3

Chapter 3 of this dissertation, a user study on the impact of DoF, implemented using

the technique proposed by Schott et al. [1], is described along with a discussion on

how to best benefit from depth of field effects in direct volume rendering.

1.3 Image Compositing for OpenMP/Hybrid MPI
Parallelism on CPU-Enhanced

Supercomputers
With the increasing availability of supercomputers, scientists are running in­

creasingly larger simulations that generate huge amounts of data. Since it is

impractical to move the results of these simulations, DVR is done directly on these

supercomputers. Most supercomputers are distributed memory systems that have

thousands of nodes, each of which has one or more powerful processing units with

several gigabytes of memory, connected through a high-speed network. When

rendering on these systems, the workload is typically divided so that each node

gets an equal amount of work. In sort-last parallel rendering, the most common

approach for DVR in distributed memory systems, each node always loads a section

of the data that it renders to an image. The images are then exchanged and blended

in the compositing stage to create the final image. When rendering on many

nodes, image compositing can become the bottleneck due to the number of image

exchanges that are required.

Image compositing has been studied for a number of years, and many algo­

rithms such as direct send [11], binary swap [12], and radix-k [13] have been

developed to handle image compositing on distributed memory systems. How­

ever, the increase in computing power of supercomputers in recent years has not

been matched by a similar increase in communication speed, making computation

cheap compared to communication. Yet, algorithms such as binary swap and

radix-k tend to focus on equally dividing the computation workload rather than

trying to find ways of minimizing communication.

In Chapter 4, a new image compositing algorithm is presented that tries to

minimize communication and overlaps communication with computation to try

to hide communication latencies. Also, since Howison et al. [14] showed that

using one MPI rank per node is more efficient than using one MPI rank per core,

our algorithm uses one MPI rank per node with threads and auto-vectorization

to make full use of the cores and SIMD parallelism of modern multicore CPUs.

We tested our algorithm on the Stampede supercomputer at TACC and the Edison

supercomputer at NERSC to show that our algorithm is, most of the time, faster

than binary swap and radix-k from the ICET library [15].

1.4 Distributed Volume Rendering Pipeline With
Image Compositing on GPU-Enhanced

Supercomputers
GPUs have been successfully used on desktop computers for DVR. Ray casting

for volume rendering on GPUs has been reported to be at least 1.5X faster than

on CPUs [16], and volume rendering packages, such as ImageVis3D [17] [18], can

interactively render medium-sized datasets on consumer-grade desktop GPUs.

Supercomputers, such as Titan at Oak Ridge National Lab and Piz Daint at the Swiss

National Supercomputing Center, are both enhanced with GPUs. When doing

volume rendering on these systems, using the GPUs on these supercomputers

instead of the CPU is the best choice to guarantee fast rendering.

Until recently, communication between GPUs found on different nodes of a

supercomputer was very costly. Since image compositing in sort-last parallel

rendering is a communication-intensive task, image compositing was often han­

dled by the CPU instead of the GPU to avoid the high cost of inter-node GPU

communication. Volume-rendered images generated on the GPU were copied to

the CPU for image compositing, which is inefficient since the GPU to CPU copy

operation is expensive, and GPUs are faster at blending images than CPUs. With the

introduction of GPU Direct RDMA, inter-node GPU communication now requires

only one copy operation instead of five copy operations. There is, then, no need to

copy data to the CPU prior for image compositing anymore.

In Chapter 5, a distributed volume rendering pipeline using OpenGL shaders

for raycasting rendering, and CUDA kernels with GPU Direct RDMA for com­

positing is presented. We compared the image compositing speed on the Piz Daint

GPU-enhanced supercomputer against the Edison CPU-enhanced supercomputer

at NERSC and show that we get comparable or even better speed on Piz Daint,

4

showing that the full distributed volume rendering pipeline can now be imple­

mented on the GPU.

1.5 Dynamically Scheduled Region-Based Image
Compositing

One of the common assumptions of image compositing algorithms in dis­

tributed volume rendering is that all the nodes will finish rendering and start

compositing at the same time. However, this is very rarely the case unless we

have several thousands nodes for rendering. There are many reasons for this:

firstly, it is rare for datasets to have a uniform distribution of data. Secondly, when

using perspective projection, nodes closer to the camera produce a larger image

compared to nodes far from the camera. Rendering a larger image takes more time

than rendering a smaller image. Finally, if the user zooms in on one specific region

of a dataset, part of the dataset might fall outside the viewing window and not

need to be rendered at all.

Moreover, this difference in rendering speed is further increased if lighting

is used and normals need to be calculated. Furthermore, many visualization

clusters are medium-sized distributed memory machines where there are hundreds

rather than thousands of nodes. The time taken to render a large image can be

substantially greater than the time to render a small image on these clusters. If we

do not want the uneven rendering to slow down compositing, nodes that are done

rendering should exchange images only with nodes that are done rendering, and

not wait for nodes that are still rendering.

In Chapter 6 of this dissertation, a new image compositing algorithm with

spatial and temporal awareness is presented. We test the algorithm, using a

combustion and two artificial test datasets, on the Edison supercomputer at NERSC

for up to 2,048 nodes and show that it is faster than traditional image compositing

algorithms such as radix-k and TOD-Tree [19].

1.6 Thesis Statement
In this dissertation, we show that depth of field can be used to improve depth

perception in volume-rendered images, and that image compositing algorithms

5

6

that focus on communication (minimizing communication, overlapping communi­

cation with computation, and correctly scheduling communication) perform better

than algorithms that focus on balancing the workload.

1.7 Dissertation Contributions
The main contributions of this dissertation are:

• A user study on the impact of depth of field in DVR is conducted and

a set of guidelines on how to use depth of field effects to improve ordinal

depth perception in DVR is presented. We show that depth of field effects

can improve correct ordinal depth perception by up to 20% if used correctly

but can worsen ordinal depth perception if used improperly. This work has

been published in the IEEE Pacific Visualization Symposium Symposium,

2013 [20].

• Evaluation of depth of field for depth perception in DVR [20], IEEE Pacific

Visualization Symposium Symposium 2013, explored how depth of field can

be used to improve depth perception in volume rendering.

• TOD-Tree: Task-Overlapped Direct send Tree Image Compositing for Hy­

brid M PI Parallelism. This is a new image compositing algorithm for

hybrid OpenMP/MPI parallelism that focuses on minimizing communication

latencies and is generally faster image compositing algorithms such as binary

swap and radix-k. We tested this algorithm on an artificial dataset and

a combustion dataset for up to 4,096 nodes of the Edison supercomputer.

This work has been published in the Eurographics Symposium on Parallel

Graphics and Visualization, 2015 [19].

• A very low latency pipeline for doing ray casting volume rendering and

image compositing on GPU-enhanced supercomputers. We also use GPU

Direct RDMA and CUDA kernels to create an image compositing algorithm

that runs exclusively on GPUs and matches the compositing speeds of image

compositing algorithms on CPUs. The algorithm was tested on up to 4096

nodes of the Piz Daint GPU-enhanced supercomputer, and we show that the

performance matches image compositing on CPU-enhanced supercomputers.

7

This work has been accepted to the IEEE Transactions on Visualization and

Computer Graphics, 2016 [21].

• An image compositing algorithm with spatial and temporal awareness to

guide the exchange of images in distributed volume rendering and avoid

waiting on nodes that are still rendering. The algorithm was tested on the

Edison supercomputer at NERSC for up to 2048 nodes, and we show that

we achieve better performance than traditional compositing algorithms such

as radix-k and TOD-Tree that have no spatial and temporal knowledge of

rendering and compositing. This work has been accepted to the Eurographics

Symposium on Parallel Graphics and Visualization, 2016 [22].

1.8 Outline
The remainder of this dissertation is organized as follows. The background and

important related work are explained in Chapter 2. Chapter 3 details the user study

that was carried out on the use of depth of field in direct volume rendering. Chapter

4 presents the image compositing algorithm for hybrid OpenMP/MPI parallelism

on CPU-enhanced supercomputers. In Chapter 5, the compositing algorithm

is extended to a GPU-enhanced supercomputer, and a pipeline for distributed

volume rendering using GPUs for both rendering and compositing is presented. In

Chapter 6, an image compositing algorithm with spatial and temporal awareness

is presented that outperforms traditional image compositing algorithms. Finally,

conclusions and future work are given in Chapter 7.

Visual Information

Monocular Binocular

Vergence

Perspective Texture Aerial Shadow Focusing Interposition Familiar Size

Fig. 1.1. Categorization of depth cues.

Disparity

00

CHAPTER 2

RELATED WORK

2.1 Direct Volume Rendering
Direct volume rendering is a technique that generates an image from blocks of

scalar data without having to create any intermediate representation. There are

three main approaches to DVR: splatting, texture-based methods, and ray casting.

In the splatting approach, Fig. 2.1, each voxel is represented by a Gaussian kernel

that is scaled by the scalar value at the voxel. The volume is drawn from the back

to the front where each of these kernels is projected onto the screen. The image

produced is usually blurry and not very appealing. In the texture-based approach,

Fig. 2.2, the volume is converted to a 3D texture that is stored in the memory of

a GPU. Polygonal slices parallel to the view-plane are used to sample the volume

and are blended in a front-to-back or back-to-front manner. The DVR approach

used for depth of field in Chapter 3 uses this texture-based approach. Finally,

in the ray casting approach, Fig. 2.3, for each pixel in an image, a ray is cast in

the 3D scalar data. For each ray, scalar values inside the volume are sampled at

regular intervals along the ray, and a color is assigned to each sampled scalar value

using a transfer function. The colors along a ray are then blended to get the final

color of that pixel. When rendered on one computer, there are two stages, namely,

loading the data from disk and creating an image from the data using one of the

direct volume rendering techniques mentioned above. We are first going to look at

applying depth of field to DVR.

2.2 Depth Perception Cues
To be able to perceive the depth of objects in the real world and in a synthetic

image, the human visual system makes use of a number of depth cues. Depth

cues have been studied thoroughly [23], [24] and are generally grouped into two

categories: monocular and binocular. Binocular refers to the interocular offset to

perceive depth in a scene, and monocular depth cues refers to having a single image

of the scene. In a typical volume-rendered image, only one view is being shown

on the screen and there is no motion. Therefore, the only depth cues available are

static monocular depth cues, which are described in Table 2.1.

Depth of focus is one of the depth cues the human visual system uses to perceive

depth. The shape of the lens in a human eye is distorted by ciliary muscles to focus

light on the retina. A schematic representation of the human eye is shown in Fig. 2.4.

The process of modifying the shape of the lens of our eye is called accommodation.

The human visual system can use information about the amount of distortion of the

lens from the ciliary muscles as a depth cue; especially for very close objects [24].

Also, the part of the image not in focus, in front and behind the focal plane, will

appear blurred. Using the amount of blurriness of an image as a depth cue is not a

viable indication of how close or far an object is. As indicated by Mather et al. [25],

blur discrimination is poor in humans.

2.3 Depth of Field in Computer Graphics
Several attempts have been made to reproduce DoF in computer graphics.

Barsky et al. [26] did a comprehensive study of different DoF techniques in com­

puter graphics.

Many of these approaches are image space techniques that blur an initially

generated in-focus image. Potmesil and Chakravarty [27] use linear filtering in a

postprocessing stage to adaptively blur images according to their distance from

the focal plane. This technique is fast, since it does not attempt to minimize depth

discontinuities or color bleeding. Distributed ray tracing has also been used to

compute depth of field effects. One of the earliest techniques, from Cook et al. [28],

uses multiple rays to simulate ray tracing. However, interactive approximations

for computing depth of field effects are rarely based on ray tracing due to the high

performance cost.

In interactive computer graphics, a common technique is to sort the scene

by depth and apply different amounts of blur to different levels of depth. This

10

technique was used by Barsky et al. [29] and Kraus et al. [30]. In DVR, DoF has

been proposed by Crassin et al. [31] for large volumes in the Gigavoxels Framework.

Ropinski et al. [10] use DoF for angiography images and they also conduct a user

study on the use of modified DoF to enhance spatial understanding. In their work,

they try to determine where the user is focusing in an image. The part deemed to

be behind the region in focus has DoF effects applied to it. Consequently, there are

no DoF effects in front of the focal plane. From their user study, they find that DoF

helps to improve the correctness of depth perception, but they also saw an increase

in response time. They attribute this to the user having to get used to some part of

the image appearing out of focus.

2.4 Depth of Field Implementation
In this dissertation, DoF was implemented as shown in Fig. 2.5 and described

by Schott et al. [1]. A GPU slice-based volume renderer is used, and the scene

is broken down into two regions, namely, before and after the focal plane. For

the region between the focal plane and the front of the volume (where the camera

is), the volume is processed from the front of the volume to the focal plane (in a

front-to-back manner), and each slice is blurred according to its position. For the

part behind the focal plane, the volume is processed from the end of the volume

to the focal plane (in a back-to-front manner). Each rendered slice is blended with

a blurred region of the previous slice. The blur kernel's size decreases as the slice

approaches the focal plane. Two directions are needed to ensure that the in-focus

region does not contribute to the blurred region. A more detailed description of

the algorithm with pseudocode can be found in Schott et al. [1].

2.5 Perceptive Studies for Depth of Field
Depth of field is simulated using blur in computer graphics. The usefulness of

blur has been debated among researchers for some time. Whereas Held et al. [32]

indicated that blur is a stronger depth cue than previously thought, Mather et al. [33]

found that blur on its own gives only about 75% correct depth results. However,

combined with other depth cues, the usefulness of blur is increased to about 95%.

This was confirmed by Held et al. [34], who concluded that though blur on its own

11

did not help to estimate absolute or relative distance, combined with perspective

projection, it becomes a quite useful depth cue. In volume-rendered images, we

will usually have other depth cues available apart from blur. Perspective projection

is usually cheap to add and occlusion is usually available except for translucent

images. So, since depth of field will not be used on its own in volume rendering, it

should be a useful depth cue.

2.6 Distributed Volume Rendering
Distributed volume rendering is now commonly used in the scientific vi­

sualization community. There are three approaches [35] to parallel rendering

on distributed memory systems: sort-first, sort-middle, and sort-last, shown in

Fig. 2.6. In sort-first, the data is partitioned based on the viewpoint, and each node

then loads and renders a section of the final image. In sort-middle, each node

always loads the same data, but after sampling is done, the data is redistributed

based on the viewpoint. Finally, in sort-last, each node loads a section of the

dataset that it renders to an image. These images are then blended together

during the compositing stage to produce a full rendered image of the dataset. No

communication is required in the loading and rendering stages, but the compositing

stage can require extensive communication. When doing sort-last distributed

volume rendering on few nodes of a distributed memory machine, rendering is

usually slower than the compositing. However, as the number of nodes increases,

each node has less and less data to render but more communication is required. At

some point, then, compositing becomes more expensive than rendering and fast

image compositing algorithms become essential for sort-last image compositing.

2.7 Image Compositing Algorithms
Since sort-last image compositing is the most commonly used approach for

distributed volume rendering, several algorithms have been developed to speed

up image compositing. One of the oldest compositing algorithm is direct send.

Direct send can refer to serial or parallel direct send. In serial direct send, all

the processes send their data directly to the display process, which blends the

images. In parallel direct send [11], [36], shown in Fig. 2.7, each process takes

12

responsibility for one section of the final image, gathers data for that section from

all the other processes, and blends these sections. Then, during the compositing

stage, the display process gathers the final section from all nodes. On GPUs, parallel

direct send is popular because of its flexibility. Eilemann et al. [37] show that the

performance of parallel direct send is comparable to binary swap and sometimes

even better. Rizzi et al. [38] compare the performance of serial and parallel direct

send, for which they get very good results as GPUs are very fast. However, in both

cases, the main bottleneck is the network performance, which negatively affects

the performance of the algorithm.

In binary tree compositing techniques [39], shown in Fig. 2.8, one of the leaves

sends its data to the other leaf in the pair, which does the compositing. The leaf

that has sent its data is now idle. The main issue with this technique is half of the

nodes go idle at each stage, which results in load imbalances. However, now that

computation is reasonably cheap, this could again be a viable technique, but tree

compositing techniques also send full images at each stage, making communication

slow. Binary-swap by Ma et al. [35], shown in Fig. 2.9, improves the load balancing

of binary tree compositing by keeping all the processes active in compositing until

the end. The processes are grouped in pairs, and initially, each process in the

pair takes responsibility for half of the image. Each process sends the half it

does not own and blends the half it owns. In the next stage, processes that are

authoritative on the same half exchange information in pairs again, so that each is

now responsible for a quarter of the image. Compositing proceeds in stages until

each process has 1/p of the whole image where p is the number of process involved

in the compositing. Once this is done, each process sends its section to the display

process. Binary-swap has been subsequently extended by Yu et al. [40] to deal with

non-power of two processes.

In Radix-k, introduced by Peterka et al. [13], shown in Fig. 2.10, the number of

processes p is factored in r factors so that k is a vector where k = [k1,k2,...,kr]. The

processes are arranged into groups of size k; and exchange information using direct

send. At the end of a round, each process is authoritative on one section of the

image in its group. In the next round, all the processes with the same authoritative

13

14

partition are arranged in groups of size k +1 and exchange information. This goes

on for r rounds until each process is the only one authoritative on one section

of the image. Both binary-swap and radix-k have a gather stage in which the

display process has to gather the data spread among the p processes. If the vector

k has only one value that is equal to p, radix-k behaves like direct send. If each

value of k is equal to 2, then it behaves likes binary-swap. Radix-k, binary-swap,

and direct send are all available in the IceT package [15], which also adds several

optimizations [41].

One of the ways of reducing the number of messages needed for image com­

positing is to do volume rendering using one MPI rank per node instead of one

MPI rank per core. Howison et al. [42] [14] compared distributed volume rendering

using only MPI versus using MPI and threads and found that using MPI and

threads minimized the exchange of messages between nodes and resulted in faster

volume rendering. However, for compositing, they only used MPI_Alltoallv, where

processes exchange fragments using MPI direct send, but they did mention in their

future work the need for better compositing algorithms.

2.8 Image Compositing With Spatial Awareness
However, although radix-k and binary swap are fast, they do no take into

account the contents of the image from each rendering process. They all decide

statically for which region a computing process should be responsible and stick to

that allocation. A process, then, may be responsible for a region for which it does

not have any initial content, which needlessly increases communication. However,

some algorithms take into account the image contents of a node. The Scheduled

Linear Image Compositing (SLIC) algorithm of Stompel et al. [43] ensures that the

region to which a process is assigned is one to which it contributes. The contribution

to the final image from each process is computed based on the data extents loaded

by a process and the camera position. Scan lines of the overlapping regions are

assigned to processes contributing to them in an interleaving fashion. Also, image

regions that do not overlap with other images are directly sent to the display node

without any blending. Strengert et al. [44] used the SLIC algorithm for image

compositing on GPU clusters.

Although SLIC has spatial awareness of the contribution of each rendering

process, it does not have any temporal awareness, that is, it does not know when a

process will finish rendering and is ready to participate in compositing. Moloney

et al. [45] used an estimate on the cost to render a pixel to do dynamic load

balancing using a sort-first rendering approach, and Muller et al. [46] used the

previous rendering time in a time-varying dataset to predict the cost of rendering

the current timestep. For this algorithm, we do not try to move the data around and

estimate the rendering time. Instead, we communicate with the rendering nodes

and schedule compositing accordingly.

2.9 Image Compositing on Specific Hardware
Also, recognizing that communication is the main bottleneck in image com­

positing, Pugmire at al. [47] used a Network Processing Unit (NPU) to speed up

the communication and Cavin et al. [48] used shift permutation to get the maximum

cross bisectional bandwidth from InfiniBand Fat-Trees to speed up communication.

These improvements tie compositing algorithms to specific hardware network

infrastructure, rather than providing a more general software solution.

2.10 Rendering and Compositing on the GPU
Many systems, such as Chromium [49] and Equalizer [50], have been developed

for parallel rendering on GPUs. Direct volume rendering using either a slicing [51]

or raycasting [52] approach has been done on the GPU. Muller et al. [53] and Fogal

et al. [54] have developed distributed memory volume renderers for GPU that use

shaders and OpenGL. For compositing, Fogal et al. used a tree-based compositing

from IceT and Muller et al. used direct send. In both cases, compositing involved

copying data out of the GPU before inter-node communication with MPI. Recently,

Xie et al. [55] used up to 1024 GPUs for rendering on the Titan supercomputer, a

Cray XK7 system, at Oak Ridge National Laboratory, but they used the CPU for

image compositing. The only instance we found where it was explicitly mentioned

that compositing was done on GPUs is the vl3 system by Rizzi et al. [38]. They

15

compared the performance of serial and parallel direct send scaling up to 128

Nvidia Tesla M2070 GPUs, but do not mention the use of GPU Direct RDMA for

image compositing.

Currently, the only way for GPUs to communicate directly across a network is

through CUDA. In 2011, Wang et al. [56] proposed an MPI design that integrates

CUDA data movement with MPI; they achieved a 45% improvement in one-way

latency. GPU Direct RDMA was then introduced in CUDA 5.0. Potluri et al. [57]

mentioned an improvement in the latency by 69% and 32% for 4 Byte and 128

KB messages, respectively, for MPLSend/MPLRecv using GPU Direct RDMA

on InfiniBand systems. Now, GPU Direct RDMA is available in MVAPICH2,

OpenMPI, and CRAYMPI. In the worst case, without GPU Direct RDMA, five

copies are needed, as shown in Fig. 2.11, to transfer data between GPUs found in

different nodes. The data is first copied from the GPU's memory to the CUDA

driver buffer's memory found in the main memory. Another copy transfers the

data to the network driver buffer, also in main memory. The next copy takes the

data across the network to the network driver buffer in the destination node. There,

another copy is needed to transfer the data to the CUDA driver buffer and, finally,

a last copy sends the data to the GPU's memory [58]. However, using GPU Direct

RDMA, only one copy is required to transfer data between GPUs across nodes.

Since rendering is mostly done in OpenGL rather than CUDA, the CUDA

OpenGL interoperability, provided as part of the CUDA Runtime API, can be

used as a bridge between CUDA and OpenGL. Initially, it was not possible on

Tesla class Nvidia GPUs used in supercomputers to run both CUDA and OpenGL

at the same time, but this capability is now available in the Nvidia K20m, K20X,

K40, and K80 GPUs [59]. The only additional requirement for running OpenGL

is to have an X Server, which is needed to create an OpenGL context. Klein and

Stone [60] describe how to get OpenGL working on a Cray XK7 accelerator. Also,

some GPU-accelerated supercomputers, such as the Piz Daint supercomputer in

Switzerland, have an X Server module that can be loaded as needed.

16

17

Fig. 2.1. Splatting for DVR. The arrows show the direction each sample is splatted
onto an image plane.

Fig. 2.2. Texture-based volume rendering. The top view is shown on the left and
the camera aligned slices are shown on the right.

Fig. 2.3. Rays are sent through each pixel of the image plane and blended in a
back-to-front or front-to-back manner.

18

Fig. 2.4. Schematic representation of the human eye.

■
Focal Plane

Sampling from Previous

Fig. 2.5. Geometric setup of the DVR implementation of DoF.

Input Input

Compositing

Input

ff ¥¥ ff ff
Display Display Display

Fig. 2.6. Types of parallel rendering: left diagram is sort-first; middle diagram is
sort-middle, and right diagram is sort-last.

19

Fig. 2.7. Parallel direct send: the green rectangle shows the region each process
is authoritative on. The arrows show the direction of the image exchanges. The
gray rectangle indicates the region for which the process has data that it is not
authoritative on, and will be sending out.

Fig. 2.8. Tree compositing: the green rectangle shows the region each process is
authoritative on. The arrows show the direction of the image exchanges. The
gray rectangle indicates the region for which the process has data that it is not
authoritative on, and will be sending out.

20

Fig. 2.9. Binary swap: the green rectangle shows the region each process is
authoritative on. The arrows show the direction of the image exchanges. The
gray rectangle indicates the region for which the process has data that it is not
authoritative on, and will be sending out, and the white sections indicates regions
for which a process has no data.

Fig. 2.10. Radix-k: the green rectangle shows the region each process is authorita­
tive on. The arrows show the direction of the image exchanges. The gray rectangle
indicates the region for which the process has data that it is not authoritative on, and
will be sending out, and the white sections indicates regions for which a process
has no data. Vector k in this case is 4 and 2.

21

Chipset

■ No GPU Direct RDM A

■ GPU Direct RDMA

Fig. 2.11. Inter-node GPU communication with and without GPU Direct RDMA.
The yellow circles show the copies: 1, copy from the GPU memory to the CPU
memory in node 1; 2, copy from the CUDA Driver buffer to the network dirver
buffer in the system memory of node 1; 3, copy across the interconnect from node 1's
network driver buffer to node 2's network driver buffer; 4, copy from the network
driver buffer to the CUDA driver buffer in node 2; and finally 5, copy from CUDA
driver buffer to the GPU memory of the GPU in node 2

22

TABLE 2.1. Monocular static depth cues.

Depth Cue Description
Atmospheric Per­
spective

Objects far away from us appear blurred and with a
tint of blue.

Depth of Focus Objects in focus appear sharp and those not in focus
appear blurred.

Familiar Size When we use our prior knowledge of the world to
judge distances, e.g, the smaller a plane looks in the
sky, the further away from us we know it is.

Occlusion Objects in front of others overlap those at the back and
so hide part of the back objects.

Perspective Parallel lines appear to converge at infinity.
Relative Size Objects that are far away from us take a smaller area

in our field of view.
Shading Bright­
ness

Objects that are far from us tend to appear more dimly
lit than objects that are close to us.

Shadow When we know where the light source is, we make
use of where the shadow will fall to decide where the
object is.

Texture Gradient Fine details are clearly seen for objects that are close to
us compared to objects that are far away.

CHAPTER 3

EVALUATING DEPTH OF FIELD FOR

DEPTH PERCEPTION IN DVR

3.1 Introduction
Estimating the horizontal and vertical positions of features in a 2D image is quite

easy, but estimating the depth of features is harder. Depth understanding relies on

using depth cues that help us understand the position of features relative to each

other in an image. In DVR, the common depth cues are perspective, occlusion,

and shadows. Occlusion and shadows are particularly useful for solid surfaces.

Lindemann et al. [7] conducted a user study on the use of different illumination

methods [61] and found that directional occlusion shading [8] (DOS) brings about

20% improvement in ordinal depth perception. However, for highly translucent

surfaces, as shown in Fig. 3.1, DOS is much less effective. In this chapter, we

investigate the use of depth of field in DVR. Depth of field adds a focusing depth, in

contrast to illustration methods, which add a shading/shadow depth cue. Focusing

depth cues are less likely to be negatively affected by transparency.

In very simple terms, depth of field is the region of an image that appears to

be sharp. For example, in Fig. 3.2, the two padlocks that are not blurred are in

the depth of field region of the image; the padlocks before and after that region

appear blurred. We also need to differentiate among the three kinds of depth

descriptors: absolute, relative, and ordinal. Absolute descriptions are usually

quantitative and are defined in units such as meters or relative to the viewer's

body. Relative descriptors relate one property to another. They can be further

broken down into relative and ordinal. "Relative descriptions relate one perceived

geometric property to another (e.g., point a is twice as far away as point b). Ordinal

descriptions are a special case of relative measure in which the sign, but not the

magnitude, of the relations is all that is represented" [24]. Our focus is on ordinal

depth as absolute depth, for different datasets, can mean very different things yet

the datasets can appear to be of similar size in a volume-rendered image.

3.1.1 Main Contributions

In this chapter, we study the use of depth of field (DoF) and its impact on the

perception of ordinal depth in DVR to establish the conditions under which it is

most beneficial. The DoF technique proposed by Schott et al. [1] was implemented

in the SLIVR renderer of the VisIt visualization software [5]. The experiment is run

on site to control experimental parameters such as screen quality, luminosity, and

attention of subjects. Three hypotheses tested were:

1. HYP1: DoF will help improve the accuracy of ordinal depth perception in a

volume-rendered image in which there are multiple features.

2. HYP2: DoF will help improve the speed of ordinal depth perception in a

volume-rendered image in which there are multiple features.

3. HYP3: If users view a moving focal plane, correct perception of ordinal depth

will improve.

To the best of our knowledge, this is the first comprehensive user study on the

use of DoF as a depth cue in DVR. The main contributions of this project are:

• Establish whether DoF is a useful depth cue in volume-rendered images.

• Determine for which kind of datasets DoF is most helpful.

3.2 Depth of Field
The mechanics of DoF can be derived from the Thin-Lens equation:

1 1 1
f = - + - (3.1)f S Zf

where f is the focal length, s is the distance from the lens to the focal plane, and

Zf is the distance from the lens to the object as shown in Fig. 3.3 (a). When light

from a point in the scene passes through a camera lens, it should ideally be focused

on a single point on the image plane. However, if the image plane is not in the

correct position, the point is mapped to a circular region instead, c in Fig. 3.3 (a).

The diameter of the region c can be determined according to equation 3.2:

24

|z - Zf I
c(z) = A -̂-----f (3.2)

Z

where c(z) is the diameter of the circle of confusion and A is the aperture of the

lens as shown in Fig. 3.3 (b). Fig. 3.3 (b) also shows that on both sides of the

focal distance Zf, we can have regions having similar diameters for the circle of

confusion, which would translate to the same amount of blur in an image. The

main difference between the regions, before and after the focus region, is the rate at

which the amount of blur increases in each region. The rate at which blur increases

in the region between the camera and focal length is much greater than the rate at

which it increases after the focal length.

3.3 Depth of Field for DVR
DoF is implemented as shown in Fig. 3.4. A GPU slice texture-based volume

renderer is used and the scene is broken down into two sections: before and after

the focal plane. For the part between the focal plane and the front of the volume

(where the camera is), the volume is processed from the front of the volume to the

focal plane (in a front-to-back manner), and each slice is blurred according to its

position. For the part behind the focal plane, the volume is processed from the end

of the volume to the focal plane (in a back-to-front manner). Each rendered slice is

blended with a blurred region of the previous slice. The blur kernel's size decreases

as the slice approaches the focal plane. Two directions are needed to ensure that

the in-focus region does not contribute any of the blurred regions. A more detailed

description of the algorithm with a pseudocode can be found in [1].

3.4 User Study Setup
The aim of the experiment is to determine whether DoF provides a better

understanding of the ordinal depth of different features in a volume-rendered

image. More specifically, we want to be able to check these three hypotheses: 1)

DoF helps improve the accuracy of the determination of ordinal depth; 2) DoF helps

improve the speed of the determination of ordinal depth; 3) if users can change the

position of the focal plane, correct perception of ordinal depth will improve.

25

To test the three hypotheses, we carry out a static experiment and a dynamic

experiment. In the static part, we show the test subjects a number of images and

we ask them to select which of two circled features (located at different depths in

the image) is in front. Fig. 3.5 shows an example of this. In the dynamic part, we

show a video of a DVR dataset where the focal plane sweeps from the front to the

back and back to the front. Here again two features are circled at different depths,

and the subject is asked to decide which one is in front. As discussed by Knill [62],

the influence of depth cues varies depending on the task. A specific depth cue

might be important for one task but not very relevant for another. Consequently,

to make our experiment as general as possible, we decided to have minimal user

interaction.

3.4.1 Stimuli Description

To generate the stimuli, DoF was implemented, as described in Section 3.2, in

the SLIVR renderer of VisIt 2.4.2. PsychoPy 1.7.4 [63] was used to display the

images and movies to the subjects and to collect their answers.

As can be seen from Fig. 3.6, the background color for each dataset is different.

The background color, except for the flame dataset where the background color

interfered too much due to the highly transparent nature of the image, was carefully

chosen by computing the Michelson contrast as follows: the image is generated in

VisIt with a background that can be easily removed from the image such as pure

green (RGB: 0 1 0) or pure blue (RGB: 0 01) depending on the image. The Michelson

contrast [64] is computed for all the colors that do not match the pure green or blue

as follows:

Mc = Lmax Lmin (3.3)
Lmax + Lmin

where Mc is the Michelson Contrast, Lmax is the maximum luminance, and Lmin is

the minimum luminance where luminance [65] is calculated as follows:

26

L = 0.2126 * Red + 0.7152 * Green + 0.0722 * Blue (3.4)

where Red, Green, and Blue are the RGB components of the color. The background

color is assigned to be a gray RGB value (same red, green, and blue) for which

calculation of the Michelson contrast with the background is the same as calculating

the Michelson contrast with only the dataset ignoring the background.

Five of the six datasets, shown in Fig. 3.6, were used for the first static part of

the experiments for the following reasons: first, because of time constraints, we

did not want the experiment to last too long but still manage to have enough data

per dataset and, second, some features of the torso dataset would disappear when

blurring was applied, and the subjects would see an empty ellipse or sometimes

the feature behind the selected feature.

The datasets and their associated transfer function were selected so that a range

of shapes were presented, some of which are familiar, such as the tree-shaped

bonsai, and unfamiliar, such as the flame dataset, to the test subjects who were

not regular users of volume rendering. Also, each resulting image generated has

a different number and type of depth cue. The depth cues present are occlusion,

perspective, relative size, familiar size, and texture gradient. For this test, we did

not use shadows or changes in shading. The perspective projection settings is

controlled so that all datasets have the same settings. Table 3.1 shows a taxonomy

of the depth cues for the images in Fig. 3.6 that we used and Table 3.2 describes each

of the images. The minimum separation between the features to be selected in an

image was 5% of the whole depth of the volume and the maximum separation was

60%. The number of test images for each separation range is shown in Table 3.3.

Also, one of the characteristics of a good user study [66] is verifying that the

participants are committed to answering truthfully, which can be accomplished in

this case by verifying that perspective projection shows improvement compared to

using orthographic projection. Perspective projection makes objects that are closer

to the viewer appear larger than objects that are farther away, giving an additional

depth cue.

27

3.4.2 Environment Setup

The experiment was conducted on site to ensure a similar environment setting

for all participants. The study was carried out in a room where the curtains

were closed and illuminated by white fluorescent tube light. Closing the curtains

ensured that the lighting conditions did not vary during the day based on the

position of the sun so that the test subjects do not experience different lighting

conditions that might affect the colors on the computer screen. Moreover, the

performance of the eye-tracker we used requires specific light condition for better

tracking accuracy, which can be controlled with fluorescent light. Eye tracking is

not the most important part of the study but was included to see if it would help

us understand the results of the experiment. The T2T (Talk to Tobii) [67] package

was used to interface with the Tobii T60 eye-tracker [68].

3.4.3 Apparatus

A Macbook Pro was used to run PsychoPy, which was connected to the eye-

tracker. A gamepad was used as the input device as it is more ergonomic than

a keyboard or mouse. On the gamepad, the test subjects pressed any of the

left buttons to select the left feature and any of the right buttons to select the

right feature. A simple and easy-to-use input interface is important since the

subjects spent on average 30 minutes for the whole experiment and so we wanted

to make it as easy and as less tiring for them as possible to try to minimize the

impact of boredom and fatigue. Also, interaction with a gamepad is less likely

to introduce perceptual bias as it offers a simple and straightforward method of

entering selection.

3.4.4 Participants and Design

Twenty-five subjects (6 females and 19 males) participated in the user study. All

test subjects had good eye sight or corrected vision; seven wore glasses and none

were color blind. All but one test subject reported being right handed. The age

range is shown in Table 3.4. All participants had some experience with computer

graphics through games or movies, but most of them were not familiar with

28

29

volume rendering: none of them were students, researchers, or users developing

or working with volume rendering.

A within-subject design was used in which all the participants completed all

the tests. The experiment, carried out over 2 days with 25 participants, used a two-

alternative forced-choice methodology [69]. Each participant spent approximately

30 minutes completing the experiment (along with calibrating the eye-tracker and

training for the experiment) and each test was followed by a debriefing session.

3.4.5 Experimental Procedure

To test the three hypotheses, two experiments were carried out: a static experi­

ment that featured only images and a dynamic experiment in which the focal plane

was moving. Both experiments were conducted as follows:

1. Calibration of the eye-tracker: The subject was asked to stare at a red circle

on the screen that appeared for 4 seconds at one position and then jumped to

another position. The calibration stage lasted about 1 minute.

2. Training for the static part of the experiment: First, the overall task was

explained to the user. The input device to be used, the gamepad, was

introduced and the subject was briefed on how to use it. Next, seven training

images were presented, four with DoF and three without. In each image, two

features were circled with an ellipse, and the subject was asked to select which

one is in front. We requested the correct answer for each before proceeding

to the next image to ensure that the subject understood the task at hand. On

completing this phase, we informed the subjects that they would now start

with the experiments, but now they would not be required to give the correct

answer to proceed to the next image.

3. The static experiment: Each of the 150 images was shown to the test subject

who is asked to select which feature appears to be in front. The circle around

the chosen feature changed color on being selected and the next image was

presented. Response time and answers were recorded along with the eye

tracking data.

4. Training for the dynamic experiment: A short animation describing the

motion of the focal plane was presented to the user along with an explanation

on what they have to do.

5. The dynamic experiment: Each of the 20 videos was shown and the test

subject was asked to choose which of the two circled features appears to be

in front. The answer was recorded along with the eye tracking data.

6. The experiment ended with a debriefing session during which the subject

was asked for verbal feedback on the experiment, which was recorded by the

experimenters.

3.5 Static Experiment
To test the first two hypotheses, whether DoF helps improve the speed and

accuracy of perception of ordinal depth in a scene, we conducted the following

experiment with 150 images of five datasets (aneurysm, backpack, bonsai, flame,

and Richtmyer-Meshkov instability) under six different conditions:

1. orthographic projection

2. orthographic projection and front feature in focus (DoF Front)

3. orthographic projection and back feature in focus (DoF Back)

4. perspective projection

5. perspective projection and front feature in focus (DoF Front)

6. perspective projection and back feature in focus (DoF Back)

In each image, we presented the subject with two features. Each feature was

surrounded by an ellipse and located at different horizontal positions so that it was

clearly distinguishable which one was on the left and which one was on the right.

The features were located at different depths, and participants were asked to choose

the one they perceived as being in front. To select the left feature, the subject had to

press on any of the left buttons on a gamepad, and vice versa for the right feature.

Fig. 3.5 (a) shows an example image from the user study. Upon choosing a feature,

the color of the circle changed. The order in which the different images were shown

was randomized so as not to have all images under one specific condition or for a

particular dataset following each other. However, all participants were shown the

30

test images in the same pre-randomized order. The submitted answer and the time

taken was recorded for each test image.

3.5.1 Results

The average correctness and completion times recorded during the experiment

were used to analyze the results.

The overall comparison of average correctness under the six conditions for

all subjects reveals that there is a significant difference in the results for average

correctness [one-way, repeated-measures ANOVA, F(2.2,52.8) = 49.754, p <0.001].

Fig. 3.7 (a) shows the results for average correctness per task. For the individual

datasets, when the average correctness under the six different conditions per dataset

is compared, we see a statistically significant difference for average correctness of

the results [two-way, repeated-measures ANOVA, F(20,480) = 35.153, p <0.001].

Fig. 3.8 (a) shows the average correctness and Fig. 3.8 (b) the mean response time

for each dataset. Running ANOVA for the response time shows that there is

a low statistically significant difference between the means for perspective and

perspective DoF front [one-way, repeated-measures ANOVA, F(1,24) = 6.6, p

<0.017]. Standard error is computed as follows: o / 'sjn where n is the number

of observations.

We had hoped the eye-tracker would show users trying to find the separation

between the in-focus and out-of-focus region before making a decision. Unfortu­

nately, for most test subjects, such a behaviur was not observed. We noticed that

their gaze jumped from one of the circled features to the other. In some cases,

their gaze would linger on some of the central figures, such as the canister in the

backpack dataset, or they would try to follow the veins in the aneurysm dataset.

3.5.2 Discussion

The results show that, as expected, perspective projection is better than ortho­

graphic, but hypotheses 1 and 2 are not fully validated.

Perspective projection is expected to be better than orthographic projection

because it causes objects in front to appear larger, and humans are used to having

larger objects in front of smaller ones. This is confirmed in Fig. 3.8(a) where

31

the average correctness from perspective projection is higher than the average

correctness from only ortographic projection.

The first hypothesis, DoF will help improve the accuracy of ordinal depth

perception in a volume-rendered image where there are multiple features, is only

partially validated. HYP1 is supported by the experiment if DoF is in front but is not

supported by the experiment if DoF is on the back feature due, we believe, to depth

cue conflict. Drascic et al. [70] reported that when depth cues provide conflicting

information, there is an increase in uncertainty and a decrease in accuracy. Humans

are used to seeing objects far away as blurred whereas those close to us are usually

well defined. When DoF is on the back feature, the front feature appears blurry,

contradicting what we are used to seeing. Boucheny et al. [9] reported a similar

incident in their user study for volume rendering. In their first experiment, they

had two cylinders arranged in different z depths, and the subjects were asked to

state which one was in front of the other. Whenever the small cylinder was in front,

the percentage of correct answers would drop drastically, from 70% to 30%, likely

due to depth cue conflict since we are used to seeing objects close to us as big and

far away objects as small.

The second hypothesis, DoF will help improve the speed of ordinal depth

perception in a volume-rendered image where there are multiple features, is not

fully validated. We saw that both accuracy and speed improved when DoF is

applied on the front feature in all cases except the bonsai. The average correctness

for the bonsai dataset increased from 57% for perspective projection with DoF to

82% for perspective projection with DoF front, but the participants took more time

to make a decision, perhaps because they spent more time analyzing the image

since they had more information at their disposal. The decrease in speed when

DoF is on the back feature can be explained by depth cue conflict. The flame dataset

is an exception to that. During debriefing, many participants found that the flame

dataset, with or without DoF, was still extremely hard to understand, and so they

often gave up trying to find the correct answer as they deemed the task too hard.

We also identified a pattern in our results that seems to be linked to the datasets.

Namely, we saw that the Richtmyer-Meshkov instability and the bonsai seemed to

32

have similar results: both have a slight difference between perspective and DoF

with perspective on the back feature, and a marked improvement for perspective

with DoF front. We believe this pattern is the result of humans being familiar with

the two shapes. The Richtmyer-Meshkov instability looks like a landscape (though

it is a computational fluid dynamics dataset) and from the eye tracking data, we

saw that the subjects' gaze swept through it as if it were a landscape. Moreover,

during the debriefing, it was often referred to as a "landscape" by the participants.

The bonsai looks like an ordinary tree. Therefore, familiarity with the shape helped

the subjects in identifying the correct location of the features; familiarity is also one

of the main depth cues people use to correctly determine depth. For response

time, we saw that the response speed for perspective DoF front is higher for the

Richtmyer-Meshkov than for any other dataset and condition.

The backpack dataset proved to be very challenging for the subjects to un­

derstand. We usually have a floor or ground in the real world that we use

as frame of reference for the horizon, but here, everything appears to float in

mid air. Perspective projection aided viewers as the closer small spherical-like

objects appeared bigger than the remote ones. The result is strikingly similar to the

aneurysm dataset. Both datasets have similar average correctness values for the

perspective, perspective with DoF front and perspective with DoF back. The mean

response times are quite similar except for DoF front. We believe that this is due to

similarities between these two datasets: both lack a floor-like structure and have

shapes that are not very common.

The flame dataset was the hardest for the subjects to understand. Adding

DoF on the front feature helped increase correct perception from about 33% to

55%. However, when DoF was applied on the back feature, participants never

answered correctly. The reason why the test subjects had so much trouble with

this particular image is the amount of translucency present. If the flame dataset

had been rendered using a transfer function that makes the dataset appear opaque,

with distinct surfaces, we believe that the resulting volume rendered image would

have been easier to understand. Humans perceive surfaces in everyday life, so

understanding depth in these cases is quite easy. On the other hand, translucent

33

objects with fuzzy undefined surfaces are quite rare in everyday life, which could

also be the reason why this image was hard to understand. Breaking down the

results per dataset, we observe the same behavior: DoF on the front object helps

reinforce the correct perception that an object is closer to the viewer.

3.6 Dynamic Experiment
To test the third hypothesis, whether being able to change the position of

the focal plane will improve the correct perception of relative depth, a second

experiment was carried out. To minimize user interaction, which could introduce

bias in the experiment [71], we made a video of the focal plane sweeping from

the front to the back and back to the front. This part of the experiment is referred

to as the dynamic part of the experiment. We had 20 videos of the six datasets

(aneurysm, backpack, bonsai, flame, Richtmyer-Meshkov instability, and thorax)

each lasting approximately 17 seconds. We recorded only the answers, not the

time, as the subjects are asked to watch each video completely before answering.

3.6.1 Results

Fig. 3.9 shows the average success rate for the different datasets. The accuracy

rate is around 90% for the aneurysm, backpack, bonsai, and Richtmyer-Meshkov

instability, but the accuracy for the translucent datasets of the flame and thorax is

lower. From Fig. 3.8 (a), we see that having DoF in the dynamic part is not much

better than DoF on the front feature except for the bonsai dataset. Doing an ANOVA

to compare the means for DoF Front and dynamic [two-way, repeated-measures

ANOVA, F(2.28,68.2) = 1.58, p <0.204] reveals that there is no statistically conclusive

difference between the means of these two. However, as shown in Fig. 3.10, the

performance with videos seems to improve after repeated exposure. Note that time

is not used here as a performance metric as the subjects were advised to watch the

whole video, which evened out the response time.

3.6.2 Discussion

Hypothesis 3, if users view a moving focal plane, correct perception of ordinal

depth will improve, is not validated by this experiment. From Fig. 3.8 (a), we see

34

that a static DoF focused on the front feature is often better than having a moving

plane, except for the aneurysm and the bonsai. However, a video is always better

than DoF on the back feature, which significantly degrades accuracy.

During the debriefing session, we found that the most accurate answers were

from subjects who quickly understood that since the focal plane was sweeping

from the front to the back and back to the front, the feature that appears not blurred

first is the one in front. If they missed the ordering on the first pass, they would try

to see it on the second pass. The less successful subjects usually had to see more

videos to understand the mechanics of the moving plane; the front feature is the

first that will appear in focus. Also, from the debriefing session, we learned that

some subjects were focusing on one feature and did not see when the other feature

was changing from out of focus to in focus, which might not have been the case if

the subject could directly control moving the plane. The subjects would have been

able to check exactly when each feature moved in and out of focus.

We also see that transparency is still a major issue even in the videos. For

datasets that have hard surfaces, accuracy improves unlike for the flame and the

thorax (translucent datasets), for which we still see a quite low accuracy rate. One

of the issues with the translucent surfaces is they can disappear after DoF has

been applied. For these datasets, we probably need a finer control over the focus

to improve the results. Here again we have mixed results. With videos, DoF

performance is more consistent; the subjects correctly identified which of the two

circled features was the front one. However, this did not match our expectations of

having better performance when compared to DoF front in static cases for all the

datasets.

3.7 Guidelines
Based on what we have observed, we would recommend that to improve

perception of ordinal depth, it is very important that DoF be used on the front

object and not the back for static images. Using DoF on the front object successfully

reinforces the correct perception of depth. If the feature that needs to be focused

on is near the back of the volume, rotating the volume by 180 degrees about the

35

y-axis to bring that feature to the front might be worth considering. We would

also encourage users to have as many depth cues as possible. In line with other

research on depth perception, we see that the more depth cues we have, the easier

it is for the users to correctly understand the arrangement of objects.

Using a video would be beneficial if this option is available, especially if the

back feature needs to be in focus. The negative impact of having DoF on the back

object that we notice in static images is reduced here as the users can see features

moving in and out of focus. However, the users should be told exactly what to

expect so that they are not surprised by an animation popping up. As shown in

Fig. 3.10, results improve over time as the participants become familiar with the

videos.

3.8 Summary
We have conducted a user study on the impact of DoF for ordinal depth

perception in DVR. From our results, we see that using DoF on the front object

reinforces correct perception of depth in DVR. However, putting DoF on the back

object leads to depth cue conflicts, and the results are worse than not using DoF.

Appropriate use of DoF provides a consequent improvement in terms of correct

depth perception for general cases in DVR. For the dynamic part of the experiment,

we saw a general overall improvement, though performance is still worse for highly

translucent datasets.

36

37

Fig. 3.1. Flame dataset: (a) original rendering and (b) with occlusion shading. We
see that having ambient occlusion does not improve relative depth perception in
this type of image.

Focu 5 Distance

Fig. 3.2. Depth of field for camera imaging padlocks. Left: diagrammatic
representation, right: actual photo.

38

Fig. 3.3. Mechanics of depth of field: (a) lens setup and (b) circle of confusion.

Sampling from Previous

Fig. 3.4. Geometric setup of the DVR implementation of DoF

39

Fig. 3.5. The backpack dataset displayed from the side in (a) and from the front in
(b) where the focus plane is shown as a dashed line. The features from which to
choose from have been circled and we can see that the features are quite far apart.

Fig. 3.6. The six datasets used: (a) aneurysm, (b) backpack, (c) bonsai, (d) flame,
(e) Richtmyer-Meshkov instability, and (f) thorax.

40

Fig. 3.7. Results for the static experiment: (a) average correctness for the different
conditions (with static images) of the experiment with standard error, and (b)
average response time for the different datasets and conditions (with static images)
of the experiment with standard error.

41

aneurism backpack bonsai flame richtmyer

7.5 “

cau<U
w
C

£
<u
co
Q_

<

aneurism backpack bonsai flam e richm yer

■ Perspective ^ P e rsp e ctive DoF Front ■P e rsp e ctiv e DoF Back Hi dynam ic

Fig. 3.8. Results for the static experiment per dataset: (a) average correctness for
the different datasets, including static and dynamic, and (b) mean response time
taken for the different datasets and conditions. Note: the 0 value for the flame
dataset for perspective DoF Back indicates that all answers were wrong.

S H
8 op

w(7)

3 H

f|~. 0-*tr &
£ »'TS Cflqj ro
ft 5T
5 TX! O
&J R

5T rt>

o
i-i

Average Correctness
ok> olo a p

Ln
oCJ» o p

bo

CTQ
r-h
</>IT
o

Tro
oi-iCuroi-i
3

Crq

o
T

5 “

Curo
o
C/3

thoraxorthographic 1—

flame orthographic— — 1

richtmyer orthographic

flame orthographic

flame perspective *—

anuerism perspective

backpack perspective

bonsai orthographic

richtmyer perspective

backpack orthographic

anuerism orthographic

bonsai orthographic

flame orthographic

richtmyer orthographic

thorax orthographic

thorax perspective

backpack orthographic

richtmyer perspective

backpack perspective

flame orthographic

—1

Average Correctness

CLSDr-h&co<X>
Ricthmyer-menkov

instability

K)

43

TABLE 3.1. Images and their associated depth cues. We have three levels for each:
high, medium (Med), and low to indicate how useful each depth cue is expected
to be in each volume-rendered image.

Dataset Occlusion Relative
Size

Familiar
Size

Texture
Gradient

aneurism High Med Med Med
backpack Low Med Low Low
bonsai High High High High
flame Low Med Low Low
thorax Med Med Low Low
Richtmyer-Meshkov
instability

Med Med Med High

TABLE 3.2. Description of the images.

Image Description
aneurysm Has lots of occlusion that should be quite helpful to perceive

depth, but the complex network of veins is quite confusing.
backpack The ear buds are totally disconnected and appear to float in mid

air, which is quite unfamiliar. Moreover, even for people who are
familiar with depth of field, they normally see it as a progression
over the image. This is not the case here. The background is
not blurred, only the volume is. However, there is still some
occlusion that could be helpful.

bonsai /
Richtmyer-
Meshkov
instability

People are familiar with such shapes. The Richtmyer-Meshkov
instability looks like a landscape (though it is not one), and
everyone is familiar with seeing trees. Moreover, these shapes
tend to have similar depth cues, as shown in Table 3.1.

flame This is a combustion dataset that is extremely hard to understand.
The chosen transfer function is what chemical engineers have
used to visualize this data. One of their complaints was that it is
very hard to understand this static image in a publication and so
wanted to know if DoF could help in this case.

thorax This image is complex due to the presence of many structures,
some of which are quite transparent and faded completely when
DoF was applied. We therefore used it only in the videos.

44

TABLE 3.3. The range of separation.

Amount of Separation Number
0 -10% 12
10 - 20% 23
20% - 30% 22
30% - 40% 37
40% - 50% 49
50% - 60% 7

TABLE 3.4. Age range of test subjects.

Age Range Number
15-20 1
21-30 21
31-40 3

CHAPTER 4

TASK-OVERLAPPED DIRECT SEND TREE

IMAGE COMPOSITING FOR HYBRID

MPI PARALLELISM

4.1 Introduction
Supercomputers are now large distributed memory machines that have thou­

sands of nodes, each with 10+ cores per node where each core has single instruction

multiple data (SIMD) parallelism. Exchange of information inside a node is

through shared memory, which is relatively fast, but exchange of information

between nodes takes place though the interconnect, which is much slower than

the compute capability of a node. One of the commonly cited challenges for

exascale computing is to devise algorithms that avoid communication [72], as

communication is quickly becoming the bottleneck. Consequently, the focus of

algorithms for supercomputers is also to minimize communication.

Howison et al. [42] [14] found that using threads and shared memory inside

a node and MPI for inter-node communication is much more efficient than using

MPI for both inter-node and intra-node visualization. Previous research by Mallon

et al. [73] and Rabenseifner et al., [74] summarized by Howison et al., indicates that

the hybrid MPI model results in fewer messages between nodes and less memory

overhead and outperforms MPI only at every concurrency level. Using threads and

shared memory allows us to better exploit the power of these new very powerful

multicore CPUs. Compositing algorithms, likewise, need to be changed. Instead

of focusing on distributing the workload, the focus should now be now minimizing

communication.

4.1.1 Main Contribution

The key contribution of this chapter is the introduction of Task Overlapped

Direct send Tree, TOD-Tree, a new compositing algorithm for Hybrid/MPI paral­

lelism that minimizes communication and focuses on overlapping communication

with computation. There is less focus on balancing the workload and instead of

many small messages, larger and fewer messages are used to keep the gathering

time low as the number of nodes increases. We compare the performance of this

algorithm with radix-k and binary-swap on an artificial and combustion dataset

and show that we generally achieve better performance than these two algorithms

in a hybrid setting.

4.2 Methodology
Since TOD-Tree has been tuned to work on hybrid MPI architectures, a process

in our case is not a core but a node. At the start of the compositing phase, each node

has an image that has been rendered from the part of the dataset it has loaded. Each

image also has an associated depth from the viewpoint. Each node can know the

depth of the images associated with other processes either through nodes sharing

that information with each other or a k-d tree could determine the depth of every

other node since it is often used to determine which part of a dataset a node should

load, the latter could determine the depth of every other node. Each node sorts

nodes by depth to know the correct order in which blending should be done. If the

correct order is not used, the final image will not be correct. Also, from the extents

of the dataset and the projection matrix used, it is easy to determine the height h,

the width w, and the number of pixels p in the final image.

4.2.1 Algorithm

The TOD-Tree algorithm has three stages. The first stage is a grouped direct

send. It is followed by a k-ary tree compositing stage. The display process then

gathers data in the display stage. In all stages, asynchronous communication is

used to overlap communication and computation. We first describe the algorithm

conceptually.

46

Each node has a list of nodes sorted from smallest to largest depth. In the first

stage, the nodes are arranged into groups of size r, which we will call a locality,

based on their position in the depth-ordered list. Each node in a locality will

be responsible for a region equivalent to 1/r of the final image. If r is equal to

4, there are four nodes in a locality, as shown in stage 1 of Fig. 4.1, and each is

responsible for a quarter of the final image. The nodes in each locality exchange

sections of the image in a direct send fashion so that at the end of stage 1, each

node is authoritative on a different 1/r of the final image. The colors red, blue,

yellow, and green in Fig. 4.1 represent the first, second, third, and fourth quarters

of the final image on which each node is authoritative. Also in Fig. 4.1, there are

25 processes initially. In this case, the last locality will have five instead of four

nodes, and the last node, colored orange in Fig. 4.1, will send its regions to the

first r node in its locality but will not receive any data. In the second stage, the

aim is to have only one node that is authoritative on a specific 1/r region of the

final image. The nodes having the same region at the end of stage 1 are arranged

in groups of size k based on their depth information. Each node in a group sends

its data to the first node in its group, which blends the pixels, similar to k-ary tree

compositing [39], [40], [12]. This stage can have multiple rounds. For example, in

stage 2 of Fig. 4.1, six processes have the same quarter of the image, and therefore,

two rounds are required until only one node is authoritative on a quarter of the

image. Finally, these nodes blend their data with the background and send it to the

display node, which assembles the final image, stage 3 in Fig. 4.1. We now describe

in detail how we implement each stage of the algorithm, paying attention to the

order of operation to maximize overlapping of communication with computation.

Algorithm 1 shows the setup for the direct send stage. There are a few design

decisions to make for this part. Asynchronous MPI send and receive allows overlap

of communication and computation. Posting the MPI receive before the send lets

messages be received directly in the target buffer, instead of being copied to a

temporary buffer and then copied to the target buffer. To minimize link contention,

not all nodes try to send to one node. Depending on where they are in the locality,

47

48

Algorithm 1: Stage 1 - Direct Send
Determine the nodes in its locality
Determine the region of the image the node owns
Create a buffer for receiving images
Advertise the receive buffer using async MPI Recv
if node is in first half o f locality then
| Send front to back using async MPI Send

else
|_ Send back to front using async MPI Send

Create a new image buffer
Initialize the buffer to 0
if node is in first half o f region then

Wait for images to come in front-to-back order
Blend front to back

else
Wait for images to come in back-to-front order

_ Blend back to front
Deallocate receive buffer

the sending order is different. The buffer used as the sending buffer is the original

image rendered in that node. To minimize memory use, there is only one blending

buffer, and so the data must be available in the correct order for blending to start.

The alternative would be to blend on the fly as images are received, but this requires

creating and initializing many new buffers, which can have a very high memory

cost when the image is large. The tests we carried out revealed that the gains in

performance were not significant enough to outweigh the cost of allocating that

much memory. The blending buffer also needs to be initialized to 0 for blending,

which is a somewhat slow operation. To amortize this cost, blending is done after

the MPI operations have been initialized so that receiving images and initialization

can proceed in parallel.

The second stage is a k-ary tree compositing, shown in algorithm 2. Again, the

receive buffer is advertised early to maximize efficiency. Another optimization that

has been added is to blend with the background color in the last round while waiting

for data to be received, thereby overlapping communication and computation.

Also, alpha is needed when compositing but not in the final image. Therefore,

while blending in the last round, the alpha channel is separated from the rest of the

image. It is still used for blending in that stage but is not sent in the gather stage,

which allows the last send to be smaller and makes the gather faster.

49

Al
D
C
f

D
D

gorithm 2: Stage 2 - Tree Region
etermine if node will be sending or receiving

Create a buffer for receiving images
or each round do

if sending then
1 Send data to destination node

else
Advertise receive buffer using async MPI Recv
if last round then

Create opaque image for blending received images
Create alpha buffer for blending transparency
Blend current image with the background
Receive images
Blend in the opaque buffer

else
Receive images
Blend in image buffer created in stage 1

eallocate image buffer created in stage 1
eallocate receive buffer

Algorithm 3: Stage 3 - Gather
C
i

e

D

reate empty final image
f Node has data then

Send opaque image to display node
lse

if display node then
|_ Advertise final image as receive buffer

eallocate send buffer from stage 1

Finally, the last stage of the algorithm is a simple gather from the nodes that still

have data. Since the images have already been blended with the background in the

previous stage, no computation is needed in this stage. The display node creates

the final image, which is also the receive buffer, and indicates where data from each

of the final senders should be placed. As soon as all images are in, compositing is

50

done. Also, at the end of this stage, the send buffer used in stage 1 is deallocated.

Deallocation in earlier stages of the algorithm often involves waiting for images to

be sent, but in stage 3, the images should have already been sent and so no waiting

is required, which has been confirmed in some tests we carried out.

The two parameters to choose for the algorithm are the number of regions r and

a value for k. r determines the number of regions into which an image is split for

load balancing purposes. As the number of nodes increases, increasing the value

of r results in better performance. k is used to control how many rounds the tree

compositing stage has. It is usually best to keep the number of rounds low.

4.2.2 Theoretical Cost

We now analyze the theoretical cost of the algorithm using the cost model of

Chan et al. [75], which has been used by Peterka et al. [13] and Cavin et al. [48]. Let

the number of pixels in the final image be n, the number of processes be p, the time

taken for blending one pixel be y, the latency for one transfer be a, and the time for

transferring one pixel be ^. Stage 1 is essentially several direct sends. The number

of sends in a group of size r per process is (r - 1) and the number of compositings

is r - 1 . Since each of the r groups will do the same operation in parallel, the cost

for stage 1 is determined according to equation 4.1:

The second stage is a k-ary tree compositing. r tree compositings are taking

place in parallel. Each tree has p/r processes to composite. The number of rounds

is logk(p/r). For each round, there are at most k - 1 sends. The cost for the k-ary

compositing is determined according to equation 4.2:

The cost for the final gather stage is determined according to equation 4.3:

n n
(r - 1)[(a + - j8) + - y]

r r (4.1)

p n n
logk-[(k - 1)[(a + - j8) + - y]]r r r (4.2)

n
(a + r]S) (4.3)

The final total cost is as shown in equation 4.4:

51

p n p n
(2r + (k - 1)log{- - 1)(a + - p) + (r + (k - 1)log/ - - 1) - y (4.4)

r r r r
The cost for the other compositing algorithms: direct send, equation 4.5; binary

swap, equation 4.6 and, radix-k, equation 4.7, quoted from the work of Cavin et

al. [48], are shown below.

p - 1
a(p - 1) + [(p + y)n(——)] (4.5)

p - 1
alog2p + [(p + y)n(—̂ ~)] (4.6)

i=r 1
a Y j k , - 1) + [(P + !')«(V-P—)] (4.7)

i=1 P
where ki is each vector for each of the r rounds of radix-k.

These equations are useful but fail to capture the overlap of communication and

computation. It is hard to predict how much overlap there will be as communica­

tion depends on the congestion in the network, but from empirical observations,

we have seen that the equation acts as an upper bound for the time that the

algorithm will take. For example, the total time taken for 64 nodes on Edison was

0.012 seconds for a 2048x2048 image (64MB). We now calculate the time using the

equation and performance values for Edison on the NERSC website [76]: a is at

least 0.25x10-6seconds and the network bandwidth is about 8GB/s, so for one pixel

(four channels each with a floating point of size 4 bytes) p = 1.86x10-9seconds. The

peak performance is 460.8 Gflops/node, so y = 8.1x10-12seconds. The theoretical

time should be around 0.015 seconds. The model effectively gives a maximum

upper bound for the operation, but more importantly, this calculation shows how

much time we are saving by overlapping communication with computation. In the

tests we carried out, we never managed to get 8GB/s bandwidth; we always got

less than 8GB/s, and yet the theoretical value is still greater than the actual value

we are measuring.

Fig. 4.2 shows the profile for the algorithm using an internally developed

profiling tool. All the processes start with setting up buffers and advertising their

receive buffer, which is shown colored yellow in the diagram. This step is followed

by a receive/waiting to receive section, colored blue, and blending section, colored

red. All receive communication is through asynchronous MPI receive whereas the

sends for stage 1 are asynchronous and the rest are blocking sends. The dark green

represents the final send to the display node, and the dark blue indicates the final

receive on the display node. As can be clearly seen, most of the time is being spent

communicating or waiting for data to be received from other nodes. A breakdown

of the total time spent by 64 nodes on Edison is shown in Fig. 4.3.

As previously mentioned, the most time-consuming operations are send and

receive, which is one of the reasons why load balancing is not as important anymore,

and using tree style compositing is not detrimental to our algorithm.

4.3 Testing and Results
We have compared our algorithm against radix-k and binary-swap from the

IceT library [41]. We are using the latest version of the IceT library, from the IceT

git repository, as it has a new function icetCompositeImage, which, compared to

icetDrawFrame, takes in images directly and is thus faster when provided with

prerendered images. This function should be available in future releases of IceT.

4.3.1 Test Setup

The two systems that have been used for testing are the Stampede super­

computer at TACC and the Edison supercomputer at NERSC. Stampede uses the

Infiniband FDR network and has 6,400 compute nodes that are stored in 160 racks.

Each compute node is an Intel SandyBridge processor that has 16 cores per node for

peak performance of 346 GFLOPS/node [77]. Since IceT has not been built to take

advantage of threads, we did not build with OpenMP on Stampede. Both IceT and

our algorithm will be compiled with g++ and O3 optimization. Edison is a Cray X30

supercomputer that uses the dragonfly topology for its interconnect network. The

5,576 nodes are arranged into 30 cabinets. Each node is an Intel IvyBridge processor

with 24 cores and has a peak performance of 460.8 GFLOPS/node [76]. To fully

utilize a CPU and be as close as possible to its peak performance, both threads and

vectorization should be used. Both SandyBridge and IvyBridge processors have

52

256 bit wide registers that can hold up to eight 32 bit floating points; only when

doing eight floating point operations on all cores can we attain peak performance

on one node. Crucially, IvyBridge processors offer the vector gather operation,

which fetches data from memory and packs them directly into SIMD lanes. With

newer compilers, this can improve performance dramatically. On Edison, we fully

exploit IvyBridge processors using OpenMP [78] and auto-vectorization with the

Intel15 compiler.

The two datasets used for the tests are shown in Fig. 4.4. The artificial dataset is

a square block where each node is assigned one subblock. The simulation dataset

is a rectangular combustion dataset where the bottom right and left are empty.

The artificial dataset is a volume of size 512x512x512 voxels, and the images sizes

for the test are 2048x2048 pixels (64MB), 4096x4096 pixels (256MB), and 8192x8192

pixels (1GB). The combustion dataset is a volume of size 416x663x416 voxels. For

the image size, the width has been set to 2048,4096, and 8192. The heights are 2605,

5204, and 10418 pixels, respectively.

On Edison at NERSC, we were able to get access to up to 4,096 nodes (98,304

cores), whereas on Stampede at TACC, we have been granted access to a maximum

of 1,024 nodes (16,384 cores). In the next section, we will show the performance for

these two cases. Each experiment is run 10 times, and the results are the average

of these runs after some outliers have been eliminated.

4.3.2 Scalability on Stampede

When running on Stampede, threads are not being used for the TOD-Tree

algorithm. Both IceT and our implementation are compiled with g ++ and O3

optimization. This is done to keep the comparison fair and also to point to the fact

that it is the overlapping of tasks rather than raw computing power that is most

important here. Also, we are not using any compression as most image sizes used

are small enough that compression does not make a big difference. At 8192x8192

pixels, an image is now 1GB in size and having compression would likely further

reduce communication.

53

Fig. 4.5 shows the strong scaling results for artificial data on Stampede. The

TOD-Tree algorithm performs better than binary-swap and radix-k. The sawtooth­

like appearance can be explained by the fact that we use the same value of r for

pairs of time steps: r=16 for 32 and 64 nodes, r=32 for 128 and 256, and r=64 for 512

and 1024, and only 1 round for the k-ary tree part of the algorithm. Thus with r=32,

for 256 nodes, there are eight groups of direct send, but there are only four groups

of direct send at 128 nodes. Therefore, the tree stage must now gather from seven

instead of from three processes and so the time taken increases. Also, this means

that instead of waiting for three nodes to complete their grouped direct send, now

the wait is for seven nodes. Increasing the value of r helps balance the workload in

stage 1 of the algorithm and reduces the number of nodes that have to be involved

in the tree compositing, and hence decreases the sending.

For images of size 2048x2048 pixels, compositing is heavily communication

bound. As we increase the number of nodes, each node has very little data and so

all three algorithms surveyed perform with less consistency as they become more

communication bound and so more affected by load imbalance and networking

issues. Communication is the main discriminating factor for small image sizes.

For 8192x8192 images, there is less variation as compositing is more computation

bound. Also, at that image size, IceT's radix-k comes close to matching the

performance of our algorithm. On analyzing the results for TOD-Tree, we saw that

the communication, especially in the gather stage, was quite expensive. Whereas a

2048x2048 image is only 64 MB, a 8192x8192 image is 1GB and transferring such big

sizes is expensive without compression, which is where IceT's use of compression

for all communication becomes useful.

In the test case above, we used only one round for the tree compositing. For

large node counts, more rounds could be used. Fig. 4.6 shows the impact of having

a different number of rounds for large node counts. For 256 nodes, there is an

improvement of 0.018 seconds, but it is slower by 0.003 seconds for 512 nodes

and 0.007 seconds for 1024 nodes. Having several rounds barely slows down the

algorithm and can even speed up the results.

54

Fig. 4.7 shows the results for the combustion dataset on Stampede. One of the

key characteristics of this dataset is that at the bottom, there are empty regions. This

creates load imbalances. Also, the dataset is rectangular and not as uniform as the

artificial dataset, but it resembles more closely what users are likely to be rendering.

The load imbalance creates some different situations from the regular dataset that

affects the IceT library a bit more than it affects the TOD-Tree compositing. This is

because both binary-swap and radix-k give a greater importance to load balancing

and if the data is not uniform, they are likely to suffer from more load imbalances.

The TOD-Tree algorithm does not place that much importance on load balancing.

4.3.3 Scalability on Edison

On Edison, we managed to scale up to 4,096 nodes. The same values of r

and k were used for up to 1024 nodes, as were used on stampede. These velues

are: r=16 for 32 and 64 nodes, r=32 for 128 and 256 and, r=64 for 512 and 1024,

r=128 for 2048 and 4096, and only 1 round was used for the k-ary tree part of the

algorithm. The results for strong scaling are shown in Fig. 4.8. The performance of

IceT's binary-swap was quite irregular on Edison. For example, for the 4096x4096

image, the time taken would suddenly jump to 0.49 seconds after being similar to

radix-k for lower node counts (around 0.11 s). We therefore decided to exclude

binary-swap from these scalings graphs. The sawtooth pattern is similar to what we

see on Stampede for TOD-Tree. Both TOD-Tree and radix-k show less consistency

on Edison compared to Stampede. On Edison, 8192x8192 images at 2048 and 4096

nodes are the only instances where radix-k performed better than the TOD-Tree

algorithm. Again, the main culprit was communication time and TOD-Tree not

using compression. In the future, we plan to extend TOD-Tree to have compression

for large image sizes.

Furthermore, to try to better understand the cause of the sawtooth-shaped

scaling, the TOD-Tree algorithm was modeled by plugging in the latency and

bandwidth of the Cray X30 internonnect, and the FLOPS of the Ivy Bridge CPU

of the Edison supercomputer into equation 4.4. The result, for a 4Kx4K image,

is shown in Fig. 4.9. As we can see, the theoretical model predicts a sawtooth

55

appearance which is reflected in the actual runs that were performed on Edison

and Stampede. This also means that better values of r and k can be chosen to try to

minimize this sawtooth appearance.

4.3.4 Stampede versus Edison

Fig. 4.10 shows the result of the TOD-Tree algorithm on Stampede and Edison.

The values of r used are the same as on Stampede for up to 1024 nodes. For 2048

and 4096 nodes, we set r to be 128. As expected, the algorithm is faster on Edison

than on Stampede: the interconnect is faster on Edison and the nodes have better

peak flop performance. On Stampede, we are not using threads, but on Edison, we

are using threads and vectorization. The gap between the performance is bigger

for low node counts, as each node has a larger chunk of the image to process when

few nodes are involved and so a faster CPU makes quite a big difference. As the

number of nodes increases, the data to process decreases and so the difference in

computing power is less important as the compositing becomes communication

bound. The sawtooth appearance is present in both but is amplified for Edison.

On average, we are still getting about 16 frames per second for a 256MB images

(4096x4096). At 2048 nodes on Edison, the time taken for TOD-Tree decreases, as

can be seen in the middle chart of Fig. 4.8.

Fig. 4.11 shows the equivalent comparison but for 8192x10418 images using

the combustion dataset. It is interesting to note that image compositing - using

TOD-Tree - on Edison is initially much faster than on Stampede, but at 1024 nodes,

the difference in time is negligible. When few nodes are used, a great deal of

computation is required, as each node has a larger image to process and so having a

powerful CPU is beneficial, but when there is less computation to do, the difference

in computation power is no longer that important. IceT performs less consistently

for this dataset probably because of the load imbalance inherent in the dataset.

4.4 Summary
In this chapter, we have introduced a new compositing algorithm for hybrid

OpenMP/MPI Parallelism and shown that it generally performs better than the

two leading compositing algorithms, binary-swap and radix-k, on the hybrid

56

programming environment. When using the hybrid parallelism, there is a quite a

large difference between the computation power available to one node compared

to the speed of inter-node communication. Hence, the algorithm must pay much

more attention to communication than to computation if we are to achieve better

performance at scale.

57

Sorted from the closest to the furthest in terms of depth | Number of processes (p) = 25

Stage 1: Direct Send Exchange with regions of size 4 (r=4)

Stage 2: K-ary Tree compositing (k=4)

Fig. 4.1. The three stages of the compositing algorithm with r=4, k=4, and the number of nodes p=25. Red, blue,
yellow, and green represent the first, second, third, and fourth quarter of the image.

59

Fig. 4.2. Profile for 64 nodes for 2048x2048 (64MB) image on Edison at NERSC
with r= 16, k=8. Red: compositing, green: sending, light blue: receiving, dark blue:
receiving on the display process. Total time: 0.012s.

Fig. 4.3. Breakdown of different tasks in the algorithm.

Fig. 4.4. The two test datasets used for testing: a synthetic dataset on the left and a
combustion dataset on the right.

Ti
m

e
(s

)

60

Stampede: 2048x2048 Artificial Dataset

32 64 128 256 512 1024

Nodes

Stampede: 4096x4096 Artificial Dataset

Nodes

Stampede: 8192x8192 Artificial Dataset

Nodes

Fig. 4.5. Scaling for the artificial data on Stampede.

Ti
m

e
(s

)

61

Different number of rounds for tree compositing

■ 1 Round
■ 2 Rounds

Nodes

Fig. 4.6. Varying number of rounds for the artificial dataset for 4096x4096.

Ti
m

e
(s

)

62

Stampede: 2048 Combustion Dataset

Nodes

Stampede: 4096 Combustion Dataset

Nodes

Stampede: 8192 Combustion Dataset

Nodes

Fig. 4.7. Scaling for combustion data on Stampede.

Ti
m

e
(s

)

63

Edsion: 2048x2048 Image - Artificial Dataset

Nodes

Edison: 4096x4096 Image - Artificial Dataset

Nodes

Edison: 8192x8192 Image - Artificial Dataset

Nodes

Fig. 4.8. Scaling for artificial dataset on Edison.

64

0.0700

0.0665

S
| 0.0630
P

0.0595

0.0560
32 64 128 256 512 1024 2048 4096

Nodes

Fig. 4.9. Modelling TOD-Tree using the network latency, bandwidth, and compute
capability of Edison for 4Kx4K images.

Stampede v/s Edison: Artificial Dataset at 4096x4096

Nodes

Fig. 4.10. Comparing Stampede and Edison for up to 1024 nodes for the artificial
dataset at 4096x4096 resolution.

Tim
e

(s
)

65

Chevron Dataset at 8192x8192 on Stampede and Edison
Edison: TOD-Tree
Edison: Radix-k

32 64 128 256 512 1024

Fig. 4.11. Comparing Stampede and Edison for up to 1024 nodes for combustion
at 8192x10418 resolution.

CHAPTER 5

DISTRIBUTED VOLUME RENDERING WITH

COMPOSITING ON GPU-ENHANCED

SUPERCOMPUTERS

5.1 Introduction
In the push towards exascale, a number of new supercomputers are being

deployed in the coming years. Three of these supercomputers, Cori at NERSC,

Trinity at the Los Alamos National Laboratory, and Aurora at Argonne National

Laboratory, are CPU-accelerated supercomputers and two of them, Summit at Oak

Ridge National Laboratory and Sierra at Lawrence Livermore National Laboratory,

are GPU-enhanced supercomputers. Therefore, having an algorithm that can work

on both CPU-only and GPU-accelerated supercomputers is thus very important.

Currently (April 2016), two of the top 10 of the Top 500 supercomputers are

equipped with Nvidia GPUs. GPUs have been so successful for General Purpose

computing on GPU (GPGPU) that although they were initially developed for

accelerating graphics, they are now mostly used in supercomputers for computing

rather than for graphics. Until recently, GPUs could be used only for compute

or graphics, but not both. However, Nvidia Tesla class GPU K20 and above can

run both graphics and compute at the same time. Moreover, whereas inter-node

communication between GPUs previously had to go through the CPU, with the

introduction of GPU Direct Remote Direct Memory Access (RDMA), GPUs can

communicate directly over a network with minimal latency. These two changes

allow us to do both rendering and compositing on the GPU since GPUs are at least

twice as fast as CPUs for raycast rendering [16].

5.1.1 Main Contribution

This chapter extends the work from the previous chapter where we compared

the performance of the TOD-Tree algorithm against radix-k and binary-swap on

an artificial and combustion dataset on CPU-enhanced supercomputers. Here, we

extend this algorithm to GPU-accelerated supercomputers. The new contributions

are:

• development of a multi-GPU compositing algorithm based on TOD-Tree that

takes advantage of modern GPU capabilities

• scaling to 4096 GPUs on Piz Daint, a GPU-accelerated supercomputer

• a workflow that allows seamless transfer, with minimal latency, of renderings

from an OpenGL context to a CUDA context and uses GPU Direct RDMA for

compositing

Whereas volume rendering is often done on GPUs, compositing is usually done

on the CPU [55], [79]. In this work, we do both on the GPU. The only image

compositing algorithm that we have found for GPUs is parallel direct send in

the vl3 system [38], which has been scaled to 128 GPUs on the Tukey computer

cluster at Argonne. In this chapter, we scale to 4096 GPUs on the GPU-accelerated

supercomputer Piz Daint. As far as we know, this is the largest scaling across GPUs.

We compare the performance of TOD-Tree scaled to 4096 nodes on two CRAY XC30

systems: Edison, a CPU-only supercomputer, and Piz Daint, a GPU-enhanced

supercomputer. We show that GPU compositing achieves performance on par with

CPU compositing for 2K x 2K and 4K x 4K images, and even better performance

for 8K x 8K images.

Most visualization software uses OpenGL and shaders to do volume render­

ing on GPU. However, GPU Direct RDMA, which allows GPUs to talk across a

network, does not work in OpenGL; it only works using CUDA. So after ren­

dering in OpenGL, we need to switch over to CUDA for image compositing.

Transferring data from OpenGL to CUDA can be easily done using the CUDA

OpenGL Interoperability runtime. The usual render target for OpenGL offscreen

rendering are textures, which is mapped to CUDA arrays using the CUDA OpenGL

Interoperability. CUDA arrays reside in texture memory but GPU Direct RDMA

67

does not work with texture memory, only device memory. Moving data from

texture memory to device memory can be quite expensive, so we instead render to

an OpenGL buffer object that can be mapped to device memory. The workflow we

introduce shows how to do rendering and image compositing using the GPU and

what is required to modify existing systems to do all the visualization on the GPU.

This workflow could be very useful for in-situ visualization where simulation and

visualization can proceed in parallel on the CPU and GPU, respectively. As far as

we know, this is the first time this workflow has been used.

5.2 Methodology
As mentioned before, distributed volume rendering has three stages: loading,

rendering, and compositing. Rendering on the GPU is fast, but compositing has

usually been done on the CPU because of the high latency of inter-node GPU

communication. The workflow that we describe explains how to minimize the

latency for inter-node GPU communication.

5.2.1 Workflow for Rendering on the GPU

OpenGL with shaders is the most common option for doing volume rendering

on the GPU, but the only technology that allows GPUs to talk across a network is

GPU Direct RDMA, which is available only in CUDA. In this section, we describe

the workflow that allows the seamless transfer of data rendered from the OpenGL

graphics pipeline to CUDA using the CUDA OpenGL interoperability runtime.

All OpenGL programs need an OpenGL context. To create a context on Linux,

the operating systems that most HPC systems use, an X server is required. The

X server is a program that sits on top of the driver and handles input and output

from an application. To create a context, the Xlib library is used to connect to the

X server, and GLX is then used to create a context. On desktop systems, an X

server is usually started by default, but on compute nodes of HPC systems, the X

server might have to be explicitly started using #SBATCH — constraint = startx in

the job submission script to the job scheduling system. In the future, once most

GPU drivers in supercomputers have support for EGL [80], we should not have to

68

initialize an X server to create an OpenGL context. Fig. 5.1 shows the interaction

that goes on with the GPU, driver, X server, libraries, and application.

Compute nodes in supercomputers are rarely connected to displays. OpenGL

rendering is, therefore, usually offscreen targeted to a framebuffer object or render-

buffer object, both of which are usually mapped to texture memory in OpenGL.

When using CUDA OpenGL interoperability, they will be mapped to texture

memory in CUDA, but GPU Direct RDMA does not work from texture mem­

ory. There are two ways to map data from texture memory to device mem­

ory in CUDA. It can be copied to device memory using cudaMemcpyFromArray

and cudaMemcpyDeviceToDevice or through a CUDA kernel. However, in some

tests we ran, we found both approaches to be slow for large textures. Using

cudaMemcpyFromArray, it took about 5 milliseconds for a 4,096 x 4,096 RGBA32F

image and about 21 milliseconds for 8,192 x 8,192 RGBA32F image. Therefore,

instead of rendering to a framebuffer object, we render to an OpenGL Buffer Object,

more specifically to a GL_TEXTURE_BUFFER, which is mapped to device memory

when using CUDA OpenGL interoperability.

A GL-TEXTURE-BUFFER can store up to 134,217,728 million pixels (a max­

imum image size of 8,192 x 16,384 pixels) and behaves like a regular OpenGL

texture but is only one-dimensional. To store the output of a fragment shader to it,

we need to map the (x,y) screen coordinates to a one-dimensional position in GLSL

as follows:

Listing 5.1. Computing fragment location
in t i n d e x ;
index = (i nt (f l o o r (gl_FragCoord . y)) - minY) *

width + (i nt (f l o o r (g LFr agCoor d . x)) - minX)) ;

where width is the width of the screen, minX and minY are the minimum x and y

coordinate, and gLFragCoord is an OpenGL variable that stores the coordinates of

a fragment in screen space.

The steps to render to a GL_TEXTURE_BUFFER instead of a framebuffer in

OpenGL are:

1. initialize a GL-TEXTURE-BUFFER and bind it to a texture

69

2. pass the texture and its width and height and minimum x and y values to the

shader

3. to receive the uniform in the shader:

layout(rgba32f, binding = X) coherent uniform im ageBuffer imgOut;

(where X is the texture number and imgOut is the name of the texture)

4. compute the index of where to store the fragment as shown in listing 5.1

5. use imageStore to store the fragment.

Once rendering is done, the texture buffer object can be mapped to CUDA device

memory using the cudaGraphicsGLRegisterBuffer function. Then CUDA kernels are

used for blending and GPU Direct RDMA for communication. Rendering to an

OpenGL buffer object instead of the usual framebuffer is key in the workflow,

shown in Fig. 5.1, since it allows latency to be kept to a minimum by not having to

copy any data. Also, changing the rendering target to a texture buffer object in an

existing program should be quite straightforward.

5.2.2 Compositing Algorithm

Compositing has two main components: communication and computation. In

the previous section, we explained how communication and computation will be

done on the GPU. However, we also need the logic for doing compositing; we

need an algorithm. The algorithm we used is the TOD-Tree algorithm. Com­

pared to algorithms such as radix-k and binary swap, TOD-Tree tries to minimize

communication and hides the latency of inter-node communication by overlapping

computation with communication. Since GPUs can blend images faster than CPUs,

communication avoidance is even more important on GPUs than on CPUs. Imple­

menting TOD-Tree on the GPU is quite similar to implementing it on the CPU. The

only changes needed are blending and memory allocation. For blending, CUDA

kernels are used on the GPU instead of OpenMP with vectorization on the CPU,

and memory allocations and deallocations are through cudaMalloc and cudaFree. No

change is needed to use GPU Direct RDMA in the program; the same MPI calls are

made but the buffers used are in CUDA device memory. In the job script submitted

to job scheduling system, export MPICH-RDMA .ENABLED JCUDA = 1 is needed

70

to activate GPU Direct RDMA, which is verified in the program by checking the

environment variable using getenv("MPICH RDMAJENABLEDJCUDA”).

For the rendering stage on the GPU, OpenGL 4.4 and GLSL shaders were used

to implement ray casting volume rendering. The same algorithm was implemented

in C ++ for the CPU.

5.3 Testing and Results
5.3.1 Test Setup

Most supercomputers have CPUs with many cores, and some are also enhanced

by coprocessors such as Nvidia Tesla GPUs, which have thousands of cores. For this

project, we ran our algorithm on a GPU-enhanced supercomputer and compared

our results against a CPU-enhanced supercompter both CRAY XC30 systems. Also,

since IceT was not built to run on GPU, we could not do a performance comparison

using IceT on Piz Daint. Instead, we compared the performance of TOD-Tree

between CPU and GPU compositing on Edison and Piz Daint, since both are CRAY

XC30 systems. The test dataset used for comparison is the artifical box dataset

described in the previous chapter.

The primary test system used for testing is Piz Daint, a Cray X30 supercomputer

that uses the dragonfly topology for its Aries interconnect network. The 5,272 nodes

are arranged into 28 cabinets. Each node has an Intel SandyBridge processor with

eight cores (Intel Xeon E5-2670) that has a peak performance of 211 GFLOPS and a

Nvidia Tesla K20X GPU that has a peak performance of 3.95 TFLOPS [81]. The peak

performance of Piz Daint is 7.787 PFLOPS [82]. On Piz Daint, we ran TOD-Tree

on the GPU using GPU Direct RDMA for communication and CUDA kernels for

computation. The system we compared against was the Edison supercomputer at

NERSC. Edison is a Cray X30 supercomputer that uses the dragonfly topology for

its Aries interconnect network. The 5,576 nodes are arranged into 30 cabinets. Each

node is an Intel IvyBridge processor with 12 cores (Intel Xeon E5-2695v2) and has a

peak performance of 460.8 GFLOPS/node. The peak performance of Edison is 2.57

PFLOPS [76].

71

For a fair comparison between between CPU and GPU, all the parallelism

aspects of the CPU must be used. The TOD-Tree algorithm on Edison has been

compiled using autovectorization, which uses SIMD parallelism, and OpenMP,

which uses all the cores of the CPU, on Edison. On Piz Daint, we ran TOD-Tree

on the GPU using GPU Direct RDMA for communication and CUDA kernels for

computation. The same value of r for pairs of time steps; r=16 for 32 and 64 nodes,

r=32 for 128 and 256 and, r=64 for 512 and 1024, r=128 for 2048 and 4096, and only

1 round was used for the k-ary tree part of the algorithm. The GPU on Piz Daint is

much more powerful than the CPU on Edison: the Tesla K20X on Piz Daint has a

peak performance of 3.95 TFLOPS compared to the 460.8 GFLOPS on Edison.

5.3.2 Scaling on Piz Daint

On Piz Daint, we had access to 3,000 node hours, which did not allow us to

run as many tests as on the other platforms, but we still managed to scale up

to 4096 nodes/GPUs using the TOD-Tree algorithm for 2048x2048, 4096x4096 and

8192x8192 images for the artificial dataset. The results are shown in Fig. 5.2.

The 2048x2048 image, topmost graph in Fig. 5.2, has numerous fluctuations.

These fluctuations, however, all take place within 6 milliseconds, meaning that

they will barely affect the rendering frame rate. For 2048x2048 images, the overall

size of the full image is only 64MB, and the many variations can be explained by

the fact that performance is mainly communication bound. These fluctuations

decrease as the size of the image increases, and the compositing starts to be

more computation bound than communication bound. The average coefficient of

variation for compositing time is 10.3% for 2048x2048 images, 3.7% for 4096x4096

images, and 1.8% for 8192x8192 images. The sawtooth appearance is similar to

what we see on Edison and Stampede since the same values are used for the

parameters r and k for the same number of MPI processes on all three systems.

We compared running TOD-Tree on Edison with Piz Daint since we ran with

the same number of MPI processes on each, and both Edison and Piz Daint are

CRAY XC30 systems with the same dragonfly topology and Aries interconnect

network. The compositing times are very close for 2048x2048 and 4096x4096. The

72

difference in time is within 5 milliseconds for 2048x2048 images and usually within

10 milliseconds for 4096x4096 images with a maximum variation of 20 milliseconds

at 1024 nodes. For the 8192x8192 image, TOD-Tree is much faster on Piz Daint

because we believe that for 8192x8192 image, compositing is more computation

bound and computation on Piz Daint is faster than on Edison. If we compare

the increase in average compositing time for the 2048x2048 to 4096x4096 image

(for which the size increases by 4), we see that it has increased by, on average,

3.7 times on Edison and 3.2 times on Piz Daint. For 4096x4096 to 8192x8192, the

average increase in compositing time is 7.2 on Edison compared to 3.7 on Piz Daint,

again for a size increase of a factor of 4. The increase in time on the GPU is quite

consistent, as shown in Fig. 5.3.

5.3.3 Scaling Across Machines

Fig. 5.4 shows the result of TOD-Tree algorithm on Stampede, Edison, and Piz

Daint. The values of r and k used are the same on all three supercomputers. As

expected, the algorithm is faster on Edison and Piz Daint compared to Stampede:

the Aries interconnect on the CRAY XC30 is faster and the nodes have better peak

FLOP performance. Whereas on Stampede, we are not using threads, on Edison

we are using threads and vectorization and using CUDA kernels on Piz Daint.

The gap between the performance is larger for low node counts, as each node has

a bigger chunk of the image to process when few nodes are involved, a faster

processor makes quite a big difference. As the number of nodes increases, the data

to process decreases and so the difference in computing power is less important

as the compositing becomes communication bound. The sawtooth appearance is

present on all three systems. On average, we are still getting about 16 frames per

second for a 256MB images (4096x4096 pixels). At 2048 nodes, the time taken for

TOD-Tree decreases, as can be seen in the middle chart of Fig. 5.2.

Finally, if we look at how the performance of TOD-Tree varies as we increase the

number of nodes from 32 to 4096 nodes for the 2048x2048,4096x4096, and 8192x8192

images, we notice that there are more spikes and troughs in the 2048x2048 and

4096x4096 sized images than in the 8192x8192 sized image. The main reason for

73

these many fluctuations is that image compositing is communication bound for

small images. When doing image compositing for 2048x2048 sized images, the

data exchanged among nodes is usually quite small and so the ratio of latency

to interconnect transfer speed is quite high, resulting in an overall bandwidth

low. For large images, the ratio of latency to interconnect transfer speed is low

and so we benefit from higher bandwidth speed, which makes image compositing

less communication bound. Communication-bound processes tend to have more

variations due to the unpredictability of network traffic. These variations are more

visible in the 2048x2048 sized image since the small fluctuations in network speed

are more visible when we are looking at resolutions of milliseconds compared to

resolutions of 50 or 100 milliseconds as in Fig. 5.4.

5.4 Summary
TOD-Tree performs equally well on GPU-accelerated supercomputers, which

are even better for large images due to the higher peak performance of GPUs.

There is a large difference between the computational power available to one node

compared to the speed of inter-node communication. Computation is usually at

least one order of magnitude faster than communication, so algorithms must be

designed to pay much more attention to communication than to computation if we

are to achieve better performance at scale. Also, we have introduced a workflow

that enables us to seamlessly transfer data from OpenGL to CUDA to allow faster

overall rendering that can be easily integrated with existing GPU volume rendering

systems.

74

75

Setup:
Activate X Server
Create OpenGL Context using GLX

Volume Rendering (OpenGL):
Setup OpenGL Buffer Object
Write offscreen Buffer Object in shaders

CUDA - OpenGL Interop:
Map OpenGL Buffer Object to CUDA

Compositing (CUDA):
CUDA Kernels - Blending
GPU Direct RDMA - Communicating

Fig. 5.1. Workflow for GPU rendering.

76

TOD-Tree on Edison and Piz Daint: 2048x2048 Image - Artifical Dataset ^
° Edison

Piz Daint
1 7 -

32 64 128 256 512 1024 2048 4096

Nodes

TOD-Tree on Edison and Piz Daint: 4096x4096 Image - Artifical Dataset

Nodes

TOD-Tree on Edison and Piz Daint: 8192x8192 Image - Artifical Dataset

Nodes

Fig. 5.2. Comparing scaling for Edison and Piz Daint.

Ti
m

e
(s)

'

Ti
m

e
(s

)

77

Edison v/s Piz Daint - Artificial Dataset

Nodes

Comparing scaling on Edison and Piz Daint for 4096 MPI processes.

Stampede v/s Edison v/s Piz Daint: 4096x4096 image - Artificial Dataset

Nodes

Fig. 5.4. Comparing Stampede and Edison for up to 1024 nodes for the artificial
dataset at 4096x4096 resolution.

CHAPTER 6

DYNAMICALLY SCHEDULED

REGION-BASED IMAGE

COMPOSITING

6.1 Introduction
Sort-last distributed volume rendering has three stages: loading, rendering,

and compositing. The data to be visualized is typically divided so that each node

has the same amount of data, and ideally, loading and rendering should take the

same amount of time on each node of a distributed memory machine. However,

the rendering time is rarely the same across nodes. There are three main reasons

for this: (1), the features that users want to see are rarely uniformly distributed,

an example is shown in Fig. 6.1, and the nodes assigned to rendering these empty

regions, made invisible through a transfer function, have much less work to do and

will finish early; (2), when using perspective projection, nodes closer to the camera

produce a larger image compared to nodes far from the camera; (3), if the user

zooms in on one specific region of a dataset, part of the dataset might fall outside

the viewing window and not need to be rendered at all.

6.1.1 Main Contribution

The main contribution of this work is an image compositing algorithm that

uses a scheduler with both spatial and temporal awareness of the compositing

process. We start by dividing the final image into a number of regions r and create

a depth-ordered list of nodes for each region. Based on the data loaded by each node

and the properties of the camera, the spatial contribution of each node to regions

of the final image can be determined. Nodes not contributing to a region can then

be removed from that region's list. The scheduler also updates the region list after

each node is done rendering by eliminating nodes that rendered nothing for a

region. This process ensures that a node not contributing to a region is never made

to receive data for that region, thus minimizing communication. The algorithm

then schedules the exchange of images and ensures that no nodes wait for a node

that is still rendering if another option for compositing is available. Thus when the

slowest node is done rendering, most of the regions of the final image have already

been composited and there is minimal overhead to assemble the final image. The

algorithm uses one MPI rank per node and threads for CPU cores, which Howison

et al. [42] showed to be better than one MPI rank per core. Auto-vectorization is also

used to fully leverage the compute capabilities of modern CPUs, and asynchronous

MPI communication is also used to overlap communication with computation. We

compare this scheduling-based image compositing algorithm against TOD-Tree on

the Edison supercomputer at NERSC using a box and sphere artificial dataset and

a combustion dataset.

6.2 Methodology
As mentioned before, it is rare for rendering on all the nodes of a distributed

memory machine to finish at the same time. Improving compositing time, therefore,

requires minimizing the time between when the slowest process finishes rendering

and compositing is complete; the orange region in Fig. 6.2. For that to happen,

processes still rendering should not delay compositing.

One of the issues with compositing algorithms such as parallel Direct Send,

Binary Swap, Radix-k, and TOD-Tree is their lack of awareness of which processes

have finished rendering and which processes are still rendering, which sometimes

delays image compositing as processes wait for images from processes that are still

rendering. Fig. 6.3 shows an example of eight processes doing compositing using

radix-k. Let us assume that two rounds are needed and vector k = 4,2. If processes

6 and 0 are still rendering while the remaining processes are compositing, radix-k

will be stuck in round 1 of parallel direct send. A similar delay would occur in

Binary Swap and TOD-Tree if some nodes are waiting to exchange images with

nodes that are still rendering.

79

The same set of processes can be represented as a graph, as shown in Fig. 6.4. If

we blend exclusively based on depth, processes 4,1, 7, and 5 can start compositing

while waiting for 6 and 0 to finish rendering. Also, since there are never any cycles

in the graph, we will refer to it as a chain.

This procedure, however, can still be improved upon. If 6 and 0 do not contain

information relevant to the whole image, they should not delay compositing for

the whole image. We can then split the image into several regions and have a chain

for each region of the image. Fig. 6.5 shows an image split into four regions with a

depth-sorted chain for each region. As we can see, each chain has a different length

since a node will rarely contribute to all regions of an image. As the number of

processes increases to hundreds or even thousands, the contribution of one process

to the whole image lessens. Therefore, stalling the whole compositing because of a

few slow rendering processes can be avoided; we need to stall only a few regions.

The key here is the spatial awareness that is inherent in our proposed algorithm.

For our algorithm, we divide the image into a set of r regions with a depth-

sorted chain for each region. To create the chains for each region, we can gather

information about the extents of the data each process is loading from MPI, or if a

k-d tree is used to load the data, this information can be obtained programmatically

for each region from the k-d tree. Using the extents and camera information camera,

we can compute the depth of each process and the position and area contributed

by each process in the final image. For each chain, we also need to decide which

processes will be responsible for gathering information. To try to ensure that

different nodes are used to collect information for each chain, the first collector

node in the chain for region i is the ith node in the chain. The second is the (i + r)th

node. If a chain has fewer than r nodes, the last node is made the collector node for

that region. The collector processes are marked with a black circle inside in Fig. 6.5.

The number of regions in this case is four. The first chain, chain 0 colored pink, has

only three nodes, so the last node is set as the collector. The second chain, chain 1

colored cyan, has seven nodes. Therefore, node 1 and node 5 are set as collectors.

80

6.2.1 Compositing Algorithm

For our algorithm, we have set aside one process that is not involved in

compositing or rendering to act as a scheduler. The scheduler builds a chain

for each region, and the compositing processes contact the scheduler to determine

with which processes they should exchange images. The chain for each region is

constructed as indicated in algorithm 4.

81

Algorithm 4: Initialize Scheduler
Collect the depth and extents for each process
Sort the processes based on depth
Construct a chain based on depth
for each region do

Use the computed depth chain as the starting point
Compute and store the extents for that region
for each process in the chain do

Compute the extents of the process
if extents o f process does not overlap the chain's then

Delete process from the chain
Adjust the to and from neighbor for deleted process

if length o f chain j number o f regions r then
| Set last process as collector

else
|_ Set every r process to be a collector

Create a buffer for final receive
Launch asynchronous MPI receive for final image

Based on the depth information from each process, a depth-sorted chain, as

shown in Fig. 6.4, is constructed and is used as the initial chain for each region. For

each region, processes that do not contribute to that region are removed from the

chain, which creates spatial awareness for each region and reduces the length of

each chain. In software, each chain is implemented using a hash map, unordered_-

map in C ++, so that access time is always O(1), and each node of the chain stores the

neighbor to and from it. The last step is to create a buffer to receive the composited

image for each region. This step ensures that when the final image regions are sent

to the display node, they are not written to a temporary buffer but directly to the

final image.

The scheduler is then started and awaits communication from compositing

processes. Algorithm 5 shows the algorithm for the scheduler. If the scheduler is

receiving information from a process for the first time, it also receives the extents of

the rendered image. The chain for each region was initialized based on the expected

rendered extents from each process, but depending on the transfer function, some

regions might not have been rendered for a process. Based on the rendered extents,

therefore, some nodes are removed from region chains if they do not have any

information for that region. If that process p was marked as a collector process

for a specific region, its neighbor is made a collector process, and the process p is

deleted to minimize unnecessary transfer of data to that process.

Next, the scheduler performs dynamic scheduling by deciding which processes

should communicate with each other. In each region for which the received process

is active, the received node in that chain is marked as ready, and the chain is checked

to see if there is any neighbor process marked as ready. If a valid neighbor is found

and one of them is a collector process, the noncollector will send its data to the

collector process. Otherwise, the node having the smaller image will send data to

the node with the larger image to minimize communication time. In each case, the

sender node is marked for deletion and the receiver is marked as unavailable. The

last step of the algorithm is to check if there are any chains that are now empty

or have only one remaining ready process. If there is only one ready process, it is

made to send its information to the root node and the chain is cleared. The next

step is to send all the information at once to each node that has work to do. A

process might need to send data to a node x for a specific region and receive data

from the same node x for another region. All the communication to a node from

the scheduler is done in one step.

Each compositing node runs the compositor algorithm shown in algorithm 6.

The first time a process communicates with the scheduler once it is done rendering,

it sends its extents to the scheduler. As mentioned before, based on the transfer

function, a process will not always render all data it has loaded, and as spatial

awareness is a key component of our algorithm, we want to update the region

chains to reflect the state of the rendering. Also, each process will receive in one

82

83

Algorithm 5: Scheduler
while !done do

Wait for communication from the rendering process
if first communication from the process then

Receive rendered extents from the process
for each region do

Determine extents for region
if extents o f a process does not overlap the chain's then

Remove the process from the chain
Adjust neighbors to and from for deleted process

Mark node as active in a chain where it exists
for each active chain do

if only process in chain then
Mark a process to send information to root
Erase the chain

else
Find neighbor for incoming node
if neighbor found then

Determine if sender or receiver
Mark receiver as processing
Delete sender from chain

L Save sender and receiver information

for each active chain do
if size is 1 AND process is ready then
L Process will send data to root

for each process marked for communication do
L Send information

if all chains are empty then
|_ Exit Scheduler

message all the other processes with which it needs to communicate to keep com­

munication in the system to a minimum. Information for each communication will

contain the neighbor with which to communicate, the region, blending direction,

and MPI tag. Also, each send from a process is in the form of an asynchronous

send to maximize overlapping communication with computation.

6.2.2 Choosing Number of Regions

For the scaling run, we have set the number of regions to be 16. This number

was determined after a series of initial test runs in which we experimented with

84

Algorithm 6: Compositor
Get the extents of the image rendered by the process
Count the number of active regions (countActiveRegions) covered by the
image
while !done do

if first time then
I Send extents to the scheduler

else
|_ Tell scheduler that it is ready

Wait for scheduler to respond
for each process to communicate with do

if Only one process in chain then
Send data to root
countActiveRegions -= 1

else
if Send then

Async send to neighbor
countActiveRegions -= 1

else
Receive image
if last round then

Create opaque image
Create alpha buffer
Blend current image with the background
Blend in opaque buffer
Send to display node
countActiveRegions -= 1

else
|_ Blend with image on node

if no active regions left then
|_ Exit loop

1, 2, 4, 8,16, and 32 regions for 4,096 x 4,096 sized images. When few regions are

used, a slow node impacts few regions, but since each region occupies a substantial

portion of the image, compositing ends up being slow. For example, if we use only

two regions for an 8K x 8K image, and there is one slow node in the upper region,

half of the compositing is delayed by one node. If too many regions are used,

one slow node will impact many small regions. Since there are many regions, the

overall impact of a slow region will be less. However, this will result in a lot of

85

communication with many exchanges, which we want to avoid. Sixteen regions

provided a right balance between avoiding too much communication and one node

having too much of an impact on the whole compositing process.

6.3 Testing and Results
We first examine the setup for the experiment, the test platform, data, and

algorithm used before presenting the scaling results.

6.3.1 Experiment Setup

The test platform used is the Edison Cray XC30 supercomputer at NERSC.

Edison uses the Cray Aries high-speed interconnect with Dragonfly topology that

has an MPI bandwidth of about 8 GB/sec and latency in the range of 0.25 to 3.7

usec. It has 5,576 compute nodes, each of which has two 2.4 GHz 12-core Ivy Bridge

processors with 64 GB of memory per node. We scaled up to 2,048 nodes of the

5,576 nodes of Edison.

The test datasets that we used are a box and sphere artificial test datasets and

a combustion dataset shown in Fig. 6.6. The combustion dataset has 5,996 blocks

of scalar data, each of which has about 17,000 cells per block. At the bottom of

the dataset, there are a number of tubes through which fuel is injected into the

combustion chamber. Combustion starts above these tubes and rises to the top

of the combustion chamber, hitting the ceiling and the walls. When visualizing

this dataset, much more work has to be done in the upper regions of the dataset,

thereby creating an imbalance in the rendering workload. The artificial datasets

are simpler: each rendering process is assigned one block of uniform scalar data

per node. The box dataset is similar to what was used by Moreland et al. [83], and

we also introduced a sphere dataset whose diameter is equal to the length of the

cube.

The algorithm we compared against is the TOD-Tree algorithm described in

Chapter 4 that has been shown to perform generally better than Radix-k. Both

TOD-Tree and our algorithm use threads and auto-vectorization compared to the

ICET library [15], which does not use threads.

6.3.2 Scheduler Cost

Building and running the scheduler is fast: the time it took to construct the

region chains and for MPI Gather to collect the depth and extents information

from each node, for 2,048 nodes, was measured to be on average 0.5 milliseconds.

The time it took the scheduler to respond to a compositing node if neighbors

were available was on average 0.2 milliseconds. With a latency of at most 3.7

microseconds, the cost of communicating with the scheduler is minimal compared

to the cost of exchanging data among nodes.

6.3.3 Scaling Studies

For each of the three datasets, and for each of the three image sizes used (2,048 x

2,048,4,096 x 4,096, and 8,192 x 8,192 pixels), we performed 10 runs after an initial

warm-up run, and the results are the average of these runs after some outliers have

been eliminated.

Fig. 6.7 shows the total time it takes to render and composite the combustion

dataset for up to 2048 nodes on Edison. As expected, as the number of nodes

increases, the total time it takes to render the dataset decreases. The focus here

is image compositing and so, for the remainder of this section, we focus on

compositing.

Depending on the amount of rendering work each node has to do, compositing

will start at different times on each node. The compositing time that needs to be

minimized is the time interval between the slowest rendering job finishing and

the final image is ready on the display node: the orange region in Fig. 6.2. Any

compositing done in the interval of time between the fastest rendering node and

the slowest rendering node does not slow down the entire compositing process.

The compositing time that we measured and plotted in Fig. 6.8 and 6.9 is the

time interval between the slowest rendering job and the image being ready on the

display node. Our dynamically scheduled region-based compositing algorithm is

labeled as DSRB in the figures.

Fig. 6.8 shows the compositing time for the combustion dataset for 2,048 x 2,048

(2Kx2K), 4,096 x 4,096 (4Kx4K), and 8,192 x 8,192 (8Kx8K) sized images. When

86

there are few nodes, each node renders a larger region and so influences many

regions of the chain. Therefore, we do not gain much from overlapping rendering

with compositing since compositing in most regions is stalled by waiting for other

nodes. As the number of nodes increases and the contribution of each node to

regions is decreased, the overlapping of compositing and rendering allows us to

perform better than the TOD-Tree, which does not have any spatial or temporal

awareness of the image being rendered from each node. We also see that there is

more variation for the 2K x 2K image compared to the 4K x 4K image and 8K x 8K

image since it is more communication bound. The 8K x 8K image has the least

variation as it is more compute bound.

The Dynamically Scheduled Region-Based compositing algorithm also per­

forms faster than the TOD-Tree on the artificial dataset. The difference in com­

positing times between the sphere and box is minimal in most cases. However,

since there is less data for the sphere dataset, it takes less time to render compared

to the box dataset; the orange box in Fig. 6.2 is smaller. The result of that is that

the box seems to have a faster compositing time since what we are showing as

compositing time is the time interval between the slowest rendering and the final

image being ready. For the TOD-Tree, the sphere is generally faster since there

is overall less data to process. As with the combustion dataset, compositing gets

faster as the number of nodes increases. Here again, when more nodes are used,

each node has a smaller share of the entire image, and a slow node impacts fewer

regions, resulting in faster compositing.

6.4 Summary
In this work, we have introduced an image compositing algorithm that has

both spatial and temporal awareness of compositing. Spatial awareness ensures

that no compositing processes will ever receive data for a region to which it does

not contribute, thereby minimizing communication. Temporal awareness ensures

that processes do not try to communicate with processes that are still rendering,

thereby minimizing delays. Combining spatial and temporal awareness stream­

lines compositing by allowing several regions of an image to be fully composited

87

88

fairly quickly. Compositing is delayed only for data-intensive regions of an image,

which gives us a substantial gain compared to TOD-Tree, which lacks spatial and

temporal awareness.

89

Fig. 6.1. Two commonly used test datasets: the Bonsai dataset on the left and
Backpack dataset on the right with numerous empty regions in each dataset.

Total Compositing

Rendering Starts Fastest Rendering Ends

Slowest Rendering Ends

Time To Minimize
Compositing Ends

Fig. 6.2. Rendering and compositing timeline.

Fig. 6.3. The first round of Radix-k for eight processes. The processes in green are
done with rendering and are compositing. The processes in red are still rendering.
The blue rectangle shows the region for which each node is responsible.

90

3 6 4 1 7 5 0 2

Fig. 6 4. Nodes sorted by depth in a chain.

o-o-®-
0 - 0 - 0 -

o • o
Fig. 6 5. Four chains, one for each of the four regions (purple, blue, yellow, and
gray) into which the final image is split.

Fig. 6 6. The datasets: box (left), sphere (middle), and combustion (right).

Ti
m

e(
s)

Ti

m
e(

s)

Ti
m

e(
s)

91

Combustion Dataset ~ Rendering + Compositing ~ 2K x 2K

Nodes

Combustion Dataset ~ Rendering + Compositing ~ 4K x 4K

Nodes

Combustion Dataset ~ Rendering + Compositing ~ 8K x 8K

Nodes

Fig. 6.7. Scaling of the combustion dataset on Edison - showing rendering and
compositing.

92

Combustion Dataset ~ Compositing ~ 2K x 2K

Nodes

Combustion Dataset ~ Compositing ~ 4K x 4K

Nodes

Combustion Dataset ~ Compositing - 8K x 8K

32 64 128 256 512 1024 2048

Nodes

Fig. 6.8. Scaling of the combustion dataset on Edison - showing compositing only.

93

Box & Sphere ~ Compositing ~ 2K x 2K

Nodes

Box & Sphere ~ Compositing ~ 4K x 4K

Nodes

Box & Sphere ~ Compositing - 8K x 8K

Nodes

Fig. 6.9. Scaling of the artificial box and sphere datasets on Edison - showing
compositing only.

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, we have looked at two aspects of volume rendering: evalu­

ating how depth of field can be used to improve depth perception and investigating

how to make image compositing faster for distributed volume rendering on CPU-

only and GPU-enhanced supercomputers.

Direct volume rendering is now commonly used for visualizing data, and many

techniques claiming to enhance the quality of the rendering have been developed.

However, very few of these techniques have been evaluated to assess their use­

fulness in improving perception. For the first contribution of this dissertation,

we evaluated how DoF impacts depth perception in DVR. We expected to see an

overall improvement in all cases, but we found that whereas depth of field on the

front features improves depth perception, DoF on the back feature has the opposite

effect. Because of depth cue conflict, DoF on the back feature confused the test

subjects and negatively affected depth perception.

The second contribution of this dissertation focused on improving image com­

positing in distributed volume rendering. Sort-last rendering on distributed mem­

ory machines is not new, but recent changes in supercomputing architecture have

changed the constraints under which compositing algorithms should be built.

Previously, the main constraint was to evenly balance the workload among nodes,

but the main constraint now is to try to minimize communication and overlap com­

munication with computation. In this dissertation, TOD-Tree image compositing

has been developed to minimize communication and overlap communication with

computation. Running tests on up to 4,096 nodes on the Edison supercomputer

showed that this algorithm is generally faster than binary swap and radix-k.

Moreover, using new developments that facilitate inter-GPU communication - GPU

Direct RDMA, CUDA OpenGL Interop, and the ability of Tesla class GPUs to run

both compute and graphics - we have developed a pipeline that minimizes latency

for distributed volume rendering on GPU-enhanced supercomputers, allowing

us to do rendering and compositing exclusively on GPUs. We performed strong

scaling studies, on up to 4,096 GPUs of the Piz-Daint supercomputer, to confirm

that image compositing on GPU-enhanced supercomputers is at least as fast,

and in some cases even faster, than image compositing on the Edison CPU-only

supercomputer. Furthermore, we noticed that one of the weaknesses of image

compositing algorithms such as binary swap, radix-k, and TOD-Tree is that they

do not take into account the distribution of data on each node and which nodes

are done rendering and which nodes are still rendering when trying to exchange

information for compositing. This results in some nodes waiting for other nodes

that are still rendering instead of exchanging images with nodes that are ready

to do compositing. Moreover, in some cases, a node is made to be authoritative

on a section of the final image for which it has no data, needlessly increasing

communication. We therefore developed an algorithm with spatial and temporal

awareness that we tested against TOD-Tree and showed that a dynamically sched­

uled algorithm can be much faster than an algorithm with no awareness of the

rendering and compositing state of the rendering nodes.

As future work, we would like to expand the number of test volumes that were

used for the depth of field user study. For example, will DoF on the front feature

still be able to improve perception in the case of microscopy images? More tests

need to be carried out for that. Also, we would like to create an algorithm, based

on TOD-Tree, which incorporates the spatial and temporal awareness found in the

dynamically scheduled image compositing algorithm. Such an algorithm would

allow us to use TOD-Tree when the data is evenly distributed, and leverage spatial

and temporal awareness for uneven data distribution, thereby creating a general

solution for image compositing for different-sized images and clusters. Moreover,

the scheduler is now being run on a different node, but we would like to run it on

one of the compositing nodes and finally, we would like to extend our test to larger

distributed memory systems for both GPU- and CPU-enhanced supercomputers.

95

APPENDIX

PUBLICATIONS

• A.V. Pascal Grosset, Peihong Zhu, Shusen Liu, Suresh Venkatasubramanian,

Mary Hall. Evaluating Graph Coloring on GPUs, ACM SIGPLAN Principles

and Practice of Parallel Programming (PPoPP), Feb. 2011, San Antonio, Texas,

USA PPoPP'11, February 12-16,2011 (Runner up for PPoPP 2011 Best Student

Poster Award) (Poster)

• M. Schott, A.V.P. Grosset, T. Martin, V. Pegoraro, S.T. Smith, C.D. Hansen.

Depth o f Field Effects for Interactive Direct Volume Rendering, In Proceedings of

Eurographics/IEEE Symposium on Visualization 2011, Vol. 30, No. 3, Edited

by H. Hauser, H. Pfister, and J. J. van Wijk, 2011

• M. Schott, T. Martin, A.V.P. Grosset, C. Brownlee, T. Hollt, B. P. Brown, S.T.

Smith, C. D. Hansen. Combined Surface and Volumetric Occlusion Shading,

Visualization Symposium (PacificVis), 2012 IEEE Pacific, Songdo, 2012, pp.

169-176.

• A.V. Pascal Grosset, M. Schott, G-P Bonneau, C.D. Hansen. Evaluation o f Depth

of Field for Depth Perception in DVR, Visualization Symposium (PacificVis),

2013 IEEE Pacific, Sydney, NSW, 2013, pp. 81-88.

• M. Schott, T. Martin, A.V.P. Grosset, S.T. Smith, C.D. Hansen. Ambient Occlu­

sion Effects for Combined Volumes and Tubular Geometry , In IEEE Transactions

on Visualization and Computer Graphics (TVCG), Vol. 19, No. 6 (Selected as

Spotlight paper for June 2013 issue, pp. 913-926. 2013)

• A.V. Pascal Grosset, M. Prasad, C. Christensen, A. Knoll, C.D. Hansen TOD-

Tree: Task-Overlapped Direct send Tree Image Compositing for Hybrid MPI Par­

allelism, In Proceedings of the 15th Eurographics Symposium on Parallel

Graphics and Visualization (PGV '15). Eurographics Association, Aire-la-

Ville, Switzerland, 67-76. (Honorable Mention)

• A.V. Pascal Grosset, M. Prasad, C. Christensen, A. Knoll, C.D. Hansen TOD-

Tree: Task-Overlapped Direct send Tree Image Compositing for Hybrid MPI Par­

allelism and GPUs, In IEEE Transactions on Visualization and Computer

Graphics, IEEE Early Access

• A.V. Pascal Grosset, A. Knoll, C.D. Hansen Dynamically Scheduled Region-

Based Image Compositing, In Eurographics Symposium on Parallel Graphics

and Visualizatio(2016), Gobbetti E., Bethel W., (Eds.), The Eurographics As­

sociation.

97

REFERENCES

[1] Mathias Schott, A. V. Pascal Grosset, Tobias Martin, Vincent Pegoraro,
Sean T. Smith, and Charles D. Hansen, "Depth of Field Effects for
Interactive Direct Volume Rendering," in Proceedings o f the 13th Eurographics
/ IEEE - VGTC Conference on Visualization, Aire-la-Ville, Switzerland,
Switzerland, 2011, EuroVis'11, pp. 941-950, Eurographics Association.

[2] M. Levoy, "Display of surfaces from volume data," Computer Graphics and
Applications, IEEE, vol. 8, no. 3, pp. 29-37, May 1988.

[3] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan, "Volume
Rendering," in Proceedings o f the 15th Annual Conference on Computer
Graphics and Interactive Techniques, New York, NY, USA, 1988, SIGGRAPH
'88, pp. 65-74, ACM.

[4] Amy Henderson Law, Jim Ahrens, and Charles, The ParaView Guide,
Kitware Inc., Clifton Park, NY., 2004.

[5] Hank Childs Max, Eric S. Brugger, Kathleen S. Bonnell, Jeremy S. Meredith,
Mark Miller, Brad J. Whitlock, and Nelson, "A Contract-Based System for
Large Data Visualization," in Proceedings o f IEEE Visualization 2005, 2005,
pp. 190-198.

[6] William E. Lorensen and Harvey E. Cline, "Marching Cubes: A High
Resolution 3D Surface Construction Algorithm," in Proceedings o f the 14th
Annual Conference on Computer Graphics and Interactive Techniques, New York,
NY, USA, 1987, SIGGRAPH '87, pp. 163-169, ACM.

[7] Florian Lindemann and Timo Ropinski, "About the Influence of
Illumination Models on Image Comprehension in Direct Volume
Rendering," IEEE TVCG(Vis Proceedings), vol. 17, no. 12, pp. 1922-1931,
2011.

[8] Mathias Schott, Vincent Pegoraro, Charles D. Hansen, Kevin Boulanger, and
Kadi Bouatouch, "A Directional Occlusion Shading Model for Interactive
Direct Volume Rendering.," Comput. Graph. Forum, vol. 28, no. 3, pp.
855-862, 2009.

[9] Christian Boucheny, Georges-Pierre Bonneau, Jacques Droulez, Guillaume
Thibault, and Stephane Ploix, "A perceptive evaluation of volume
rendering techniques," ACM Trans. Appl. Percept., vol. 5, no. 4, pp.
23:1-23:24, Feb. 2009.

99

[10] Timo Ropinski, Frank Steinicke, and Klaus Hinrichs, "Visually supporting
depth perception in angiography imaging," in Smart Graphics. 2006, pp.
93-104, Springer.

[11] William M. Hsu, "Segmented Ray Casting for Data Parallel Volume
Rendering," in Proceedings o f the 1993 Symposium on Parallel Rendering, New
York, NY, USA, 1993, PRS '93, pp. 7-14, ACM.

[12] K.-L. Ma, J.S. Painter, C.D. Hansen, and M.F. Krogh, "A data distributed,
parallel algorithm for ray-traced volume rendering," in Parallel Rendering
Symposium, 1993,1993, pp. 15-22,105.

[13] Tom Peterka, David Goodell, Robert Ross, Han-Wei Shen, and Rajeev
Thakur, "A Configurable Algorithm for Parallel Image-compositing
Applications," in Proceedings o f the Conference on High Performance Computing
Networking, Storage and Analysis, New York, NY, USA, 2009, SC '09, pp.
4:1-4:10, ACM.

[14] M. Howison, E.W. Bethel, and H. Childs, "Hybrid Parallelism for Volume
Rendering on Large-, Multi-, and Many-Core Systems," Visualization and
Computer Graphics, IEEE Transactions on, vol. 18, no. 1, pp. 17-29, Jan 2012.

[15] Kenneth Moreland, "IceT Users' Guide and Reference," Tech. Rep., Sandia
National Lab, January 2011.

[16] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun
Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas
Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep Dubey,
"Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput
Computing on CPU and GPU," SIGARCH Comput. Archit. News, vol. 38, no.
3, pp. 451-460, June 2010.

[17] CIBC,," 2015, ImageVis3D: An interactive visualization software system for
large-scale volume data. Scientific Computing and Imaging Institute (SCI),
Download from: http://www.imagevis3d.org.

[18] Thomas Fogal and Jens Kruger, "Tuvok, an Architecture for Large Scale
Volume Rendering," in Proceedings o f the 15th International Workshop on
Vision, Modeling, and Visualization, November 2010.

[19] A.V.P. Grosset, M. Prasad, C Christensen, A Knoll, and C.D. Hansen,
"TOD-Tree: Task-Overlapped Direct send Tree Image Compositing for
Hybrid MPI Parallelism," in Eurographics Symposium on Parallel Graphics and
Visualization, 2015.

[20] A. V. P. Grosset, M. Schott, G. P. Bonneau, and C. D. Hansen, "Evaluation of
depth of field for depth perception in dvr," in Visualization Symposium
(PacificVis), 2013 IEEE Pacific, Feb 2013, pp. 81-88.

http://www.imagevis3d.org

100

[21] A. V. P. Grosset, M. Prasad, C. Christensen, A. Knoll, and C. Hansen,
"Tod-tree: Task-overlapped direct send tree image compositing for hybrid
mpi parallelism and gpus," IEEE Transactions on Visualization and Computer
Graphics, vol. PP, no. 99, pp. 1-1, 2016.

[22] A.V.P. Grosset, A Knoll, and C.D. Hansen, "Dynamically Scheduled
Region-Based Image Compositing," in Eurographics Symposium on Parallel
Graphics and Visualization, 2016.

[23] Rogers Brian J. Howard Ian P., Seeing in Depth, vol. 2 Depth Perception, I
Porteous, 2002.

[24] William Thompson, Roland Fleming, Sarah Creem-Regehr, and
Jeanine Kelly Stefanucci, Visual Perception from a Computer Graphics
Perspective, A. K. Peters, Ltd., Natick, MA, USA, 1st edition, 2011.

[25] George Mather and David R.R Smith, "Blur discrimination and its relation
to blur-mediated depth perception," Perception, vol. 31(10), pp. 1211-1219,
2002.

[26] Brian A. Barsky and Todd J. Kosloff, "Algorithms for rendering depth of
field effects in computer graphics," in Proceedings o f the 12th WSEAS
international conference on Computers, Stevens Point, Wisconsin, USA, 2008,
ICCOMP'08, pp. 999-1010, World Scientific and Engineering Academy and
Society (WSEAS).

[27] Michael Potmesil and Indranil Chakravarty, "A lens and aperture camera
model for synthetic image generation," in Proceedings o f the 8th Annual
Conference on Computer Graphics and Interactive Techniques, New York, NY,
USA, 1981, SIGGRAPH '81, pp. 297-305, ACM.

[28] Robert L. Cook, Thomas Porter, and Loren Carpenter, "Distributed ray
tracing," SIGGRAPH Comput. Graph., vol. 18, no. 3, pp. 137-145, Jan. 1984.

[29] Brian A. Barsky, Daniel R. Horn, Stanley A. Klein, Jeffrey A. Pang, and
Meng Yu, "Camera Models and Optical Systems Used in Computer
Graphics: Part II, Image-Based Techniques," in Computational Science and Its
Applications - ICCSA 2003, Lecture Notes in Computer Science, pp. 256-265.
Springer Berlin / Heidelberg, 2003.

[30] Martin Kraus and Magnus Strengert, "Depth-of-Field Rendering by
Pyramidal Image Processing," Computer Graphics Forum, vol. 26, pp.
645-654, Sep 2007.

[31] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann,
"GigaVoxels: ray-guided streaming for efficient and detailed voxel
rendering," in Proceedings o f the 2009 symposium on Interactive 3D graphics
and games. 2009, I3D '09, pp. 15-22, ACM.

101

[32] Robert T. Held, Emily A. Cooper, and Martin S. Banks, "Blur and Disparity
Are Complementary Cues to Depth," Current Biology, vol. 22, no. 5, pp.
426-431, 2012.

[33] George Mather and David R.R Smith, "Combining depth cues: effects upon
accuracy and speed of performance in a depth-ordering task," Vision
Research, vol. 44, no. 6, pp. 557-562, 2004.

[34] Robert T. Held, Emily A. Cooper, James F. O'Brien, and Martin S. Banks,
"Using blur to affect perceived distance and size," ACM Trans. Graph., vol.
29, no. 2, pp. 19:1-19:16, Apr. 2010.

[35] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, "A sorting classification of
parallel rendering," Computer Graphics and Applications, IEEE, vol. 14, no. 4,
pp. 23-32, 1994.

[36] Ulrich Neumann, "Communication Costs for Parallel Volume-Rendering
Algorithms," IEEE Comput. Graph. Appl., vol. 14, no. 4, pp. 49-58, July 1994.

[37] Stefan Eilemann and Renato Pajarola, "Direct Send Compositing for
Parallel Sort-last Rendering," in Proceedings o f the 7th Eurographics Conference
on Parallel Graphics and Visualization, Aire-la-Ville, Switzerland, Switzerland,
2007, EG PGV'07, pp. 29-36, Eurographics Association.

[38] Silvio Rizzi, Mark Hereld, Joseph Insley, Michael E. Papka, Thomas Uram,
and Venkatram Vishwanath, "Performance Modeling of vl3 Volume
Rendering on GPU-Based Clusters," in Eurographics Symposium on Parallel
Graphics and Visualization, Margarita Amor and Markus Hadwiger, Eds.
2014, The Eurographics Association.

[39] Christopher D. Shaw, Mark Green, and Jonathan Schaeffer, "Advances in
Computer Graphics Hardware III," chapter A VLSI Architecture for Image
Composition, pp. 183-199. Springer-Verlag New York, Inc., New York, NY,
USA, 1991.

[40] Hongfeng Yu, Chaoli Wang, and Kwan-Liu Ma, "Massively Parallel Volume
Rendering Using 2-3 Swap Image Compositing," in Proceedings o f the 2008
ACM/IEEE Conference on Supercomputing, Piscataway, NJ, USA, 2008, SC '08,
pp. 48:1-48:11, IEEE Press.

[41] Kenneth Moreland, Wesley Kendall, Tom Peterka, and Jian Huang, "An
Image Compositing Solution at Scale," in Proceedings o f 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis,
New York, NY, USA, 2011, SC '11, pp. 25:1-25:10, ACM.

[42] M. Howison, E. W. Bethel, and H. Childs, "Mpi-hybrid parallelism for
volume rendering on large, multi-core systems," in Proceedings o f the 10th
Eurographics Conference on Parallel Graphics and Visualization, Aire-la-Ville,

102

Switzerland, Switzerland, 2010, EG PGV'10, pp. 1-10, Eurographics
Association.

[43] Aleksander Stompel, Kwan-Liu Ma, Eric B. Lum, James Ahrens, and John
Patchett, "Slic: Scheduled linear image compositing for parallel volume
rendering," in Proceedings o f the 2003 IEEE Symposium on Parallel and
Large-Data Visualization and Graphics, Washington, DC, USA, 2003, PVG '03,
pp. 6-, IEEE Computer Society.

[44] Magnus Strengert, Marcelo Magalln, Daniel Weiskopf, Stefan Guthe, and
Thomas Ertl, "Hierarchical Visualization and Compression of Large
Volume Datasets Using GPU Clusters," in Eurographics Workshop on Parallel
Graphics and Visualization, Dirk Bartz, Bruno Raffin, and Han-Wei Shen, Eds.
2004, The Eurographics Association.

[45] Brendan Moloney, Daniel Weiskopf, Torsten Moller, and Magnus Strengert,
"Scalable sort-first parallel direct volume rendering with dynamic load
balancing," in Proceedings o f the 7th Eurographics Conference on Parallel
Graphics and Visualization, Aire-la-Ville, Switzerland, Switzerland, 2007,
EGPGV '07, pp. 45-52, Eurographics Association.

[46] C. Muller, M. Strengert, and T. Ertl, "Adaptive load balancing for raycasting
of non-uniformly bricked volumes," Parallel Comput., vol. 33, no. 6, pp.
406-419, June 2007.

[47] D. Pugmire, L. Monroe, C. Connor Davenport, A. DuBois, D. DuBois, and
S. Poole, "Npu-based image compositing in a distributed visualization
system," IEEE Transactions on Visualization and Computer Graphics, vol. 13,
no. 4, pp. 798-809, July 2007.

[48] Xavier Cavin and Olivier Demengeon, "Shift-Based Parallel Image
Compositing on InfiniBand TM Fat-Trees," in Eurographics Symposium on
Parallel Graphics and Visualization, Hank Childs, Torsten Kuhlen, and Fabio
Marton, Eds. 2012, The Eurographics Association.

[49] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern,
Peter D. Kirchner, and James T. Klosowski, "Chromium: A
Stream-processing Framework for Interactive Rendering on Clusters,"
ACM Trans. Graph., vol. 21, no. 3, pp. 693-702, July 2002.

[50] Stefan Eilemann, Maxim Makhinya, and Renato Pajarola, "Equalizer: A
Scalable Parallel Rendering Framework," IEEE Transactions on Visualization
and Computer Graphics, vol. 15, no. 3, pp. 436-452, May 2009.

[51] Timothy J. Cullip and Ulrich Neumann, "Accelerating Volume
Reconstruction With 3D Texture Hardware," Tech. Rep., Chapel Hill, NC,
USA, 1994.

103

[52] J. Kruger and R. Westermann, "Acceleration Techniques for GPU-based
Volume Rendering," in Proceedings o f the 14th IEEE Visualization 2003
(VIS'03), Washington, DC, USA, 2003, VIS '03, pp. 38-, IEEE Computer
Society.

[53] C. Muller, M. Strengert, and T. Ertl, "Optimized Volume Raycasting for
Graphics-hardware-based Cluster Systems," in Proceedings o f the 6th
Eurographics Conference on Parallel Graphics and Visualization, Aire-la-Ville,
Switzerland, Switzerland, 2006, EG PGV'06, pp. 59-67, Eurographics
Association.

[54] Thomas Fogal, Hank Childs, Siddharth Shankar, Jens Kruger, R. Daniel
Bergeron, and Philip Hatcher, "Large Data Visualization on Distributed
Memory multi-GPU Clusters," in Proceedings o f the Conference on High
Performance Graphics, Aire-la-Ville, Switzerland, Switzerland, 2010, HPG '10,
pp. 57-66, Eurographics Association.

[55] Jinrong Xie, Hongfeng Yu, and Kwan-Liu Ma, "Visualizing large 3D
geodesic grid data with massively distributed GPUs," in Large Data Analysis
and Visualization (LDAV), 2014 IEEE 4th Symposium on, Nov 2014, pp. 3-10.

[56] Hao Wang, Sreeram Potluri, Miao Luo, Ashish Kumar Singh, Sayantan Sur,
and Dhabaleswar K. Panda, "MVAPICH2-GPU: Optimized GPU to GPU
Communication for InfiniBand Clusters," Comput. Sci., vol. 26, no. 3-4, pp.
257-266, June 2011.

[57] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D.K. Panda,
"Efficient Inter-node MPI Communication Using GPUDirect RDMA for
InfiniBand Clusters with NVIDIA GPUs," in Parallel Processing (ICPP), 2013
42nd International Conference on, Oct 2013, pp. 80-89.

[58] Alex James, "An introduction to gpudirect," November 2015.

[59] Nvidia, "Remote Visualization on Server-Class Tesla GPUs," White Paper
WP-07313-001-v01, Nvidia, June 2014.

[60] Mark D. Klein and John E. Stone, "Unlocking the Full Potential of the Cray
XK7 Accelerator Mark," in Cray User Group Conference. Cray, May 2014.

[61] Daniel Jonsson, Erik Sunden, Anders Ynnerman, and Timo Ropinski, "A
survey of volumetric illumination techniques for interactive volume
rendering," Comput. Graph. Forum, vol. 33, no. 1, pp. 27-51, Feb. 2014.

[62] D.C. Knill, "Reaching for visual cues to depth: The brain combines depth
cues differently for motor control and perception," Journal o f Vision, vol. 5,
no. 2, 2005.

[63] Jonathan W. Peirce, "PsychoPy—Psychophysics software in Python,"
Journal o f Neuroscience Methods, vol. 162, no. 1-2, pp. 8-13,2007.

104

[64] A. A. Michelson, Studies in Optics, Univ. Chicago Press, Chicago, IL, 1927.

[65] Ben Caldwell, Michael Cooper, Loretta Guarino Reid, and Gregg
Vanderheiden, "Web Content Accessibility Guidelines (WCAG) 2.0,"
http://www.w3.org/TR/WCAG2®/, 12 2008.

[66] R. Kosara, C.G. Healey, V. Interrante, D.H. Laidlaw, and C. Ware,
"Visualization viewpoints," Computer Graphics and Applications, IEEE, vol.
23, no. 4, pp. 20-25, july-aug. 2003.

[67] Luca Filippin, "T2tpkg," h ttp s ://s ite s .g o o g le .c o m /s ite /t2 tp k g /.

[68] Tobii Technology, "Tobii T60 and T120 Eye Tracker,"
http://www.tobii.com/Global/Analysis/Downloads/User_Manuals\
_and_Guides/Tobii_T6®_T12®_EyeTracker_UserManual.pdf.

[69] Rafal Bogacz, Eric Brown, Jeffrey Moehlis, Phil Holmes, and Jonathan D.
Cohen, "The physics of optimal decision making: A formal analysis of
models of performance in two-alternative forced choice tasks," Psychological
Review, vol. 113, no. 4, pp. 700-765, October 2006.

[70] David Drascic and Paul Milgram, "Perceptual issues in augmented reality,"
in SPIE Volume 2653: Stereoscopic Displays and Virtual Reality Systems III,
1996, pp. 123-134.

[71] Agnieszka Wykowska, Anna Schubo, and Bernhard Hommel, "How You
Move Is What You See: Action Planning Biases Selection in Visual Search,"
Journal o f Experimental Psychology: Human Perception and Performance, vol. 35,
no. 6, pp. 1755-1769, 2009.

[72] Steve Ashby, Pete Beckman, Jackie Chen, Phil Colella, Bill Collins, Dona
Crawford, Jack Dongarra, Doug Kothe, Rusty Lusk, Paul Messina, and
Others, "The opportunities and challenges of exascale computing.,"
summary report o f the advanced scientific computing advisory committee
(ASCAC) subcommittee at the US Department o f Energy Office o f Science, 2010.

[73] Damian A. Mallon, Guillermo L. Taboada, Carlos Teijeiro, Juan Tourino,
Basilio B. Fraguela, Andres Gomez, Ramon Doallo, and J. Carlos Mourino,
"Performance Evaluation of MPI, UPC and OpenMP on Multicore
Architectures," in Proceedings o f the 16th European PVM/MPI Users' Group
Meeting on Recent Advances in Parallel Virtual Machine and Message Passing
Interface, Berlin, Heidelberg, 2009, pp. 174-184, Springer-Verlag.

[74] Rolf Rabenseifner, Georg Hager, and Gabriele Jost, "Hybrid MPI/OpenMP
Parallel Programming on Clusters of Multi-Core SMP Nodes," in
Proceedings o f the 2009 17th Euromicro International Conference on Parallel,
Distributed and Network-based Processing, Washington, DC, USA, 2009, PDP
'09, pp. 427-436, IEEE Computer Society.

http://www.w3.org/TR/WCAG2%c2%ae/
https://sites.google.com/site/t2tpkg/
http://www.tobii.com/Global/Analysis/Downloads/User/_Manuals/

105

[75] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert van de Geijn,
"Collective Communication: Theory, Practice, and Experience: Research
Articles," Concurr. Comput.: Pract. Exper., vol. 19, no. 13, pp. 1749-1783,
Sept. 2007.

[76] NERSC, "Edison Configuration," February 2015.

[77] TACC, "Stampede User Guide," February 2015.

[78] Leonardo Dagum and Ramesh Menon, "OpenMP: An Industry-Standard
API for Shared-Memory Programming," IEEE Comput. Sci. Eng., vol. 5, no.
1, pp. 46-55, Jan. 1998.

[79] Stephane Marchesin, Catherine Mongenet, and Jean-Michel Dischler,
"Multi-GPU Sort-last Volume Visualization," in Proceedings o f the 8th
Eurographics Conference on Parallel Graphics and Visualization, Aire-la-Ville,
Switzerland, Switzerland, 2008, EGPGV '08, pp. 1-8, Eurographics
Association.

[80] Peter Messmer, "Egl eye: Opengl visualization without an x server,"
January 2016.

[81] NVIDIA, "NVIDIA TESLA GPU ACCELERATORS," October 2015.

[82] CSCS, "Piz Daint," October 2015.

[83] Kenneth Moreland, Brian N. Wylie, and Constantine J. Pavlakos, "Sort-last
parallel rendering for viewing extremely large data sets on tile displays.,"
in IEEE Symposium on Parallel and Large-Data Visualization and Graphics,
David E. Breen, Alan Heirich, and Anton H. J. Koning, Eds. 2001, pp. 85-92,
IEEE.

[84] Michael Potmesil and Indranil Chakravarty, "A lens and aperture camera
model for synthetic image generation," in Proceedings o f the 8th Annual
Conference on Computer Graphics and Interactive Techniques, New York, NY,
USA, 1981, SIGGRAPH '81, pp. 297-305, ACM.

[85] "GPU Direct RDMA," .

[86] Felix Manke and Burkhard Wunsche, "Texture-enhanced Direct Volume
Rendering," in GRAPP, 2009, pp. 185-190.

[87] Daniel S. Schlusselberg, Wade K. Smith, and Doanld J. Woodward,
"Three-Dimensional Display of Medical Image Volumes," Proceedings o f
NCGA, March 1986.

[88] Peter Rautek, Stefan Bruckner, Eduard Groller, and Ivan Viola, "Illustrative
Visualization: New Technology or Useless Tautology?," SIGGRAPH
Comput. Graph., vol. 42, no. 3, pp. 4:1-4:8, Aug. 2008.

106

[89] Edward H. Adelson and P. An, "Ordinal characteristics of transparency," in
in Proc. AAAI workshop on Qualitative Vision, 1990, pp. 77-81.

[90] P Alliez and K Bala, "Real-time Depth of Field Rendering Via Dynamic
Light Field Generation and Filtering," eecis.udel.edu, vol. 29, no. 7, 2010.

[91] Brian Austin Wright, Matthew J. Cordery, Harvey J. Wasserman, and
Nicholas J., Performance measurements o f the nersc cray cascade system, Cray,
Inc., May 2013.

[92] Brian A. Barsky, Daniel R. Horn, Stanley A. Klein, Jeffrey A. Pang, and
Meng Yu, "Camera models and optical systems used in computer graphics:
Part I, Object based techniques," in Computational Science and Its Applications
- ICCSA 2003, Lecture Notes in Computer Science, pp. 246-255. Springer
Berlin / Heidelberg, 2003.

[93] Jon Louis Bentley, "Multidimensional Binary Search Trees Used for
Associative Searching," Commun. ACM, vol. 18, no. 9, pp. 509-517, Sept.
1975.

[94] M. J. Berger and P. Colella, "Local Adaptive Mesh Refinement for Shock
Hydrodynamics," J. Comput. Phys., vol. 82, no. 1, pp. 64-84, May 1989.

[95] Marsha J. Berger and Joseph E. Oliger, "Adaptive Mesh Refinement for
Hyperbolic Partial Differential Equations," Tech. Rep., Stanford, CA, USA,
1983.

[96] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William
Dally, Monty Denneau, Paul Franzon, William Harrod, Jon Hiller, Sherman
Karp, Stephen Keckler, Dean Klein, Robert Lucas, Mark Richards,
Al Scarpelli, Steven Scott, Allan Snavely, Thomas Sterling, R. Stanley
Williams, Katherine Yelick, Keren Bergman, Shekhar Borkar, Dan Campbell,
William Carlson, William Dally, Monty Denneau, Paul Franzon, William
Harrod, Jon Hiller, Stephen Keckler, Dean Klein, Peter Kogge, R. Stanley
Williams, and Katherine Yelick, "ExaScale Computing Study: Technology
Challenges in Achieving Exascale Systems," Tech. Rep., 2008.

[97] Martin Berzins, Justin Luitjens, Qingyu Meng, Todd Harman, Charles A.
Wight, and Joseph R. Peterson, "Uintah: A Scalable Framework for Hazard
Analysis," in Proceedings o f the 2010 TeraGrid Conference, New York, NY,
USA, 2010, TG '10, pp. 3:1-3:8, ACM.

[98] E. Wes Bethel, Hank Childs, and Charles Hansen, High Performance
Visualization: Enabling Extreme-Scale Scientific Insight, Chapman & Hall/CRC,
1st edition, 2012.

[99] Stefan Bruckner, Soren Grimm, Armin Kanitsar, and M Eduard Groller,
"Illustrative Context-Preserving Volume Rendering," Direct, vol. 1, 2005.

107

[100] X. Cavin, C. Mion, and A. Filbois, "COTS cluster-based sort-last rendering:
performance evaluation and pipelined implementation," in Visualization,
2005. VIS 05. IEEE, Oct 2005, pp. 111-118.

[101] Hank Childs, Mark Duchaineau, and Kwan-Liu Ma, "A Scalable, Hybrid
Scheme for Volume Rendering Massive Data Sets," in Proceedings o f the 6th
Eurographics Conference on Parallel Graphics and Visualization, Aire-la-Ville,
Switzerland, Switzerland, 2006, EG PGV'06, pp. 153-161, Eurographics
Association.

[102] Kenneth J. Ciuffreda, Bin Wang, and Balamurali Vasudevan, "Conceptual
model of human blur perception," Vision Research, vol. 47, no. 9, pp.
1245-1252, 2007.

[103] M. Bertalmio, P. Fort, and D. Sanchez-Crespo, "Real-time, accurate depth of
field using anisotropic diffusion and programmable graphics cards," in
Proceedings. 2nd International Symposium on 3D Data Processing, Visualization
and Transmission, 2004. 3DPVT 2004. 2004, pp. 767-773, Ieee.

[104] M. Cohen and K. Brodlie, "Focus and context for volume visualization,"
Proceedings Theory and Practice o f Computer Graphics, 2004., vol. 6, pp. 32-39,
2004.

[105] Carlos Correa, Debora Silver, and Min Chen, "Illustrative deformation for
data exploration.," IEEE transactions on visualization and computer graphics,
vol. 13, no. 6, pp. 1320-7, 2007.

[106] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, Miguel Sainz, and Elmar
Eisemann, "Beyond triangles: gigavoxels effects in video games," in
SIGGRAPH 2009: Talks. 2009, SIGGRAPH '09, pp. 78:1-78:1, ACM.

[107] Joe Demers, GPU Gems, chapter 23. Depth of Field: A Survey of Techniques,
pp. 375-390, Addison-Wesley Longman, Inc., 2004.

[108] Louis Derr, Photography for students o f physics and chemistry, chapter 6, p. 79,
Macmillan & Co., Ltd, 1906.

[109] Kai-Uwe Doerr and Falko Kuester, "CGLX: A Scalable, High-Performance
Visualization Framework for Networked Display Environments," IEEE
Transactions on Visualization and Computer Graphics, vol. 17, no. 3, pp.
320-332, May 2011.

[110] David Ebert and Penny Rheingans, "Volume illustration: non-photorealistic
rendering of volume models," in Proceedings o f the conference on Visualization
'00, Los Alamitos, CA, USA, 2000, VIS '00, pp. 195-202, IEEE Computer
Society Press.

108

[111] Markus Hadwiger, Joe M. Kniss, Christof Rezk-salama, Daniel Weiskopf,
and Klaus Engel, Real-time Volume Graphics, A. K. Peters, Ltd., Natick, MA,
USA, 2006.

[112] Wei Fang, Guangzhong Sun, Peng Zheng, Tiening He, and Guoliang Chen,
"Efficient Pipelining Parallel Methods for Image Compositing in Sort-last
Rendering," in Proceedings o f the 2010IFIP International Conference on
Network and Parallel Computing, Berlin, Heidelberg, 2010, NPC'10, pp.
289-298, Springer-Verlag.

[113] Randima Fernando, GPU Gems: Programming Techniques, Tips and Tricks for
Real-Time Graphics, Pearson Higher Education, 2004.

[114] Thomas Fogal and Jens Kruger, "Efficient I/O for Parallel Visualization," in
Proceedings o f the 11th Eurographics Conference on Parallel Graphics and
Visualization, Aire-la-Ville, Switzerland, Switzerland, 2011, EG PGV'11, pp.
81-90, Eurographics Association.

[115] Thomas Fogal, Alexander Schiewe, and Jens Kruger, "An analysis of
scalable GPU-based ray-guided volume rendering," in Large-Scale Data
Analysis and Visualization (LDAV), 2013 IEEE Symposium on, 2013, pp. 43-51.

[116] Soren Grimm, Stefan Bruckner, Armin Kanitsar, and Eduard Groller, "A
refined data addressing and processing scheme to accelerate volume
raycasting," Computers Graphics, vol. 28, no. 5, pp. 719-729, 2004.

[117] Markus Hadwiger, Joe M. Kniss, Christof Rezk-salama, Daniel Weiskopf,
and Klaus Engel, Real-time Volume Graphics, A. K. Peters, Ltd., Natick, MA,
USA, 2006.

[118] Paul Haeberli and Kurt Akeley, "The accumulation buffer: hardware
support for high-quality rendering," SIGGRAPH Comput. Graph., vol. 24,
pp. 309-318, September 1990.

[119] H. Hauser, L. Mroz, G. Italo Bischi, and M.E. Groller, "Two-level volume
rendering," IEEE Transactions on Visualization and Computer Graphics, vol. 7,
no. 3, pp. 242-252, 2001.

[120] Milan Ikits and C.D. Hansen, "A focus and context interface for interactive
volume rendering," Unpublished Work, 2004.

[121] Victoria Interrante, Henry Fuchs, and Stephen M. Pizer, "Illustrating
Transparent Surfaces with Curvature-Directed Strokes," in Proceedings of
IEEE Visualization 1996,1996, pp. 211-218,487.

[122] Demers Joe, GPU Gems, vol. 1, chapter 23 Depth of Field: A Survey of
Techniques, Addison-Wesley Professional, 2004.

109

[123] Ralf Kahler and Tom Abel, "Single-Pass GPU-Raycasting for Structured
Adaptive Mesh Refinement Data," CoRR, vol. abs/1212.3333, 2012.

[124] R. Kaehler, S. Prohaska, A. Hutanu, and H.-C. Hege, "Visualization of
time-dependent remote adaptive mesh refinement data," in Visualization,
2005. VIS 05. IEEE, 2005, pp. 175-182.

[125] M Kass and A Lefohn, "Interactive depth of field using simulated diffusion
on a gpu," Pixar Animation Studios, Tech. Rep, 2006.

[126] Darren J. Kerbyson, Kevin J. Barker, Abhinav Vishnu, and Adolfy Hoisie,
"A Performance Comparison of Current HPC Systems: Blue Gene/Q, Cray
XE6 and InfiniBand Systems," Future Gener. Comput. Syst., vol. 30, pp.
291-304, Jan. 2014.

[127] Darren J. Kerbyson, Kevin J. Barker, Abhinav Vishnu, and Adolfy Hoisie,
"Comparing the Performance of Blue Gene/Q with Leading Cray XE6 and
InfiniBand Systems," in Proceedings o f the 2012 IEEE 18th International
Conference on Parallel and Distributed Systems, Washington, DC, USA, 2012,
ICPADS '12, pp. 556-563, IEEE Computer Society.

[128] Robert Kosara, Semantic Depth o f Field - Using Blur for Focus+Context
Visualization, Ph.D. thesis, Vienna University of Technology, Vienna,
Austria, 2001.

[129] Robert Kosara, Silvia Miksch, and Helwig Hauser, "Semantic Depth of
Field," in Proceedings o f the IEEE Symposium on Information Visualization 2001
(INF0VIS'01), Washington, DC, USA, 2001, INFOVIS '01, pp. 97-, IEEE
Computer Society.

[130] Robert Kosara, Silvia Miksch, H. Hauser, Johann Schrammel, Verena Giller,
and Manfred Tscheligi, "Useful properties of semantic depth of field for
better f+ c visualization," in Proceedings o f the symposium on Data
Visualisation 2002. 2002, pp. 205-210, Eurographics Association.

[131] Robert Kosara, Silvia Miksch, Helwig Hauser, Johann Schrammel, Verena
Giller, and Manfred Tscheligi, "Useful properties of Semantic Depth of Field
for better F+C visualization," in Proceedings o f the symposium on Data
Visualisation 2002, Aire-la-Ville, Switzerland, Switzerland, 2002, VISSYM
'02, pp. 205-210, Eurographics Association.

[132] T.J. Kosloff and B.A. Barsky, "Three Techniques for Rendering Generalized
Depth of Field Effects," siam.org, pp. 42-48, 2009.

[133] J. Kr\\"uger and T Fogal, "Focus and Context-Visualization without the
Complexity," in World Congress on Medical Physics and Biomedical
Engineering, September 7-12, 2009, Munich, Germany. 2009, pp. 45-48,
Springer.

110

[134] Oliver Kreylos, Gunther H. Weber, E. Wes Bethel, E. Wes, Bethel John,
John M. Shalf, Bernd Hamann, and Kenneth I. Joy, "Remote Interactive
Direct Volume Rendering of AMR Data," 2002.

[135] TOP 500, "Top 500 List - June 2015," October 2015.

[136] J. Krivanek, J. Zara, and K. Bouatouch, "Fast depth of field rendering with
surface splatting," Proceedings Computer Graphics International 2003, pp.
196-201, 2003.

[137] Eric C. La Mar, Bernd Hamann, and Kenneth I. Joy, "Multiresolution
Techniques for Interactive Texture-based Volume Visualization," in
Proceedings o f the 10th IEEE Visualization 1999 Conference (VIS '99),
Washington, DC, USA, 1999, VISUALIZATION '99, pp. - , IEEE Computer
Society.

[138] Nick Leaf, "Efficient Parallel Volume Rendering of Large-Scale Adaptive
Mesh Refinement Data," .

[139] Marc Levoy, "Efficient Ray Tracing of Volume Data," ACM Trans. Graph.,
vol. 9, no. 3, pp. 245-261, July 1990.

[140] Bo Li and Hong Qin, "Feature-Aware Reconstruction of Volume Data via
Trivariate Splines," 2011, pp. 49-54, Pacific Graphics 2011.

[141] F. Lindemann and T. Ropinski, "About the Influence of Illumination Models
on Image Comprehension in Direct Volume Rendering," Visualization and
Computer Graphics, IEEE Transactions on, vol. 17, no. 12, pp. 1922-1931, dec.
2011.

[142] Shusen Liu, V Vishwanath, J. A Insley, M Hereld, M. E Papka, and Valerio
Pascucci, "A Static Load Balancing Scheme for Parallel Volume Rendering
on Multi-GPU Clusters," in Large-Scale Data Analysis and Visualization
(LDAV), 2012 IEEE Symposium on. 2012, HGPU Group.

[143] LLNL, "VisIt Visualization Tool," Aug. 2012.

[144] Eric Lum Patchett, Kwan-Liu Ma, James Ahrens, and John, "SLIC:
Scheduled Linear Image Compositing for Parallel Vollume Rendering,"
Parallel Visualization and Graphics 2003, 2003, IEEE.

[145] Kwan-Liu Ma, "Parallel Rendering of 3D AMR Data on the SGI/Cray T3E,"
in Proceedings o f the The 7th Symposium on the Frontiers o f Massively Parallel
Computation, Washington, DC, USA, 1999, FRONTIERS '99, pp. 138-, IEEE
Computer Society.

[146] S. Marchesin and G.C. de Verdiere, "High-Quality, Semi-Analytical Volume
Rendering for AMR Data," Visualization and Computer Graphics, IEEE
Transactions on, vol. 15, no. 6, pp. 1611-1618, 2009.

111

[147] Jonathan A. Marshall, Christina A. Burbeck, Dan Ariely, Jannick P. Rolland,
and Kevin E. Martin, "Occlusion edge blur: a cue to relative visual depth,"
J. Opt. Soc. Am. A, vol. 13, no. 4, pp. 681-688, Apr 1996.

[148] Jonathan A. Marshall, Jozathaz A. Marshall, Dan Ariely, Christina A.
Burbeck, T Daz Aricly, Jannick P. Rolland, and Kevin E. Martin, "Occlusion
edge blur: A cue to relative visual depth," Intl. J. Opt. Soc. Am. A, vol. 13,
pp. 681-688, 1996.

[149] K.E. Martin, D.H. Dawes, and R.E. Faith, "Distributed Multihead X
Design," July 2001.

[150] R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi,
"Extended Depth-of-Field 3-D Display and Visualization by Combination of
Amplitude-Modulated Microlenses and Deconvolution Tools," Journal of
Display Technology, vol. 1, no. 2, pp. 321-327, Dec. 2005.

[151] George Mather, "Image Blur as a Pictorial Depth Cue," Proceedings:
Biological Sciences, vol. 263, no. 1367, pp. pp. 169-172,1996.

[152] Manabu Matsui, Fumihiko Ino, and Kenichi Hagihara, "Parallel Volume
Rendering with Early Ray Termination for Visualizing Large-Scale
Datasets," in Parallel and Distributed Processing and Applications, Jiannong
Cao, LaurenceT. Yang, Minyi Guo, and Francis Lau, Eds., vol. 3358 of Lecture
Notes in Computer Science, pp. 245-256. Springer Berlin Heidelberg, 2005.

[153] Manabu Matsui, Fumihiko Ino, and Kenichi Hagihara, "Parallel Volume
Rendering with Early Ray Termination for Visualizing Large-scale
Datasets," in Proceedings o f the Second International Conference on Parallel and
Distributed Processing and Applications, Berlin, Heidelberg, 2004, ISPA'04, pp.
245-256, Springer-Verlag.

[154] K. J. McCauley, S. A. Moorman, and D. K. McDonald, "Oxy-Coal
Combustion for Low Carbon Electric Power Generation," Tech. Rep., May
2011.

[155] J. Meyer-Spradow, Timo Ropinski, and Klaus Hinrichs, "Supporting Depth
and Motion Perception in Medical Volume Data," Visualization in Medicine
and Life Sciences, vol. D, pp. 121-133, 2008.

[156] B. Moloney, M. Ament, D. Weiskopf, and T. Moller, "Sort-First Parallel
Volume Rendering," Visualization and Computer Graphics, IEEE Transactions
on, vol. 17, no. 8, pp. 1164-1177, Aug 2011.

[157] Mark Mon-Williams and James R. Tresilian, "Ordinal depth information
from accommodation?," Ergonomics, vol. 43, no. 3, pp. 391-404, 2000.

112

[158] P.J. Moran and D. Ellsworth, "Visualization of AMR Data With Multi-Level
Dual-Mesh Interpolation," Visualization and Computer Graphics, IEEE
Transactions on, vol. 17, no. 12, pp. 1862-1871, 2011.

[159] Jurriaan D. Mulder and Robert van Liere, "Fast perception-based depth of
field rendering," Proceedings o f the ACMsymposium on Virtual reality software
and technology - VRST '00, p. 129,2000.

[160] Vincent A. Nguyen, Ian P. Howard, and Robert S. Allison, "Detection of the
depth order of defocused images," Vision Research, vol. 45, no. 8, pp.
1003-1011, 2005.

[161] M. L. Norman, J. M. Shalf, S. Levy, and G. Daues, "Diving deep: Data
management and visualization strategies for adaptive mesh refinement
simulations," Computing in Science and Engineering, vol. 1, no. 4, pp. 36-47,
1999.

[162] Kevin L. Novins, Francois X. Sillion, and Donald P. Greenberg, "An efficient
method for volume rendering using perspective projection," SIGGRAPH
Comput. Graph., vol. 24, pp. 95-102, November 1990.

[163] Sanghun Park, Chandrajit L. Bajaj, and Vinay Siddavanahalli, "Case Study:
Interactive Rendering of Adaptive Mesh Refinement Data," in Proceedings of
the Conference on Visualization '02, Washington, DC, USA, 2002, VIS '02, pp.
521-524, IEEE Computer Society.

[164] Michael Potmesil and Indranil Chakravarty, "Synthetic Image Generation
with a Lens and Aperture Camera Model," ACM Trans. Graph., vol. 1, no. 2,
pp. 85-108, Apr. 1982.

[165] Michael Potmesil and Indranil Chakravarty, "A lens and aperture camera
model for synthetic image generation," in Proceedings o f the 8th annual
conference on Computer graphics and interactive techniques, New York, NY,
USA, 1981, SIGGRAPH '81, pp. 297-305, ACM.

[166] D.I.P. Rautek, "Semantic Visualization Mapping for Volume Illustration,"
vol. Ill, 2008.

[167] Sidney F. Ray, Applied Photographic Optics: Lenses and Optical Systems for
Photography, Film, Video and Electronic Imaging, Focal Press, 1994.

[168] Austin Robison and Peter Shirley, "Image space gathering," Proceedings of
the 1st ACM conference on High Performance Graphics - HPG '09, p. 91,2009.

[169] Przemyslaw Rokita, "Generating Depth-of-Field Effects in Virtual Reality
Applications," IEEE Computer Graphics and Applications, vol. 16, pp. 18-21,
1996.

113

[170] Carlos Rosales, "ACELab Report: Stampede Baseline Evaluation," TACC
Technical Report TR-14-08, TACC, Advanced Computing Evaluation
Laboratory, Texas Advanced Computing Center, The University of Texas at
Austin, September 2014.

[171] Cary Scofield, 2 1/2-D depth-of-field simulation for computer animation, pp.
36-38, Academic Press Professional, Inc., San Diego, CA, USA, 1992.

[172] John Shalf, Sudip Dosanjh, and John Morrison, "Exascale Computing
Technology Challenges," in Proceedings o f the 9th International Conference on
High Performance Computing for Computational Science, Berlin, Heidelberg,
2011, VECPAR'10, pp. 1-25, Springer-Verlag.

[173] Jeff A. Stuart, Cheng-Kai Chen, Kwan-Liu Ma, and John D. Owens,
"Multi-GPU Volume Rendering Using MapReduce," in Proceedings o f the
19th ACM International Symposium on High Performance Distributed
Computing, New York, NY, USA, 2010, HPDC '10, pp. 841-848, ACM.

[174] Akira Takeuchi, Fumihiko Ino, and Kenichi Hagihara, "An Improved
Binary-swap Compositing for Sort-last Parallel Rendering on Distributed
Memory Multiprocessors," Parallel Comput., vol. 29, no. 11-12, pp.
1745-1762, Nov. 2003.

[175] M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel, and M. L.
Norman, "yt: A Multi-Code Analysis Toolkit for Astrophysical Simulation
Data," The Astrophysical Journal Supplement, vol. 192, no. 1, January 2011.

[176] I. Viola, A. Kanitsar, and M.E. Groller, "Importance-driven volume
rendering," in Visualization, 2004. IEEE, Oct. 2004, pp. 139-145.

[177] Huy T. Vo, Steven P. Callahan, Nathan Smith, Claudio T. Silva, William
Martin, David Owen, and David Weinstein, "Interactive Rendering of
Large Unstructured Grids," in Proceedings o f the 7th Eurographics Conference
on Parallel Graphics and Visualization, Aire-la-Ville, Switzerland, Switzerland,
2007, EG PGV'07, pp. 93-100, Eurographics Association.

[178] J W Wallis and T R Miller, "Volume rendering in three-dimensional display
of SPECT images.," Journal o f nuclear medicine: official publication, Society of
Nuclear Medicine, vol. 31, no. 8, pp. 1421-8, Aug. 1990.

[179] L. Wang, Y. Zhao, K. Mueller, and A. Kaufman, "The magic volume lens: an
interactive focus+context technique for volume rendering," in Visualization,
2005. VIS 05. IEEE, Oct. 2005, pp. 367-374.

[180] Yu-Shuen Wang, Chaoli Wang, Tong-Yee Lee, and Kwan-Liu Ma,
"Feature-Preserving Volume Data Reduction and Focus+Context
Visualization," Visualization and Computer Graphics, IEEE Transactions on,
vol. 17, no. 2, pp. 171-181, Feb. 2011.

114

[181] Simon J. Watt, Kurt Akeley, Marc O. Ernst, and Martin S. Banks, "Focus
cues affect perceived depth," Journal o f Vision, vol. 5, no. 10,2005.

[182] Gunther H. Weber, Martin Ohler, Oliver Kreylos, John Shalf, E. Wes Bethel,
Bernd Hamann, and Gerik Scheuermann, "Parallel Cell Projection
Rendering of Adaptive Mesh Refinement Data.," in IEEE Symposium on
Parallel and Large-Data Visualization and Graphics, Anton H. J. Koning, Raghu
Machiraju, and Claudio T. Silva, Eds. 2003, pp. 51-60, IEEE.

[183] Gunther H. Weber, Hank Childs, and Jeremy S. Meredith, "Efficient parallel
extraction of crack-free isosurfaces from adaptive mesh refinement (AMR)
data.," in LDAV, Roger S. Barga, Hanspeter Pfister, and David Rogers, Eds.
2012, pp. 31-38, IEEE.

[184] J.J. van Wijk, "Flow visualization with surface particles," IEEE Computer
Graphics and Applications, vol. 13, no. 4, pp. 18-24, July 1993.

[185] Don-Lin Yang, Jen-Chih Yu, and Yeh-Ching Chung, "Efficient Compositing
Methods for the Sort-Last-Sparse Parallel Volume Rendering System on
Distributed Memory Multicomputers," J. Supercomput., vol. 18, no. 2, pp.
201-220, Feb. 2001.

[186] Hongfeng Yu, Chaoli Wang, Ray W. Grout, Jacqueline H. Chen, and
Kwan-Liu Ma, "In Situ Visualization for Large-Scale Combustion
Simulations," IEEE Comput. Graph. Appl., vol. 30, no. 3, pp. 45-57, May 2010.

[187] Jiawan Zhang, Jizhou Sun, Zhou Jin, Yi Zhang, and Qi Zhai, "Survey of
Parallel and Distributed Volume Rendering: Revisited," in Proceedings o f the
2005 International Conference on Computational Science and Its Applications -
Volume Part III, Berlin, Heidelberg, 2005, ICCSA'05, pp. 435-444,
Springer-Verlag.

[188] Jianlong Zhou, Manfred Hinz, and Klaus D Tonnies, "Focal Region-Guided
Feature-Based Volume Rendering 2 : Related Work," Data Processing, vol.
ill, pp. 3-6, 2002.

[189] Tianshu Zhou, Jim X. Chen, and Mark Pullen, "Accurate Depth of Field
Simulation in Real Time," Computer Graphics Forum, vol. 26, no. 1, pp. 15-23,
Mar. 2007.

[190] Brian Cabral, Nancy Cam, and Jim Foran, "Accelerated Volume Rendering
and Tomographic Reconstruction Using Texture Mapping Hardware," in
Proceedings o f the 1994 Symposium on Volume Visualization, New York, NY,
USA, 1994, VVS '94, pp. 91-98, ACM.

