805 research outputs found

    A Real-time Strategy Agent Framework and Strategy Classifier for Computer Generated Forces

    Get PDF
    This research effort is concerned with the advancement of computer generated forces AI for Department of Defense (DoD) military training and education. The vision of this work is agents capable of perceiving and intelligently responding to opponent strategies in real-time. Our research goal is to lay the foundations for such an agent. Six research objectives are defined: 1) Formulate a strategy definition schema effective in defining a range of RTS strategies. 2) Create eight strategy definitions via the schema. 3) Design a real-time agent framework that plays the game according to the given strategy definition. 4) Generate an RTS data set. 5) Create an accurate and fast executing strategy classifier. 6) Find the best counterstrategies for each strategy definition. The agent framework is used to play the eight strategies against each other and generate a data set of game observations. To classify the data, we first perform feature reduction using principal component analysis or linear discriminant analysis. Two classifier techniques are employed, k-means clustering with k-nearest neighbor and support vector machine. The resulting classifier is 94.1% accurate with an average classification execution speed of 7.14 us. Our research effort has successfully laid the foundations for a dynamic strategy agent

    Virtual Battlespace Behavior Generation Through Class Imitation

    Get PDF
    Military organizations need realistic training scenarios to ensure mission readiness. Developing the skills required to differentiate combatants from non-combatants is very important for ensuring the international law of armed conflict is upheld. In Simulated Training Environments, one of the open challenges is to correctly simulate the appearance and behavior of combatant and non-combatant agents in a realistic manner. This thesis outlines the construction of a data driven agent that is capable of imitating the behaviors of the Virtual BattleSpace 2 behavior classes while our agent is configured to advance to a geographically specific goal. The approach and the resulting agent promotes and motivates the idea that Opponent and Non-Combatant behaviors inside of simulated environments can be improved through the use of behavioral imitation

    Adaptive Agent Architectures in Modern Virtual Games

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Technology Trees and Tools: Constructing Development Graphs for Digital Games

    Get PDF
    In the recent years, digital games have solidified their role as important parts of life for a considerable portion of the population. Game development has become an extremely important industrial branch with a great deal of competition between developers and publishers. There is only a limited amount of resources to put in the development of a game, but the modern customers expect high quality.Taking these constraints into account, this dissertation focuses on developing implementations of a structure that is used widely in different games: technology trees (TTs). This term covers here also so-called skill trees, talent trees, perk trees, and other such structures used to limit and guide in-game development and define development possibilities. The aim is to propose methods and usage of tools helping to achieve high TT quality, simultaneously facilitating the actual development process and reducing human workload.The main contributions of this dissertation consist of ideas, models, methods, and software tool prototypes constructed during the research work. The significance of the thesis is amplified by the fact that there are only very few previous academic studies focusing on TTs.The thesis proposes a generic approach to implement TTs. The design and implementation work are facilitated by tool support and automated code generation. The central prototype tool, Tech Tree Tool (TTT) is introduced, first in its core form and then as improved by TT measuring (and limited automatic adjusting) capabilities. The challenge of modifying TTs during runtime is addressed, also taking advantage of related improvements on TTT. Because TTs are often operated by artificially intelligent entities, discussion on a generic artificial intelligence approach and related tools is included. Moreover, contemporary real-life TTs are analyzed and generic TTs characterized

    An Annotated Analysis of Contemporary Game Design Literature

    Get PDF
    This project examines the current state of computer game design literature by comparing and analyzing twelve of the most popular game design textbooks. It is determined that few textbooks labeling themselves as game design books actually provide useful insight into the practice of game design and even fewer attempt to construct a theory of it. Two observations have been made: there is a need for more textbooks about game design theory and there is a glut of superficial, useless books

    Modeling and Generating Strategy Games Mechanics

    Get PDF

    Effects of Local Latency on Games

    Get PDF
    Video games are a major type of entertainment for millions of people, and feature a wide variety genres. Many genres of video games require quick reactions, and in these games it is critical for player performance and player experience that the game is responsive. One of the major contributing factors that can make games less responsive is local latency — the total delay between input and a resulting change to the screen. Local latency is produced by a combination of delays from input devices, software processing, and displays. Due to latency, game companies spend considerable time and money play-testing their games to ensure the game is both responsive and that the in-game difficulty is reasonable. Past studies have made it clear that local latency negatively affects both player performance and experience, but there is still little knowledge about local latency’s exact effects on games. In this thesis, we address this problem by providing game designers with more knowledge about local latency’s effects. First, we performed a study to examine latency’s effects on performance and experience for popular pointing input devices used with games. Our results show significant differences between devices based on the task and the amount of latency. We then provide design guidelines based on our findings. Second, we performed a study to understand latency’s effects on ‘atoms’ of interaction in games. The study varied both latency and game speed, and found game speed to affect a task’s sensitivity to latency. Third, we used our findings to build a model to help designers quickly identify latency-sensitive game atoms, thus saving time during play-testing. We built and validated a model that predicts errors rates in a game atom based on latency and game speed. Our work helps game designers by providing new insight into latency’s varied effects and by modelling and predicting those effect

    Mimicking human player strategies in fighting games using game artificial intelligence techniques

    Get PDF
    Fighting videogames (also known as fighting games) are ever growing in popularity and accessibility. The isolated console experiences of 20th century gaming has been replaced by online gaming services that allow gamers to play from almost anywhere in the world with one another. This gives rise to competitive gaming on a global scale enabling them to experience fresh play styles and challenges by playing someone new. Fighting games can typically be played either as a single player experience, or against another human player, whether it is via a network or a traditional multiplayer experience. However, there are two issues with these approaches. First, the single player offering in many fighting games is regarded as being simplistic in design, making the moves by the computer predictable. Secondly, while playing against other human players can be more varied and challenging, this may not always be achievable due to the logistics involved in setting up such a bout. Game Artificial Intelligence could provide a solution to both of these issues, allowing a human player s strategy to be learned and then mimicked by the AI fighter. In this thesis, game AI techniques have been researched to provide a means of mimicking human player strategies in strategic fighting games with multiple parameters. Various techniques and their current usages are surveyed, informing the design of two separate solutions to this problem. The first solution relies solely on leveraging k nearest neighbour classification to identify which move should be executed based on the in-game parameters, resulting in decisions being made at the operational level and being fed from the bottom-up to the strategic level. The second solution utilises a number of existing Artificial Intelligence techniques, including data driven finite state machines, hierarchical clustering and k nearest neighbour classification, in an architecture that makes decisions at the strategic level and feeds them from the top-down to the operational level, resulting in the execution of moves. This design is underpinned by a novel algorithm to aid the mimicking process, which is used to identify patterns and strategies within data collated during bouts between two human players. Both solutions are evaluated quantitatively and qualitatively. A conclusion summarising the findings, as well as future work, is provided. The conclusions highlight the fact that both solutions are proficient in mimicking human strategies, but each has its own strengths depending on the type of strategy played out by the human. More structured, methodical strategies are better mimicked by the data driven finite state machine hybrid architecture, whereas the k nearest neighbour approach is better suited to tactical approaches, or even random button bashing that does not always conform to a pre-defined strategy
    corecore