128,780 research outputs found

    Dimer and fermionic formulations of a class of colouring problems

    Full text link
    We show that the number Z of q-edge-colourings of a simple regular graph of degree q is deducible from functions describing dimers on the same graph, viz. the dimer generating function or equivalently the set of connected dimer correlation functions. Using this relationship to the dimer problem, we derive fermionic representations for Z in terms of Grassmann integrals with quartic actions. Expressions are given for planar graphs and for nonplanar graphs embeddable (without edge crossings) on a torus. We discuss exact numerical evaluations of the Grassmann integrals using an algorithm by Creutz, and present an application to the 4-edge-colouring problem on toroidal square lattices, comparing the results to numerical transfer matrix calculations and a previous Bethe ansatz study. We also show that for the square, honeycomb, 3-12, and one-dimensional lattice, known exact results for the asymptotic scaling of Z with the number of vertices can be expressed in a unified way as different values of one and the same function.Comment: 16 pages, 2 figures, 2 tables. v2: corrected an inconsistency in the notatio

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ∼1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    A Complete Grammar for Decomposing a Family of Graphs into 3-connected Components

    Full text link
    Tutte has described in the book "Connectivity in graphs" a canonical decomposition of any graph into 3-connected components. In this article we translate (using the language of symbolic combinatorics) Tutte's decomposition into a general grammar expressing any family of graphs (with some stability conditions) in terms of the 3-connected subfamily. A key ingredient we use is an extension of the so-called dissymmetry theorem, which yields negative signs in the grammar. As a main application we recover in a purely combinatorial way the analytic expression found by Gim\'enez and Noy for the series counting labelled planar graphs (such an expression is crucial to do asymptotic enumeration and to obtain limit laws of various parameters on random planar graphs). Besides the grammar, an important ingredient of our method is a recent bijective construction of planar maps by Bouttier, Di Francesco and Guitter.Comment: 39 page

    Subcritical graph classes containing all planar graphs

    Get PDF
    We construct minor-closed addable families of graphs that are subcritical and contain all planar graphs. This contradicts (one direction of) a well-known conjecture of Noy

    Enumeration of labelled 4-regular planar graphs

    Get PDF
    We present the first combinatorial scheme for counting labelled 4-regular planar graphs through a complete recursive decomposition. More precisely, we show that the exponential generating function of labelled 4-regular planar graphs can be computed effectively as the solution of a system of equations, from which the coefficients can be extracted. As a byproduct, we also enumerate labelled 3-connected 4-regular planar graphs, and simple 4-regular rooted maps

    On the diameter of random planar graphs

    Get PDF
    We show that the diameter D(G_n) of a random labelled connected planar graph with n vertices is equal to n^{1/4+o(1)}, in probability. More precisely there exists a constant c>0 such that the probability that D(G_n) lies in the interval (n^{1/4-\epsilon},n^{1/4+\epsilon}) is greater than 1-\exp(-n^{c\epsilon}) for {\epsilon} small enough and n>n_0(\epsilon). We prove similar statements for 2-connected and 3-connected planar graphs and maps.Comment: 24 pages, 7 figure
    • …
    corecore