

1

Mimicking Human Player Strategies in Fighting

Games Using Game Artificial Intelligence

Techniques

By

Simardeep Singh Saini

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy of Loughborough University

March 2014

© By Simardeep Singh Saini 2014

2

Abstract

Fighting videogames (also known as fighting games) are ever growing in popularity and accessibility.

The isolated console experiences of 20th century gaming has been replaced by online gaming services

that allow gamers to play from almost anywhere in the world with one another. This gives rise to

competitive gaming on a global scale enabling them to experience fresh play styles and challenges by

playing someone new.

Fighting games can typically be played either as a single player experience, or against another human

player, whether it is via a network or a traditional multiplayer experience. However, there are two

issues with these approaches. First, the single player offering in many fighting games is regarded as

being simplistic in design, making the moves by the computer predictable. Secondly, while playing

against other human players can be more varied and challenging, this may not always be achievable

due to the logistics involved in setting up such a bout. Game Artificial Intelligence could provide a

solution to both of these issues, allowing a human player’s strategy to be learned and then mimicked

by the AI fighter.

In this thesis, game AI techniques have been researched to provide a means of mimicking human

player strategies in strategic fighting games with multiple parameters. Various techniques and their

current usages are surveyed, informing the design of two separate solutions to this problem. The first

solution relies solely on leveraging k nearest neighbour classification to identify which move should

be executed based on the in-game parameters, resulting in decisions being made at the operational

level and being fed from the bottom-up to the strategic level. The second solution utilises a number

of existing Artificial Intelligence techniques, including data driven finite state machines, hierarchical

clustering and k nearest neighbour classification, in an architecture that makes decisions at the

strategic level and feeds them from the top-down to the operational level, resulting in the execution

of moves. This design is underpinned by a novel algorithm to aid the mimicking process, which is used

to identify patterns and strategies within data collated during bouts between two human players. Both

solutions are evaluated quantitatively and qualitatively. A conclusion summarising the findings, as well

as future work, is provided. The conclusions highlight the fact that both solutions are proficient in

mimicking human strategies, but each has its own strengths depending on the type of strategy played

out by the human. More structured, methodical strategies are better mimicked by the data driven

finite state machine hybrid architecture, whereas the k nearest neighbour approach is better suited

to tactical approaches, or even random ‘button bashing’ that does not always conform to a pre-

defined strategy.

Keywords: Fighting Games, Artificial Intelligence, Finite State Machine, Machine Learning, Game AI,

Strategies and Tactics, Mimicking

3

Acknowledgements

I would like to thank my supervisors Professor Paul Chung and Dr Christian Dawson for their continued

support, guidance and mentoring during my research. I would also like to extend my gratitude to Dr

Daniel Reidenbach, whose feedback has been of utmost importance in shaping this Thesis.

I am eternally grateful to my mother and father, my brother Amardeep, and my sister-in-law Sarbjit,

for believing in me and telling me to never give up. The completion of this work would not have been

possible without their undying support, encouragement and patience.

I am indebted to those managers I have worked for over the years who have supported my studies by

offering time off work to pursue my research. This has made a big difference and I am grateful for all

they have done.

Last, but certainly not least, I would like to thank my friends and family all over the world who have

helped me along the way, and whose understanding and patience has been paramount to progressing

the doctorate. Many thanks to Jag and Ricky in particular for their constant backing and

encouragement over the years.

Above all, I would like to thank God Almighty, without whom this achievement would simply not be

possible.

4

To My Parents

5

Table of Contents

Abstract ... 2

Acknowledgements ... 3

Table of Contents .. 5

List of Figures .. 8

List of Tables ... 9

Part I – Introduction and Background ... 10

Chapter 1 – Overview ... 11

1.1 Introduction .. 11

1.2 Motivation ... 11

1.3 Research Aims and Objectives .. 12

1.4 Contribution of the Thesis .. 12

1.5 Structure of the Thesis .. 14

Chapter 2 – Anatomy of a Fighting Game ... 15

2.1 Introduction .. 15

2.2 What is a Fighting Game? ... 15

2.3 A Brief History of Fighting Games ... 17

2.4 Chapter Summary ... 22

Chapter 3 - Strategies and Tactics... 23

3.1 Introduction .. 23

3.2 Strategies and Tactics in Martial Arts ... 23

3.3 Martial Arts Movies ... 26

3.4 Strategies and Tactics in Videogames ... 28

3.5 Chapter Summary ... 30

Chapter 4 – AI Techniques applied to Fighting Games ... 31

4.1 Introduction .. 31

4.2 The role of AI in Videogames .. 31

4.3 Game AI Techniques ... 33

4.4 Application of Game AI Techniques .. 42

4.5 Fighting Games ... 54

4.5 Chapter Summary ... 64

Part II – Analysis, Design and Development ... 71

6

Chapter 5 – Proof of Concept Game ... 72

5.1 Introduction .. 72

5.2 Design .. 72

5.3 Implementation .. 76

5.4 Usage of PoC Game ... 78

5.5 Chapter Summary ... 80

Chapter 6 – K Nearest Neighbour Solution Architecture and Design ... 81

6.1 Introduction .. 81

6.2 System Architecture .. 81

6.3 Chapter Summary ... 87

Chapter 7 –Data Driven Finite State Machine Solution Design .. 88

7.1 Introduction .. 88

7.2 System Architecture .. 89

7.3 Operational Data Capture ... 91

7.4 Generating the Tactical Level .. 92

7.5 Strategic Level ... 96

7.6 Execution ... 97

7.7 Design Justification ... 100

7.8 Chapter Summary ... 104

Part III – Evaluation and Conclusion ... 106

Chapter 8 - Evaluation... 107

8.1 Introduction .. 107

8.2 Experiment Design .. 107

8.3 Experiment Results ... 115

8.4 Chapter Summary ... 120

Chapter 9 – Conclusion and Future Work ... 122

9.1 Introduction .. 122

9.2 Thesis Review .. 122

9.3 Summary of Contributions .. 123

9.4 Limitations and Future Work .. 124

9.5 Thesis Summary and Final Conclusion .. 126

References .. 127

Appendix A.1 – Move List ... 137

7

Appendix A.2 – Sample Human Transcript ... 138

Appendix A.3 – Sample DD FSM Transcript .. 140

Appendix A.4 – Sample KNN Transcript .. 142

8

List of Figures

Figure 2.1 – Super Street Fighter 2 Turbo Screenshot .. 18

Figure 2.2 – Battle Arena Toshinden Screenshot .. 20

Figure 2.3 – Ultra Street Fighter IV Screenshot .. 20

Figure 2.4 – Tekken 4 Screenshot ... 21

Figure 4.1 – A Multilayer Artificial Neural Network .. 36

Figure 5.1 – Screenshot of Proof of Concept Game.. 77

Figure 6.1 – Data Flow for KNN Solution .. 84

Figure 7.1 – Data flow for DD FSM Solution ... 90

Figure 7.2 – DD FSM Solution Architecture .. 91

Figure 7.3 – Execution of DD FSM Solution .. 99

Figure 8.1 – Observer Perception of DD FSM Performance ... 117

Figure 8.2 – Observer Perception of KNN Performance ... 117

Figure 8.3 – Observer Perception of Both Solutions Combined ... 118

9

List of Tables

Table 4.1 – Literature Review Summary ... 65

Table 5.1 – Proof of Concept game moves ... 75

Table 6.1 – Sample of data spooled from human vs. human ... 83

Table 6.2 – Human Bout Transcript .. 86

Table 7.1 – Vector Calculation ... 93

Table 7.2 – Like State Transitions ... 97

Table 7.3 – Strategy for Human vs. Human Bout .. 101

Table 7.4 – Generated States .. 102

Table 7.5 – Data Driven Finite State Machine .. 102

Table 7.6 – Realtime Data Snapshots ... 103

Table 8.1 – DD FSM Solution Transcript ... 109

Table 8.2 – KNN Solution Transcript ... 110

Table 8.3 – Human Strategies Outline .. 113

Table 8.4 – Data Driven Finite State Machines ... 114

Table 8.5 – Observations .. 116

Table A.1 – Move Representation .. 137

Table A.2 – Sample Human Transcript .. 138

Table A.3 – Sample DD FSM Transcript ... 140

Table A.4 – Sample KNN Transcript .. 142

10

Part I – Introduction and

Background

11

Chapter 1 – Overview

1.1 Introduction

Many modern videogames are of a competitive nature, either directly with another player in a

multiplayer environment, or indirectly via scoreboards in single player games. Traditional multiplayer

videogames relied upon players being co-located and playing from the same console or by linking two

consoles together. Over recent years, multiplayer videogames are increasingly being supplemented

by online play, enabling gamers to either compete or cooperate with one another via gaming services

such as PlayStation Network, Xbox Live and Steam. Regardless of how gamers engage one another to

play multiplayer videogames, whether it is via an online service, or whether the players are co-located,

both players must be available to play the videogame. This restriction presents a challenge and

opportunity to assist gamers in their multiplayer experience by enabling them to play against

mimicked versions of their human opponents.

The purpose of this Thesis is to establish the current state of research related to mimicking human

players in fighting games, and to propose, develop and evaluate an Artificial Intelligence (AI) technique

that supports this functionality.

1.2 Motivation

Multiplayer fighting games, where two players fight against one another using martial arts moves in

an effort to defeat the opponent, are becoming increasingly popular, especially with the increase of

online gaming. The challenge offered to players by playing against other humans is unique in that the

opponents use different strategies and tactics, thus offering fresh styles of play. Modern fighting

games offer players the freedom to play the videogame using their own strategies, by offering a

variety of moves and multiple parameters that are tracked throughout bouts. Since the early 1990s,

commercial fighting games have shown far greater diversity by offering fresh game mechanics in an

effort to deviate from the standard one-on-one single parameter affair. Street Fighter Alpha 3

(Capcom, 1998) makes use of three parameters per fighter: health, the block gauge, and the super

combo meter. The health of each fighter depletes as they incur damage, however, this can be

mitigated by evading the opponent’s attacks all together, or blocking them. For every successful attack

that is blocked, the block gauge depletes, but refills over the course of time. If several attacks are

blocked consecutively, the player is penalised for over blocking and the capacity of the block gauge

drops. The super combo meter fills as the player both incurs and deals damage. Once this meter is full,

the on-screen fighter is able to execute powerful moves that incur a large amount of damage. These

12

features (sometimes referred to as game mechanics) allow players to fight strategically, forming their

own style and using it against their opponents. This thesis addresses the research question ‘How can

existing Game Artificial Intelligence techniques be used to successfully mimic human player strategies

in strategic fighting games?’

1.3 Research Aims and Objectives

The overall aim of this project is to answer the aforementioned question by researching, proposing,

implementing and evaluating an AI system capable of mimicking basic strategies of human players in

fighting videogames. The specific objectives are to:

1) Gain an understanding of the current state of research of AI with regards to videogames, as well as

its limitations. This is achieved by conducting a literature survey on AI and its usage in modern

videogames.

2) Identify and develop an AI solution capable of recognizing long-term player strategies from a human

player, and then mimicking these strategies. The solution would be deployed in a multiplayer fighting

game, where two humans would play each other, with the AI agent learning the strategies of a given

player. Once the AI agent has learned the strategies utilised by a human, it should be capable of using

these strategies whilst playing against a human.

3) Evaluate the effectiveness of the AI solution that has been proposed and implemented. Upon

designing the solution, it must be implemented as part of a fighting game with a suitable set of rules

that lends itself to analysis and evaluation of player and AI fighter strategies. The fighting game must

allow players to play in a variety of different ways and incorporate different long-term strategies based

on their individual strengths and styles of play.

The method used for evaluation is to compare statistics recorded during a game between two human

players with those from games between the same human players and against the AI fighter (mimicking

their human opponents from the first set of statistics). The statistics would include the nature and

timing of the moves performed by each character, along with the gameplay statistics, such as health

etc. These data can be collated and compared to measure the effectiveness of the mimicking

technique, and ultimately allow for building a strategic picture (detailed in Chapters 6 and 7).

1.4 Contribution of the Thesis

The problem domain of mimicking humans in fighting games is uncharted territory in terms of

academic research. Limited research has been conducted in improving the ability of the AI controlled

13

fighter, rather than mimicking a human. The major contribution of this thesis are the design,

implementation and evaluation of the two AI techniques presented.

The first solution utilises data mining in conjunction with K nearest neighbour classification to solve

the problem in a novel way. The solution works by analysing data from a bout between two human

players and then using K nearest neighbour classification in real-time during a bout against a human

player. K nearest neighbour classification is used to identify which action the AI controlled fighter must

take in accordance to the data analysed between the two human players, the current parameters of

the game at a given point in time. Details of the design and implementation are provided in this thesis,

as well as statistical data from bouts between the AI controlled fighter and the human player, which

analysed and evaluated.

The second solution builds on the first, but leverages data driven finite state machines, hierarchical

clustering in conjunction with the aforementioned k nearest neighbour classification to generate a

novel hybrid AI system architecture. This technique uses a new algorithm that executes a number of

steps to identify overarching strategies over numerous bouts, and then uses hierarchical clustering to

generate a data driven finite state machine, which is executed by the AI controlled fighter during a

bout against a human opponent. Although existing techniques are used, their usage in terms of the

problem context is new. The design, implementation and evaluation of both of these techniques form

the major contribution of this thesis.

A proof of concept kickboxing fighting game was implemented to evaluate each of the two solutions.

The results show that overall, across a sample of ten different strategies, both solutions were equally

effective. However, each solution had its own strengths and weaknesses. The design and creation of

the proof of concept game as a test bed for Game AI research is a further contribution of this thesis.

The solutions presented in this thesis could be adapted for a variety of game genres, other than

fighting games. This would enable players to play against their rivals without directly involving them,

as the AI would be mimicking their human opponent, giving players the opportunity to analyse their

opponent’s strategy and practise against them, much like a boxer would analyse their opponent’s past

matches, providing them with the advantage to figure out how to counter such strategies. Potential

game genres that the two solutions could be applied to include football games, role-playing games

and other massively multiplayer online (MMO) games.

14

1.5 Structure of the Thesis

The remainder of this Thesis is split across three parts, each containing separate chapters. The

following breakdown provides an overview of the remaining chapters.

Part I – Introduction and Background

Chapter 2 (Anatomy of a Fighting Game) provides an overview and evaluation of what constitutes a

fighting game. Various terms synonymous with fighting games are defined and elements within

fighting games are described in detail. Chapter 3 (Strategies and Tactics) provides background on

strategy and tactics in the context of videogames and martial arts - two areas that are of particular

interest in this Thesis due to their ties with fighting games. Chapter 4 (AI Techniques applied to Fighting

Games) introduces and discusses established Game AI techniques. Instances of their application to

fighting games are discussed and evaluated. A gap analysis is summarized in terms of the problem

domain.

Part II – Analysis, Design and Development

Chapter 5 (Proof of Concept Game) details the proof of concept game that is used as a test bed

throughout this research. The details found in this chapter help contextualise the design and

implementation of the solutions discussed further in this thesis.

Chapter 6 (K Nearest Neighbour Solution Architecture and Design) presents the K nearest neighbour

solution system architecture and detailed design, as well as the rationale for design decisions, and the

overall approach that led to the solution. The means by which the K nearest neighbour solution is

implemented are also discussed in this chapter. Chapter 7 (Data Driven Finite State Machine Solution

Design) presents the solution architecture and detailed design for the data driven finite state machine

based solution. Rationale for design decisions and the overall approach that led to the solution are

discussed, as well as the means by which the data driven finite state machine solution is implemented.

Part III – Evaluation and Conclusion

Chapter 8 (Evaluation) includes details of the evaluation criteria and method. Experiment design,

results and discussion of the results are provided. Chapter 9 (Conclusion and Future Work) concludes

the thesis and addresses the original Aim and Objectives put forth in this chapter. An overview of what

has been achieved is provided, as well as a view on how the research can be built upon moving

forward.

15

Chapter 2 – Anatomy of a Fighting Game

2.1 Introduction

This chapter provides a detailed account of what qualifies as a fighting game, and as such

contextualises the research within this thesis. Key attributes of fighting games are discussed and a

brief history of fighting games is provided as a means of surveying the evolution of gameplay

mechanics over the years.

2.2 What is a Fighting Game?

With regards to this thesis, ‘fighting game’ refers to ‘fighting videogame’. The research carried out

here is concerned with videogames of the fighting genre. Esposito (2005) defines a videogame as: “a

game which we play thanks to an audio/visual apparatus and which can be based on a story”. While

this definition holds true for fighting games, there are specific traits found within fighting games that

set them apart from other genres.

This section describes the basic traits found in most fighting games, while refraining from discussing

mechanics that do not conform to the norms found within traditional fighting games.

2.2.1 The Rules

Typically, a fighting game will always display more than one character on screen and each character

has a health meter. Traditional fighting games are 1-on-1, allowing for precisely two characters on-

screen. At least one on-screen character is controlled by a human player, with the remaining

character(s) either controlled by the computer or other human players (see Figure 2.1 for a screenshot

of a typical fighting game). The two on-screen characters must fight each other in hand-to-hand

combat (although weapons are factored into some fighting games), each using martial arts moves to

defeat the opponent. As fighters successfully connect an attack with their opponent, the opponent’s

health meter is depleted. The objective is to completely deplete the opponent’s health meter, at which

point the round is complete and the victor is determined. A fight may last several rounds, with the

typical default setting being the best of three rounds. The rounds are time bound, with a clock

counting down to zero marking the end of the round. If neither fighter has been defeated when the

clock reaches zero, the fighter with the most health is hailed the victor. The timer can usually be

altered or switched off within the game options.

2.2.2 The Fighters

Each on-screen fighter has a variety of actions they can perform at the players’ behest. The player will

be presented with a variety of characters from which they choose one. Each character has their own

16

unique set of actions, as well as inheriting certain actions that can be carried out by all characters. This

common set of actions typically includes the following:

 Traverse the screen towards or away from the opponent.

 Jump directly above, towards or away from the opponent.

 Crouch to evade or perform low targeting attacks against the opponent.

 Perform basic kicks and punches whilst standing, jumping or crouching.

 Perform a grapple or throw action while at extremely close proximity to the opponent.

 Block while standing or crouching (and in some cases while jumping).

In terms of animation, the basic punches, kicks and throws usually vary from character to character,

however the net result is always the same in terms of damage dealt and proximity at which the action

is effective. The unique actions retained by each character are often referred to as ‘Special Moves’.

These moves inflict greater damage than standard actions and often display flashy animations,

however while standard moves are usually performed by a single button press, a combination of

directional and action buttons must be pressed to execute a special move.

More recently, the concept of ‘Super Moves’ has become common in fighting games. This concept

introduces a gameplay mechanic where each fighter has a further meter that is filled or emptied as

they inflict and receive damage. Once the meter is full, a complex sequence of action and directional

buttons can be pressed by the player to execute a move that deals a substantial amount of damage,

beyond that of a special move. Examples of games featuring Super Moves are provided in Section

2.3.3.

2.2.3 The Environment

The environments within which the bouts take place are bounded as the players move to the extreme

left or right of the stage. Most fighting games take place on a two-dimensional plane, however, some

three-dimensional fighting games allow for sidestepping, adding a third dimension to the movement

of characters. Both fighters are displayed from the third-person viewpoint, with their profile visible to

the player. Depending on the specific videogame, the fighters are usually facing each other. When one

fighter jumps over their opponent, the opponent shall automatically turn around, resulting in the

switching of sides. In fighting games such as Bandai Namco Games’ Tekken Tag Tournament 2 (2012),

the opponent remains with their back facing the fighter that jumped. In this particular videogame, this

enables the player facing the opponent’s back to carry out a different set of actions.

17

2.3 A Brief History of Fighting Games

Having established the typical traits of a traditional fighting game, this section explores the history of

fighting games and the evolution of their mechanics. The section is divided into major milestones in

fighting game history, with innovations and evolutions in design described along the way.

2.3.1 Early Fighting Games

The earliest example of a videogame resembling something close to a traditional fighting game is

Heavyweight Champ by Sega (1976). This videogame presented the player with a side view of two on-

screen fighters, each with their own health meter. However, at the time, this fighting game did not

rely on traditional button based control inputs. Instead, it utilised a glove peripheral built into the

arcade cabinet, which could be moved up and down to vary where attacks were targeting. It was the

likes of Karate Champ (Technos Japan, 1984) and Yie Ar Kung-Fu (Konami, 1985) that popularised the

genre and offered a greater variety of moves. However, these early fighting games only featured one

playable character for single player bouts against the computer fighter, and there was no notion of

special moves. Street Fighter (Capcom, 1987) changed this by embedding secret special moves, the

button combination for which would need to be deciphered by the player. Street Fighter included

many of the basic traits synonymous with fighting games such as multi-player functionality to allow

two players to fight each other, definitive round timers, and a multitude of standard and special

moves.

2.3.2 The 16 Bit Era

In 1991, Street Fighter spawned a sequel, Street Fighter II (Capcom, 1991) which revolutionised

fighting game genre. Street Fighter II presented players with an option of choosing from eight playable

characters, each with their own unique set of special moves. The standard move set was far greater

than any fighting game that preceded it with a total of six attack buttons, each giving rise to a unique

animation. In some instances, these standard moves gave rise to multiple variations of the same move

when combined with a directional button press. For example, pressing forwards and the attack button

would have a different animation to pressing the attack button in isolation. The level of variety offered

by having multiple characters to choose from, each with unique special moves and various flavours of

standard moves, coupled with the cutting edge graphics, fluid gameplay and competitive appeal made

Street Fighter II the benchmark for fighting games in the early 1990s.

Shortly after the release of Street Fighter II, another noteworthy fighting game was released. Mortal

Kombat (Midway, 1992), built upon the groundwork put forward by Street Fighter II, sparked great

controversy due to its use of animated blood which was perceived as being excessively violent at the

18

time, but has since become a staple feature of many fighting games. Mortal Kombat also introduced

the notion of a ‘finishing move’. Once the bout is over, the victor is given the opportunity to execute

their opponent by inputting a specific button command and trigger a unique finishing move, referred

to as a fatality within the videogame. While the use of finishing moves has been largely localised to

the Mortal Kombat videogame series, this idea may have given rise to the notion of further unique

powerful moves. These moves would eventually be called Super Moves and if executed would deal

the finishing blow.

2.3.3 The Introduction of Multiple Parameters

Super Moves first appeared in Super Street Fighter II Turbo (Capcom, 1994). This fighting game built

on previous versions of Street Fighter II, featured a Super Combo Meter that filled up as the player

executed special moves and incurred damage upon their opponent. Once the meter is full, a specific

button command can be pressed to unleash an exceptionally powerful move, known as a Super Move

or Super Combo. If the Super Combo deals sufficient damage to defeat the opponent, the screen fills

with flashes of light making for a rewarding means of defeating the opponent.

Super Street Fighter 2 was the first time a fighting game used a meter beyond the standard health

meters. Figure 2.1 shows a screenshot of Super Street Fighter 2, with the health bars for each

character situated at the top of the screen, and super combo meters situated at the bottom of the

screen.

1Figure 2.1 – Super Street Fighter 2 Turbo Screenshot

This notion of using multiple parameters was expanded upon over the years with Mortal Kombat 3

(Midway, 1995) using a ‘momentum meter’ that filled up over time and allowed players to run and

execute combinations. Mortal Kombat Trilogy (Midway, 1996) used a further meter called the

19

Aggressor bar, which filled up as the player executed attacks. Once the bar was full, the player could

activate it, enabling them to move faster and inflict greater damage.

Street Fighter Alpha 3 (Capcom, 1998) went even further in terms of integrating multiple parameters.

Beyond the standard health meter, there were three separate variations of the Super Combo Meter,

one of which allowed the player to execute custom combos similar to Mortal Kombat Trilogy’s

Aggressor Bar. Further to the Super Combo Meter, each player has a block gauge, which fills up rapidly

over time. As the player blocks successive attacks from their opponent, the gauge depletes. When the

gauge is empty, the player’s defence is shattered and they are left temporarily vulnerable. The gauge

then fills up again, but the capacity is reduced each time it is shattered. The intention of this mechanic

was to penalise players who are too dependent on blocking, rather than stopping the opponent’s

attack mid-flow, or evading the attack altogether, both of which take more skill than blocking. This led

to a new element of strategic play within the fighting game genre.

2.3.4 Three Dimensional Fighting Games

Early and subsequent fighting games utilised two-dimensional graphics. This was largely due to the

limitations in hardware. Even in the 32-bit era (post 1994), many fighting games, such as Street Fighter

Alpha (Capcom, 1995), still focused on delivering a two-dimensional experience as this was an integral

part of their identity. The introduction of 32 bit consoles and superior arcade hardware led to three-

dimensional fighting games where fighters were portrayed by 3D character models, rather than hand

drawn sprites, traversed an environment rendered in 3D. However, the majority of early 3D fighting

games restricted movement of the 3D environment to a 2D plane. Battle Arena Toshinden (Tamsoft,

1994) introduced the ability for fighters to move along X, Y and Z-axes, allowing players to dodge

projectile attacks. Figure 2.2 shows characters moving across the 3D plane in Battle Arena Toshinden.

20

2Figure 2.2 – Battle Arena Toshinden Screenshot

Three-dimensional movement within fighting games took off with Tekken 3 (Namco, 1997) and Dead

or Alive (Team Ninja, 1997) following suit. However, while certain fighting franchises have made the

move to 3D graphics, the characters are still rooted in two-dimensional planes as a conscious design

decision rather than a limitation of the hardware. Such videogames include Ultra Street Fighter IV

(Capcom, 2014), which is shown is Figure 2.3 below, Mortal Kombat (NetherRealm Studios, 2011),

Street Fighter X Tekken (Capcom, 2012) and Marvel vs. Capcom 3 (Capcom, 2011).

 3Figure 2.3 – Ultra Street Fighter IV Screenshot

21

2.3.5 Further Enhancements

While traditional fighting games are typically one-on-one, X-Men vs. Street Fighter (Capcom, 1996)

introduced the notion of tag battles in an otherwise conventional fighting game. Each player would

choose two characters to make for a two-on-two battle, where one member of each team would be

on-screen doing battle, with their partner waiting to be tagged-in off screen. Each member of the

team has his or her own health meter. Once one member of the team is defeated, the other is

automatically tagged-in to continue the bout. The victor is declared once both fighters belonging to a

team are defeated. This concept was taken further with Marvel vs. Capcom 2 (Capcom, 2000), where

each player could choose three fighters per team. Both videogames also featured the ability to

perform tag Super Moves, where each member of the team would perform their Super Move

simultaneously, incurring more damage. Other fighting games followed the trend set by Capcom,

including Tekken Tag Tournament (Namco, 2000) and Dead or Alive 2 (Team Ninja, 1999).

Additional enhancements in fighting games relate to the environment in which the bout takes place.

Dead or Alive 2 (Team Ninja, 1999) featured hazards in the arena, such as explosions that would incur

damage if a character was within the blast radius. This gameplay mechanic added a level of strategy

in that it opened up players to use the environment to their advantage. Tekken 4 (Namco, 2002)

followed up on this by providing destructible environments, allowing fighters to corner one another

and use the destructible environment to incur extra damage. This is shown in Figure 2.4 below.

4Figure 2.4 – Tekken 4 Screenshot

22

While fighting games should not be confused with a traditional Role Playing Game (RPG), certain

fighting games have begun to incorporate elements of RPGs within their own game rules. RPGs are

traditionally single player affairs, although they can also be played online with other human players in

the form of a Massively Multiplayer Online Role Playing Game (MMORPG) such as Elder Scrolls Online

(ZeniMax Online Studios, 2014). RPGs typically follow a protagonist who engages with and speaks to

Non-player Characters (NPCs) while a story unfolds. Combat can be either turn-based or real-time and

often leverages physical attacks as well as projectile magic attacks. The character is rewarded points

for battles won, which in turn improve his or her skills and abilities, enabling them to face adversaries

that are more challenging. Examples of turn-based RPGs include Final Fantasy VII (Squaresoft, 1997)

and Bravely Default (Square Enix, 2013), whereas real-time, or action RPGs include Diablo 3: Reaper

of Souls (Blizzard Entertainment, 2014) and Tales of Xillia 2 (Bandai Namco Games, 2014).

Despite being one of the earliest game genres established, fighting games are still prominent in today’s

gaming market. Games such as Street Fighter 4 (Capcom, 2008), Tekken Tag Tournament 2 (Bandai

Namco Games, 2012) and Mortal Kombat (NetherRealm Studios, 2011) are developing the genre

further and paving the way for future entries for each of the respective franchises. Even classic two-

dimensional fighting games are making a resurgence in the forms of BlazBlue: Chronophantasma (Arc

System Works, 2011) and Person 4 Arena Ultimax (Arc System Works, 2014).

2.4 Chapter Summary

In this chapter, a detailed account of what constitutes a fighting game has been provided. A fighting

game has been defined as a videogame where two on-screen characters, each with a health meter,

must engage in combat using standard and special moves to incur damage, with the objective of

depleting the opponent’s health meter. The genre of fighting games can encompass features beyond

this definition. This chapter has provided an overview of how different features have evolved and

become embedded within many commercial fighting games. These features include three-

dimensional movement, multi-parameter combat, tag team battles and hazardous environments.

This chapter has given examples of many commercial fighting games, many of which have added their

own features to the genre, while maintaining the core principles that define fighting games. Moving

forward, these principals shall be used in developing a proof of concept game that shall be

representative of the commercial fighting games discussed here.

23

Chapter 3 - Strategies and Tactics

3.1 Introduction

Strategy can be defined as a preliminary decision making activity, whereas tactics can be defined as

an action based decision-making activity (Mouchet, 2005). This definition contextualises strategy and

tactics, which is of utmost importance in this thesis. Strategy are long-term approaches to achieve an

ultimate goal, whereas tactics are short-term gains that facilitate the strategy. In this chapter, strategy

and tactics as they pertain to martial arts in popular media shall be explored. Observing martial arts

movies helps contextualise the use of strategy and tactics as they are used in fighting games. This

chapter also reviews literature on strategies and tactics, as it relates to videogames, both commercial

and academic, as well as its place in the world of martial arts. Views on the differences between

strategies and tactics are put forward. This is undertaken in an effort to better understand, and place

context around the aims and objectives of the Thesis.

3.2 Strategies and Tactics in Martial Arts

To understand how strategies and tactics could be used in fighting videogames, it is important to

consider their use in martial arts, as this is the real life domain that is being replicated in fighting

videogames. Two ancient texts that still bare much relevance today with regards to martial arts

strategies are The Art of War (Sun Tzu, 1910) and The Book of Five Rings (Musashi, 1643).

The Book of Five Rings (Musashi, 1643) is a tome covering martial arts strategy and is split into five

sections, or ‘books’. The author, Miyamoto Musashi was a Japanese swordsmen and ronin (master-

less samurai) who came to prominence on account of his numerous sword fights during the Edo

Period, which succeeded medieval/feudal Japan.

The first book, The Book of Earth, focuses on Musashi’s own strategy, which he taught to his students

at the Ichi School. In The Book of Earth, Musashi regards strategy as knowing when to use an

appropriate weapon, and placing great importance on timing. Musashi discusses the usage of spears,

longs swords, short swords and even guns. Musashi stresses that a single weapon should not be

overused, and that variety in using weapons is a critical success factor when engaging an opponent.

This principal can be extended to hand-to-hand combat in general where one could argue that relying

on the same set of moves in continuous rhythm makes for a predictable outcome, largely because the

opponent will grow accustomed to the move patterns, making it easier for them to spot and exploit a

weakness. Another core principle in The Book of Earth is the importance of timing in combat

situations. Musashi contemplates timing by stating it is paramount to all walks of life, not just combat.

24

He then goes on to state that a warrior must know when to attack and when not to attack based on

what is happening around them in the background, as well as what is happening immediately in-front

of them.

The second book, The Book of Water, focuses further on strategy. The name was quite possibly chosen

based on the view that a warrior must be able to shift from using one set of tactics to another with

fluidity, balance and flexibility. This book also focuses on the spiritual side of martial arts, emphasising

the importance of staying calm while executing a strategy, as well as factoring into account your

opponent’s frame of mind. This is fundamental to fighting as an opponent’s rage or fear could be used

to a skilled fighter’s advantage. Perception and peripheral vision are also regarding as tools to be

leveraged when defining and executing a strategy. Musashi cites one’s ability to fight an enemy

directly in front of him/her, while scouting for reinforcements in the background as being one such

use of leveraging peripheral vision to aid combat. The Book of Water goes on to describe various other

techniques and tactics that would be used within a strategy. Namely, Musashi goes over the five

‘attitudes’ to swordsmanship, which are based on anatomical regions that are used as targets, when

one should attack in a certain region. Other tactics Musashi refers to including feinting and biding ones

time to find an opening.

The third book, The Book of Fire, covers strategy further, but rather than focusing on the techniques

that are featured in The Book of Water, which are arguably tactics, this book focuses more on the

warrior leveraging the environment and opponent’s weakness to their advantage. The chapter places

importance on preparation ahead of the battle in terms of having the correct armour, knowing the

terrain and surrounding area and knowing the opponent’s disadvantages. This book is particularly

interesting as it further enforces the notion that strategy must be pre-defined, with clear objectives

and contingency plans in place.

Of the five books, the first three focus on the broader context of strategy. The fourth book, The Book

of Wind, places further importance on knowing the opponent, but serves primarily to explore

techniques that were being used by other schools at the time, making it of little relevance to today’s

martial artists. The final book, The Book of Void serves as an epilogue and discusses spirituality at

greater lengths.

 While historians debate the exact year it was first published, Sun Tzu’s The Art of War was first

translated into English by Lionel Giles in 1910. The Art of War (Sun Tzu, 1910) details the methodology

to formulating a strategy before engaging an enemy in the battlefield, and like The Book of Five Rings

(Musashi, 1643), discusses the numerous considerations to be made in executing the strategy. The

25

book is split into thirteen chapters, each covering a major theme of warfare. While the text focuses

on military tactics and strategy, its teachings have been applied by many in the world of corporate

business.

Many of the themes across the chapters of The Art of War (Sun Tzu, 1910) fall in line with Musashi’s

own considerations as documented in The Book of Five Rings (Musashi, 1643). The book advocates

making strategic and tactical decisions by placing great importance on terrain, surroundings, knowing

the enemy and knowing a unit’s own military strength. Emphasis is placed on attacking quickly and

ending the battle as soon as possible where applicable. The book advocates forward planning and

avoiding confrontation where possible, offering tactics on how this can be achieved. One of the

chapters titled ‘The Nine Battlegrounds’ provides nine conflict scenarios and provides details on what

the commander would need to consider, as well as the ideal strategy for being victorious in each of

the scenarios. While The Book of Five Rings (Musashi, 1643) focuses more in individual conflicts such

as a swordsman facing one or more assailants, The Art of War is primarily focused on larger scale

engagement such as armies going to war, and is primarily authored as a guide to the commander.

However, its teachings can certainly be extended to one-on-one combat or even conflict resolution.

While the ancient text of The Art of War (Sun Tzu, 1910) and The Book of Five Rings (Musashi, 1643)

provide a primer for strategic and tactical considerations, they can be difficult to put into context of

the modern one-on-one competitive martial arts that relate to fighting games. One such martial art

that encourages strategic engagement is Muay Thai. Van Schuyver and Villalobos (2002) discuss

various Muay Thai fighting strategies and ultimately suggest that nearly all fighters can be categorised

into one of four fighting styles; aggressive, counter, elusive and tricky. Each of these types of fighters

has an underlying strategy. The aggressive fighter favours a brute force approach, relying on strength

and a good offense. The counter fighter adopts a strategy of waiting for their opponent to make the

first move then capitalising on any openings or other opportunities. The strategy adopted by the

elusive fighter is to move around such that the opponent is chasing and retreating from them as they

dictate their opponent’s actions through swift movement. Finally, the tricky fighter is one that relies

on faints and deception, as well as intimidation. In addition to these fighting classifications, range

strategy is used to determine when particular types of moves should be executed (Van Schuyver and

Villalobos, 2002). Turner and Van Schuyver (1991) argued that 97% of all of the world’s martial artists

could be classified into one of these groups. By identifying which class an opponent belongs to, it is

argued that strategies can be developed to defeat them by exploiting this knowledge. This falls in line

with Sun Tzu’s Art of War, where emphasis is placed on the notion of observing and knowing the

opponent’s own strategy and tactics, and launching an attack against it. While Sun Tzu’s approach

26

appears evident in the work put forward by Van Schuyver and Villalobos (2002), it should be noted

that the original work of Sun Tzu is applied in the context of military tactics. Only after strategies have

been defined can tactics be derived. As Van Schuyver and Villalobos (2002) suggested, strategies must

be derived before entering the ring (prior to the fight) and tactics should be executed and adjusted

during the fight. In some instances, it may be necessary to adjust the strategy as more is learned about

the opponent. Musashi (1643) highlighted timing as being of the utmost importance for strategy, and

while this is undoubtedly true, the same, if not more importance could be placed on the timing of

tactics as these are shorter term.

Lee (1975) referred to tactics as the brainwork of fighting and stated that they are based on observing

and analysing one’s opponent before making intelligent choices on how to engage them. As Lee (1975)

put it, the use of tactics (also referred to as tactical fighting) consists of a three-part process;

preliminary analysis, preparation and execution. Preliminary analysis is the observation phase where

a fighter scrutinises their opponent to notice any bad habits or traits that can be exploited. The

preparation phase may consist of lining the opponent up for an attack by controlling movement into

a certain position, or by carrying out feints. The execution phase is where the attack is carried out. Lee

(1975) emphasises that this must be done in continuous motion without hesitation and that timing is

of great importance. Lee’s (1975) three-phase process is particularly interesting as it can be easily

modelled by an AI for use in a fighting videogame. For example, prior to a bout between an AI and

human player, data analysis could be performed to understand the human player’s weakness. The AI

may then attempt to re-create the moves that precede the weakness in an effort to exposing it during

the bout itself. Should the weakness expose itself, machine learning or even an FSM could be used to

instruct the AI player to execute a move to exploit the weakness. Both of these techniques are

discussed in Chapter 4 in greater detail.

3.3 Martial Arts Movies

Martials Arts has garnered much attention due its exposure in the movie industry. As a result, many

fighting games pay homage to martial arts movies by including parodies of iconic characters or

paraphernalia in the game, from Bruce Lee’s yellow jumpsuit (Game of Death, 1978) which was

included in Tekken 3 (Namco, 1997), to Han’s claw from Enter The Dragon (1973) which inspired

Vega’s claw in Street Fighter 2 (Capcom, 1991). While not always realistic, martial arts movies can

provide a view as to how strategies and tactics can be used to overcome imbalances when facing

different opponents. This is a theme that has been projected in countless martial arts movies since

27

their rise to prominence, often showing that a smarter fighter always succeeds, even if his/her

opponent is stronger and faster.

Martial arts movies were popularised in the West following the release of Enter the Dragon (1973),

starring Bruce Lee as the movie’s protagonist. The films plot followed Lee’s character, also named Lee,

infiltrate a secret martial arts tournament held on an island by a disgraced former shaolin monk, Han,

who was the head of a global criminal empire specialising in drugs and arms trafficking. Lee was

charged with defeating Han and bringing an end to his empire, avenging the death of his sister, who

was apparently murdered by Han’s henchmen. While the plot in itself seems cliché by today’s

standards, it was the action and fight scenes that brought the movie to the attention of critics and

cinemagoers alike. The climatic final battle between Lee and Han saw Han leveraging a hall of mirrors

to his advantage, leaping out and striking a disoriented Lee, before going back into hiding to plan his

next attack. After a few hits, Lee becomes wise to Han’s strategy and counters by leveraging his own

strategy; smashing the mirrors in the hall and then attacking a vulnerable Han.

The concept of having the protagonist outsmart their opponent by learning and countering their

strategy has been included in many martial arts movies since Enter the Dragon (1973). In the original

cut of Bruce Lee’s Game of Death (1978), Lee faced a tall and strong opponent played by then NBA

basketball star, Kareem Abdul-Jabbar. Abdul-Jabbar’s character is sensitive to sunlight, forcing him to

fight his opponents in a darkened room. Lee is knocked down several times by Abdul-Jabbar’s long

reach and powerful strikes, but then parries the moves to get close to his opponent, where he incurs

damage to Abdul-Jabbar’s rib cage and mid-section, which are roughly in line with Lee’s line of sight.

Using his opponents towering height and predictable strategy to his advantage, Lee is able to defeat

Abdul-Jabbar.

With the passage of time, and the rising popularity of martial arts, movies are incorporating new

fighting styles and scenarios to emphasise the importance of strategy. Modern martial arts movies

such as The Raid (2011), The Raid 2 (2014), Man of Tai Chi (2013), The Protector 2 (2014) and Badges

of Fury (2013) all feature climatic battle sequences at the end where the protagonist leverage their

cunning to counter the opponents seemingly unbeatable strategy, leading them to victory. In The

Expendables (2010), Dolph Lundgren fights Jet Li in hand-to-hand combat. Lundgren utilised his size

and strength in conjunction with Western fighting techniques based on kickboxing, whereas Li, who is

significantly shorter than Lundgren uses Chinese Wushu and his environment to his advantage. When

the two fight, Lundgren uses the reach of his punches to keep Li at bay, while Lee is struggling to strike

28

Lundgren’s head on account of his height. Li deliberately leads Lundgren to a scaffolding area where

Lundgren must duck to resume the fight, bringing him to Li’s level, evening the odds.

Donnie Yen’s portrayal of the legendary Wing Chun practitioner, Ip Man in the movies Ip Man (2008)

and Ip Man 2 (2010) have made him renowned as being one of the most prolific Asian film stars in the

world. In the movie Ip Man 2 (2010), Ip Man must do battle with a western heavyweight boxer, played

by real life English martial artist Darren Shahlavi, in a bout where Ip Man cannot kick. During the first

few rounds of the boxing match, Ip Man falls prey to the bigger, better-conditioned boxer’s strikes,

and struggles to inflict any real damage. Due to the high level of conditioning boxers undergo, Ip Man’s

punches inflict little damage, and the boxer maintains his level of stamina. Following the first few

rounds, Ip Man changes his strategy and precision targets the boxer’s biceps, putting his arms out of

commission, preventing him from dealing damage, but also blocking Ip Man’s rapid succession of

punches. Ip Man then targets the boxer’s rib cage, knowing that this area is vulnerable to even the

most conditioned fighter. Ip Man then launches a full assault of rapid punches, ultimately defeating

the boxer who can no longer fight back or defend himself. This type of strategy adjustment is also

seen in Jet Li’s critically acclaimed Fist of Legend (1994), which is in itself a remake of the Bruce Lee

classic, Fist of Fury (1972). During the final fight of the movie, Li’s character Chen is fighting a Japanese

General, whose usage of techniques is far more proficient than Chen’s. Leveraging knowledge

imparted to him earlier in the movie, Chen changes his style mid-fight to use more westernised

kickboxing techniques that the general is not accustomed to. This ultimately leads to Chen’s victory.

3.4 Strategies and Tactics in Videogames

An important element of the research conducted in this Thesis is differentiating tactics from strategies,

and how they are applied in to videogames. In the context of videogames, strategies are defined as

higher-level goals of some effort that are fulfilled by meeting tactical objectives (Hildmann and Crowe,

2011). This is to say that while strategies are long-term approaches to achieve an ultimate goal, tactics

are short-term gains that facilitate the strategy.

One-on-one fighting games, such as Street Fighter 2 (Capcom, 1991), do not lend themselves to in-

depth strategic elements of gameplay (Gingold, 2006). Gingold argued that fighting games like Street

Fighter 2 are little more than variants of Rock, Paper, Scissors (RSP). Gingold presented a number of

variants of RSP, with each variant moving closer to the basic mechanics found in a fighting game. While

this argument may hold true for ‘button bashing’ play tactics (where two humans play each other and

randomly press buttons on a control pad without knowing the consequences of the button press), one

may argue that a skilled player can anticipate their opponents next move based on the previous

29

moves. Further to this, a skilled player may stand idle and react to their opponents move once it has

been made, rather than performing a random move simultaneously. While not of the same genre as

fighting games, Real Time Strategy games feature tactical and strategic decision making to a high

degree. Real Time Strategy games are videogames where players command a group of resources,

human and machine, to fight against other groups of enemies. Players need to rather sustenance,

build structures, train their fighters and conduct warfare (Liu et al, 2014). Robertson and Watson

(2014) focus their research on Real Time Strategy games and regard tactical decisions as being short

term objectives such as eliminating enemy firepower in a the shortest possible time. The action to

perform this would be considered a tactic, whereas strategy is regarded as being longer term.

Robertson and Watson (2014) state that strategic decision making in real time strategy games is based

on knowing the sequence of actions to take to achieve a long term goal.

Robocode has been at the heart of much videogame related AI research. Robocode is a videogame

where a tank coded by the user has to make moves in a battlefield where it evades the opponent’s

attacks whilst attacking the opponent itself. There are many factors to consider when coding the tank

such as the nature of its opponents, use of energy and movements against opponents. The tank loses

energy as it fires bullets, but gains energy upon successfully attacking an opponent (Hong et al, 2004).

Hong et al (2004) discussed the limitations of existing techniques in developing ‘extra’ behaviours;

behaviours that have not been manually designed by a human, but rather are ‘emergent’ from a set

of low-level actions. This notion is not dissimilar to the contrast between strategies and tactics. Hong

references Artificial Life, the study of synthetic systems to show the behaviour characteristics of

natural living systems (Johnson and Wiles, 2001) as an example of an emergent behavioural system.

Artificial Life uses a set of low-level behavioural actions to create a high-level complex and whole

behaviour (Hong et al, 2004).

Hong, et al (2004) uses Robocode to create primitive behaviours based on actions that are to be

carried out within that videogame, which are then classified into a variety of strategies. An optimal

composition of primitive behaviours is selected based on the current state of the game. The encoding

of the overall behaviour is split into six strategies; move, avoid, shoot, bullet power, radar search and

target select. Each of these strategies encompasses a set of low-level behaviours. The behaviour of a

tank is encoded as a composition of behaviours from various strategies and is selected.

30

3.5 Chapter Summary

This chapter provides an account of current literature related to strategic and tactical execution within

martial arts and across a variety of academic videogames. Martial Arts movies are also consulted to

help put the notion of strategies into context of one-on-one unarmed combat. The distinction

between strategies and tactics is clarified in the context of fighting as well as gaming. This chapter has

contextualised the usage of strategies and tactics, while identifying further gaps in current research.

Generally, strategies can be considered long term plans to achieve a goal, and are established at a high

level. Tactics fall within strategies, and provide the detail on how a given strategy shall achieve its goal.

In martial arts, a finite number of strategies exist and different tactics are implemented to facilitate

the strategy in achieving victory. Strategies and tactics are applicable to many videogames including

Street Fighter 2 and the academic game, Robocode. Again, the strategies are identified as being

longer-term approaches to achieve a goal, such as defeating an opponent in Street Fighter 2, whereas

the tactics are the means by which this is accomplished. In the context of Street Fighter 2, this could

be a case of standing idle and countering the opponents offensive moves.

Having established the key difference between strategies and tactics, as well as their usage across

videogames and martial arts, further clarity has been established pertaining to the problem domain.

The focus of this thesis is to mimic human strategies in fighting games, which encompasses all tactics

and operations. Now that a firm understanding regarding what constitutes a strategy, and how this

differs from a tactic, has been established, a solution can be designed to solve the problem of

mimicking strategies, which shall need to encompass tactical and operational decisions as well.

31

Chapter 4 – AI Techniques applied to Fighting Games

4.1 Introduction

Having defined and contextualised strategies and tactics, both in martial arts and videogames, specific

AI techniques can be explored that may be suitable to model strategies and tactics with a fighting

game. Before proposing and designing a solution, a survey of current techniques must be carried out

in an effort to understand the research that has been conducted, and ensure a novel approach is being

adopted to solve the problem.

This chapter provides a literature review, which focuses on how AI techniques are applied in fighting

games. The chapter begins by describing the role of AI in games across a variety of genres, helping to

contextualise the proceeding sections. This is followed by a review of literature describing various

game AI techniques and their commercial applications, as well as those that are focused on within

academia. Specific game AI techniques such as finite state machines and various supervised and

unsupervised machine learning techniques are discussed, providing insight into how each technique

works. A detailed survey of the academic uses of these techniques is provided, including their usage

in research related to fighting games. While literature on the application of AI within fighting games

is limited, this chapter reviews various papers pertaining to this sub-field of research and evaluates

the findings.

4.2 The role of AI in Videogames

John McCarthy, who first coined the term ‘Artificial Intelligence’ in 1956, defines AI as “the science

and engineering of making intelligence machines, especially intelligence computer programs.”

(McCarthy, 2002) .The use of AI in videogames has been of increasing interest over the last few years,

with its popularity rising due to the inclusion of AI techniques in videogames such as Halo from

Microsoft (2001) and F.E.A.R from Vevendi (2005) (van Lent, 2007). van Lent (2007) describes the field

of Game AI as a series of techniques to generate the behaviour of opponents, allies, or other NPC

(Non-player characters). The purpose of implementing sound AI for NPCs in videogames is two-fold;

first the NPCs add greater depth to the narrative of the game (where applicable), but arguably more

important, NPCs provide the appropriate level of challenge to the player (Carneiro et al, 2014).

Laird (2001) states AI can cover a variety of aspects with videogames from providing strategic direction

to groups of characters, generating commentary in sports videogames and dynamically altering the

difficulty in single player videogames. It could be argued that the main driver behind AI in videogames

is to allow for a more enjoyable experience by making for realistic non-player characters (NPCs). Fink

32

et al (2007) define NPCs as ‘visible components’ within videogames that are controlled by the

computer itself, and can either work with or against the player. Khoo and Zubek (2002) concur in that

NPCs can be used to either aid or hinder the player, and describe them as being capable of interacting

with their environment as well as each other as AI has many applications in videogames.

A further motivation for using AI within commercial videogames is to centre the videogame further

on the player’s requirements for an enjoyable experience. AI can be used to observe the player’s

experience and modify certain videogame parameters to make for what may be perceived as a more

fun play through of a videogame. This is the essence of player modelling and can be extended through

various aspects of the videogame. Charles et al (2005) emphasised that commercial videogame

development studios only invest a limited amount of time understanding their demographic and may

not want to jeopardise a tried and tested design formula for the sake of what may be a minority. It is

argued that a videogame can be designed to satisfy its core demographic, while also being flexible

enough to cater for a wider user group. This is achieved by utilising adaptive player modelling

techniques (Charles et al, 2005).

Buro and Furtak (2003) argue that the reputable area for AI usage is in board games such as chess and

checkers, due to the turn based decision-making nature of these games. Buro and Furtak consider Real

Time Strategy (RTS) games as not reaching the heights of board games with regard to AI usage, the

same could be said for the majority of videogame types. Generally speaking, real time videogames,

regardless of genre (fighting, action, sports etc.); all face the challenges in implementing AI. This is

largely due to their fast nature when compared with turn based games, such as board games which

are typically perfect information games, ideal for brute force AI techniques such as minimax decision

trees and other search algorithms (Lucas and Kendall, 2006), (Santoso and Supriana, 2014). However,

turn based games including chess, go and Othello have also been implemented using complex co-

evolutionary techniques (Yao and Teo, 2006), (David et al, 2014)

Nareyek (2007) conveys that most research being carried out regarding AI in academia is focused on

enhancing techniques that are already being used in anger in the commercial videogames industry. It

is suggested that there are further gains to be discovered by shifting the focus of Game AI research to

solve problems such as automated content generation. This could include art to be used for in-game

environments, as well as story generation for videogame narratives. Ramirez and Bulitko (2014) take

this further by implementing a novel AI experience manager called Player Specific Automated

Storytelling (PAST). PAST generates multiple permutations of a story and selects one that is best suited

to the player’s style of play. In a similar vein to story generation, Lee et al (2014) propose a novel use

33

of AI in videogames by putting forward a novel means of leveraging machine learning to generate

commentary in sports games.

4.3 Game AI Techniques

In this section, existing AI techniques that are used in commercial videogames, as well as videogame

related academic research, are discussed. Techniques are presented with a variety of views from

existing literature. The purpose of this section is to introduce the techniques and provide an overview

for how they are used.

4.3.1 Finite State Machine

Johnson and Wiles (2001) discuss some of the common AI techniques used in modern videogames as

well as their limitations, in particular, the concept of a finite state machine is described as being a set

of states, a set of inputs, a set of outputs and a set of transition functions. The initial input and state

are passed through the transition function and the new state, as well as the set of outputs, are

calculated (Johnson and Wiles, 2001). van Lent (2007) offers some clarification on the workings of the

finite state machine by putting it into the context of a basic videogame. A character may be in a

particular state, such as an ‘Attack’ state, and as such, would act accordingly (in this case, by attacking).

Once this characters’ health drops below a certain threshold, the state would alter to a ‘Flee’ state,

where the character would run away in search of health (van Lent, 2007). In this example, the

aforementioned ‘inputs’ (Johnson and Wiles, 2001) would be the metrics to cause the state transition,

such as a character’s health. The outputs would be the actions performed whilst in a given state, such

as attacking, and the transition functions would be the triggers that cause the transition from one

state to another, such as dropping health below a certain threshold. FSMs are amongst the most

common AI techniques used in commercial videogames, with usage found in the Quake franchise (id

Software, 1996), FIFA franchise (Extended Play Productions, 1993) and Warcraft (Blizzard

Entertainment, 1994) (Mallouk and Clua, 2006). According to Zhou et al (2006), typically, basic NPC

emotion is handled by FSMs.

Houlette and Fu (2003) suggested that a finite state machine can be formally described as a set of

states, S, a set of inputs I, and a transition function T(s, i) responsible for mapping a state from S and

input from I to another state. The set S contains an initial state as well as zero or more accepting

states. Once all information within the FSM has been processed, the ending state must be deemed as

an accepting state to allow the machine to accept the input.

34

In practice, the FSM is a description of how an object can change its state over time in response to the

environment and events that occur. Each state in the FSM represents a behaviour, resulting in

behaviour changing as states change from one to another. The function T resides across all states,

meaning that the states shall be left and entered in accordance to fulfilling the transition criteria for

that particular state. The input is fed into the FSM continually as long as the game is active (Houlette

and Fu, 2003).

Finite state machines have been used in commercial videogames such as ID Software’s first person

shooting games; Doom and Quake. The use of finite state machines in videogames is promoted by

many developers due to their robust nature as they are easy to test and modify (Johnson and Wiles,

2001). However, the primary limitation of finite state machines lies in its predictability. The actions

performed in a given state do not alter as time goes on, nor do the triggers that cause state transitions.

This is to say that the entire finite state machine is a static, rule based system (Johnson and Wiles,

2001), rather than a system that is capable of learning and evolving as the game is played. Once a

player has found a way to counter the finite state machine logic, they could exploit the static nature

of the technique and use the same tactics to succeed each time. By the definition of AI put forth by

Rich et al (2001), one may argue that finite state machines are not representative of a valid AI

technique as they do not adapt or learn from their environment.

The static and predictable nature of hard-coded finite state machines becomes evident when FSMs

are faced with situations not considered by the designer (Fairclough et al, 2001). This shortfall can be

addressed to a degree, by implementing data driven finite state machines. The data driven approach

uses authored data that structures the FSM. A data driven FSM is useful for instantiating custom FSMs

whose states and transition logic are defined in an external file (Rosado, 2003).

Further to data driven finite state machines, other variants that are of interest include stack-based

state machines and hierarchical finite state machines. The stack-based state machines, or push-down

automata as they are sometimes called, use a stack-based data structure to store a memory of sorts

(Houlette and Fu, 2003). The stack can be used to store relevant history, or even entire FSMs. The

stack can also be used to record the sequence of states it has travelled through, enabling it to retrace

its steps if necessary. The FSMs are stored as objects in stack, with the top most FSM being the active

machine. Once the active FSM reaches its final state, it is popped from the stack and the next state in

the stack is pushed up (this would be the parent of the recently popped FSM).

Additional variations of the traditional FSM were put forward by Mallouk and Clua (2006) in the form

of Hierarchical State Machines, which are FSMs in their own right. However, each state can be broken

35

down into further FSMs. For example, the state ‘Move’ could contain sub-states ‘Run’ and ‘Walk’,

which would have their own transition functions for exiting one sub-state and entering another. The

hierarchical FSM makes use of its states by storing entire FSMs within them. When a transition to a

particular state occurs, an entire further FSM can be invoked. This may be of particular use when

dealing with strategies, tactics and operations. The ‘child’ FSM is treated as an entirely separate FSM,

with its own data set being used to drive the transitions. In this instance, ‘Move’ is referred to as a

composite state. Mallouk and Clua (2006) took the notion of Hierarchical State Machines a step further

by applying concepts of Objet Oriented Programming. By applying principals of inheritance and

abstraction, state machines can either be instantiated from concrete state machines (similar to

concrete classes in OOP), or inherit from abstract state machines (similar to abstract classes in OOP).

With this approach, the state machine is regarded as an OOP class, while the states themselves, both

base states and sub states, are regarded as OOP methods. Mallouk and Clau (2006) ultimately regard

Object Oriented Hierarchical State Machines as Finite State Machines that can be expressed via UML

notation and can allow for large state machines to be created, leveraging existing state machines

where possible to achieve this.

While research on machine learning appears to be the focus for game AI moving forward, there is still

active research being carried out pertaining to the usage of traditional techniques such as finite state

machines in videogames. Kenyon (2006) used finite state machines as part of a subsumption

architecture, designed to house parallel levels of independent behaviours, working on a bottom-up

basis.

4.3.2 Artificial Neural Networks

An alternative to the deterministic approach offered by FSMs, albeit a commercially less popular

alternative, would be Artificial Neural Networks (ANN), which are an example of machine learning.

Barto and Dietterich (2004) described a supervised learning algorithm as one which is fed a set of

training examples as an input and produces a classifier as an output. Supervised learning relies on an

algorithm that is provided examples of inputs and the outputs they should produce. This is referred to

as training. Constants within the algorithm are adjusted to support the training examples. Once the

training has been completed, the algorithm can be put into practice and generate outputs from real

data that is fed as inputs.

Biological neurons are the recipients of stimulus signals passed on by other neurons, and once a

threshold activation level is reached, the neuron fires signals to all other neurons that are connected

(Cant et al, 2002). ANNs are inspired by neurons in the biological brain. ANNs are used to allow the AI

36

system to be updated with knowledge as the game state alters whilst the human player progresses to

play the game (Johnson and Wiles, 2001). Rather than the static rule based approach used by finite

state machines, the use of Neural Networks provide a system in which the AI agent can learn the

players’ tactics and act accordingly. This forces a player who constantly uses the same technique to

alter their style as the AI will now adapt to the style that is constantly repeated (Johnson and Wiles,

2001).

5Figure 4.1 – A Multilayer Artificial Neural Network

Figure 4.1 shows a multi-layered perceptron (University Of Maribor, n.d.), which is a type of ANN

consisting of an input layer of neurons, the i layer, which are passive and contain information on inputs

passed to the network, to which it must respond. The l layer of neurons represent the outputs and

correspond to actions that can be carried out once the ANN computes the response to the inputs.

Between the input and output layers, there can be a number of hidden layers, used to facilitate the

response of the network (Chaperot, 2006). This is represented in Figure 4.1 as the j layer of neurons.

The learning phase of a Neural Network training is nothing more than adjusting weights, w, between

nodes, o, (often referred to as ‘Neurons’) such that a desired output value is achieved. Input values

containing metrics that describe the current state of the game are each multiplied by a weight value

that is initially assigned a random value, prior to entering a ‘hidden’ layer (see Figure 4.1). The

randomly assigned weights are optimised during training and then fixed. Within the hidden layer, a

calculation is made, in which the weighted sums of the input nodes are determined. The function used

for the calculation here is usually the sigmoid function as it allows networks to be trained using

techniques such as backpropagation. A similar calculation is performed between the hidden nodes

37

and the output nodes in order to obtain the output values (Coppin, 2004). Usually, a value is calculated

for each output node, and the node with the largest value is ‘fired’. This is to say that if a given node

has the largest value assigned to it, a particular action shall be performed.

As the initial outputs are based on random weightings, it is highly unlikely that the node to be fired

would be the desired output. This is why, prior to the initial run through of the neural network, training

data is provided. The training data contains rows of data, each with a set of inputs, and the desired

output values corresponding to the inputs. Once a neural network has been ‘trained’ it should be

capable of providing the desired outputs for inputs similar to those found in the training data (Coppin,

2004). Having completed an iteration of calculations based on the initially random weights, a neural

network shall manipulate the weights along each connection such that the desired output (or a value

close to it) is achieved. This is done by using an algorithm called back-propagation. The back-

propagation algorithm has been the focal point of much research to date. In particular, Cho et al (2006)

use this technique to create an AI player within a fighting game. The back-propagation algorithm

involves initialising all weights to random values and passing a given input through the ANN. Following

this, outputs are generated and differences between the current outputs and desired outputs are

calculated. Deltas are also calculated for the hidden layers and the weights are redistributed, following

which input patterns are passed through the ANN again and these steps are repeated until the weights

are distributed such that the desired outputs are attained (Chaperot, 2006).

This particular use of neural networks is called ‘supervised learning’ as the desired output is known

for a set of given inputs in the training set. Neural networks have been implemented in several modern

videogames including Battlecruiser 3000AD, Heavy Gear and Dirt Track Racing (Johnson and Wiles,

2001). A popular example of a successful implementation of an ANN was Anaconda, an AI designed

for chess games using 5046 weights (although no details were provided on the internal network

structure). The inputs to the network are the current board positions, with the output being a value

used in a mini-max search (Lucas and Kendall, 2006).

Chaperot, et al (2005) launched an investigation into the use of ANNs in a motorbike racing game. Two

Neural Network techniques were used, Backpropagation and Evolutionary algorithms. The aim of the

research was to implement an ANNs in the Motocross racing game such that the bike is ridden as well

as possible, but while still retaining the characteristics of a human playing the game. The premise of

the ANN is simply to input game state data including the position of the bike in way point space, front

and right directions of the bike in way point space, the velocity of the bike in way point space, height

of the ground, and position of track centre lane (Chaperot et al, 2005). The outputs include controls

38

such as accelerate, brake, turn left/right or lean forward/back. As well as using backpropagation,

Chaperot, et al (2005) also used Evolutionary algorithms to train ANNs. This involves adjusting the

weights of the ANN by using the genetic algorithm first established by Holland (1984).

Chaperot’s (2005) research was focused on AI using ANNs in a racing game, however, it would appear

that there is very little research conducted with regards to the use of ANNs in one-on-one fighting

games. Cho (2006) used the backpropagation algorithm, only this time it was used in a fighting game.

Cho’s (2006) laid out the basic rules of play for the game, where it is stated that the IC (intelligent

character) can either be idle, perform one of five attack moves, each with varying effects, move or

guard. Each action takes a number of ‘clocks’ as a measure of the time taken to perform the given

action. The actions must each be performed within a specific distance interval. As inputs, the ANN

takes the opponent character’s (OC) current action, the step of this current action (for example, if the

current action takes 4 clocks, the current clock of the action), the relative distance between the

fighters and the OC’s past actions. The outputs of the neural network encompass the aforementioned

actions that can be carried out by the intelligent character.

The backpropagation neural network gave better results in terms of time, however, Chaperot et al

(2005) stated that the neural network did not deal well with unusual circumstances such as recovering

from a crash, or facing the wrong direction. This limitation is most likely due to the fact that the

training data does not adequately account for these eventualities. It is stated that the genetic

algorithm neural network is better at adapting to new situations than the backpropagation neural

network (Chaperot et al, 2005). As such, the research conducted by Chaperot, et al (2005) limits the

game to a single, albeit ‘long’ track. A measure of success of the neural network would be to see how

it performs on different tracks. Humans can adapt to different tracks quite well as the basic principles

are the same, such as slowing down when taking a sharp bend, or speeding up along a straight portion

of the track. There is no evidence in the research being presented by Chaperot, et al (2005) that this

is the case for the ANN they trained using the backpropogation algorithm.

Based on the work of Chaperot et al (2005), it could be argued that ANNs are better suited to racing

games, rather than fighting games, which are far more complex. An experiment was conducted by

Chaperot et al (2005), where a bike had to race on a single long track, with many obstacles that needed

to be negotiated. The track was completed by a good human player, an ANN trained using back

propagation and an ANN trained using a genetic algorithm. The results yielded by the experiment

showed that the backpropagation neural network gave better performance in terms of time taken to

complete the track than the genetic algorithm neural network (Chaperot et al, 2005). It is not divulged

39

in the paper whether or not the AI outperformed the human player. This experiment can be

commended for its inclusion of a human player to gather data.

4.3.3 Bayesian Belief Networks and Naïve Bayes Classifier

A further supervised learning technique is the Bayesian Belief Network. Bayesian Belief Networks are

probabilistic graphical models that represent attributes and the dependencies between them, and can

be used for classification. Hyde (2008), who describes how BBNs can be applied to the game Thief

(Looking Glass Studios, 1998), states that BBNs have a graphical component, referred to as a directed

acyclic graph (DAG), the nodes of which represent random variables, and a numeric component.

Parent / child relationships are illustrated on BBNs between nodes, with an arrow pointing from the

parent node to the child node. This illustrates a dependency between the two variables, and it is from

this point that a conditional probability table (CPT) is created for a given variable which contains the

probability of that variable, given the probabilities of its parent variables. The domain of each variable

contribute to the complexity of the network, for example, for Boolean variables, the complexity shall

be lower as there are only two possible values for the variable. The structure of the graph largely

depends on the context of the data being classified. By creating the DAG and then populating the CPT,

the probabilities of variables, or events occurring in a game, can be calculated. In He et al (2008a),

BBNs are used to classify data using the DAG and CPT. The Naïve Bayes Classifier (NBC) is a much

simpler approach to classification which simplifies the problem by assuming attributes are

independent of the target value. The problem typically involves a set of training data, then a new

instance of the classifier produces a target value using equation (1):

 (1)

Where vNB is the class value output by the classifier, and ai are the values for attributes fed into the

classifier. vj denotes elements of the set V which are the possible target / class values. In He et al

(2008a) where NBC and BBN are applied to the game of Pac-Man, the NBC is said to be typically less

accurate than BBN due to its ignorance, however, it is computationally quicker (He et al, 2008a).

4.3.4 Reinforcement Learning

Barto and Dietterich (2004) describe reinforcement learning as being applicable to problems where

specific examples of desired inputs and outputs are not available, but some criterion for good and bad

behaviour has been identified. This falls in line with the definition put forward by Danzi et al (2003),

40

who suggest the reinforcement learning involves an AI agent acquiring intelligence only through

interactions with its environment. Arguably, reinforcement learning falls into the category of

supervised learning. However, it differs from supervised learning in that it does not use examples of

desired performance, but only sends a reward signal to suggest whether a particular input/behaviour

yielded good or bad results.

 Barto and Dietterich (2004) used the analogy of trying to acquire stronger reception on a mobile

phone. Individuals tend to walk around aimlessly, asking the person on the other end of the phone

whether the signal has improved. They do not specifically know where to walk, however they can

ascertain whether or not their actions have yielded good or bad results by the response from the

person on the other end of the line. This can be expressed as a problem where R represents the reward

function for various geographies x. We say that R(x) is the signal strength that can be obtained at point

x. The reinforcement learning problem is to identify location x* such that R(x*) yields the greatest

signal strength.

In Danzi et al (2003) where reinforcement learning is used to control the difficulty of a fighting game,

a reinforcement learning framework is summarised as having an agent, the current state of which is

denoted by state, s ∈ S, which chooses an action, a ∈ A, leading to a new state, s’. As also stated by

Barto and Dietterich (2004), the reward signal, R(s, a), which is fed back to the agent each time action

a is executed in state s. The main aim is articulated as being; to maximise the return, representing the

expected value of the future rewards. For example, one could consider reward as being a monetary

value, in which case, going to school and acquiring a good education would be actions that maximise

the expected reward. This is achieved by learning an optimal policy π* which maximizes the expected

return by mapping state perceptions to actions. The optimal policy can be constructed if the agent

learns the optimal action value function Q*(s,a), where for each state s, the best action, a is that which

returns the maximum value for Q. There are a variety of learning algorithms in existence to solve

problems such as this, including the Q Learning algorithm (Barto and Dietterich, 2004). Batalov and

Oommen (2001) argued that many algorithms do indeed exist to solve reinforcement learning

problems, however, the majority make an underlying assumption that the environment is fully

observable, which in most cases proves to be a false assumption. The Q Learning algorithm is defined

by equation (2):

Q(s,a) Q(s,a) [r .V (s') Q(s,a)] (2)

Where V(s’) = maxa Q(s’,a), is the learning rate and is a discount factor (Danzi et al, 2003). The

discount factor determines the relative value of deferred versus immediate rewards (Batalov and

41

Oommen, 2001). Graepel et al (2004) went on to say that reinforcement learning is ultimately based

on the Markov Decision Process (MDP), and is characterised by the tuple (S, A, R, T) where S is the set

of states; A is the set of actions; R is the average reward function responsible for assigning reward to

the agent after an action is performed moving from s to s’; and T denotes an unknown stochastic,

transition dynamics, which gives the probability of a transition from state s to s’ if action a is

performed.

4.3.5 Clustering

Clustering, which is considered to be unsupervised learning differs from supervised learning in that

training data are not available. While pre-defined classes are known at the time for supervised learning

techniques, unsupervised learning does not assign inputs to known outputs based on predefined

classes. Instead, unsupervised learning ‘clusters’ data based on inputs. Keller (n.d.) first described the

distinction between classification and clustering as hinging on the need for predefined classes.

Classification requires these predefined classes before data can be classified; however, clustering

relies on learning classification from the data itself.

Anagnostou and Maragoudakis (2009) defined clustering as a data mining process that differs from

classification in that the clusters are not predefined in that the datasets are not labelled beforehand

and belong to a known class. Clustering is defined as an unsupervised learning technique, for which

the main criteria are defined by Anagnostou and Maragoudakis (2009) as follows:

(i) ‘Data contained within a cluster present similar characteristics.’

(ii) ‘The distance between each point of a cluster and any other point within a cluster is

smaller than the distance between each point of a cluster and any point of a different

cluster.’

Anagnostou and Maragoudakis (2009) use clustering to define player types, assigning them to one of

many clusters based on how they play a Space Invaders type game.

Hierarchical clustering is an unsupervised learning technique used in data mining to group like

elements into sets, or clusters, without any prior knowledge of the data classification. To cluster data,

a metric and linkage criterion must be set. The metric used in this research is the Euclidean distance,

which will serve as a measure between elements. The linkage criterion serves as the measure between

clusters. In this research, the complete linkage criterion is used as defined in equation (3):

 (3)

42

Where d(x, y) is the distance between elements x ∈ X, and y ∈ Y, and where X and Y are two sets of

elements. The distance between two clusters is defined as being the distance between the two

furthest elements (Fernandez and Gomez, 2008).

4.3.6 Evolutionary Algorithms and Genetic Algorithms

Evolutionary computation is a broad field of research that encompasses all computing solutions based

on biological evolution (Di Pietro et al, 2006). Genetic algorithms are a search heuristic that create

candidates through evolution, and can be used in scenarios where little to no information is available

regarding the problem. They are particularly useful where the optimal solution is not necessarily

required (Cho et al, 2007). Johnson and Wiles (2001) described evolutionary algorithms as search

procedures that reflect concepts of natural selection and natural genetics. Genetic algorithms are a

subset of evolutionary algorithms commonly used in videogames.

Genetic algorithms work amongst an initial population, containing randomly generated states (also

referred to as candidates). These states each have a string (also known as the chromosome) and

fitness value associated with them. Based on the fitness value (which is determined by the fitness

function), the states create offspring by randomly cutting off the string of one state. This string is then

merged with the remaining string of a further state with which it is creating offspring. This process is

called crossover, and can be followed by mutation which allows for the string to be tweaked slightly

based on random probability (Di Pietro et al, 2006) (Belew et al, 1991). This concludes the first

generation of evolution. It is not uncommon to have thousands of generations to solve a given

problem.

4.4 Application of Game AI Techniques

AI has played an increasingly important role in modern videogames. The techniques used in

commercial videogames are still limited. As discussed earlier, finite state machines are too static to

provide a varying challenge, and machine learning techniques have only been applied to modern

videogames in a limited manner (Johnson and Wiles, 2001). In order to gain a greater appreciation for

the potential usage of AI techniques in videogames, more specific domains of research must be

surveyed. This section reviews the usage of the previously discussed AI techniques in terms of how

they are used together in the context of videogames.

43

4.4.1 Player Modelling

Player modelling is a learning technique described as being lightweight, simple and flexible enough to

be implemented in otherwise computationally expensive videogames (Houlette, 2003). At a high level,

player modelling involves the game AI maintaining a profile of each player, including their preferences,

weaknesses, strengths and other characteristics. The profile, or model, is updated as the player

interacts with the game environment and other non-player characters. Player modelling allows the

computer player to evolve with time as the profile can be updated over several play sessions

(Houlette, 2003).

The player model itself is essentially a collection of traits that are used to track the players’ use and

frequency of various actions. For example, in a first person shooting game, the trait ‘Uses Grenades’

would track information regarding the players’ use of grenades (Houlette, 2003). The traits must be

assessed on the basis of a pre-defined semantic. For example, the Uses Grenades trait would be useful

when assessed against the ‘knowledge and proficiency’ semantic, as this would record data related to

how well the player uses grenades. Another semantic which may be useful would be the ‘habits and

preferences’ semantic. This would tell us how often the player uses grenades, but would not include

information on how effectively they are used. Traits within the player model can be as broad or as

refined as the designer wishes. Naturally, there is a trade-off for more detailed models as they take

longer to design and are computationally more expensive than their broader counterparts. The rather

broad trait, ‘Uses Grenade’ could be refined to several traits such as ‘uses grenade while retreating’,

‘uses grenade while covering’ etc.

When designing the player models it is important to ensure they are tightly integrated to the game AI,

as the player model describes the traits of a given player, but the AI must make use of this data. It is

important that the traits and semantics complement those that are typically used in the game

(Houlette, 2003).

An alternative design approach to player modelling is the use of hierarchical player models. Rather

than using a flat list of traits and their associated values, the traits (referred to in this scenario as

‘concrete traits’) can be categorized into high level abstract traits (Houlette, 2003).

A basic player model can be implemented by simplifying the problem. The player model can be viewed

as a statistical record of the frequency of some interesting subset of player actions (Houlette, 2003).

By considering this definition, a player modelling system must provide a mechanism through which

player statistics can be observed and updated accordingly. Further to this, the system must also

provide an interface through which the model can be queried for player information. Houlette (2003)

44

implemented a basic player modelling class using C++. The model is based on the ‘Habits and

preferences’ semantic, with the traits, represented here as floating point values between 0 and 1,

being stored in an array. The float value of the trait reflects how frequently it is used. The method for

updating the model entails updating the trait values. This is achieved by using the Least Mean Squares

training rule:

traitValue = α . observedValue + (1 - α). traitValue (4)

The update to the player model is enacted in two phases. Firstly, the game AI must know when to

update the model. This is typically when the player performs an action that would alter the statistical

record being maintained regarding the players’ actions. This is typically hard coded into the videogame

itself and can be computationally expensive. An alternative to trait detection is to implement Finite

State Machines. The second aspect of the update, is calling the update method itself to alter the player

model in accordance to the action that has just been carried out by the player. The FSM approach can

be used for both trait detections and updating the model itself. This approach decouples the player

modelling system from the videogame code, making for a cleaner, repeatable and modular system.

Various classifiers can be used for clustering traits to certain player types within Player Modelling.

Player models are little more than a collection of statistics indicating the preferences of the player,

allowing certain player types to be categorized and labelled. Current literature uses a variety of

classifiers such as Bayesian Belief Networks, Naïve Bayes, K Nearest Neighbour, Radial Basis Function

and ANNs. He et al (2008b) describes an RBF network as being a type of ANN, but one that uses radial

basis function as the activation function. In this instance, the RBF network yields stronger results than

feed forward ANNs trained with backpropagation.

A clustering approach to player modelling is presented by Anagnostou et al (2009) using a space

invaders variant as a test bed. The game presents the player with the typical space invaders scenario,

but offers a choice of four weapons, the ability to ‘energize’ asteroids such that they are jettisoned

into enemy ships, and a variety of enemy types. The additional game features allow for two high level

player strategies; the first is to use an all-out brute force attack, which can be time consuming; or the

second which involves skilfully energizing asteroids such that they damage enemy ships. The latter is

less time consuming but requires more skill to achieve. Anagnostou et al dubbed those who employed

these styles as ‘action player’ or ‘tactical player’ respectively. Data were collected from 10 students

who played the game four times each, making for 40 sets of the 19 attributes that are collected during

each play. The data are clustered using the ‘Clustering Using Representatives’ algorithm (CURE), which

is a clustering technique that leverages both partitioning and hierarchical clustering (Anagnostou et

45

al, 2009). The algorithm begins with a fixed number of points, c, being selected from within each

cluster. The points are selected such that they are relatively far apart within their own cluster, as well

as being far from the centre of the cluster, providing a representative set of points for a given cluster.

These points are then shrunk to approach the centre of their respective cluster. It is at this stage that

the hierarchical clustering is used to merge clusters where representative points across different

clusters are relatively close. Upon merging clusters, new representative points are selected and shrink

towards the centre once again. The CURE algorithm successfully classified two of the game features

synonymous to the two player types.

He et al (2008a) used Pac-man as a test bed to investigate the use of Bayesian Belief Networks and

Naïve Bayes classifiers for player modelling. Pac-man is described by Gallagher and Ledwich (2007) as

a predator-prey game where the human player manoeuvres Pac-man through a maze while he is being

pursued by ghosts. Pac-man scores points by consuming dots and while avoiding contact with the

ghosts. He et al (2008a) took a similar approach to He et al (2008b), by first collecting game metrics

across 12 attributes. Noise modelling and attribute sub selection are also incorporated into the

methodology as demonstrated by He et al (2008b). Bayesian classifiers are used to statistically predict

class membership probabilities, such as the probability that a given dataset belongs to a particular

class. This is different to clustering as defined by Anagnostou et al (2009), which is an unsupervised

learning approach for categorizing data without knowing what each class represents.

Hyde (2008) presented a further use for BBN within the Thief (Looking Glass Studios, 1998) videogame,

modelling the variables relating to a guard’s decision to act. In the example, the scenario involves a

videogame where the player assumes the role of a thief that must bypass a guard. The thief may make

movement, noise and leave footprints. However, rats are another factor of the game world that make

noise and movement, but do not leave footprints. The BBN shows two nodes, Rats and Thief at the

parent level. These nodes have child nodes, of which there are three in total. The Rats node has two

child nodes; noise and movement. The Thief’s node has three child nodes - it shares the noise and

movement nodes with the Rat parent node, but also has a footprints node. Notice that there is a

relationship of cause and effect, with the top level nodes acting as the cause, whereas the lower level

nodes act as the affect.

Each variable in the above example has a Boolean value, true or false. The BBN works by using the

probabilities assigned to each variable to determine what the outcome of a given event should be. For

example, given that rats are moving and a thief is moving, depending on the probabilities assigned to

the variables, we could determine the percentage chance that the guard may notice movement. When

46

assigning probabilities it is best to begin with parentless nodes, and then the child nodes. For the child

nodes, the probabilities of the corresponding parent nodes must be factored in. For example, for the

movement node, we must assign probabilities to movement given that the rats and the thief are

moving; only rats are moving; only the thief is moving; and finally, nobody is moving. The BBN can be

used to feed into rules regarding the behaviour of the guard, and the model can be updated if

necessary, reassigning probabilities.

The example outlined by Hyde (2008) is a direct use of BBNs to control the actions of a non-player

character, however, BBNs can be used to classify data in a similar way. Given the values of certain

attributes, probabilities can be assigned to possible values of the attributes. Given the correct

probability distribution, it can be deciphered that a player is of a certain type, meaning they conform

to a given player model.

Data are collected for three identified strategies as in He et al (2008b). The results of feeding the data

into the Naïve Bayes and Bayesian Belief Network classifiers show that both classifiers perform well,

correctly classifying approximately 85% of the data. Two sets of experiments are conducted, one with

noise modelling and one without noise modelling. The experiment without noise modelling shows the

Naïve Bayes classifier slightly outperforming the BBN classifier. In this experiment, the attribute sub-

selection stage makes negligible performance enhancements. The experiment with noise modelling

shows a significant performance increase in terms of accuracy, with each classifier scoring in the 90th

percentile for successfully classifying the data.

Aspects of player modelling are explored by Charles et al (2005), particularly its application as a means

to make videogames more accessible for a variety of different players. Charles et al suggested an

approach whereby the player is monitored in real-time (while the game is being played). The player is

monitored and data representing player preferences are collected to feed into a model and the game

is adapted to conform to this model. It could be argued that a similar approach is adopted by Drachen

et al (2009) in their study of self-organizing maps and player modelling.

Drachen et al (2009) have explored player modelling in the commercial game Tomb Raider Underworld

(Crystal Dynamics, 2008), using self-organizing maps, which is a form of clustering. The self-organizing

maps are trained on the playing behaviours of 1365 players that completed the game. Relating to the

context in which player modelling is discussed by Charles et al (2005), Drachen et al has cited the

replacement of traditional play testing to ensure the game is being played as it was meant by the

designers as a motivation for the automated approach. The approach can also assist in the tailoring of

the game to conform to a player’s style. Game metrics (detailed numerical data relating to how the

47

game is played) are collected via a game metrics logging system, Eidos Metric Suite, developed by

Eidos, the publisher of Tomb Raider Underworld (TRU).

There are a total of six extracted features from TRU, some of which include cause of death, total

number of deaths, completion time and help on demand. The game metrics collected from these six

overarching features are fed into a large scale self-organizing map, called an emergent self-organizing

map (ESOM).

Means of extracting game data from commercial games are discussed by Hsieh and Sun (2008), using

developer provided tools to collate player statistics. The highest performing ESOM revealed four

player types; runners, veterans, solvers and pacifists. Drachen et al (2009) argued that the number of

clusters identified is significant given the nature of the game as TRU is a relatively linear adventure

game. The research conducted delivers a promising approach to player modelling at the industrial

standard. It would, however, be interesting to see the effects of this approach on a less linear game

that offers more control over the player’s actions, opposed to the environment. TRU allows the player

to perform several actions and interact with the environment in a variety of ways, but offers little in

terms of deviating from the standard approach of play and does not allow the player to express

themselves using their own strategies. A fighting game has a greater focus on controlling the character

in a variety of ways, providing an intricate gameplay system allowing the player to control each of the

limbs of the on screen fighters. In games such as this, there is typically less focus on the environment

/ game world, and more control on the protagonists.

It is difficult to conduct research on popular commercial games, however, Drachen et al (2009)

succeeded in conducting research at the commercial level using industrial level tools and should be

commended for shedding light on what is otherwise an incredibly locked down area of game AI

research. Another commercial game that has been studied in the context of player modelling is Super

Mario Bros (Nintendo, 1985). Pedersen et al (2009) attempted to model player experience in the

public videogame Infinite Mario Bros, a clone of the classic Nintendo game, Super Mario Bros. The

research conducted by Pedersen et al is more concerned with modelling player experience rather than

directly modelling player strategies derived from gameplay interactions. The game is a classic platform

game set on a two-dimensional plane. The player controls the Mario character on screen and can

move left or right, jump (gravity acts on Mario) and shoot fireballs.

Pedersen et al collected data from ‘hundreds’ of players from the internet, and then categorized the

data into one of the three following categories: (i) Controllable Features, (ii) Gameplay Characteristics,

and (iii) Player Experience. Infinite Mario Bros has one major feature that sets it apart from the

48

Nintendo original that it is cloning; the ability to generate levels. The first data classification,

controllable features, relates to this feature. The data within this category relates to players’ choice

regarding the level design and is of little interest in the context of strategy player modelling. Category

(ii) data relate to the game metrics such as jump frequency and context of the jumps. Data in category

(iii) relates to an online survey completed by players regarding their emotional response to a given

level. This is of little concern given the context of the research being conducted in this Thesis.

Pedersen et al used an ANN (single layered perceptron) to establish a relationship between data

captured in category (ii) and data captured in category (iii). It was decided that attribute sub-selection

must be performed on the data. Rather than using a data mining tool such as WEKA, as used by He et

al (2008b), Pedersen et al compared three schemes - nBest, Sequential forward Selection and

Perceptron Feature Selection. It was determined that neither of the three approaches were likely to

provide an optimal feature set as neither searches all possible combinations. Pedersen et al concluded

that by using non-linear preference modelling, given a set of game metrics (inputs), the ANNs can be

trained to predict the emotional response of the player.

4.4.2 Pattern Recognition

Pattern recognition can be used as an integral part of game AI. It can form the basis of an AI method

by feeding into a decision making system. It is common to split an AI system into two components;

pattern recognition and the decision making component. Pattern recognition is used to extract

relevant information from data. The most basic form of pattern recognition is pattern matching

(Kaukoranta et al, 2003-1). This involves little more than searching for a predetermined pattern from

a given input, such as matching a word amongst several characters of text. In pattern recognition, we

refer to a measurement as a symbol, which can be a quantity, label or even a combination of

primitives. We refer to a set of features as an alphabet (Kaukoranta et al, 2003-1).

There are two common ways in which pattern recognition can be utilised; Prediction and Production.

We consider a set of features/symbols, S, which is a subset of the alphabet, Σ (Kaukoranta et al, 2003-

1). The set, S, denotes the symbol sequence. In the context of a videogame, this is the sequence in

which features are presented in the game world. This could be a sequence of actions, such as punches

and kicks in a fighting game. The sequence, S, is modelled by considering the dependencies between

features. If we consider the game world as being formed of events and states, then we can use

‘generators’ to label the events and states with symbols (Kaukoranta et al, 2003-1). For example, a

move performed by a character in a boxing game could be labelled by the generator as being ‘jab’,

49

‘uppercut’, ‘cross’ and ‘hook’. Once a symbol sequence has been generated using the generator, a

model can be constructed.

The model for pattern recognition can be constructed by recognizing the dependencies between

symbols. These dependencies are typically stronger with symbols that are close to each other. The

model is queried by the decision making system and used for either prediction or production

(Kaukoranta et al, 2003-2). When predicting the next symbol, the pattern recognition mechanism

passes the observation to the decision making system, possibly in the form of a probability distribution

of the occurred symbols, rather than a particular symbol. This approach can be used to predict

outcomes of a player to the AI’s advantage, such as predicting the probabilities of the human player’s

next move and preparing an appropriate counter. The approach can also be used to produce action

sequences, such as a chain of moves, mimicking a human player. It is the latter of these uses that

pertains to the focus of this Thesis. The generator model is used to produce symbols. This is referred

to as pattern generation rather than pattern recognition and can be used to model the sequence of

actions of player (Kaukoranta et al, 2003-2).

Kaukoranta et al (2003-2) explore methods of implementing pattern recognition using various soft

computing techniques. With regards to use of pattern recognition at the various levels of play

patterns, Kaukoranta et al (2003-2) have recommended using supervised or unsupervised learning at

the strategic level, largely due to its computational demands. This is to say that learning at the strategic

level is infrequent, and in some instances can be completed ahead of runtime, so it is feasible to use

a computationally expensive technique such as an ANN as a means of pattern recognition. The tactical

level is faster paced and involves potentially complicated patterns, making for less thorough results.

It is at this level that it is recommended to use hidden Markov models.

Pattern recognition is explored in game AI research and is treated as a component of the overall AI

system. He et al (2008c) explored pattern recognition to identify a player’s strategy in a ‘Predator /

Prey’ genre game, with the intention of the results being fed into a decision making system that is

implemented using upper confidence bounds. He et al (2008c) describes player strategy pattern

recognition, as using a record to maintain each player’s profile with details on skills, weaknesses,

preferences etc. This method falls more in line with player modelling as described by Houlette (2003).

He et al (2008c) used the videogame of Dead End as a test bed for their approach to player strategy

pattern recognition. Dead End is a ‘Predator and Prey’ game taking place on a 20 x 20 grid involving a

cat (the player), two dogs (enemies NPCs) and an exit (the goal). The idea behind the game is for the

cat to reach the exit, avoiding the two dogs, within a certain number of moves. The approach used by

50

He et al (2008c) was first to identify attributes that are of use for the data collection phase. In the

context of Dead End, 12 attributes are chosen, including distances between characters, angles

between characters and the distance between characters and the exit. The next phase, having

selected the attributes that are required, involves collecting data for each of the attributes. He et al

(2008c) identified three strategies and collected player data from each strategy 58 times, creating174

datasets across the three strategies. No explanation was offered as to why the game was played 58

times. Furthermore, it is important to note that the game is being played by simulated human players,

not human players themselves. He et al (2008c) offered no detail on what method is employed to

simulate the players.

The next step, once the sample data has been collected, is to remove certain attributes from the

overall dataset. This is done to prevent the unnecessary attributes being included to the point that

they have a negative impact on the useful data. To achieve this, He et al (2008c) used a data mining

tool to automate the de-selection process, leaving them with seven useful attributes, opposed to the

12 that were initially selected. This reduced set of sample data is fed into a supervised learning

algorithm, K nearest neighbour (KNN). Results of an experiment suggest that the KNN learning

algorithm correctly classified approximately 92% of the strategies played during a game of Dead End.

This is true for both the initial set of data (12 attributes) and also the reduced set of data following

attribute subset selection (7 attributes). The results of the same data passed through a BBN correctly

classified 93% of the strategies played using the 12 attribute set, and 100% of the strategies played

using the 7 attribute set. However, there is no description of how the experiment was set up.

He et al (2008c) have shown that Bayesian classifiers are more effective than the KNN approach on

sets of data that have been stripped down via an automated attribute subset selection process.

However, with each of the three strategies being played 58 times for the purpose of data collection,

one would expect to see results of this calibre. As there is so much training data, and only 3 strategies

to choose from, the KNN or Bayesian network has a one-in-three chance of correctly identifying the

strategy being played out. The percentage of success is provided, however, it would be more

interesting to examine how many games were played, and with which strategy. A more rigorous test

would be to use an alternative videogame, or modify Dead End such that it allows for more strategies,

giving the player more freedom to create strategies. Results could then be used to decipher how useful

this approach would be on a larger scale, or perhaps in a commercial videogame.

He et al (2008b) also explored the use of pattern recognition using the radial basis function (RBF). This

research was conducted using the classic Namco videogame, Pac-Man (Namco, 1980) as a test bed.

51

The methodology followed was similar to that used by He et al (2008a, 2008c) and involved the same

initial steps. These steps include identifying attributes for a complete dataset, collecting data from the

game relating to these attributes and using a data mining tool to identify the most useful subset of

attributes. Initially, 12 attributes were selected to represent the strategy being used by the player.

The implementation of Pac-Man used was a simplified version of the original videogame. The Java

implementation used here only consisted of one ‘life’ for the player and a single maze.

Data is collected from three possible strategies using 12 human players. Each player played the game

using each strategy 20 times, making 720 sets of data. Noise reduction was used to nullify the impact

any non-strategic data may have had on training the classifier. This is achieved by allocating any data

that does not conform to one of the three identified strategies into a fourth strategy for noise. The

noise strategy is used to train the classifier to identify when a human is not using one of the pre-

determined strategies.

The WEKA data mining tool was used to perform data mining to find an appropriate subset of

attributes from the initial 12. He et al (2008b) performed this on two different sets of data – the first

with noise reduction, the second without. In each case, the attribute sub-selection process reduces

the number of attributes to eight. However, each dataset provides a different attribute subset. It is

noted that the attribute subset selection reduces the classifier’s learning time (due to the reduction

in data) and improves performance (due to less negative impact).

Two experiments were conducted, one on the set of data with noise modelling, and one on the set of

data without noise modelling. To gain a context of the usefulness of the Radial Basis Function as a

classifier, the results are compared to those of other classifiers including Support Vector Machines,

Naïve Bayes and Bayesian Belief networks. The results for the dataset without noise modelling show

that the Radial Basis Function (RBF) performs on a par with Naive Bayes (NB) and Bayesian Belief

Networks (BBN), each classifier correctly identifying strategies approximately 85% of the time. The

Support Vector Machine (SVM) performed poorly, only correctly identifying the strategies

approximately 30% of the time. The results for the dataset with noise modelling are slightly stronger

on most counts. The RBF performs stronger than all other classifiers, achieving an approximate 95%

success rate in identifying strategies (after attribute sub selection). All other classifiers achieve similar

results to their ‘without noise’ counterparts. Results provided include before and after attribute sub

selection. While the results for attribute sub selection are better than those without attribute sub

selection, the difference is negligible.

52

He el al (2008b) have demonstrated that the RBF is a powerful classifier for pattern recognition, at

least on par with BBNs and NB networks. The importance of noise modelling is also demonstrated in

He et al (2008b). However, much like the research carried out in He et al (2008c), where Dead End was

used as a test bed for the KNN classifier, the strategies appear to be incredibly limited. Much like the

aforementioned research, He el al limit their experiment to only three strategies and, while it achieves

solid results, there is a large volume of test data that must first be accumulated before the

comparatively small number of strategies can be correctly identified.

He et al (2008a, 2008b, 2008c) appear to have conducted very similar research across the fields of

pattern recognition and player modelling. The experiments described in these papers are largely based

on the same principles and appear to follow the same methodology each time; namely selecting

attributes, modelling noise, using data mining to find the appropriate subset of useful attributes and

then training a classifier of some sort to classify further instances. Player modelling and pattern

recognition are closely related in that pattern recognition can be used to create a player model. The

experiments conducted by He et al (2008a, 2008b, 2008c) fall more in line with player modelling.

Essentially, He et al are training a classifier to identify a player’s preferences based on the data

provided. If the data are from a player who uses a strategic approach, rather than an all-out action

based approach, these data are recorded and fed into the classifier which then classifies the player

appropriately.

4.4.3 Mimicking

While not directly related to gaming, mimicking is a key factor of the research carried out in this thesis,

and much literature related to mimicking pertains to AI and robotics. As suggested by the term,

mimicking in the context of artificial intelligence and robotics focuses on copying the actions of a given

subject. Extensive research has been carried out with regard to mimicking, much of which draws

inspiration from nature to extract practical ideas that would be beneficial to mankind if it were

possible to mimic them using robots (Bar-Cohen, 2012). Robots are defined as being

electromechanical devices that retain biometric properties, giving them great advantages in

performing complex tasks and operating in conditions that are deemed out of reach or too dangerous

for humans (Bar-Cohen, 2012).

Bar-Cohen (2012) describes various applications for mimicking nature using a variety of techniques.

Examples include how fishing nets mimic spider webs and how aircraft structures draw inspiration

from honeycomb structures. Bar-Cohen (2012) regards mimicking humans to be a great challenge and

mentions how AI plays a role in achieving this, sadly details on specific techniques are not provided.

53

Robots that are designed to mimic humans are referred to as humanoids, and mimic the general

appearance of humans in terms of having arms, legs and a head (Bar-Cohen, 2012).

Research has been carried out in field of mimicking for humanoid robots. Due to the magnitude and

complexity of the challenge to mimic humans, literature often focuses on a single element of a

humanoid. For example, Riek and Robinson (2008) focus on facial mimicry of robot using a mechanical

chimpanzee head, which is manually controlled to adjust its facial expression based on interaction

with humans. Figliolini and Ceccarelli (2002) focus their efforts on mimicking a human index finger and

propose a design that could eventually be used for human prosthetics. Riek and Robinson (2008), as

well as Figliolini and Ceccarelli (2002) focus on mimicking movement by sending messages to the

robot, rather than implementing an AI to learn the movement and then mimic. In much the same way,

there exists much literature where the movement of robots is based on how animals move. Birds, fish

and insects are used to map out the movement of robots in Kawamura (2010), with Xiuli et al (2006)

building a quadrupedal robot based on the movements of a cat. The robots is the aforementioned

literature have all be designed to mimic the movement of animals and humans, but do not learn to do

so as they hard coded to move in this way.

Atkeson and Schaal (1997) take a different approach to having robots mimic movement in that their

research focuses on how robots can learn to move based on demonstration. This is true mimicry

whereby a robot observes a human or another robot moving and learns to move in the same way,

taking error handling into account (Atkeson and Schaal, 1997). In their research, Atkeson and Schaal

(1997) attempt to teach a robot arm how to swing a pendulum horizontally. Multiple techniques are

attempted, including directly copying a human who swings the pendulum. In this case, the robot failed

to imitate the human as the trajectory used by the robot did not generate enough momentum to

swing the pendulum upright. Following this failure, a planning approach was used where the robot

was tasked with first finding the correct trajectory using reinforcement learning, and then executing

the swing. Atkeson and Schaal (1997) state that the human demonstration of the task provided the

robot with a trajectory that identifies the task goal and seeds the learning approach. The robot then

learns the task model as well as adjustments that need to be made due to error, which is achieved

through reinforcement learning. This enables the robot to carry out the task. Further research related

to learning by demonstration has been carried out by Schaal (1997) using the Q learning algorithm to

teach a robot how to balance a pole.

54

While there is no relevant literature pertaining to learning by demonstration in videogames, it is

apparent that the AI techniques used in robotics for learning by demonstration are the same as those

used in Game AI research, usually to create a better player or more challenging experience.

4.5 Fighting Games

Research pertaining to videogame game AI, specific to the fighting genre, is relatively scarce. However,

of the research that has been conducted, the focus is on creating a stronger AI player, or one that

adapts its difficulty to cater for the player, providing a level of difficulty corresponding to the human

player’s own ability. The latter is explored by Ortiz et al (2010). While most commercial fighting games

utilise FSMs of some form (Ortiz et al, 2010), the majority of research carried out for this genre pertains

to machine learning, however, most commercial fighting games leverage pre-scripted AI techniques

such as finite state machines (Lu et al, 2014). A novel problem domain within fighting game AI research

is explored by Lu et al (2014), who propose a novel fighting game AI competition platform, where

fighting game AIs that have been trained can fight against one another. Such competitions are

becoming commonplace at Game AI conferences and include non-fighting games such as Super Mario

Bros at the Mario AI Championship (Hisashi, 2014). While the research itself is based on programming

a platform to allow custom AI fighters to play against one another, few details on the implementation

are offered.

In Cho’s (2006) research, the intelligent character is trained using reinforcement learning, which

entails assigning a ‘reinforcement value’ to the action selected by the neural network based on the

game scores in an attempt to ‘reinforce’ the decision. This is in contrast to the ANN used by Chaperot

et al (2005), which does not use a reinforcement value. Cho, et al (2006) stated that for the IC

(Intelligent Character) to be effective, it must be aware of the OC’s (Opponent Character) action

patterns. This is to say that the IC must know when the OC is setting up for an attack, by, for example,

moving forward twice. Rather than reacting to the action of moving forward, the IC must be aware

that this action is part of a pattern, and as such, must perform an output accordingly. To achieve this,

past actions are inputted into the neural network. The number of past action inputs is directly

proportional to the length of the opponent’s identifiable action pattern.

There were various experiments conducted by Cho et al (2006). The trained IC fights a randomly acting

opponent, the results of the fight show that the IC scores higher than its randomly acting opponent.

However, this cannot be considered a successful application of neural networks as the OC did not

behave in an intelligent manner, failing to provide a challenge to the IC.

55

The second experiment observed the IC’s ability to deal with action patterns performed by the OC.

Four action patterns to be executed by an OC were selected, and their optimal counter actions were

identified. For each of the patterns, 4 IC’s were used to fight the respective OC; the first did not use

past actions as input and is referred to as simple IC. The second fighter used the last past action as an

input and is referred to as Pattern Learning IC1. The third fighter uses the last two actions as inputs

(Pattern Learning IC2), and the final fighter uses the last three actions of the OC as inputs (Pattern

Learning IC 3). An experiment was conducted to investigate how many times the optimal counter

pattern was found. The results showed that generally, the pattern learning IC’s far outperformed the

simple IC. However, there did not appear to be much of a correlation between the number of past

actions used as inputs and the performance of the IC for the pattern learning ICs. It should also be

noted that for some patterns, the only IC that could find a counter-pattern of actions was Pattern

Learning IC3.

Cho, et al (2006) presented a set of results that suggest a successful implementation of a neural

network in a fighting game, however, it could be argued that the research conducted by them

predominantly focuses on pre-defined action patterns. The results of the experiments were not placed

into the wider context of observing how the neural network performs against a human player. Cho

(2006) established that the intelligent character can indeed out-perform a randomly behaving

opponent character, however, there is nothing to suggest that it would perform equally well against

a human. This is in contrast to the research carried out by Chaperot (2005), which yielded positive

results even against a benchmark set by a human player.

The approach taken by Ortiz et al (2010) was to have an AI agent, charged with controlling the

opponent fighter, adapt to the human fighter such that learning is carried out offline between rounds.

The novelty with this particular research lies in the fact that the goal is not to enhance the AI fighter’s

ability, but rather adapt it to make for a more interesting experience. The AI agent is split into three

subagents, the first of which is referred to as the main subagent, the second being the executing

combo subagent, and the third being receiving combo subagent.

Actions are selected from states as the main subagent utilises reinforcement learning. Greater positive

reward is issued at the end of each round, as the difference between the health of the human player

and that of the opponent player is smaller. Negative reward is issued as the difference between health

is greater. Ortiz et al (2010) argued that this is a measure of the level of the human player’s ability and

how closely matched they are by the AI agent controlled opponent. The executing combo subagent is

responsible for selecting appropriate combos based on an algorithm that reads in multiple parameters

56

and adapts the initial combo set between rounds. The receiving combo subagent is also put to work

at the end of each round by mining patterns within the set of combos executed by the user. The

Receiving Combo Sub Agent (RCSA) can be invoked during a bout with the human player by the main

subagent, allowing the AI controlled opponent to predict combos that are to be executed by the

human player, based on the data previously mined. This enables the main subagent to select a combo

breaker accordingly (combo breakers are the means to counter a combination of strikes).

After establishing three static players (weak, medium and strong) and two adaptive players based on

the aforementioned novel architecture (one of which had 20 rounds worth of previous training), an

experiment was carried out to test the effectiveness of the technique. 28 players were engaged and

asked to play between 15 and 30 rounds against each of the five AI players (whether the player was

static or adaptive was never disclosed to the users). The user was at liberty to stop playing after 15

rounds if they were not having fun. The users completed questionnaires regarding their experience

with each opponent and were asked to rank each of the opponents in terms of how much fun they

had playing against each AI player.

Ortiz et al (2010) argued that the results showed one of the adaptive players as having the least

negative reviews. While this is true, that is not to say that it had the most positive reviews either. The

most positive reviews were awarded to the strong static player and, looking closely at the results, it is

evident that the two adaptive players had the least negative reviews, with the strong and medium

static players very close behind.

The work carried out by Ortiz et al (2010) is novel in its problem domain, and also the architecture of

the solution. It is somewhat ambitious as it is using human perception of fun as a success criteria,

which ultimately led to poor results. It may be that the game is simply not enjoyable after playing

through a large number of rounds against the static opponents, hence why it is conceivable that by

the time the users got round to fighting the adaptive players they were already bored of the game in

general. Sadly, the order in which the opponents are faced during the experiment is not discussed

which would give more credibility to this argument.

Ricciardi and Hill (2008) had different success criteria in that they attempted to create an AI that can

adapt online, opposed to the ‘between rounds’ offline approach seen in Ortiz et al (2010). The primary

goals of Ricciardi and Hill’s (2008) research was to have the AI adapt to varying strategies carried out

by the human player, such that it can learn in real-time during a bout and respond efficiently, making

it better equipped to defeat the human. This goal is challenging due to limited training data that can

be accumulated and processed online. A further goal was to recognise particular player patterns such

57

that previous player models could be recalled, offering a better starting position for the AI. While there

is acknowledgement that adapting difficulty makes for a more fun experience, a notion that concurs

with Ortiz et al (2010), the requirement to vary difficulty online is omitted from the scope of this

particular research.

Ricciardi and Hill (2008) utilised an enhanced Markov Decision Process in a self-coded basic fighting

game that allowed for four actions besides movement and standing still; punch, kick, throw and block;

which are used in a rock, paper, scissors context as described by Gingold (2006). Improvements to the

standard Markov Decision Process were made to increase the weights on the most recent

transactions, allowing for a more representative dataset where only the most recent transitions were

considered. This ensured older data, that may have been repetitive and was inaccurately being

represented in the MDP, no longer distorts the data.

Results indicate that the adaptive AI fighter can easily defeat a static state machine based AI fighter.

However, by the authors’ own admission, this was to be expected as the static AI ran on the same

states that formed the basis for the MDP, making it easy to predict. However, results against the

human players were also impressive as it won most games. Unfortunately, no statistics were offered

to illustrate this. The AI also seemed to learn to counter what were previously considered to be

exploits whereby the human player could take advantage of instances where the AI did not know how

to respond to its benefit. Following numerous training, the MDP based AI learned how to counter such

exploits with basic, then eventually complex, tactics of its own. With regards to the goal of player

recognition such that previous experience can be recalled, this proved to work, however, it was

deemed unclear whether or not it was feasible to utilise this functionality rather than simply adapting

to each player as though it were a new one. The question raised here is predominantly driven by

performance and the time it takes to ‘swap in’ a player.

The work carried out by Ricciardi and Hill (2008) is novel and keeps the focus on improving the skills

of an AI in a fighting game, which can be measured by quantitative means. Sadly, no statistics are

offered to elaborate on the success of the technique used. Furthermore, it could be argued that the

game in question is not representative of a fighting game and makes for a weak test bed. By the

authors own admission, the game is rudimentary and only allows for seven actions per player.

Danzi et al (2003) also attempted to develop an AI that utilises reinforcement learning in an effort to

allow for adaptable difficulty levels. In this instance, the test bed is a self-coded fighting game called

Knock ‘em. The game presented here is more representative of commercial fighting game than of the

one proposed by Ortiz et al (2010) and Ricciardi and Hill (2008). The game itself allows for a wider

58

range of moves, including weak and strong punches and kicks, as well as the ability to perform jump

attacks and crouch attacks. The fighters can also throw projectiles and perform magic which deplete

mana, the magic meter, which replenishes as time goes on. As is standard with most fighting games,

each fighter has a health bar that is depleted as damage is inflicted.

A tuple of attributes relating to the game is collated. This includes the state of both fighters (crouching,

jumping or standing), the distance between the fighters, the amount of mana each fighter has and the

projectile status. The state of each fighter, mana available and distance between fighters are

attributes that help determine the next move to be carried out. The reinforcement signal is mandated

by the health difference between the fighters, which are each initiated at 100, making the range of

reward [-100, 100]. Positive reward is given if the AI fighter has more health than the opponent, unlike

Ortiz et al (2010), where positive reward was given for minimal difference in health. It is this

reinforcement signal that dictates the challenge function where, if the reward is less than -10, the

bout is considered easy; greater than +10 suggests the bout is difficult for the human player; whereas

zero suggests the fighters are equally matched.

The Q Learning reinforcement learning algorithm Danzi et al (2003) is applied to the game with a fixed

learning rate of 50% and discount rate of 90%. Prior to the evaluation, the AI fighter was trained

against random fighters in 500 fights. An experiment was carried out whereby a state machine drive

AI fighter, a traditional reinforcement learning AI fighter (one that adapts to become better) and the

AI fighter described in the paper (herein known as the adaptive RL fighter) each fight three further AI

fighters 30 times each. The three further AI fighters consist of a state machine fighter, a randomly

behaving fighter and reinforcement learning fighter that plays as best as possible. The average life

difference across the 30 bouts are collated and presented. The results show that while the adaptive

RL fighter lost most bouts, the difference was minimal, with the average life never dropping below -

10 across the three opponent fighters. This is sound evidence that the approach is successful. Other

results were expected in the traditional adaptive fighter was easily the strongest fighter by a large

measure.

Cho et al (2007) conducted further research into the realms of machine learning and fighting games

by comparing techniques within a basic fighting game. The game itself is limited in that there are only

five attacks that can be performed, as well as movement, guarding and staying idle. The attacks and

movement each take a certain time to execute, where clocks are used to measure this metric. Three

different AI fighters were created, each using either neural networks, genetic algorithm or

59

evolutionary neural network, and fought against an opponent character 10 times, the average of

which was used as a metric to measure performance of the AI character.

For the AI fighter that has been implemented using a genetic algorithm, chromosomes include

information on the distance between the fighters, the previous actions carried out by the opponent,

as well as the current frame of the current action being carried out by the opponent. This information

determines the output from the AI fighter. The ANN AI fighter is implemented using the same

technique utilised previously by Cho et al (2006). The evolutionary neural network AI fighter was

implemented by expressing weights of a back-propagation neural network as chromosomes of a

genetic algorithm. It is hypothesised that this would speed up the back-propagation and redistribution

of weights.

Experiments were carried out to determine the number of matches against an opponent fighter

before the same score ratio was acquired across the three AI fighters. For the neural network, the

number of matches can be used as expected, for the genetic algorithm and evolutionary neural

network fighters, the number of generations must be converted to the number of matches. As the

convergence speed of the evolutionary neural network is the fastest, and its convergence score ratio

is second only to neural networks, Cho et al (2007) proclaimed that it is the most appropriate AI

technique for fighting games.

Research of particular interest was carried out by Lee (2005) who utilised adaptive learning in a self-

coded fighting game, Alpha Fighter, by delegating certain remits to multiple Hidden Markov Models

(HMMs). Lee (2005) divided the decision making of AI into various levels; strategic, tactical and

operational. Of the four HMMs used, one was used to predict the opponent’s attack, two were used

at the tactical level, with the fourth being used at the operational level. The strategic layer ultimately

dictates whether the player should choose offensive or defensive tactics based on the threat level of

the opponent. Tactics are selected by one of the two tactical HMMs, one for offensive tactics, the

other for counter tactics. These tactics consist of multiple steps, or operations which are actioned to

result in moves carried out by the AI fighter. The results of a survey regarding the adaptive AI suggest

that the 10 people that played the game found it challenging and fun to play, more so than a non-

adaptive version of the game.

The research conducted by Lee (2005) is another attempt to enhance a fighting game AI in an effort

to make it more challenging and more fun, and offers an incredible novel approach to decision making

within fighting games by splitting the process on the strategic, tactical and operational layers and

passing information between them.

60

Yamamoto et al (2014) carry out research in the competitive fighting game AI space, where their proof

of concept game, FightingICE is used as a platform to test a newly devised AI that aims to defeat other

AI players by predicting and then countering their moves. The FightingICE platform is used in

competitions to determine superior fighting game AI agents, and largely conforms to the basic

principles of a fighting game. There are two on-screen characters which can move in four directions

across two dimensions (up, down, left and right), as well as execute three attacks at varying levels

(high, medium and low). For the purposes of the research carried out by Yamamoto et al (2014), the

same character is used as both on-screen players, such that the moves available are consistent across

both fighters. The game deviates slightly from fighting game norms described in Chapter 2 as there is

no upper bound to the damage the on-screen fighters can incur. This is to say that the bout goes on

for 60 seconds and the fighter who has sustained the least amount of damage during the course of

the round is regarded as being the winner.

The AI designed by Yamamoto et al (2014) hinges on an initial, and then ongoing data collection

activity. Data including moves the opponent makes, the distance between fighters and the relative co-

ordinates of the fighters are collected. By collecting the data, the AI is then able to utilise K nearest

neighbour classification to predict the opponent’s next move given the co-ordinates of the fighters.

Depending on what the value of k is (the experiment trials a variety of values for this variable), the AI

simulates possible countermoves against each of the moves the opponent may execute. Of these

scenarios, the move which will cause the greatest difference in incurred damage in favour of the AI is

selected. The analysis leading to the selection of the AIs move is done using ‘brute force’, rather than

using another technique such as reinforcement learning, which may yield better performance due the

reduced computational burden.

Yamamoto et al (2014) use their AI to compete against three different AI opponents that have

previously partaken in FightingICE competitions; T, the reigning champion, SejongAI, the runner-up

and Kaiju, who took third place in the 2013 tournament. Against each opponent, the value of k was

set to 1, 3, 5, 7, 9 and 11. Each AI opponent was played against for 100 matches (each match containing

3 rounds) for each value of k. The average score across the 100 matches for each round and each value

of k are presented. The results show that the AI Yamamoto et al (2014) have designed and

implemented is able to beat each of its opponents, earning a higher average score by dealing more

damage than it incurs for each value of k. It is apparent that some values of k perform better than

others across different rounds and opponents. Yamamoto et al (2014) suggest a possible future

development would be to adapt the value of k to the opponent and round that is being played out.

61

Yamamoto et al (2014) have proved that their proposed AI is strong enough to defeat the competition,

however, the FightingICE platform seems too basic a test-bed in terms of the moves available. There

only appears to be a single parameter; health, which is at play and that isn’t even taken into account

by AI. The AI is solely analysing position data to predict what the opponent will do. While this is

apparently effective, as evidenced by the results, it is highly likely that a human player would consider

the health of their fighter and well as the opponent when deciding which move to make, rather than

just looking at the positions of the fighters. It would be interesting to see how the AI responds to a

human opponent and this may make the training of the AI more complex.

Thunputtarakul and Kotrajaras (2007) carried out research closely linked to the aims and objectives of

this Thesis in their attempt to establish a ghost AI that plays tactically as a human would play.

Furthermore, they attempted to achieve this in a commercial game, Street Fighter Zero 3 (Capcom,

1998). It should be noted that the work carried out used a hacked, emulated version of the game in

conjunction with an AI engine AI-TEM. The ghost AI is created by creating a data file containing

information on frames of animation enacted by the player to be mimicked (caused by performing

actions) and recording the conditions under which these animations took place. Short lived animations

are removed from this database as they are perceived as being unimportant and anomalies within the

data. This information is consolidated by pairing up actions carried out to the conditions in the game

under which they were carried out, and then encrypted into 32 bit strings. Each action has a 32 bit

string, the first 8 bits of which contain information on the action being carried out by the player. The

remaining bits contain information regarding the game state / circumstances under which the move

was executed. These include the following:

 The distance between characters in two dimensions;

 The state of the opponent (whether or not the opponent is attacking);

 Whether a player induced projectile is on the screen;

 The distance of projectiles on the screen;

 Damage inflicted to the opponent in a single animation frame at a specific point in time;

 Whether the player is facing left or right;

 Whether the player is in a corner;

 Whether the opponent is in a corner.

At its core, the technique used by Thunputtarakul and Kotrajaras (2007) relies on scanning through

the data file (referred to as a battle log) and finding matches in the current game based on the criteria

62

above (which is articulated via the last 24 bits of the 32 bit string so as to minimise processing

overhead), and then executing the frames of animation recorded in the first 8 bits of the string.

To evaluate the technique, an experiment was carried out whereby 32 participants were asked to play

the game between 2 and 10 minutes in training mode, where the health of the on-screen fighters did

not deplete, nor did the super combo meter which typically allows the player to unleash powerful

attacks. Data from this bout, against what is presumably an AI controlled fighter (the publication does

not discuss the nature of the opponent), is then fed into the battle log and the player is asked to ‘semi-

play’ a further two times. This means the player watches the bout between their ghost and opponent,

while simultaneously playing the game against the opponent again.

Two separate methods are used for splitting the ‘controller signals’, which are the action signals telling

the AI to perform an action and animate the on-screen characters. The experiment captured these

controller signals and compared the player and AI signals, as well as the players’ signals with their own

data from a subsequent play through. Of the two methods for splitting the controller signals, the most

successful relied upon capturing data every 15 frames. Across the 32 players, when compared against

the play styles of the human players, the ghost AI only yielded a 26% average match. However, that

being said, the players’ own second play through only maintained an average of a 35% match. These

results are indicative of the ghost AI not performing well, and/or the experiment not yielding quality

data to feed into the AI.

The experiment itself was flawed in that the participants were forced to ‘semi-play’ where they must

divide their attention between playing and observing. The observation could influence how they play

the game and, judging by the results, distracts them from playing out the same style. The fact that the

ghost AI only accomplished a 26% match suggests that its performance is poor, but the more alarming

result is the fact that the human players never really played using the same style more than once, with

the average match being 35%. The participants gave an average satisfactory score of 72%, suggesting

they were largely satisfied their ghosts were doing their play styles justice. However, this is not entirely

credible as these participants also believed they were playing their own style through accurately

multiple times, when in reality it was deemed that the average match for this was 35%.

When we examine the data encrypted in the bit string, this is not all that surprising. The battle log

ultimately contains contextual data that are detailing very specific events. The level of granularity

would make it difficult to replicate circumstances and verify with certainty that should those

circumstances come into fruition again, the player would act in the same way. For all the emphasis

placed on positioning, opponent states and so on, it could be argued that the most influential factors

63

in determining how the player behaves - the players’ and opponent’s health -, is not even considered.

Both the health meter and super combo meter are not factors in the bit string, making their values

meaningless which, in the context of this research, they are by default, as the experiment takes place,

strictly within the game’s training mode.

Unfortunately the health and super combo meters are not considered, as they would have offered a

strategic approach to game play. Instead of considering these strategic elements, the technique

focuses only on reacting to a given situation. This makes the underlying assumption that players’

actions are entirely driven by the environment they are in (besides from arguably the two most

important features of the environment, the health and super combo parameters). The danger in

making this assumption is that it does not consider a player ignorant to their opponent’s actions, who

prefers to use their own variety of attacks when they feel it is suitable. Considering the AI seems to be

geared towards playing strictly on an operational level, this is quite an oversight.

The work carried out by Thunputtarakul and Kotrajaras (2007) is commendable in that it offers a

means of accessing commercial fighting games AI. The approach of consolidating real-time factors

during bouts played by a human, and then replicating their actions when the circumstances occur is

novel and could be built on using more pertinent game parameters that influence decision making.

This research is taken further by Lueangrueangroj and Kotrajaras (2009) who build on the use of AI-

TEM using an emulated version of Street Fighter Zero 3 Upper. Lueangrueangroj and Kotrajaras (2009)

build the ghost AI in the same way Thunputtarakul and Kotrajaras (2007) have, but in this research the

focus is not only on imitation but also efficiency in terms of leveraging the possible actions to deal the

most damage to the opponent.

The work carried out by Lueangrueangroj and Kotrajaras (2009) splits the generation of the AI into

two distinct processes; the imitation process and learning process. The imitation process focuses on

developing the ghost AI in much the same way as Thunputtarakul and Kotrajaras (2007) by using

parameters including the distance between fighters, distance between projectiles and the AI fighter,

and the AIs current action. Should the game state yield a situation where these variables are the same

as ones in a previous bout featuring the human that is being imitated, then the AI would carry out the

same move as the human did in the previous situation. Based on Lueangrueangroj and Kotrajaras

(2009), it appears that this is calculated as a simple look-up rather than a classification problem. The

addition in this research is the learning process, which adds a weighting to each move that is carried

out by the AI, to quantify how effective it is at dealing damage when it was executed. When the AI

64

fights an opponent, it imitates the human player that it is based on, but also selects moves based on

the weighting, which adjust online as the AI learns making for an adaptive AI.

The work carried out by Lueangrueangroj and Kotrajaras (2009) certainly takes the previous work of

Thunputtarakul and Kotrajaras (2007) further by developing an AI that rather than blindly imitating a

human based on static data in a file, adapts online and leverages the moves available in a manner that

allow it to become a more efficient fighter. However, it could be argued that this is something of a

paradox as the AI cannot imitate the human, and play better than the human would at the same time,

as it would have evolved into a fighter beyond the human fighter’s capabilities. Also, much like

Thunputtarakul and Kotrajaras (2007), there seems to be no consideration for the game environment

beyond the distance between the two fighters. The imitation process does not consider what the

opponent is doing, nor the previous moves that have been carried out and the in-game statistics of

both fighters. This is unfortunate as the game being used as the test bed, Street Fighter Zero 3 Upper,

utilised multiple parameters per on-screen fighter, encouraging the player to fight strategically.

4.5 Chapter Summary

In this chapter, a concise survey of literature pertaining to AI in videogames, and particularly, fighting

games, is presented. Techniques have been examined in terms of design, as well as usage within the

field of Game AI. Having reviewed this literature, it seems that the majority of research done within

the field of Game AI utilised Machine Learning, oppose to more static techniques such Finite State

Machines. With regards to usage, research within the field of fighting games is very limited,

particularly that pertaining to strategies and tactics within fighting games. Research related to

mimicking player styles is limited across fighting games as well as other game genres. Based on the

literature review conducted, there appears to be a distinct lack of research conducted in the field of

AI applied to strategic fighting games. While the use of AI techniques make for engaging Real Time

Strategy games as demonstrated by Miles et al (2007) and Barton (2014), the work carried out by Cho

et al (2006), seems to be limited to shorter term tactics. Cho et al (2006) implemented ANNs in a

fighting game, but the responses of the AI fighter was limited to short term tactics. Further to this,

Cho failed to test the AI fighter against a human opponent, making it difficult to gauge the success of

the aforementioned technique. Implementing an AI technique in a fighting game to enable the AI

controlled player to learn and mimic human strategies is an area of videogame AI that has not yet

been explored.

Other ventures into implementing AI in fighting games have focused on either adaptive difficulty

settings for increased pleasure during play (Ortiz et al, 2010; Danzi et al, 2003), or on simply enhancing

65

the AI fighter’s ability to make it a better player (Ricciardi and Hill, 2008). Each of these

implementations was accessed using independently coded fighting games (non-commercial), which,

with the exception of Danzi et al (2003), do not adequately replicate the choices available in modern

commercial fighting games. Graepel et al (2004) addressed the issue of the lack of a representative

test bed head on, as they implemented reinforcement learning in a commercial fighting game, Tao

Feng on Microsoft Xbox. Unfortunately, none of these implementations address the problem of

mimicking a human player’s strategy. Thunputtarakul and Kotrajaras (2007) attempted to solve the

mimicking problem, but they yielded poor results and were restricted to the operational level, taking

no account for the strategic elements of the videogame in question, Street Fighter Zero 3 (Capcom,

1998).

The wider field of AI in videogames provides examples of human players playing against AI controlled

players, such as those seen in chess. However, much of the research conducted in the field of

videogame AI restricts the evaluation of techniques to results from hand coded (and sometimes

randomly behaving) opponents. As videogames AI research stands currently, there is a gap in the field

with regards to the use of AI techniques in strategic fighting games, in particular, evaluating the

effectiveness of techniques against human players. Key literature that has been reviewed in this

chapter pertaining to the application of game AI techniques has been summarised in Table 4.1 below.

1Table 4.1 – Literature Review Summary

Technique Source Summary Conclusion

Supervised Learning

Chaperot et al

(2005)

Chaperot et al

(2006)

The aim of the research was to

implement an ANNs in the

Motocross racing game such that

the bike is ridden as well as

possible, but while still retaining

the characteristics of a human

playing the game. An experiment

where a track was completed by a

human, ANN AI and genetic

algorithm AI showed that the

ANN performed nearly as well as

a human player and outperformed

the genetic algorithm.

Literature related to the

usage of supervised

learning in videogames

has generally yielded

positive results. There

are many techniques

that have been utilised

to enhance AI players,

creating more of a

challenge to humans,

and also in terms of

identifying human play

styles. However, there

has been no research

conducted in terms of Cho et al (2006) Using ANNs to create a superior

AI controlled player in a fighting

66

Technique Source Summary Conclusion

game. Back-propagation is used in

conjunction with feed forward

networks to create intelligent

fighters that outperform AI

controlled fighters of a static

nature. There is no benchmark

against a human player however.

mimicking human

players.

He et al (2008a)

He et al (2008a) used Pac-man as

a test bed to investigate the use of

Bayesian Belief Networks and

Naïve Bayes classifiers for player

modelling. NBC and BBN are

found to both be useful for

predicting player strategies.

He et al (2008b)

He et al (2008b) use Radial Basis

Function (RBF) classifier in Pac

Man to predict player strategy

patterns.

He el al (2008b) have

demonstrated that the RBF is a

powerful classifier for pattern

recognition, and have

demonstrated in this instance that

it is more powerful than BBNs

and NBC.

He et al (2008c)

He et al (2008c) used the

videogame of Dead End as a test

bed for their approach to player

strategy pattern recognition. KNN

and BBN are used to successfully

classify player strategies. KNNs

perform well, but BBNs yield

better results in an experiment

conducted using Dead End.

67

Technique Source Summary Conclusion

Cho et al (2007)

Cho et al (2007) conducted further

research into the realms of

machine learning and fighting

games by comparing techniques

within a basic fighting game. As

the convergence speed of the

evolutionary neural network is the

fastest, and its convergence score

ratio is second only to neural

networks, Cho et al (2007)

proclaimed that it is the most

appropriate AI technique for

fighting games.

Clustering
Anagnostou et al

(2009)

Applying the CURE algorithm to

a space invaders game to

determine play styles. The CURE

algorithm successfully classified

two of the game features

synonymous to the two player

types.

Clustering is a

powerful technique that

is capable of organising

data into as yet

undefined sets. Its

application to

videogames has

provided positive

results.

Player Modelling

Drachen et al (2009)

Drachen et al (2009) have

explored player modelling in the

commercial game Tomb Raider

Underworld (Crystal Dynamics,

2008), using self-organizing maps,

which is a form of clustering. The

approach is successfully used to

model how players play the game.

Player modelling is a

technique that has been

demonstrated to have

uses within commercial

games, particularly

with regards to

identifying player

preferences and

strategies. This

approach has relevance

to the research

conducted in this

Thesis as strategies

must be identified

Pedersen et al

(2009)

Pedersen et al (2009) exhibit

player modelling in a Super Mario

Bros clone called Infinite Mario

Brothers. Pedersen et al concluded

that by using non-linear

preference modelling, given a set

68

Technique Source Summary Conclusion

of game metrics (inputs), ANNs

can be trained to predict the

emotional response of the player.

before they can be

mimicked.

Reinforcement

Learning

Ortiz et al (2010)

Reinforcement learning is used to

adapt an AI controlled player in a

fighting game to make the game

more interesting for the human

individual that is playing. Ortiz et

al (2010) argued that the results

showed one of the adaptive

players as having the least

negative reviews. While this is

true, that is not to say that it had

the most positive reviews either.

Reinforcement learning

has been used to create

stronger and more

interesting AI fighters

within basic fighting

games. While the genre

is of relevance to the

research carried out in

this Thesis, the

objective of creating an

interesting or enhanced

AI fighter does not fall

in alignment with the

aims and objectives of

this Thesis.

Danzi et al (2003)

Danzi et al (2003) attempted to

develop an AI that utilises

reinforcement learning in an effort

to allow for adaptable difficulty

levels. The results of an

experiment show that while the

adaptive RL fighter lost most

bouts, the difference was minimal,

suggesting that the approach is

successful.

Markov Models
Ricciardi and Hill

(2008)

The primary goals of Ricciardi

and Hill’s (2008) research was to

have the AI adapt to varying

strategies carried out by the

human player, such that it can

learn in real-time during a bout

and respond efficiently, making it

better equipped to defeat the

human. Ricciardi and Hill (2008)

utilised an enhanced Markov

Decision Process in a self-coded

basic fighting game that allowed

The work of Ricciardi

and Hill (2008) and

Lee (2005) have

provided great insight

in how Markov models

can be used to enhance

fighting game AI. Once

again, the focus of the

research conducted

here pertains to using

these techniques to

enhance the player

69

Technique Source Summary Conclusion

for four actions besides movement

and standing still. Results between

the adaptive AI and the human

players were impressive as the AI

won most games. Unfortunately,

no statistics were offered to

illustrate this.

experience by

providing more of a

challenge, oppose to

identifying then

mimicking a human

strategy.

Lee (2005)

Lee (2005) attempts to enhance a

fighting game AI in an effort to

make it more challenging and

more fun, and offers a novel

approach to decision making

within fighting games by splitting

the process on the strategic,

tactical and operational layers and

passing information between

them. The multi-tiered HMM

architecture was perceived by the

player to enhance the intelligence

of the AI fighter.

Hard Coding
Thunputtarakul and

Kotrajaras (2007)

Thunputtarakul and Kotrajaras

(2007) carried out research to

create a ghost AI capable of

mimicking human playing styles

using a hacked, emulated version

of Street Fighter Zero 3 in

conjunction with an AI engine.

This is achieved by replicating the

frames of action played out by the

characters. The approach is based

on coding routines that scan

through the a file (referred to as a

battle log) and finds matches in

the current game based on a

specified criteria, and then

executing the frames of animation

The hard coding

approach of

Thunputtarakul and

Kotrajaras (2007) is

noteworthy in that the

objective is closely

related to that of this

Thesis in that the

human ‘play styles’ are

to be mimicked.

However, the means of

achieving this objective

are by mimicking

animations irrespective

of the in-game

statistics. This, coupled

70

Technique Source Summary Conclusion

recorded in the first 8 bits of the

string. Given that during the

experiment, the health and super

combo meters did not deplete, and

the participants were asked to

‘semi-play’, further work would

need to be carried out to produce

more meaningful results.

with the ‘semi play’

evaluation approach do

not provide a firm

foundation on which

the research of this

Thesis can be based.

In conclusion, there is a distinct lack of research related to the application of AI in fighting games and

the problem domain of mimicking human strategies in fighting games using AI is completely uncharted

in terms of academic research. However, the research reviewed in this chapter has provided novel

ways in which a variety of AI techniques can be utilised to solve this problem. Having come to this

conclusion, the problem domain can be detailed further and an appropriate technique can be

designed to solve the problem.

Following the literature surveyed in this chapter, a significant gap has been identified in the field of

game AI, pertaining to mimicking human strategies and tactics in fighting games. The approach to fill

this gap through the research conducted in this thesis is described.

The literature review yielded results indicative of a lack of research related to the field of Game AI. In

particular, the sparse research in this field gave rise to a significant gap related to the usage of Game

AI to solve mimicking problems, especially in fighting games. Having established this gap and described

the approach to filling this void, the research is able to progress by building multiple solutions to

address the problem of mimicking human strategies in fighting games.

The research is now able to progress by designing and implementing the necessary tools and

peripherals to support the solution. This includes the design and development of the solution itself,

as well as the proof of concept game that forms the test bed for the evaluation of the solutions. These

components are documented in Part II of this Thesis.

71

Part II – Analysis, Design and

Development

72

Chapter 5 – Proof of Concept Game

5.1 Introduction

To support the development of a solution to the problem, a proof of concept kickboxing fighting game

was coded and used as a test bed to evaluate enhancements made at each level. The research utilised

a basic prototype proof of concept game representative of commercial fighting games, and focussed

on mimicking decisions made at the strategic level. To test this in a proof of concept game, an entire

end-to-end solution was implemented. The proof of concept game allowed for greater complexity in

strategies that can be used by the human players.

This chapter provides the detailed design for the game, with a justification for the limitations in

functionality in that the game needs to be designed to cater for gamers, while allowing the solutions

proposed in this theses to be tested. The game’s rules and character moves are described. The

implementation details of the game are also provided, including tools and digital assets (these include

the 3D character models and 3D environment) used to develop the proof of concept game.

5.2 Design

The design of the proof-of-concept game needs to account for the rules of modern kickboxing fighting

games as discussed in Chapter 2. In an effort to develop a proof-of-concept game representative of

modern fighting games, key gameplay mechanics must be factored into the design to ensure the game

meets gamers’ expectations by conforming to traditional fighting games (as discussed in Chapter 2),

as well as providing specific rules to allow for the testing of solutions provided in this thesis. This

section describes and justifies the rules and design decisions.

5.2.1 Game Rules

The proof-of-concept game takes its design cues from traditional fighting games as described in

Chapter 2. The game features two on-screen characters, the fighters, who carry out kickboxing moves

to inflict damage upon one another. Moves include a variety of punches, kicks, blocks, lunges and

evasions. As the characters inflict damage upon one another, their health meter deplete until it

reaches zero, at which point the winner is declared. The bout takes place in a boxing ring, making for

an aesthetically appropriate background. The game is deliberately grounded in reality and is based on

the sport of kickboxing, rather than other fighting games discussed in Chapter 2 that rely on fantasy

based projectile attacks and gravity defying moves.

73

Some features that are not commonly found in such fighting games have been omitted in favour of

simplicity. The game involves two fighters who are on screen at all times. As the purpose of this

research is to design and evaluate a means of mimicking human strategies within a fighting game, it is

important that the game lends itself to strategic gameplay and offers players enough flexibility to

devise their own strategies. This is achieved by offering a wide range of moves and implementing

features such as multiple parameters per character.

To allow for a variety of strategies, the multiple parameter model is utilised, similar to that found in

Street Fighter Alpha 3 (Capcom, 1998) (see Chapter 2 for further details and screenshots). The main

parameter, as in all fighting games, is health. Therefore, each fighter has a health meter, initiated at

100 health points (HP). As a fighter inflicts damage onto their opponent, the health of the fighter

receiving the damage is depleted. Once the health of a fighter reaches zero (0 HP) then the bout is

over and the opponent is declared the victor. As is the case with all fighting games, different moves

incur varying amounts of damage, and the range from which they are effective also varies.

Each fighter has two more parameters to add a level of realism to the game, and further encourage

long term strategic play. First, a fighter is equipped with a stamina meter which is initiated at 100

points. As a fighter performs moves or blocks their opponent’s attacks, their stamina meter is

depleted. Once the stamina meter reaches 0, the fighter cannot perform any further moves, nor can

they block their opponent’s attacks, ultimately making their defeat inevitable. The inclusion of this

parameter forces players to be economical with their moves and not simply go on the outright

offensive as this may lead to attacks not connecting, fruitlessly depleting their fighter’s precious

stamina. It also prevents players from being overly defensive, as this too would be a losing strategy. If

a player is blocking excessively, their stamina shall deplete rapidly, eventually making them vulnerable

and defenceless against their opponent’s attacks.

The third parameter is Morale. The game allows each fighter to dodge their opponent’s attacks. There

are various dodges for the variety of moves and the correct dodge must be used for the incoming

attack if damage is to be avoided. Provided the timing is correct, and the appropriate dodge move is

performed, no damage is incurred by the defender, while the attacker loses stamina. The Morale

meter is initiated to 50 points and increases incrementally as the fighter successfully dodges their

opponent’s attacks. As the morale goes beyond a threshold of 75 points, the attacks carried out by

the fighter deals double the amount of damage as they normally would. The rationale behind this

design decision is to provide players with a risk vs. reward approach to winning bouts. While the

prospect of dealing double damage on an opponent is a seemingly a quick way to victory, the timing

74

to boost the fighter’s morale must be impeccable. Should a fighter perform the wrong dodge, or miss-

time their dodge by a fraction of a second, they run the risk of needlessly incurring damage.

The game has no time limit, the only way bouts can finish is a fighter either completely losing their

stamina or completely losing their health. This allows players more time to strategize and plan their

attack, as well as respond tactically to their opponent’s actions. This encourages players to engage in

a way that lends itself to testing the solutions proposed in this thesis. Movement has been restricted

to a two-dimensional plane for simplicity. Fighters can travel towards and away from each other, with

the maximum distance between fighters being restricted to the size of the ring, which is 13 units. The

traditional jump and crouch functions found in most fighting games are supplemented with lunges

(both towards and away from the opponent) and the ability to perform low attacks from a standing

position.

5.2.2 Character Moves

The game offers a variety of standard moves, as well as a special move, the haymaker, which deals an

exceptional amount of damage, but has a high cost in terms of execution speed and stamina. Table

6.1 below provides a list of moves that can be executed by the player, along with the impact against

their opponent.

If the opponent is within the range specified by the ‘to’ and ‘from‘ attributes listed, and is not blocking

or performing an appropriate evasion, they will be struck and their health value decreases. The unit

of measurement for distance is based on the in-game metrics are all relative to each other. If the

opponent performs a block (or in some cases a low block) when the move connects, their health shall

deplete as indicated by the value ‘blocked’ field. If timed correctly, certain moves can be evaded. For

example, if a fighter throws a jab and the opponent performs a ‘back’ move with the correct timing

then the move will not connect and no health will be depleted.

The design allows players to combine their own unique tactics to form longer term strategies. The

variety of moves includes lunging forward and back, making for flexibility in movement. This footwork,

combined with evasion maneuvers and attacks, make for a creative fighting system, empowering the

players to define various strategies and providing them with the tools to execute short term tactics to

accommodate said strategies. Further to attacking, players can perform low or high blocks and a

variety of evasions. Certain attacks are blocked by using the high block, while others can only be

blocked using the low block. The various moves and their effects within the game are presented in

Table 5.1.

75

2Table 5.1 – Proof of Concept game moves

Move From To Health Stamina Morale Blocked Evasion Notes

Jab 4.1 5 1 1 Stam - 1 Back

Cross 4.1 5.5 2 2 Stam – 1 Left

Right hook 4 4.7 3 2 Stam – 1 Back

Left hook 4 4.7 3 2 Stam – 1 Back

Uppercut 0 4 4 2 Stam – 1 Right

Haymaker 4 4.5 10 5 Unblockable

Right body 0 4 2 1 Stam – 1

Left body 0 4 2 1 Stam – 1

Short jab 0 4 2 1 Stam – 1 Back

Short cross 0 4 3 2 Stam – 2 Left

Evade

back
 2 Evasion

Evade left 2 Evasion

Evade

right
 2 Evasion

Push 0 4 2 1 Stam – 1

Pushes

opponent 5

back

Block Blocks high

Low block Blocks low

Low kick 0 4 2 1 Stam – 1

Sidekick 4.1 5.5 4 2 Stam – 2

F Lunge 5 6 Forward

B Lunge 5 6 Back

76

5.3 Implementation

This section describes how the proof-of-concept game has been implemented and discusses tools,

assets and bespoke coding that was compiled to support the development of the game. An overview

of the control scheme is also provided.

5.3.1 Digital Assets

The digital assets used in the proof of concept videogame were either developed specifically for the

game, or were re-used from freely available example code. The environment in which the game is

played comprises a bounded two-dimensional play area. To represent this in an aesthetically pleasing

manner, a suitable three-dimensional model would need to be placed on the screen and remain static

to give players a clear indication of the bounds along the X-axis. The 3D model of choice was a boxing

ring model that was made available via source code from Panda3D (Carnegie Melon, 2010).

Other digital assets include the character models for the fighters that are displayed on-screen. While

the game is routed to a two-dimensional plane, the use of three-dimensional character models is

appealing due to the flexibility of animation and is less dependent on time consuming frame-by-frame

drawings that are typically associated with two-dimensional sprites. For these reasons, the on-screen

character models for the fighters were rigged and animated in 3D. A single asset was developed and

then re-used for both fighters, with a slight change in colour being used to distinguish the two fighters

(often referred to as a pallet swap). The animations and moves across both fighters are the same.

5.3.2 Tools and Coding Overview

The decision to develop the proof of concept game from the ground up was predominantly based on

the fact that for the research to be meaningful, a game representative of traditional commercial

fighting games would need to be utilised as a test bed. As source code for commercial fighting games

could not be accessed, nor edited to implement custom AI, the decision to develop a custom game

was made.

To aid in the development of the proof of concept game, several tools and coding libraries were used.

The underlying game engine was Panda3D (Carnegie Melon, 2010) which is a 3D game engine that

supports Python and C++ code. For the purposes of this research, Panda3D was used in conjunction

with Python 2.6. Character models were created and animated in Blender (Blender Foundation, 2013),

and exported to Panda3D using Chicken Exporter (2006). Textures to these models were applied using

the built-in capability of the Panda3D game engine. Panda3D and Blender were selected because of

their ease of use and the speed at which results could be obtained. The focus for the proof of concept

77

game was to provide a test bed for the research, rather than creating an attractive animation fighting

game experience. In this context, Panda3D and Blender were the ideal candidates.

Two players can play the game using PlayStation 3 Sixaxis control pads that had been configured to

run on a PC running Windows 7 or Windows 8. This is achieved by using MotioninJoy drivers

(Motioninjoy.com, 2012) to recognise and calibrate the hardware. The calibrated control pads can

then be integrated into the Panda3D code using the pyGame library (PyGame.org, 2008) and pyPad360

(Rabid Squirrel Games, 2010) python class. The use of the PlayStation 3 Sixaxis controller means the

aforementioned tools need to be used. The Sixaxis controller is used because gamers have become

accustomed to its feel. This is an important factor because gamers were invited to take part in an

experiment to evaluate the performance of the AI solutions. The use of the PlayStation 3 Sixaxis

controller is also driven by the fact that there are a large number of buttons, allowing for a wide range

of moves to be mapped to commands.

5.3.3 Game Display

The game display was designed to show both fighters at all times, as well as pertinent information

such as the values of each parameter. With each character having three parameters, a total of six

parameters would need to be displayed, as well as a seventh; the distance between both fighters. This

seventh parameter would assist players in making decisions with regards to which move to execute,

although this could also be a judgment call. Both fighters are rendered sideways-on and information

is shown at the top of the screen so as not to obscure the view of the action. The fighters are displayed

using the same 3D model, but with different textures and shades, making them easy to distinguish.

Figure 5.1 shows a screenshot from the proof of concept game.

6Figure 5.1 – Screenshot of Proof of Concept Game

78

5.4 Usage of PoC Game

The Proof of Concept game is leveraged in this research by having two human players play the game

against one another, where the first player adopts a pre-defined strategy, of which there are ten in

total, and plays against the other human player three times. Videos for each of the three bouts are

recorded, and transcripts of these bouts are captured and archived for reference. The data for each

strategy is then processed by each of the two solutions, giving rise to two AI agents per strategy. The

second of the two human players of the initial three bouts then plays against each of the AI controlled

opponents. These two bouts are also recorded, making for five videos per strategy; three videos

featuring human vs. human bouts, one video featuring the human vs. k nearest neighbour AI fighter

and one final video featuring the human vs. data driven finite state machine (DDD FSM) AI fighter.

Transcripts of the human vs. AI bouts are also captured and archived.

Having collected a total of five videos for each of the ten strategies documented in Chapter 8, the

prerequisites for the evaluation are in place. A group of ten observers, each of whom are well versed

in fighting game mechanics, are asked to view one of the human vs. human videos for a given strategy,

and are also provided with a high level description of the strategy. This is done to provide each

observer with a frame of reference and familiarise them with how strategies are played out in the

proof of concept game. Each of the observers is then shown a further four videos for the same strategy

comprising of the following:

 Two videos of the human vs. human bouts

 One video of the human vs. KNN AI bout

 One video of human vs. DD FSM AI bout

In the case of the four videos stated above, the observers are not told which of the two on-screen

fighters is executing the strategy, nor are they told whether the strategy is being executed by an AI or

human player. Each observer is then asked to record which of the following three scenarios they feel

holds true for each video:

 Strategy is being played out correctly by a human player.

 Strategy is being played out correctly by an AI player.

 Strategy is not being played out correctly.

Results are collated for each observer against each of the four videos for each strategy, giving rise to

400 interpretations (10 observers, 10 strategies, 4 videos per strategy). Of the 400 observations, 200

are for videos featuring human vs. human bouts of the 10 strategies. This set of 200 observations

79

serves as the control group as it is telling of whether or not the group of observers are capable of

recognising the strategies in question being played out by humans. The number of observers was set

to 10 in an effort to ensure only people well versed in fighting games and how to play strategically

partook in the observations so as not to skew the results. Broadening the group of observers was

considered when designing the experiment, however, due to constraints in terms of understanding

how fighting games should be played out, and what it means to have a pre-determined strategy, it

was decided against to avoid to the inherent risk of nullifying the results of the experiment. The 10

observers, and their 400 observations make for a sizable set of data given the quality of the

observations, which can be attributed to the familiarity the observers have with fighting games and

martial arts strategy. Any shortfall in terms of the number of observations was mitigated by the

quantitative analysis of the transcripts produced in the human vs. AI bouts.

This approach to evaluation has been adopted to firstly ensure adequate data are being captured

during the human vs. human bouts and fed into the AI solutions. The experiments also yielded

qualitative results from the observations, which could be backed up by quantitative results from the

transcripts if required. The results of the experiment indicate which solution was perceived to have

successfully mimicked the strategy, and whether or not this was done in a manner so convincing that

it could be passed off as being executed by a human player. This approach also ensures that the ability

to mimic a known strategy is being assessed, rather than how good the AI player is. A Turing Test was

considered as a means of evaluating the AI solutions. However, this would be more telling of whether

or not the opponent was an AI or human, rather than whether or not the opponent was playing out a

human strategy in a manner that the human would have played it.

Ten strategies were selected as this number can adequately encompass a representative sample of

strategies that can be executed within the constraints of the proof of concept game. The ten

strategies, that have been selected and documented in Chapter 8, exhaust the available move-sets of

the proof of concept game, and cover a wide range of play styles and approaches. Additional strategies

could have been factored into the experiment, but these would have been derivatives of the ten

established strategies and would not necessarily add further value. The decision to have ten observers

was based on the fact that a large number of observers, coupled with a variety of strategies, would

make it easier to determine whether or not there were trends in the observations, and potentially

pinpoint problematic strategies that are difficult to mimic.

In terms of success criteria, the primary focus was on determining whether or not the strategies being

played out by the AI were perceived as being played out accurately. Against this criteria, for the

80

solutions to be considered fit for purpose, the expectation is that at least 75% of strategies shall be

perceived to have been mimicked successfully (per solution). The perception of whether or not they

are played out by a human player or an AI is not necessarily a critical success factor for this research,

but this metric is telling of how convincingly a strategy has been mimicked. This 75% success criterion

is based on the nature of the strategies outlined in Chapter 8. It is expected that for each solution,

there are two strategies which will prove challenging to mimic due to the nature of the moves being

executed, which accounts for 20% of the overall result. A further 5% contingency has been added in

light of potential errors that may occur during the observations, however, this number is relatively

low due to the skill level of the observers. This brings the hypothesised error to 25%, yielding an

expected 75% success rate.

5.5 Chapter Summary

In this chapter, the proof of concept game has been described in terms of the core game mechanics

and rules. The tools used to build the game have been identified and the limitations and abilities of

the fighters within the game have been discussed. A rationale has been provided for key design and

implementation decisions. The resultant design conforms to the rules present in traditional fighting

games, hence meeting gamers’ expectations. Further to this, the multi-parameter approach puts

additional emphasis on planning and executing strategies during gameplay.

The proof of concept game developed for this research conforms to the traditional fighting game

design described in Chapter 2. The proof of concept game is a two-player fighting game, with each

fighter having three parameters; health morale and stamina. Each fighter can execute a wide range of

moves that have varying effects on themselves and their opponent. The game has been designed and

implemented such that it conforms to traditional fighting games, while offering players enough

flexibility to create their own strategies and tactics.

The evaluation high level design has been provided as part of this chapter. The approach to acquire

data based on the perceptions of numerous observers is being used as it is a means of understanding

whether or not each solution is fit for purpose in terms of mimicking a known strategy, rather than

evaluating whether the game is being played by a human or AI player. Additional details on the

experimental design, including the strategies that have been selected to be mimicked, can be found

in Chapter 8.

81

Chapter 6 – K Nearest Neighbour Solution Architecture and Design

6.1 Introduction

The research conducted in this Thesis contributes to the field of videogame AI by filling the gap

identified in Chapter 4. In order to achieve this, further research on existing techniques and their

applications has been carried out as part of this thesis. The techniques that were researched were

then implemented in a strategic fighting game, where the AI player learns to mimic the human player

actions. The key factor in this research is the evaluation of techniques against human players. The

overall deliverable is a robust technique that can be applied to long-term strategic fighting games,

enabling the AI controlled player to perform using the same strategies as the human player it learned

from, based on the in-game conditions.

Having conducted a literature review, and gained an appreciation for game AI techniques, as well as

those evidenced to have been implemented in fighting games, two separate solutions have been

designed and developed. The first solution utilises k nearest neighbour classification and is detailed in

this chapter.

The research conducted here to solve the problem, and answer the overarching research question

‘How can existing Game AI techniques be used to successfully mimic basic human player strategies in

strategic fighting games?’, began by implementing a prototype based on what has been learned from

the literature survey. The purpose of examining key techniques during the literature review in Chapter

4 was to acquire knowledge sufficient enough to create a prototype solution to pave the way in

answering the aforementioned research question.

Having established the problem domain, as well as the environment within which a solution can be

tested, the next step is to define the solution itself. This chapter provides a detailed description of the

architecture and design of the first of two solutions to the problem.

6.2 System Architecture

This section provides a high level design of the architecture for the k nearest neighbour solution, as

well as the rationale for the key design decisions. This section describes how the architecture hangs

together and how it was used to mimic human player strategies. This approach is solely reliant only

on selecting the most appropriate operation from a single pool of moves, building on concepts

established by Thunputtarakul and Kotrajaras (2007) in that decision making is done strictly at the

operational level. However, unlike Thunputtarakul and Kotrajaras (2007), the design of the k nearest

82

neighbour solution is concerned with pertinent in-game parameters which were driving factors for

the behaviour and strategies exhibited during the human vs. human bout.

6.2.1 Context

Before establishing the design of the solution, the context of its usage must be defined. As with many

AI solutions discussed in Chapter 4, the results that can be produced are heavily dependent on the

data being fed into the solution. For example, a Naïve Bayes Classifier must first be trained before it

can produce quality results.

The solution presented in this chapter is designed with strategic approach to playing fighting games

in mind. The solution is reliant on the proof of concept game from Chapter 5 which encourages gamers

to play the game using the variety of moves available and formulate their strategies ahead of playing.

The k nearest neighbour solution is reliant on two human players playing against each other a number

of times, using the same strategy each time. This means that players should perform the same actions

each time under the same situations as mandated by the values of each parameter. These data are

recorded in real-time and are transcribed and saved to a file following each bout. This is a prerequisite

to processing data and producing meaningful results via the k nearest neighbour solution, and is

referred to within this research as the data capture phase. Once the data capture phase has been

completed, the data are fed into the solution, which is then put into action during a bout between a

human and the AI player, which is controlled by the k nearest neighbour solution AI. This is known as

the execution phase.

The code for the k nearest neighbour solution AI has been developed to mimic the first fighter (on the

left hand side of the screen). During the execution phase, the first player shall be mimicked by the AI

fighter, who shall appear on the right hand side of the screen (traditionally where the second player

would be).

6.2.2 Operational Data Capture and Analysis

The first step in mimicking a human player is collating the necessary data from the human vs. human

bouts. This is achieved by recording the data in real-time and then spooling these data to a file.

Pertinent data to be spooled includes the action made by each player, and the parameters at the time

of performing the action. While data against moves performed by both players are recorded, the focus

is on the first player (left-hand-side of the screen). Table 6.1 below shows a sample of data recorded

during a bout between two human players.

As shown in Table 6.1, data are spooled whenever an action is performed by either player, with the

move column containing a single letter identifying the action made. The second player’s moves are

83

also recorded and are prefixed and suffixed with an asterisk (*). Each entry has a timestamp and play-

through number, which signifies the iteration within the same strategy is being played. These two

attributes combined form a primary key for these data. For the research conducted in this Thesis, each

strategy is played three times. Other data collected include the six in-game parameters, player 1

health, player 1 stamina, player 1 morale, player 2 health, player 2 stamina and player 2 morale. The

distance between the two fighters is also recorded.

Once the data have been collected from the bouts, operations are determined as being either single

moves or combinations. While a single button press during gameplay instigates the capture and

spooling of data, and each button press has a separate row, moves performed in very quick succession

(within 0.2 seconds of each other) are considered to be combinations, and are identified as being

single operations during the data capture phase.

3Table 6.1 – Sample of data spooled from human vs. human

Time
Opponent Player Player to be mimicked

Distance Moves Play
Health Morale Stamina Health Morale Stamina

1.057 100 50 100 100 50 99 5.210001 j 1

1.427 100 50 100 100 50 98 5.210001 j 1

2.015 100 50 100 100 50 97 4.310001 j 1

3.123 98 50 98 98 50 95 4.850002 j 1

3.124 97 50 97 98 50 95 4.850002 *j* 1

3.159 97 50 97 97 50 94 4.850002 j 1

3.495 97 50 97 97 50 93 4.760002 j 1

3.771 96 50 97 97 50 92 4.130002 j 1

3.772 95 50 96 97 50 92 4.130002 *j* 1

4.097 95 50 96 96 50 91 4.130002 j 1

4.098 94 50 95 96 50 91 4.130002 *j* 1

4.440 94 50 95 95 50 90 4.130002 j 1

8.958 86 50 85 89 50 79 3.860002 *3* 1

20.26 79 50 54 68 50 67 4.820003 b 1

20.28 79 50 54 68 50 67 4.820003 b 1

20.32 79 50 54 68 50 67 4.820003 b 1

20.39 79 50 54 68 50 67 4.820003 b 1

84

Figure 6.1 below shows the high level data flow from the human vs. human bout, through to the point

of execution during the human vs. AI fighter bout.

7Figure 6.1 – Data Flow for KNN Solution

Figure 6.1 shows that data analysis occurs following the human vs. human bout. This also includes a

record of what is perceived to be move executed as a reaction to another move. A move carried out

by the player to be mimicked is considered a reaction if it is executed within an instant of the opponent

carrying out a particular move. If this is repeated numerous times throughout the bout, it is considered

a reaction and incorporated into a player model that is used during the human vs. AI fighter bout, such

that reactions can also be emulated. Due to a threshold being set on the number of times an operation

is executed in response to the opponents action before it is considered a reaction, this approach to

developing a player model avoids factoring traits that could otherwise be deemed accidental or non-

intentional.

6.2.3 Execution of Solution

Once the data have been captured and data analysis has been carried out to identify moves,

combinations and reactions no further transformations or learning is required to take place offline

ahead of the human vs. human bout. This data analysis gives rise to a model that is spooled to a single

text file. The model continually monitors and accesses this file during the human vs. AI bout while the

AI controls the AI player. These data are read in real-time and ultimately dictate the behavior of the

AI controlled fighter. The next step during the execution phase is to calculate the Euclidean distance

between the query vector r, which represents real time parameters of the game at a given point in

time, and each vector v in the set V, which represents the set of vectors containing game parameters

collated during the human vs. human bout. Namely, the query vector r contains the six in-game

parameters, player 1 health, player 1 stamina, player 1 morale, player 2 health, player 2 stamina and

player 2 morale at a given point in time as a six-dimensional vector.

85

The all-encompassing file that is created from the human vs. human bout, containing the moves that

have been performed as well as the values of the parameters under which they had been performed

is referred to during the execution of the AI. This file contains all v in the set V. From this point, the K

nearest neighbour classifier, where K=1, is used. The values of the parameters represent the vectors

belonging to V, whereas the corresponding moves for each vector form the set of outputs, O. The

Euclidian distance between r and every element v within V is calculated using equation (5).

 (5)

 The vector v in V with the shortest distance to r is determined and the corresponding output from O

is performed. The calculation of the Euclidean distance and selection of the output is performed during

game play. As a result, any premeditated strategy that was being followed during the human vs.

human bout should be replicated strictly by mimicking the operations carried out under certain

circumstances dictated by the in-game parameters. It should be noted that this approach is heavily

reliant on both players following the same strategy during data capture, and the human player during

the human vs. AI fighter bout adhering to that strategy again. This is due to the fact that there is no

framework in place that restricts the moves that can be executed as all operations fall under the same

pool. As a result, if the in-game parameters do not match an example from the data collated initially

during the human vs. human bout, there could be an adverse effect in the performance of the AI that

manifests itself in terms of the AI fighter behavior.

Table 6.2 below contains various rows of data extracted from the file that is read by the AI during the

human vs. AI fighter bout to determine which operation must be executed. The ‘moves’ column

correspond with moves in Appendix 1. Data collected include the six in-game parameters, player 1

health, player 1 stamina, player 1 morale, player 2 health, player 2 stamina and player 2 morale. The

distance between the two fighters, moves executed and timestamps are also recorded.

86

4Table 6.2 – Human Bout Transcript

Time
Opponent Player Player to be mimicked

Distance
Play

through
Move

Health Morale Stamina Health Morale Stamina

1.43 100 50 100 100 50 98 5.210001 1 j

2.01 100 50 100 100 50 97 4.310001 1 j

5.11 92 50 93 94 50 87 4.130002 1 j

5.94 91 50 91 92 50 85 4.130002 1 c

6.94 89 50 87 90 50 82 4.130002 1 j

7.24 88 50 87 90 50 81 4.130002 1 j

7.62 87 50 87 90 50 80 4.130002 1 j

7.98 86 50 86 89 50 79 3.500002 1 j

12.52 85 50 78 85 50 74 4.820003 1 j

13.11 84 50 76 83 50 73 4.820003 1 j

13.46 83 50 76 83 50 72 4.820003 1 j

15.99 81 50 68 77 50 70 4.820003 1 j

2.23 97 50 100 100 50 95 4.670001 3 j

2.61 96 50 100 100 50 93 4.670001 3 c

3.46 94 50 100 100 50 92 4.670001 3 j

3.83 93 50 96 98 50 90 4.670001 3 j

4.13 92 50 96 98 50 89 4.670001 3 j j

4.50 91 50 96 98 50 87 4.670001 3 j

4.80 90 50 95 97 50 86 4.670001 3 j

5.74 89 50 91 94 50 83 4.670001 3 c

9.17 81 50 81 87 50 73 4.670001 3 j

9.51 80 50 81 87 50 72 4.670001 3 j

10.36 79 50 79 85 50 70 4.670001 3 c

12.13 77 50 73 81 50 67 4.670001 3 j j

14.79 74 50 68 76 50 63 4.670001 3 j

This approach is straightforward as it uses a single AI technique, and the majority of processing is done

during the execution phase, leading to few data transformations being required before a model is

created. The k nearest neighbour solution is a viable solution as the strategy should be played back

due to the AI executing operations in accordance to data provided, which adheres to the strategy that

is being mimicked.

87

In instances where no particular strategy is used, and there is no qualitative means of evaluating the

effectiveness of the KNN solution, the expectation is that a quantitative evaluation of the solution

would yield positive results. This is due to the operations belonging to a single pool that is accessible

by the AI from the beginning all the way through the duration of the bout. This non-strategic approach

to playing the game is not the focus of the research carried out in this thesis, but the reality is that

many players of fighting games often rely on ‘button bashing’, a term used for a style of play that is

random and not planned in advance.

6.3 Chapter Summary

The K nearest neighbour solution presented in this chapter utilises nearest neighbour classification

and focuses on playing out strategies based entirely on the operations carried out by the human

player, as well as the conditions under which they are carried out. There are no restrictions in terms

of the pool of moves that can be accessed by the AI at the operational layer at a given time. The theory

behind this approach is that the operations would be executed by the AI under the same

circumstances as they were by the human that is being mimicked. Therefore, if the human player that

is being mimicked is following a pre-meditated strategy whereby moves are being executed under

certain conditions, then this should be replicated by the AI.

This chapter has presented the detailed design that is largely exploiting the AI implemented at the

operational level during execution. The AI mechanism has been explained, as well as the rationale and

potential highlights in terms of its usage. It could be argued that there needs to be strong emphasis

placed on replaying the same strategy with this approach, as this solution may be prone to error due

to the fact that all operations are held centrally in a single pool, with no access control restricting when

an operation is to be executed.

88

Chapter 7 –Data Driven Finite State Machine Solution Design

7.1 Introduction

Building on the work carried out in Chapter 6, a further solution has been designed, implemented

and evaluated in this Thesis. As stated previously, the purpose of examining key techniques during

the literature review in Chapter 4 was to acquire knowledge sufficient enough to create a prototype

solution to pave the way in answering the aforementioned research question. Drawing inspiration

from the work of Lee (2005), the DD FSM solution was split by levels of decision making; strategic,

tactical and operational. As such, the solution was designed to address each level separately.

This chapter provides a detailed description of the architecture and design of the second of the two

solutions to the problem of mimicking human strategies in fighting games. This solution utilises a

number of existing techniques and is based on the notion of using a separate technique for each level

of the decision making process. The solution itself hinges on separating pools of moves, contrary to

the design of the k nearest neighbour approach, and using a data driven finite state machine to

determine which pool of moves to leverage at which time. This chapter provides the detail and

rationale behind the integrated solution architecture, as well as the detailed design for each

component within the architecture. The architecture itself builds on the solutions presented in Saini

et al (2011-1) and Saini et al (2011-2). The remainder of this chapter is structured as follows:

 Section 7.2 provides an overview of the system architecture, detailing the means in which

data flows to create the overall solution that is used during a bout against the AI fighter.

 Section 7.3 provides details on how operational data are captured during the human vs.

human bout.

 Section 7.4 conveys how the operational data are transformed and used to create the tactical

layer of the solution.

 Section 7.5 conveys how the operations and tactical data that are captured are used to

determine the overarching strategy.

 Section 7.6 establishes how the AI is executed once all the data structures have been put in

place.

 Section 7.7 provides a justification for the design by means of existing research that includes

unit test results for the components.

89

7.2 System Architecture

This section provides a high level design of the architecture for the data driven finite state machine

(DD FSM) solution, as well as the rationale for the key design decisions. This section also describes

how the architecture hangs together and how it was used to mimic human player strategies. A detailed

account of how data are passed between core components of the architecture is covered in

subsequent sections.

7.2.1 Context

Once again, the DD FSM solution is reliant on two human players playing against each other a number

of times, using the same strategy each time. These data are recorded in real-time and are transcribed

and saved to a file following each bout. Once the data capture phase has been completed, the data

are fed into the DD FSM solution, which processes the data offline and builds the human strategy from

the top down, building the strategic framework and populating it with the relevant tactics. The

solution is then put into action during a bout between a human and the AI fighter, which is controlled

by the DD FSM solution.

As was the case for the K nearest neighbour solution, the code for the DD FSM solution has been

developed to mimic the first fighter (on the left hand side of the screen). During the execution phase,

the first player shall be mimicked by the AI fighter, who shall appear on the right hand side of the

screen (traditionally where the second player would be).

7.2.2 High Level Data Flow and Conceptual Architecture

Having established the difference between strategies and tactics in Chapter 4, the DD FSM solution

for mimicking human strategies in fighting games is reliant upon various techniques that are instigated

at various points in the decision making process. The problem is split into three tiers; operational,

tactical and strategic. In the context of a one-on-one fighting game, as per the proof of concept game,

an operation can be considered as an execution of a move or combination of moves; whereas a tactic

can be viewed as variety of moves/combination of moves that are executed within a short space of

time to achieve a particular goal. A strategy can be thought of as the bigger picture, piecing all tactics

together and adhering to a set of rules under which circumstances a tactic can be executed, and which

criteria must be met before deploying the particular tactic.

Following the data capture phase, all similar operations are grouped together to form a variety of

groups that can be referred to as tactics. A given tactic contains similar operations (in this case, a move

or combination of moves) that are alike in terms of either the circumstances under which the

90

operations were executed, or in terms of the timing. Details of how operations are grouped into tactics

are provided in Section 7.4.

Once all tactics have been identified, the data are analysed further to determine the rules for moving

from one group of operations to another. These rules are then used to create a data driven finite state

machine, which forms the overarching strategy and is referred to in this research as the strategic level.

Within the data driven finite state machine, the tactics/groups of operations are used to form a state,

with the rules for moving from one tactic to another being defined as a state transition within the data

driven finite state machine’s transition table.

Figure 7.1 below shows the high level data flow from capturing the data from the initial bouts, to

generating the data driven finite state machine. As shown, once the data have been captured, all

operations are identified. Once this has been achieved, tactics are formed and the rules for switching

between tactics are determined. This gives rise to the strategy which is implemented in the form of

the data driven finite state machine. While the solution builds the data driven finite state machine

from the bottom up, starting with the operational level and eventually working up to defining the

strategic level, the execution of the strategy by the AI fighter is from the top-down.

8Figure 7.1 – Data flow for DD FSM Solution

The flow of data give rise to the following architecture (Figure 7.2) that creates the AI when enacted

during the execute phase:

91

9Figure 7.2 – DD FSM Solution Architecture

Architecturally, during the execution phase, the data driven finite state machine sits at the top as it is

the data driven finite state machine that defines the state, and therefore the tactic to be used, which

in turn limits the operations that can be executed. The in-game parameters are monitored and are

constantly compared to the state transition tables that have been built. Should the in-game

parameters cause a state transition, the state shall change and a separate tactic shall be used, with a

different set of operations beneath it. It can be said that the execution of the DD FSM solution

architecture during gameplay relies on data being fed from the top-down due to the fact that the

operation is the final decision to be made and is executed immediately upon selection. The operational

level itself selects an appropriate action from a pool within a current tactic/state by comparing the

current in-game situation with those under which the operation executed by the human player during

the data capture phase.

The DD FSM solution is designed and coded to allow data to seamlessly move between levels during

the execution phase. The following sections provide further details on the design and implementation

of each levels of the DD FSM solution.

7.3 Operational Data Capture

As with the K nearest neighbour solution, data capture is the initial stage of implementing the DD FSM

solution. For the DD FSM solution, data is captured in much the same way as it is for the k nearest

neighbour solution, by recording the data in real-time and then spooling these data to a file. Pertinent

data to be spooled includes the action made by each player, and the parameters at the time of

performing the action. As stated previously, data for moves performed by both players are recorded,

the focus is on the first player (left-hand-side of the screen). Data that is captured takes the same

format as that previously shown in Table 6.1. Once again, key data collected includes the six in-game

parameters, player 1 health, player 1 stamina, player 1 morale, player 2 health, player 2 stamina and

player 2 morale, as well as the distance between the two fighters. The timestamp of the moves as well

as the iteration of the bout are used as the primary key for the data.

92

Once again, after the data have been collected from the bouts, operations are determined as being

either single moves or combinations. While a single button press during gameplay instigates the

capture and spooling of data, and each button press has a separate row, moves performed in very

quick succession (within 0.2 seconds of each other) are considered to be combinations, and are

identified as being single operations during the data capture phase. The threshold of 0.2 seconds is

used this would require fast inputs on the part of the player, and makes for a convincing combination

threshold akin to what is seen in martial arts. Once all operations across each play-through have been

identified, the next step is to group like operations into tactics, such that each group signifies a tactic

and contains a pool of operations. These groups / tactics shall eventually be used as states within the

data driven finite state machine.

7.4 Generating the Tactical Level

Having established all operations related to a series of bouts that exhibit a common strategy, the next

step is to create individual tactics that shall be used as states within the data driven finite state

machine. There is an underlying assumption that the player being mimicked uses the same strategy

each time. This section provides the detailed design for the creation of the tactical level and discusses

the AI techniques used to group similar operations together.

7.4.1 Detailed Design

As stated, the overall solution addresses each of the levels of decision making with a different

technique; an all-encompassing data driven finite state machine is used at the strategic level,

hierarchical clustering is used at the tactical level, and K Nearest Neighbour classification is used at

the operational level. Figure 7.1 shows the flow of data as well as the stages at which various

techniques are used within the system architecture.

Once the operational data are collected, and before the moves within the collated data can be used

to form the states for data driven finite state machine (DDFSM), they must be assigned some

meaningful values such that like-instances can be grouped.

In Saini et al (2011-2), operations were assigned meaningful values and assigned to tactics. This was

achieved by quantifying each of the moves and combinations of moves (herein known as a move-set)

performed to a vector X, such that X = (x1, x2, x3, x4, x5, x6, x7, x8), where x1…x8 represent the

parameters listed in Table 7.1 below.

93

5Table 7.1 – Vector Calculation

Move

x1

No. of

Moves

x2

Total

Damage

x3

Damage

Ratio

x4

No. of

Blocks

x5

No. of

Evasions

x6

No. of

F.Lunges

x7

No. of

B.Lunges

x8

Distance

Jab +1 +1 x2 / x1 Distance

Cross +1 +2 x2 / x1 Distance

Right Hook +1 +3 x2 / x1 Distance

Left Hook +1 +3 x2 / x1 Distance

Uppercut +1 +4 x2 / x1 Distance

Haymaker +1 +10 x2 / x1 Distance

Right Body +1 +2 x2 / x1 Distance

Left Body +1 +2 x2 / x1 Distance

Short Jab +1 +2 x2 / x1 Distance

Short Cross +1 +3 x2 / x1 Distance

Evade

Back
+1 x2 / x1 +1 Distance

L. Evade +1 x2 / x1 +1 Distance

R. Evade +1 x2 / x1 +1 Distance

Push +1 +2 x2 / x1 Distance

Block +1 x2 / x1 +1 Distance

Low Block +1 x2 / x1 +1 Distance

Low Kick +1 +2 x2 / x1 Distance

Sidekick +1 +4 x2 / x1 Distance

F Lunge +1 x2 / x1 +1 Distance

B Lunge +1 x2 / x1 +1 Distance

94

The attribute x1 represents the total number of moves executed in a given operation, while x2

represents the total damage that can be incurred by executing that operation. The damage ratio, x3,

divides the total damage with the number of moves in that operation. The number of blocks are

recorded in x4, evasions in x5, with front lunges and back lunges being recorded in x6 and x7

respectively. The distance between the two fighters when the operation was executed is recorded in

x8. Table 7.1 lists every move in the first column, and in subsequent columns indicates what impact

this move would have on the vector quantisation for x1 to x8. For example, if the move-set was a

single jab executed with a distance of 4.0 between the two fighters, then X = (1, 1, 1, 0, 0, 0, 0, 4).

These vectors were then clustered using complete linkage hierarchical clustering. However, the

distance threshold, beyond which clusters were not amalgamated, had to be manually edited based

on the dataset. To allow for an automated approach, the move-sets are quantified based on a different

vector, X = (x1, x2, x3, x4, x5) where:

x1 represents the percentage of the move-set that is based on attacks;

x2 represents the percentage of the move-set that is based on defending (blocking);

x3 represents the percentage of the move-set that is based on evasions;

x4 represents the percentage of the move-set that is based on lunges (both back and forth);

x5 represents the distance between fighters when the move-set was executed.

The clustering is achieved using the complete linkage hierarchical clustering capability found in

MultiDendrograms (Fernandez and Gomez, 2008), which is used due to its capability to provide

dendrogram data in text format such that it can be analysed and transformed to aid the AI solution.

With the vector now quantified, a static distance criterion of 1.0 can be specified, beyond which

clusters are not merged. The clustered datasets, s0, s1, s2,…., sn, act as states for a DDFSM, with moves

and combinations of moves residing within each state. While the same strategy is played out three

times between two human players, only data from the first bout are clustered. This creates a baseline

for the number of clusters, and reduces the number of anomalies during this crucial phase of the

process. Once a baseline has been created, the data from the remaining two bouts are classified

against the baseline. This is achieved using K nearest neighbour classification to align each of the rows

of data from the remaining bouts to a class identified during the clustering phase.

As stated, each move within the initial bout dataset is quantified as a vector x, such that x = (x1, x2,

x3, x4, x5) as defined above. K nearest neighbour classification is utilized by calculating the Euclidean

distance between a query vector, y = (y1, y2, y3, y4, y5), representing a quantified move within the

95

subsequent bout dataset, and each clustered vector, x. The Euclidean distance is calculated using

equation (5) in much the same way it is calculated for the k nearest neighbour solution in Chapter 6.

Once the Euclidean distance between a query vector, y, and each clustered vector, x, is calculated, the

shortest distance is identified and y is classified to the corresponding state. This is repeated for each

move within the subsequent bout dataset, resulting in each move over the remaining two bouts being

classified to a particular state.

This approach to quantifying the vectors, x, can lead to a significant amount of state transitions as

move-sets are quantified without taking into account the states of neighbouring moves. For example,

if the player throws a jab, then lunges back, then throws another jab, under the revised vector

quantisation, this would result in two state transitions to execute these three moves. Due to this, it is

highly unlikely that the strategies of each of the three human vs. human bouts shall be interpreted as

being consistent with one another. To rectify this issue, and to ensure strategies are interpreted

consistently, a novel algorithm has been developed and deployed in the DD FSM solution. The

algorithm is executed after the clustering and classification of tactics to states and involves the

following steps:

1. Data from each bout, containing which state each move-set belongs to, are listed in

chronological order and state transitions are determined (not the transition functions).

2. The transition sequences from each bout are compared with one another to check if they are

consistent.

3. If the transition sequences are all in line, then the algorithm terminates.

4. If the transition sequences are not in line, the bout with the longest sequence (and hence the

most state transitions) is examined and the shortest state visit is identified (for example, a

state may have only been visited to execute one move, then the state was exited).

5. The shortest state visit is merged with its largest neighbour. This is to say that the move-sets

executed in this state for this particular transition are added to the state that was either

transitioned from the state in question, or transitioned to the state in question (depending on

which of these neighbours is larger in terms of how many move-sets were carried out).

Following the merge, the shortest visit state is removed from the transition sequence.

6. If, following the merge, two like states are in series within the same transition sequence, these

are also merged.

7. The transition sequences for each bout are re-assessed and compared with one another again

to see if they are consistent. If the sequences are consistent, the algorithm terminates here.

96

8. If the sequences are not consistent, steps 4 – 7 are repeated until they transition sequences

line up.

The above algorithm ensures that each bout’s individual data driven finite state machine is consistent

with that of its peers and, as such, transition functions can be determined by comparing like-for-like

FSMs.

7.5 Strategic Level

This section provides details on the design and implementation of the data driven finite state machine

itself to address decisions made on the strategic level of the DD FSM solution, and reproduce these

decisions during a human vs. AI fighter bout.

7.5.1 Detailed Design

Having established the states, the raw data from the human vs. human bouts are re-analysed and

state transitions determined. As this is a multi-parameter game, the game must be played several

times between the same humans using the same strategies. Upon re-analysing the data, similar state

transitions are identified. This is where the previous, current and next states for one bout are the same

as those for subsequent bouts. For example, all transitions across the multiple bouts where the

previous state was s0, the current state is s1 and the next state is s2, would be collated. The values of

each of the six game parameters for each of the similar transitions are assessed, and the variances

between the parameter values in one transition and those of similar transitions are calculated. If the

variance between two of the same parameters is below a threshold of five, the parameter and its

mean value is considered a transition function for that particular state transition. For example, the

data shown in Table 7.2 could be considered. The threshold value of five was selected based on trial

and improvement, and yielded the best results for the various strategies that were attempted. If no

transition function can be found using five as the threshold, then an average of all parameters for the

transition in question is taken and is used as the transition function. Having previously clustered the

moves to states, once the variances have been calculated, the DDFSM can be generated. By utilizing

the algorithm described, noise can be removed from the clustered dataset and a concise DDFSM can

be generated without erroneous state transitions.

97

6Table 7.2 – Like State Transitions

Prev Curr Next P1H P1S P1M P2H P2S P2M

S0 S1 S2 63 31 51 88 47 86

S0 S1 S2 61 30 40 15 34 65

S0 S1 S2 62 29 23 78 54 73

Variance 0.7 0.7 132.7 1044.3 68.7 75.0

In Table 7.2, ‘Prev’ represents the previous state, ‘Curr’ represents the current state, and ‘Next’

represents the next state. In the remaining columns, ‘P1’ and ‘P2’ represent player 1 and player 2

respectively, which are suffixed with ‘H’ for health, ‘S’ for stamina or ‘M’ for morale. For example,

‘P1H’ means ‘Player 1s Health’.

Table 7.2 shows three similar transitions, as well as the values of each of the parameters when the

transition occurred during the human vs. human bouts. The variance is calculated for each of the six

game parameters. Player 1 health and player 2 stamina have a variance below the threshold;

therefore, it is assumed that these parameters trigger the state transition. The mean value across the

three bouts for these parameters is calculated and is used as the threshold for this particular transition

function. It is deduced that when player 1’s health falls below 61, and player 1’s stamina falls below

30, the AI fighter can move from state s1 to state s2, provided the previous state was s0.

Taking inspiration from Lee (2005), by classifying the levels of play as either strategic or tactical, a

specific AI technique can be used to tackle each level, with information being passed between levels.

The strategic level is governed by a data driven finite state machine (FSM) used to model the players’

various strategies and how/when the player transitions into a particular tactic. While a traditional

finite state machine was previously cited as being a weak technique due to predictability and lack of

flexibility at the tactical level, a data driven finite state machine at the strategic level rectifies these

weaknesses. While the underpinning principal of splitting the decision making process into multiple

levels is similar to Lee’s (2005) architecture, the techniques used here, as well as the context of the

usage varies significantly.

7.6 Execution

The design presented in the previous sections addresses each of the levels of decision making with a

different technique; an all-encompassing data driven finite state machine is used at the strategic level

and hierarchical clustering is used at the tactical level. The strategic level is referred to as being the

98

long term fighting style used throughout the bout, whereas the tactical level is concerned with short

term moves and combinations that facilitate the overall strategy. Finally, the operational level, where

moves are executed in real-time during the human vs. AI fighter bout, is supported by nearest

neighbor classification, which essentially leverages the K nearest neighbour design documented in

Chapter 6.

Figure 7.3 presents the execution process of the DD FSM solution, with example values populated to

help contextulise the process. Having previously clustered the moves to states, and once the variances

have been calculated, the data driven finite state machine can be generated. During gameplay against

the AI fighter, once a state within the DDFSM has been entered, an operation is selected. This is

achieved by calculating the Euclidean distance between the query vector r, which represents real time

parameters of the game at a given point in time, and each vector v in the set V, which represents the

set of vectors containing game parameters collated during the human vs. human bout. The query

vector r contains the six in-game parameters, player 1 health, player 1 stamina, player 1 morale, player

2 health, player 2 stamina and player 2 morale at a given point in time as a six-dimensional vector.

Each state has a corresponding file containing the moves that are to be performed as well as the values

of the parameters under which they had been performed during the human vs. human bouts. The

values of the parameters represent the vectors belonging to V, whereas the corresponding moves for

each vector form the set of outputs, O. The Euclidian distance between r and every element v within

V is calculated using equation (5), much like it is calculated in the k nearest neighbour solution. The

vector v in V with the shortest distance to r is determined and the corresponding output o from O is

performed. The calculation of the Euclidean distance and selection of the output is performed during

gameplay. This entire approach of selecting the appropriate operation during the execution phase of

the DD FSM solution leverages the k nearest neighbour solution in its entirety, making it a component

of a much larger solution.

The proof of concept game code constantly monitors the in-game statistics during the human vs. AI

fighter bout, and cross references against the data driven finite state machine that has been generated

to check for any valid state transitions. If and when a transition occurs during the human vs. AI fighter

bout, the state file corresponding to the current tactic shall no longer be used to select an appropriate

operation. Instead, the data driven finite state machine shall mandate that the newly assigned

‘current’ state file be monitored, as the current tactic and an appropriate operation shall be selected

from this file based on the K nearest neighbour classification.

99

10Figure 7.3 – Execution of DD FSM Solution

As shown in Figure 7.3, each tactic file forms a state within an overarching data driven finite state

machine. The tactic files contain operations and are only accessed when the AI fighter is in that state.

Different tactics files are accessed only when a transition occurs within the DD FSM and a new state is

selected. Once within a state, the operation is selected by performing KNN classification between the

query vector, r, and every vector v, within the current tactic file. The vector v with the shortest

distance to r is selected and the corresponding operation/output, o, is performed. Figure 7.3 shows

three states, each with their own tactic file which contains numerous rows of data to compare the

query vector against.

The example DD FSM solution presented in Figure 7.3 has three states, with the initial state being s0.

When the human vs. AI fighter bout starts, the current state is set to s0 and the corresponding tactics

file is read. K nearest neighbour classification is performed on in-game parameters (player 1 health,

player 1 stamina etc.) using equation (5) to determine which output to select from the s0 tactics file.

Once the operation is selected, the AI fighter moves into position and executes the move. The in-game

parameters are read continuously and operations from the s0 tactics file are executed accordingly. In

the background, the AI monitors stats to spot any state transition functions that may come to fruition.

In the context of Figure 7.3, when the AI fighter’s health drops below 50, a state transition occurs and

the tactics file being read switches from s0 to s1. It is now the s1 tactics file that is used for the K

100

nearest neighbour classification for the query vector representing the current in-game parameters.

Figure 7.3 shows this as being a more defensive state, including blocks as the operations that are to

be executed. Once again, the AI listens for any state transition that may occur, which in this case

happens when the AI fighter’s stamina drops below 47, which may come about due to excessive

blocking. Once this state transition takes place, the s1 tactics file is no longer read, and focus shifts to

the new current state, s2. Once in s2, the in-game parameters are read as with previous states, and

compared to every entry in the s2 tactics file using K nearest neighbour. As suggested by Figure 7.2,

this state appears to be a move offensive state including hooks as the operations to be performed.

There are no further state transitions from here, so the AI fighter remains in s2 until the game is over.

7.7 Design Justification

Once data have been collected, an experiment demonstrating a similar capability in Saini et al (2011-

2) yielded largely positive results. However, this was not without its flaws. The original approach

documented in this paper quantified the vector X such that X = (x1, x2, x3, x4, x5, x6, x7, x8), where

x1…x8 represent the parameters previously discussed and listed in Table 7.1.

These vectors were then clustered using complete linkage hierarchical clustering using equation (3).

This is where the distance between two clusters is defined as being the distance between the two

furthest elements. In Saini et al (2011-2), a distance criterion of two was set, beyond which clusters

are not merged. The clustered datasets, s0, s1, s2,….,sn act as states for a DDFSM, with moves and

combinations of moves residing within each state.

To demonstrate the effectiveness of this approach, a strategy was formulated and played out three

times in human vs. human bouts. The strategy and its associated tactics and operations are highlighted

in Table 7.3 below. The ‘Description’ column in Table 7.3 contains short text describing the current

segment of the strategy and how the player should be playing the game. The ‘Moves Performed’

column is self-explanatory and contains the operations that should be performed during that

particular phase of the bout. Moves within the same set of square brackets are to be considered

combination and should be executed in quick succession as a single operation.

101

7Table 7.3 – Strategy for Human vs. Human Bout

Description Moves Performed

Begin by performing long range

moves/combinations at a distance.

[Jab, Cross]

[Jab, Jab, Cross]

[Jab]

[Cross]

If health depletes below 68, block

opponents attacks

[Block]

[Low Block]

If stamina depletes below 55,

begin evading the opponent’s

attacks.

[Evade Back]

[Evade Left]

If player’s morale exceeds 75,

begin performing close range

attacks.

[Uppercut, Right

Body]

[Uppercut]

[Right Body, Left

Body]

[Low Kick, Left

Body]

After collating the data from the three human vs. human bouts, the clustering is performed using

the complete linkage hierarchical clustering capability found in MultiDendrograms (Fernandez and

Gomez, 2008). The clustering gives rise to states, each containing tactics as outlined in Table 7.4

below. Hierarchical clustering was used to offer a level of flexibility and avoid the use of pre-

determined states, as exhibited in Saini et al (2011-1). The ‘State’ column represents individual

clusters, with the ‘Operations’ column listing the operations/moves-sets belonging to that particular

cluster.

102

8Table 7.4 – Generated States

State Operations

s0 [Jab, Cross] [Jab, Jab, Cross] [Jab]

[Cross]

[Right Body, Left Body]

[Uppercut]

s1 [Block] [Low Block]

s2 [Evade Back] [Evade Left]

s3 [Uppercut, Right Body] [Uppercut]

[Right Body, Left Body] [Low

Kick, Left Body]

s4 [Uppercut]

Once the states have been established, like state transitions are identified and variances between the

parameters amongst the like-counterparts are calculated. The data driven finite state machine

described in Table 7.5 is created and used during the human vs. AI fighter bout. The first three columns

of Table 7.5 represent the previous, current and next states respectively, with the fourth column

stating the transition function that must come to fruition in order for the DD FSM to move from the

current state to the next state.

9Table 7.5 – Data Driven Finite State Machine

Previous Current Next Transition Function

null s0 s1 AI Health < 67

s0 s1 s2 AI Stamina < 52

s1 s2 s3 AI Morale > 76

The FSM shown in Table 7.5 is in accordance to the strategy outlined in Table 7.3. When the DDFSM

is actioned during gameplay, once within a state, the appropriate moves are selected. Table 7.6

contains snapshots of data at certain intervals, outlining the moves that were performed under

various circumstances. The first three columns of Table 7.6 contain the human player’s health, morale

and stamina respectively. The next three columns contain those of the AI fighter, with the final column

103

detailing the moves that were carried out by the AI fighter when the aforementioned statistics in

occurred. Table 7.6 shows that the moves selected at the operational level from the pool of moves

within each state fall in line with the strategy outlined in Table 7.3, therefore demonstrating the

usefulness of the technique.

10Table 7.6 – Realtime Data Snapshots

P1

Health

P1

Morale

P1

Stam

AI

Health

AI

Morale

AI

Stam

Moves

100 50 100 100 50 99 Jab, Jab

90 50 78 81 50 89 Cross

89 50 78 81 50 88 Cross

88 50 76 78 50 87 Jab, Cross

87 50 65 66 50 84 Block

87 50 59 66 50 78 Block

87 50 52 66 50 73 Block

87 50 46 66 50 68 L Block

87 50 37 66 50 59 Block

87 50 31 66 52 53 Back

87 50 23 66 68 53 Back

87 50 20 66 74 53 Back

83 50 19 66 76 50 Upper

55 50 19 66 76 44 Upper

51 50 19 66 76 42 R.Body L.Body

31 50 19 66 76 38 R.Body

23 50 19 66 76 36 L.Body

The results of the demonstration presented in Tables 7.4, 7.5 and 7.6 indicate that both the tactics

and the overall strategy have been successfully mimicked. There are no restrictions on the number of

states that can be implemented. Furthermore, this proposed architecture can cater for multi-

104

parameter transitions. However, there was no noise reduction or data smoothing implemented. This

led to anomalies in the data caused by human error during the human vs. human bouts, which have

the potential to prevent the successful application of this approach.

If a human player does not play out their strategy exactly in a number of bouts, the variance between

like transitions may exceed the threshold, thus invalidating the DDFSM. Further to this, the vector

calculation presented in Table 7.1 treats each value of the input vector with equal importance. In the

approach represented in Saini et al (2011-2), there is no means of weighing certain elements of the

vector V, to give them more importance when determining the state that particular operation should

belong to. For example, Table 7.4 shows various attacks belonging to s0, including left/right body shots

and uppercut, largely because these moves were performed at the same distance as the intended long

range moves. These moves were not executed during the human vs. AI fighter bout as the Euclidean

distance was shorter to the jab and cross moves, however, they should not belong to s0. There is

potential to rectify this by assigning weights to each value of the vectors.

It could also be argued that this technique is not entirely automated due to the human intervention

in selecting a sensible distance criteria beyond which clusters are not merged. Additional

enhancements were required to smooth the data and to ensure the strategy has been interpreted

correctly.

To rectify this, a key design decision is made with regards to the tactical level, and generating the

states, within which the operations shall reside, pertaining to the vector quantisation of the

operations. The design proposed in this chapter has the operations being quantified to a vector X =

(x1, x2, x3, x4, x5) as described in Section 7.4.1.

The design documented in this chapter follows lessons learned from the research documented in Saini

et al (2011-2), as the revised 5-dimensional vector quantisation provides a more meaningful

representation of the operations, as well as enabling the distance criterion of the hierarchical

clustering to be fixed at 1.0, while providing consistent results. To aid this enhancement and to ensure

there was a level of data smoothing, such that the number of states would not make for un-

implementable finite state machines, the algorithm described in Section 7.4.1 was developed.

7.8 Chapter Summary

This chapter has presented the high level architecture for the second of the two proposed solutions

for the problem of mimicking human player strategies in fighting games. The DD FSM solution is reliant

on a number of existing AI techniques including data driven finite state machines, K nearest neighbour

105

classification and hierarchical clustering. The usage of the different AI techniques accommodate the

approach of splitting strategies and tactics, with a different technique addressing each level of the

decision making process. Details of a novel algorithm that has been developed to aid the architecture

have also been provided. The novel solution presented in this chapter also differentiates between

capturing the data, interpreting and subsequently identifying strategies and tactics, before finally

executing the strategy. A justification for the architecture has been provided.

Having established the design for a solution to the problem pertaining to mimicking human strategies

in fighting games, the solution can now be implemented. Following implementation, the solution can

be evaluated using the proof of concept game described in Chapter 5 as a test bed. A suitable means

of evaluating that this solution is fit for purpose must be established. The design and execution of such

an evaluation in covered in Part III of this Thesis.

106

Part III – Evaluation and

Conclusion

107

Chapter 8 - Evaluation

8.1 Introduction

Up to this point, the problem domain related to mimicking human strategies in fighting games has

been defined, as well as two proposed solutions for solving this problem. A detailed design has been

provided for each solution, as well as a justification for the base architectures and implementation

methods. An evaluation study has been carried out to evaluate the two proposed solutions. This

determines whether the solutions are fit for purpose, as well as identifying whether or not one

solution performs better than the other. This chapter provides details how each of the proposed

solutions are to be evaluated. Each solution is subject to the same experiment, with the same set of

test data. The experiment design is described as well as the strategies that drive the data being fed

into each solution. This chapter also provides the results as well as the analysis and interpretation of

the results.

It was important that both solutions were evaluated thoroughly. To this end, both qualitative and

quantitative measures were taken by having expert gamers observe and evaluate the effectiveness

of the techniques, as well as capturing transcripts of the bouts in question. Both solutions were

evaluated in the same manner, providing a comparison of multiple techniques.

Both techniques are evaluated by means of an experiment, which has been designed to conduct both

a quantitative and qualitative analysis of each of the techniques. A qualitative measure of how human

perceives the AI fighter to be performing is taken, as well as transcripts of moves carried out during

each bout between humans and corresponding bouts between a given human player and the AI

fighter.

8.2 Experiment Design

Having considered the success criteria, as well as the aims and objectives of the research, an

experiment was designed and carried out to evaluate both the k nearest neighbour and data driven

finite state machine (DD FSM) solutions. Special considerations were given to the success criteria for

the solutions being evaluated. Quantitative and qualitative measurements were used based on the

reasons given below.

A qualitative measure is required to understand the perceived performance of the AI, as ultimately,

in a real world scenario when playing any videogame, it is a human player who must evaluate how the

AI is performing. Although, in the real world, this is typically against a criteria of whether or not the AI

108

is good or is playing sensibly. In the context of this research, this criteria is adjusted such that a human

is taking a qualitative measure on how the AI is performing in terms of playing out the strategy of a

given human player. An additional criteria to whether the AI is being perceived to play out a particular

strategy, is whether the AI is actually ‘behaving’ as a human would. Therefore, an assessment must be

made by a human as to the closeness of the AI mimicking behaviour. A quantitative measure is

required to either support, or refute the finding of the qualitative evaluation. This is an important

measure as it quantifies the usefulness of the AI, but also enables a view on the qualitative evaluation

in terms of either lending credibility to the perception of the human subjects, or by suggesting that

perception of the AI performance is a far cry from the reality. Combining these two types of evaluation

and generating results from the same source data and experiment is critical to understanding whether

either, or both of the AI solutions are fit for purpose, or if one is superior to the other in particular, if

not all circumstances.

This is achieved by first having two human players play against one another in the proof of concept

game described in Chapter 5, with the first player adopting a pre-defined strategy, while the second

player is left to play the game as he/she chooses, but must play this way with consistency for each

bout where their opponent is leveraging a particular strategy. Both players are to engage in combat

using the PlayStation 3 Sixaxis control pad. The pre-defined strategy is played by the same player three

times, i.e. over three separate bouts. Each pre-defined strategy is fully known to the first player who

is responsible for acting out the strategy. The high level strategy is summarised, as well as pivotal

moments when the tactics must change. These ultimately involve monitoring all in game statistics and

knowing when to change tactics, as well as the operations to use when executing a particular tactic.

There are a total of ten pre-defined strategies outlined in Table 8.3, that are played out three times

each, making for a total of thirty bouts. It is imperative that each strategy is played out accurately by

both players in each bout. Data collated from bouts containing an abundance of human generated

errors due to the strategy not being played out properly shall be expunged and relevant human vs.

human bout shall be played out again. Each of the thirty bouts are individually video captured for

reference as these videos shall play a large part in the qualitative evaluation. Following these bouts

during the data capture phase, the data generated for each bout of a given strategy are used to build

both a K nearest neighbour and DD FSM model. This is repeated for each strategy, however the data

are segregated so as to ensure each AI is only representing a single strategy. In the case of the DD FSM

approach, when the model is being generated as described in Chapter 7, the data driven finite state

machine is defined, as well as the states which represent tactics. The DDFSMs are recorded in Table

109

8.4. Once the DD FSM solution and KNN solution have generated the models for each of the ten

strategies, the human vs. AI fighter bouts can commence.

The human vs. AI fighter bouts for both techniques are video captured and transcripts of the AI

fighter’s actions are recorded. This makes for two additional videos per strategy as each solution is

captured in its own video. The transcripts are generated in much the same way as during the data

capture phase, with each entry having a timestamp as well as each of the six in game parameters;

player 1 health, player 1 stamina, player 1 morale, player 2 health, player 2 stamina and player 2

morale. The distance between the two fighters is also recorded. As during the data capture phase,

data are only captured and spooled when an operation is executed. These transcripts, along with the

data driven finite state machine definitions created during pre-processing, shall form the foundation

of the quantitative analysis. Table 8.1 and Table 8.2 below contain an extract of data taken from such

transcripts of the DD FSM solution and KNN solution respectfully.

11Table 8.1 – DD FSM Solution Transcript

Opponent Player AI Player
Distance State

AI Player

Moves Health Morale Stamina Health Morale Stamina

100 50 100 100 50 100 5.660001 s2 _ u_

100 50 98 96 50 100 4.490001 s2 _ j j_

100 50 96 94 50 100 4.490001 s2 _ c j_

100 50 93 91 50 100 5.300004 s2 _ j c_

99 50 90 88 50 98 4.850004 s2 _ j_

98 50 89 87 50 97 4.850004 s2 _ j c_

82 50 79 77 50 82 4.670002 s2 _ j j_

80 50 77 75 50 79 4.670002 s2 _ j j_

65 50 63 59 50 63 3.590002 s2 _ j j_

64 50 57 51 50 62 4.490002 s2 _ j_

59 50 56 50 50 58 4.490002 s1 _ u_

58 50 48 46 50 51 4.670002 s1 _ b b b b_

58 50 44 46 50 47 4.670002 s2 _ b b b_

58 50 41 46 50 45 4.490002 s2 _ 1 1_

57 50 39 42 50 42 3.680002 s2 _ 1_

47 50 36 36 50 34 3.410002 s2 _ 1_

47 50 35 34 50 29 4.220003 s2 _ 1_

33 50 34 32 50 20 4.760001 s2 _ 1 j u_

110

12Table 8.2 – KNN Solution Transcript

Opponent Player AI Player
Distance Moves

Health Morale Stamina Health Morale Stamina

100 50 100 100 50 100 8 __

100 50 100 100 50 100 5.570001 _ u_

100 50 98 96 50 100 4.580001 _ j j_

100 50 96 94 50 100 4.580001 _ j c_

100 50 93 91 50 100 4.580001 _ j_

100 50 92 90 50 100 4.580001 _ c j_

100 50 89 87 50 99 5.030005 _ j j_

97 50 87 85 50 93 4.490004 _ j_

74 50 86 84 50 77 5.210003 _ j_

73 50 85 83 50 75 5.660001 _ j j_

70 50 83 81 50 70 4.760001 _ j_

67 50 82 80 50 62 4.130001 _ c_

64 50 80 78 50 58 4.580002 _ b_

64 50 80 78 50 56 5.570002 _ c c_

62 50 76 74 50 51 4.490002 _ b b b b b b_

61 50 70 74 50 45 4.580002 _ j b_

60 50 67 73 50 44 4.580002 _ b b b b b b_

60 50 61 73 50 40 4.580002

_ b b b b b b b

b_

60 50 57 73 50 36 4.580002 _ b b b b b b_

60 50 53 73 50 33 4.580002 _ u_

58 50 50 69 50 32 4.130001 _ u u_

58 50 46 61 50 30 3.590001 _ 1 1_

Both the human vs. human, and the human vs. AI fighter sets of videos that are captured play a pivotal

part of the evaluation of each of the techniques as they are viewed by ten individuals, referred to as

observers. Each of the observers is familiar with fighting games in general, and the mechanics of the

proof of concept game created for this research. They have spent time learning the rules of the game,

and understanding the possible strategies that could be at the players’ disposal given the arsenal of

moves and actions available. The group of observers is made up of avid gamers that spend time playing

commercial fighting games, thus giving them an appreciation for the proof of concept game, as well

111

as the overall aim of the experiment. As preparation for this experiment, each observer is shown a

video of a human vs. human bout for each strategy, and is provided with the strategy breakdowns in

Table 8.3. This is to give them a feel for how a known strategy is played out between humans, as well

as enhancing their ability to notice changes in tactics and identifying particular actions based on their

animations.

Having familiarised each observer in exactly what the ten strategies are (see Table 8.3), as well as their

appearance and animations when played out by a human playing against another human, the next

step is to assess the AI solutions in a qualitative manner. To achieve this, each observer is shown a

further four videos per strategy. It should be noted that from this stage of the experiment onwards,

the observers are to partake in the experiment in isolation from the other observers so as to rule out

any influential factors. For each of the four videos, the observers are asked whether or not the strategy

in the video is representative of the documented pre-defined strategy in question. This fulfils the

criteria of performing a qualitative analysis on whether or not the AI has indeed accurately executed

the strategy in question. The observer is also asked to identify whether the strategy being played out

in the video is being executed by the human or the AI player. This fulfils the criteria of performing a

qualitative analysis on whether the AI can execute the strategy without making it obvious that it is an

AI player. In reality, the four videos per strategy comprise of

 Two videos of the human vs. human bouts

 One video of the human vs. DD FSM AI bout

 One video of human vs. KNN AI bout

It should be noted that the observer is tasked with determining which of the on-screen fighters is

playing out the strategy before coming to any conclusions.

Table 8.3 outlines the 10 strategies that are to be played out and observed. The first column identifies

that strategy number, which is a unique identifier. The second column, distance, states roughly how

far the fighters should be from one another during a particular phase of the strategy. ‘Close’ suggests

the fighters should be right next to each other, medium suggests that the fighters should be up to, but

no more than a quarter screen away from each other, and anything beyond that is deemed far. The

moves column states which move-sets / operations should be carried out during that phase of the

strategy and the transition column states the parameter transition that must come to fruition before

moving to the next phase of the same strategy.

Table 8.4 details the finite state machines that were generated by the DD FSM solution. Each strategy

number listed in column one corresponds to those in Table 8.3. Columns two to five in Table 8.4

112

contain information on the FSMs including the previous, current and next state, as well as the

transition function to get from the current state to the next. The remaining columns list the move-sets

/ operations that are executed in each state of the given strategy.

113

13Table 8.3 – Human Strategies Outline

Strategy Distance Moves Transition

1

Medium

Jab

P1 Health<70 Jab Jab

Jab Cross

Close Block P1 Stam<50

Close

R Body

N/A L Body

Short Jab, Short Cross

2
Close Evasions P1 Moral>75

Close Haymaker N/A

3

Medium

Hooks

P1 Stam<70 Jab Jab Cross

Jab Cross

Far Side Kick P1 Health<20

Close Block N/A

4

Medium Lunge Forward, Lunge Back, Jab P1 Stam<50

Close Body Shots, Uppercut P1 Health<20

Close Block N/A

5

Medium Evasions, Jab, Cross
P2 Health

< 80

Close Uppercut, Body Shots P1 Health<60

Close Block N/A

6
Medium Hooks P2 Health < 50

Medium Haymaker, Side Kick,, Cross N/A

7

Medium Jab Cross, L/R Hooks P1 Health < 60

Medium Evasions P1 Morale > 75

Medium Haymaker N/A

8

Medium Lunges, Jab P1 Stamina <60

Far/Medium Side Kick, Evasion P1 Health < 50

Medium Cross, Jab P1 Health < 20

Close Block N/A

9 Varies Random
N/A

10 Varies Random
N/A

114

14Table 8.4 – Data Driven Finite State Machines

Strategy Previous Current Next Transition State 1 State 2 State 3

1

Null State 2
State

1

Human Stamina

below 56.

AI Health below

68.

Block
Jabs, Cross.

State 2 State 1
State

2

AI Health below

66.

AI Stamina below

45.

Uppercut, short

jab, short cross,

left body blow,

right body blow.

2 Null State 1
State

2

AI Morale above

82.

Back

evasion.
Haymaker

3 Null State 1
State

2

AI Health below

22.

Jab, Cross.

Left hook,

Right

Hook, Side

Kick

Block

4 Null State 2
State

1

AI Health below

18.

Block,

Low

Block, Jab

Back/Forward

Lunges. Jab,

Uppercut,

Left/Right body

blow.

5

Null State 1
State

2

AI Health below

96.

Jab, Cross,

Uppercut,

Left/Right

Body Blow

Evasions Block

State 1 State 2
State

1
Averages taken

State 2 State 1
State

2
Averages taken

State 1 State 2
State

3

AI Health below

58.

6 Null State 1 N/A N/A

Cross, Jab,

Left/Right

Hooks,

side kick,

haymaker

115

Strategy Previous Current Next Transition State 1 State 2 State 3

7

Null State 1
State

2

AI Health below

60.

AI Stamina below

72.

Jab, cross,

left/right

hooks.

State 1 State 2
State

1

AI Health below

58.

AI Morale above

76.

AI Stamina below

67.

Haymaker Evasions

8

Null State 2
State

1

Human Stamina

below 96.

AI Health below

96. Evasions

Side Kick

Jab, Cross, Side

Kick, Lunges

Block

Low

Block State 2 State 1
State

2
Averages taken.

State 1 State 2
State

3

AI Health below

19.

9 Null State 2 N/A N/A N/A Misc.

10 Null State 2 N/A N/A N/A Misc.

8.3 Experiment Results

The results for the observers’ perception are recorded in Table 8.5. Each observed video is attributed

one of the following:

 H, signifying the observer has deemed the strategy to have been executed by a human player.

 AI, signifying the observer has deemed the strategy to have been executed by an AI player.

 NA, signifying the observer has deemed the strategy in the video to be non-representative of

the strategy in question.

These results are collated further in Figure 8.1, which shows the split between AI, H and NA for the DD

FSM solution. This information is also shown for the K nearest neighbour solution in Figure 8.2. Figure

8.3 shows the overall picture, combining data from Figure 8.1 and Figure 8.2.

116

15Table 8.5 – Observations

 Observers

Video Video Description 1 2 3 4 5 6 7 8 9 10

1 Strategy 1 Human 1 H H H H H H H H H AI

2 Strategy 1 Human 2 H H H H H H H H AI H

3 Strategy 1 DDFSM NA H NA H H AI AI AI H AI

4 Strategy 1 KNN AI AI H H H AI H H H H

5 Strategy 2 Human 1 H H H H H H H H H H

6 Strategy 2 Human 2 H H H H H H H H H H

7 Strategy 2 DDFSM AI H H H H AI H H H AI

8 Strategy 2 KNN AI H H H H H AI H H NA

9 Strategy 3 Human 1 H H H H H H H H H H

10 Strategy 3 Human 2 H H H H H H H H H H

11 Strategy 3 DDFSM H H H H H AI H AI H H

12 Strategy 3 KNN NA H NA H AI AI H AI NA H

13 Strategy 4 Human 1 H H H H H H H H H H

14 Strategy 4 Human 2 H H H H H H H H H H

15 Strategy 4 DDFSM H AI H H H H AI H H AI

16 Strategy 4 KNN H NA NA H AI NA AI H AI H

17 Strategy 5 Human 1 H H AI H H H H H H H

18 Strategy 5 Human 2 H H H H H H H H H H

19 Strategy 5 DDFSM NA NA NA NA NA NA AI AI NA NA

20 Strategy 5 KNN AI H NA AI AI NA H H AI NA

21 Strategy 6 Human 1 H H H H H H H H H H

22 Strategy 6 Human 2 H H H H H H H H H H

23 Strategy 6 DDFSM AI AI AI H H H H AI AI H

24 Strategy 6 KNN AI AI H H H H H AI H H

25 Strategy 7 Human 1 H H H H H H H H H H

26 Strategy 7 Human 2 H H H H H H H H H H

27 Strategy 7 DDFSM AI H H NA AI H NA NA H H

28 Strategy 7 KNN AI AI NA AI NA AI H NA H H

29 Strategy 8 Human 1 H H H H H H AI H AI H

30 Strategy 8 Human 2 H H AI H H H AI H H AI

31 Strategy 8 DDFSM H NA NA NA AI AI H NA AI AI

32 Strategy 8 KNN AI AI AI NA AI NA AI NA N/A AI

33 Strategy 9 Human 1 H H H H H H H H H H

117

 Observers

Video Video Description 1 2 3 4 5 6 7 8 9 10

34 Strategy 9 Human 2 H H H H H H H H H H

35 Strategy 9 DDFSM H H H AI H AI H H AI H

36 Strategy 9 KNN H AI H H H H H AI H H

37 Strategy 10 Human 1 H H H H H H H H H H

38 Strategy 10 Human 2 H H H AI H AI H H AI H

39 Strategy 10 DDFSM H H H H H AI H H H H

40 Strategy 10 KNN AI AI H H H AI H AI H H

11Figure 8.1 – Observer Perception of DD FSM Performance

12Figure 8.2 – Observer Perception of KNN Performance

118

13Figure 8.3 – Observer Perception of Both Solutions Combined

Figure 8.1 shows that the DD FSM solution produced videos that were largely interpreted as exhibiting

strategies played by a human player, with 54% of interpretations being categorised as such. Further

to this, 29% of the videos were interpreted as correctly mimicking the strategy in question, although

notably considered to be played out by the AI player. The DD FSM solution also yielded 17% of

observations that were considered to incorrectly mimic the strategy in question. Table 8.5 shows that

these interpretations are mostly of strategies 5, 7 and 8. Figure 8.2 shows that the KNN solution

yielded similar results to the DD FSM solution, albeit with slightly more videos being interpreted as AI

driven. Of the 100 observations, 49 considered the video to exhibit strategies played out by a human

player, 34 were considered to be played out by an AI player, and 17 were considered to inaccurately

mimic the strategy. The results presented in Figure 8.1 and Figure 8.2, as well as the breakdown in

Table 8.5 suggest that the strategies have largely been successfully mimicked, with only 17% of the

observations in each case being considered to have been non-representative of their corresponding

strategy.

A closer look at the results reveals that this 17% is not common across both techniques, with the DD

FSM solution categorically failing to reproduce strategy 5 convincingly. Based on notes collated by the

observers, and a closer look at the FSM for this strategy in Table 8.4, it is apparent that there are more

state transitions factored into the execution of this strategy than are needed. This could be attributed

to poor source data gathered during the human vs. human bouts. Further to this, by its own nature,

the strategy lends itself to rapid state transitions between executing lunges and throwing attacks. If

this is not done with consistent timing and planning across all three human vs. human bouts, then

states shall not be merged as expected.

Further ‘NA’ results for the DD FSM solution also include strategies 7 and 8, however, this is consistent

with the results for the KNN solution. Observers commented on the DD FSMs use of strategy 7 showed

119

premature throwing of a single punch while the fighter should have been evading, as well as the fact

that evasions did not start promptly following the AI fighter’s health dropping below 60. The throwing

of the punch is most likely an inadvertent reaction driven data collected during the human vs. human

bout. Strategy 8 is a complex strategy combining lunges, evasions, attacks and blocks. The FSM for this

strategy does not accurately represent the flow through states as intended when the strategy had

been documented. While the strategy is largely met, because of the fact that averages were taken to

transition from state 1 to state 2, this violates the documented strategy and the AI fighter enters state

2 and begins jabbing before the documented strategy would have them do. The fact that averages are

taken that are inconsistent with the documented strategy suggests that the source data were not as

clean and consistent as expected.

Generally speaking, it is apparent that KNN solution generated AI fighters that were considered not to

have accurately mimicked the strategy due to prematurely executing moves ahead of the threshold

parameters being met. For example, in strategy 8, the AI fighter being controlled by the KNN AI begins

evading too early, and mixes jabs and crosses with the evasions, hence violating the strategy. Another

example can be found during strategy 4 where the fighter blocks some time before its health is

depleted beyond 20. This strongly suggests that the KNN solution suffers as there are no structures to

conform to, like those provided by FSMs.

However, the rigidity offered by the DD FSM solution often causes additional parameters to be

considered part of the transition functions, as evidenced in Table 8.4. The first transition in strategy 1

requires the player’s health to have depleted by 70, and nothing more. However, based on the data

collated during the human vs. human bouts, the DD FSM considers the opponent’s stamina to drop

below 56 as a further requirement. This does not cause a great issue, as in most cases, these residual

transition functions are met by default, especially if the human opponent is playing the AI in such a

way that the bout between the two humans is replicated.

The DD FSM solution does offer a level of flexibility to the degree that there may only be one single

state from which the operations are selected, which is exactly how the KNN solution works. For the

solution to create such a DDFSM, the data across all human vs. human bouts must be sporadic as if no

strategy is being used. This was the approach for strategies 9 and 10. Ultimately, the AI model for both

DD FSM and KNN solutions were identical in that both architectures had a single pool of operations

and tactics and there was no structure in place safe-guarding certain move-sets. This was also the case

for strategy 6. However, in this instance it was due to the fact that all move-sets had been clustered

to the same state. In the cases of strategies 9 and 10, the focus was on replicating the sporadic,

reactive nature of the fighter being mimicked. Judging by the results, this was successful.

120

Based on discussions with the observers, the differentiation between interpreting the observed

strategy as being carried out by either human or AI is largely based on the observer’s impression of

the fighter executing the strategy. There were instances during the human vs. AI fighter videos where

punches were thrown just out of striking distance, or lunges were made with minor glitches,

suggesting immediately to the observer that they are indeed watching an AI mimic a human strategy.

While the observers are experienced gamers with a keen interest in fighting games, such glitches are

noticed easily, and would most likely be detected by even a novice gamer watching a fighting game

being played due to the graphical representation of the on-screen fighters. This by no means suggests

failure as the scope of this research is to evaluate techniques to mimic human strategies, rather than

evaluating AI techniques to play the game such that observers perceive the game to be played by a

human. If the latter was the objective of this research, then one would have to consider introducing

randomness and deliberate errors.

The research carried out in this chapter suggests that both the DD FSM and KNN solutions are capable

of mimicking human strategies. Figure 8.3 shows that 83% of observations of the AI techniques

considered the strategies to have been successfully mimicked. Combined and individually, both

solutions have surpassed the success criteria which was set at 75% (see Chapter 5) by achieving an

83% success rate.

While both techniques are equally matched, with each only having 17% of negative observations

where it was deemed the AI did not mimic the strategy accurately, it is arguably the DD FSM solution

that is the stronger of the two. This is due to the fact that the 8% of the 17% of negative observations

could be attributed to poor raw data for strategy 5. Further to this, the DD FSM solution also generated

the greater number of videos that were observed to have been played out by humans.

8.4 Chapter Summary

This chapter has provided details pertaining to the means of evaluating both the DD FSM solution and

the KNN solution. The approach has been to use both qualitative and quantitative analysis to evaluate

the solutions. A set criteria for the qualitative analysis has been presented, which call for a human

interpretation as to (i) the solutions are indeed mimicking the strategy in question accurately, and (ii)

the solutions are mimicking the strategy in such a way that it can be perceived to be a human playing

the strategy rather than the AI fighter. The experiment design and results have been presented and a

deep analysis has been conducted, which suggests that both solutions perform equally well but the

scoring varies across the strategies. This can be attributed to the advantages and disadvantages of

each solution.

121

The results yielded by the experiment carried out on each technique can be interpreted and

summarised as follows:

 Of the videos featuring the DD FSM solution mimicking human strategies, 54% were observed

and interpreted as being the correct strategy being played out by a human. 29% were

observed and interpreted as being the correct strategy, albeit played out by an AI, and 17%

were observed and interpreted as incorrectly mimicking the strategy in question.

 The majority of strategies that were viewed as being incorrectly mimicked by the DD FSM

solution were strategies that featured rapid state transition, and where the source data is not

as clean as it could be.

 In some instances, the DD FSM solution over complicates the transition function by capturing

triggers from other parameters and factoring them into the state transition function. For

example, there are instances where the only trigger to move from one state to another is the

health dropping below a certain threshold. However, the DD FSM solution may also consider

stamina as being a pertinent parameter due to the averages used to generate the data driven

finite state machine.

 The KNN approach yielded similar results to the DD FSM approach, albeit with slightly more

videos being interpreted as AI driven. Of the KNN solution observations, 49% were interpreted

as being the correct strategy being played out by a human. 34% were observed and

interpreted as being the correct strategy, albeit played out by an AI, and 17% were observed

and interpreted as incorrectly mimicking the strategy in question.

 The strategies that were incorrectly mimicked by the KNN solution are more sporadic, and are

the result of the AI prematurely executing moves ahead of threshold parameters being met.

 The research carried out in this chapter suggests that both the DD FSM and KNN solutions are

capable of mimicking human strategies as 83% of observations of the AI techniques

considered the strategies to have been successfully mimicked.

 While both techniques are equally matched, with each only having 17% of negative

observations where it was deemed the AI did not mimic the strategy accurately, it is arguably

the DD FSM technique that is the stronger of the two. This is due to the fact that the 8% of

the 17% of negative observations could be attributed to poor raw data for strategy 5. Further

to this, the DD FSM technique also generated the greater number of videos that were

observed to have been played out by humans.

 The success rate of 83% achieved by both solutions surpasses the success criteria which was

set at 75%.

122

Chapter 9 – Conclusion and Future Work

9.1 Introduction

This chapter provides the final summary of the Thesis and draws together the main conclusions of the

research. An overall review of the Thesis and the overall conclusions that have been drawn is provided,

as well as how the main conclusions link back to the aims and objectives. A summary of contributions

is also provided, and limitations of the research carried out, both in terms of the solutions developed

and the research as a whole, are discussed. This chapter also identifies future work that can be carried

out, building on the research documented in this Thesis.

9.2 Thesis Review

The original aim of this research was to answer the question; ‘How can existing Game Artificial

Intelligence techniques be used to successfully mimic basic human player strategies in strategic

fighting games?’ The aim was to answer this question by researching, identifying, implementing and

evaluating an AI system capable of mimicking basic strategies of human players in fighting

videogames. The literature review presented in Part 2 of this Thesis has further validated the void in

current research and justified the aim of this work. Prior to this research, there was no research

conducted in the field of game AI pertaining to mimicking strategies and tactics in fighting games. This

Thesis has consolidated research around the problem domain and provided detailed background on

the context of the problem, as well as detailing the nature of fighting games.

The research presented here has gone a long way to answering the original research question by

designing, developing and implementing and evaluating two separate and novel techniques that can

be used to mimic basic human player strategies in strategic fighting games. The detailed designs

presented in Chapters 6 and 7 were implemented by means of a unique proof of concept game that

was developed specifically for this research, as detailed in Chapter 5. Following the design and build

of the proof of concept game, as well as the AI solutions, an evaluation method was identified and

executed in Chapter 8, which yielded positive results. The research within this Thesis is builds on the

work presented in Saini et al (2011-1) and Saini et al (2011-2).

In summary, various architectures have been discussed, ultimately being refined to two; one DD FSM

approach that has been developed and refined throughout the lifecycle of this project, and one K

nearest-neighbour classification based solution. In the context of the proof of concept game

developed, both solutions have succeeded in mimicking player strategies to a large extent. However,

the K nearest neighbour solution suffers from poor accuracy on occasion. In a real world scenario,

123

where players may not necessarily play strategically with a pre-determined strategy in mind, the k

nearest neighbour solution may hold an advantage in that it is capable of replicating operational

behaviour synonymous with so-called ‘button bashers’. As the results in Chapter 8 suggest, such a

scenario would likely give rise to performance issues for the DD FSM solution due to the excessive

number of state transitions.

Provided the source data is sound from the human vs. human bout, such that they are not interpreted

as triggering an overly excessive number of state transitions, the DD FSM solution performs well by

providing a framework, forcing the AI fighter to behave accurately in accordance to the input data.

9.3 Summary of Contributions

The major contributions made by this Thesis can be summarised as the following:

 The DD FSM solution has been developed, which constitutes a novel AI solution architecture

based on amalgamating various AI techniques. The solution is novel in that the context in

which the techniques are used, and the manner in which the design calls for these specific

techniques to address each level of the decision making process, has not been implemented

and evaluated in the fighting game previously. The design of the architecture itself is original,

as is its usage to mimic human strategies in fighting games, or any other game genre. Research

in the field of Game AI has not yielded such a solution, nor any similar solution and applied it

to the novel problem domain of mimicking human strategies in fighting games.

 As part of the DD FSM solution, a novel algorithm to ensure data smoothing amongst state

transitions for data driven finite state machines has been developed. The steps implemented

to smooth the data are unique and have not been applied to a problem of this nature

previously. This algorithm has the potential to be implemented in similar problems to define

a data driven finite state machine.

 The K nearest neighbour solution has been developed, constituting a bottom-up AI

architecture for mimicking human strategies in fighting games. This usage of the k nearest

neighbour classification technique is novel with respect to its application in a strategic fighting

game. The approach to mimic and execute a fighting game strategy by only identifying the

operations and building the strategy from the bottom up has not been covered in previous

research. This is a novel design, the implementation of which has been documented for the

first time as part of this research.

 The research project has also yielded specific knowledge in the field of AI and its application

to fighting games in particular. The results of the experiments in Chapter 8 indicate that both

124

solutions can be used to solve the problem pertaining to mimicking human strategies in

fighting games. The knowledge that has come to light following the experiments in Chapter 8

affirms that both solutions are fit for purpose, and the respective designs can indeed yield

positive results when implemented in a strategic fighting game. The results of the experiments

also suggest that the DD FSM solution is better at mimicking more methodical, structured

strategies. These are strategies where there is no deviation in the usage of tactics as bouts

progress, and the move-sets that are used are not too sporadic, for example, lunges and blocks

are not randomly interspersed with offensive moves. This is in contrast to the k nearest

neighbour solution, which is better at mimicking strategies that may be more fluid in that the

source data may not always be consistent. However, the k nearest neighbour solution does

not provide the high level of accuracy that the DD FSM solution provides for tightly structured

and executed strategies. This knowledge has come to light as a direct result of the research

carried out in this Thesis and was not previously known.

In general, the application of Game AI techniques to fighting games as a means of mimicking

human player strategies was an uncharted area in terms of research. This Thesis has identified

and defined this novel problem domain and proposed multiple novel solutions that have been

designed, implemented and evaluated. Particularly in the case of the DD FSM solution, the novel

design presents a new way in which existing AI components can work together by passing data

between levels to produce meaningful results when mimicking strategies. Previously, neither of

the solutions had been implemented and tested to mimic strategies in a fighting game. However,

now both solutions have been designed, implemented and have been proved to be successful via

an evaluation.

9.4 Limitations and Future Work

While the results suggest that there is potential to incorporate such AI, as that described in Chapters

6 and 7, into fighting games to enable players to fight against mimicked versions of their rivals, what

is not clear from this research is the impact this would have on the performance of commercial

strategic fighting games. One weakness of this research is the fact that it has all been localised to a

proof of concept game that has been tailored to encourage strategic play. There is a distinct lack of

integration with a commercial fighting game that would further strengthen the argument that the

techniques presented are fit for purpose. However, the proof of concept game does conform to rules

found in typical commercial fighting games, while allowing for a more strategic approach towards

gameplay.

125

The evaluation of the DD FSM and K nearest neighbour solutions, from within a commercial fighting

game, was deliberately omitted from the scope of this project due to difficulties in obtaining code for

commercial videogames. However, it should be noted that there is potential to conduct further

research in this area. Having established from this project that the techniques work in terms of

functionality within a proof of concept game, the next step would be to integrate the two techniques

into a commercial strategic fighting game and gather performance metrics. The code would need to

be tailored to conform to the rules of the commercial fighting game in question; however, the

architecture must remain intact. Further functional testing within a commercial fighting game, that

has different rules to the proof of concept game, or even another videogame genre entirely, would

move the research closer to seeing a commercial solution come to fruition. For example, the solutions

could be applied to sports games where players thought process and actions can be split into

operations, tactics and strategies. Football videogames would provide a suitable test bed for this

further research as players can pass, dribble, shoot and tackle at the operational level, combining

these to develop tactics and ultimately strategies.

Limitations pertaining to the design and implementation of the techniques become apparent when

reviewing the results of the experiment in Chapter 8. The DD FSM solution struggles to reproduce

strategies where states change back and forth frequently under varying conditions, as was the case

with strategy 5 in Table 8.4. The only way to avoid such anomalies in the reproduction of the strategy

using the DD FSM solution is to ensure the source data collated during the human vs. human bouts is

absolutely consistent across each play-through. However this is not always likely to be the case and

gives rise to the underlying limitation: the DD FSM solution is highly prone to errors made by human

players when they are attempting to reproduce their own strategy during the data capture phase.

Future work to resolve this limitation would involve enhancing the algorithm described in Chapter 7

to remove noise and smooth the data to a higher standard.

This is a limitation that has a lesser impact on the k nearest neighbour solution in that this solution

does not conform to any pre-defined structures, such as a DD FSM. However, this too leads to a

limitation as the results documented in Chapter 8 suggest that the AI fighter often executed moves

prematurely. This typically happens if one or more in-game parameter depletes quicker than it did

during the human vs. human bouts. The nearest neighbour chosen by the KNN solution may have an

output that was executed at a more advanced stage during the human vs. human bout, resulting in

moves being prematurely executed by the AI fighter. The root cause of this limitation lies in the human

fighter not conforming to their own strategy during the human vs. AI bout.

126

This thesis has been primarily focused on mimicking human strategies in fighting games, the next step

would be to predict what the human player would do under circumstances that may not have been

encountered. Both solutions presented in this thesis work provided both human players execute their

strategies exactly during the data capture phase, and provided the human player follows their own

strategy during the human vs. AI bout. However, if the human player during the human vs. AI bout

breaks their own strategy by executing moves they would not normally carry out in a given situation,

the AI fighter shall respond only in accordance to the data that has been captured already. The next

step of this research would be to capture such responses and compare them against what the human

would do if they were in the same situation. A player model could be built based on this and fed back

into the AI solution, making for a more durable and adaptable opponent.

9.5 Thesis Summary and Final Conclusion

Two separate novel AI architectures for mimicking human player strategies in fighting games have

been designed, developed and implemented using a proof of concept game. These architectures have

been evaluated and have been proven to be successful across various sets of data. It is concluded that

both the DD FSM solution and k nearest neighbour solution are equally capable of mimicking human

strategies in fighting games, albeit across different strategies. The DD FSM solution performed well on

basic strategies, but could not mimic strategies with numerous state transitions in quick succession.

Further work can be carried out to resolve this by enhancing the quality of smoothing. This limitation

was of less impact on the k nearest neighbour solution, which generally performed well, but

prematurely executed moves if the human player during the human vs. AI bout broke their own

strategy.

In terms of further research that can be carried out in the future by building on the contributions of

this thesis, the focus now needs to shift to predicting outputs for unknown scenarios. Player modelling

can be used to predict how a human player would potentially respond to an as yet un-encountered

scenario. This could then be fed back to the AI solution to enhance performance and user experience,

enabling humans partaking in the human vs. AI bout to learn more about their opponents and how to

beat them.

127

References

ANAGNOSTOU, K., & MARAGOUDAKIS, M., 2009. Data mining for player modeling in videogames.

In: 13th Panhellenic Conference on Informatics, 2009. Corfu, Sept 2009. Los Alamitos: IEEE

Computer Society, pp. 30-34.

ATKESON, C. G. & SCHAAL, S., 1997. Robot Learning from Demonstration. In: Proceedings of IEEE

International Conference on Robotics and Automation (ICRA97). IEEE, pp. 1706-1712.

Badges of Fury, 2013. [Movie]. Directed by Wong TSZ-MING. Beijing Enlight Pictures, China and

Hong Kong: Distributed worldwide by Easternlight Films.

BAR-COHEN, J., 2012. Nature as a Model for Mimicking and Inspiration of New Technologies.

International Journal of Aeronautical and Space Sciences, 13(1), 1-13.

BARTO, A. G., & DIETTERICH, T. G., 2004. Reinforcement learning and its relationship to supervised

learning. In: SI, J., BARTO, A. G., POWELL, W., & WUNSCH, D., eds. Handbook of learning and

approximate dynamic programming. Wiley-IEEE Press, pp. 47-65.

BARTON, D., 2014. Using Case-Based Reasoning to Improve Real-Time Strategy Game AI.

Unpublished.

BATALOV, D. V., & OOMMEN, B. J., 2001. On playing games without knowing the rules. In: IFSA

World Congress and 20th NAFIPS International Conference, 2001, Vancouver, July 2001. pp. 1862-

1868.

Battle Arena Toshinden, 1995. [PlayStation game]. TAMSOFT. Japan: distributed by Takara.

BELEW, R. K., MCINERNEY, J., & SCHRAUDOLPH, N. N., 1991. Evolving networks: Using the

genetic algorithm with connectionist learning. In: LANGTON, C. G., TAYLOR, C., FARMER, J. D.,

RASMUSSEN. S.E., eds. Artificial Life II: Proceedings of the Workshop on Artificial Life. Reading:

Addison Wesley, pp.511 -547.

BlazBlue: Chronophantasma, 2011. [PlayStation 3 game]. ARC SYSTEM WORKS. Japan: distributed

by Aksys Games.

Blender, 2013. [PC software]. BLENDER FOUNDATION. Available from: http://www.blender.org/.

Bravely Default, 2013. [Nintendo 3DS game]. SQUARE ENIX. Japan: distributed by Nintendo.

BURO, M., & FURTAK, T., 2004. RTS games and real-time AI research. In: Proceedings of the

Behavior Representation in Modeling and Simulation Conference (BRIMS), Arlington, Virginia. Curran

Associates, pp.34-41.

128

CANT, R., CHURCHILL, J., & AL-DABASS, D., 2002. A hybrid Artificial Intelligence approach with

application to games. In: IJCNN'02. Proceedings of the 2002 International Joint Conference on Neural

Networks, Honolulu, May 2002. pp. 1575-1580.

CARNEIRO, E. M., MARQUES DA CUNHA, A., DIAS, L. A. V., 2014. Adaptive Game AI Architecture

with Player Modeling. In: 2014 11th International Conference on Information Technology: New

Generations. IEEE, pp. 40-45.

CHAPEROT, B., & FYFE, C., 2005. Motocross and artificial neural networks. In: Game Design and

Technology Workshop 2005.

CHAPEROT, B., & FYFE, C., 2006. Improving artificial intelligence in a motocross game. In: 2006

IEEE Symposium on Computational Intelligence and Games, Reno, May 2006. IEEE Computational

Intelligence Society, pp. 181-186.

CHARLES, D., MCNEILL, M., MCALISTER, M., BLACK, M., MOORE, A., STRINGER, K.,

KUCKLICH, J., KERR, A., 2005. Player-Centered Game Design: Player Modelling and Adaptive

Digital Games. In: Proceedings of the Digital Games Research Conference, Vancouver, June 2005.

Chicken – an Egg exporter for Blender, 2006. [PC software]. SOURCEFORGE. Available from:

http://sourceforge.net/projects/chicken-export/.

CHO, B. H., JUNG, S. H., SEONG, Y. R., & OH, H. R., 2006. Exploiting intelligence in fighting action

games using neural networks. IEICE Transactions on Information and Systems, E89(3),

1249-1256.

CHO, B., PARK, C., & YANG, K., 2007. Comparison of AI Techniques for Fighting Action Games-

Genetic Algorithms/Neural Networks/Evolutionary Neural Networks. In: Entertainment Computing–

ICEC 2007, 6th International Conference, Shanghai, September 2007. Springer, pp. 55-65.

COPPIN, B., 2004. Artificial intelligence illuminated. Jones & Bartlett Learning.

DANZI, G., SANTANA, A. H., FURTADO, A. W., GOUVEIA, A. R., LEITAO, A., & RAMALHO, G. L.,

2003. Online adaptation of computer games agents: A reinforcement learning approach. In : II

Workshop de Jogos e Entretenimento Digital, pp. 105-112.

DAVID, O. E., JAAP VAN DEN HERIK, H., KOPPEL, M. & NETANYAHU, N. S., 2014. Genetic

Algorithms for Evolving Computer Chess Programs. IEEE Transactions on Evolutionary Computation,

18(5), 779-789.

Dead or Alive, 1997. [PlayStation game]. TEAM NINJA. Japan: distributed by TECMO.

Dead or Alive 2, 1999. [Arcade game]. TEAM NINJA. Japan: distributed by TECMO.

129

DI PIETRO, A., BARONE, L., WHILE, L., 2006. A Comparison of Different Adaptive Learning

Techniques for Opponent Modelling in the Game of Guess It. In: 2006 IEEE Symposium

on Computational Intelligence and Games, Reno, May 2006. IEEE Computational Intelligence

Society, pp. 173-180.

Diablo 3: Reaper of Souls, 2014. [PlayStation 3]. BLIZZARD ENTERTAINMENT. USA: distributed by

Blizzard Entertainment.

DRACHEN, A., CANOSSA, A., & YANNAKAKIS, G. N., 2009. Player modeling using self-organization

in Tomb Raider: Underworld. In: 2009 IEEE Symposium on Computational Intelligence and Games,

Milano, September 2009. IEEE Computational Intelligence Society, pp. 1-8.

Elder Scrolls Online, 2014. [PC game]. ZENIMAX ONLINE STUDIOS. USA: distributed by Bethesda

Softworks.

Enter the Dragon, 1973. [Movie]. Directed by Robert CLOUSE. Golden Harvest and Concord

Production Inc., USA and Hong Kong: distributed in UK by Warner.

ESPOSITO, N., 2005. A Short and Simple Definition of What a Video Game Is. In: Proceedings of the

Digital Games Research Conference, Vancouver, June 2005.

FAIRCLOUGH, C., FAGAN, M., MAC NAMEE, B., & CUNNINGHAM, P., 2001. Research directions

for AI in computer games. In: Proceedings of the Twelfth Irish Conference on Artificial Intelligence &

Cognitive Science, Maynooth, September 2001. Maynooth: National University of Ireland, pp. 333–

344.

FERNÁNDEZ, A., & GÓMEZ, S., 2008. Solving non-uniqueness in agglomerative hierarchical

clustering using multidendrograms. Journal of classification, 25(1), 43-65.

FIFA International Soccer, 1993. [Sega Genesis game]. EXTENDED PLAY PRODUCTIONS.

Canada: distributed by Electronic Arts.

FIGLIOLINI, G. & CECCARELLI, M., 2002. A novel articulated mechanism mimicking the motion of

index fingers. Robotica, 20(1), 13-22.

Final Fantasy VII, 1997. [PlayStation game]. SQUARESOFT. Japan: distributed by Sony Computer

Entertainment Europe.

FINK, A., DENZINGER, J., & AYCOCK, J., 2007. Extracting NPC behavior from computer games

using computer vision and machine learning techniques. In: IEEE Symposium on Computational

Intelligence and Games, Honolulu, April 2007. pp. 24-31.

Fist of Fury, 1972. [Movie]. Direct by Lo WEI. Golden Harvest, Hong Kong: Distributed in UK by Hong

Kong Legends.

130

Fist of Legend, 1994. [Movie]. Directed by Gordon CHAN. Eastern Productions, Hong Kong:

Distributed worldwide by Golden Harvest.

GALLAGHER, M., & LEDWICH, M., 2007, April. Evolving pac-man players: Can we learn from raw

input?. In: IEEE Symposium on Computational Intelligence and Games, Honolulu,, April 2007. pp.

282-287.

Game of Death, 1978. [Movie]. Directed by Bruce LEE. Golden Harvest and Concord Production Inc.,

Hong Kong: distributed in UK by Hong Kong Legends.

GINGOLD, Y. I., 2006. From Rock, Paper, Scissors to Street Fighter II: Proof by Construction.

In: Proceedings of the 2006 ACM SIGGRAPH symposium on Videogames, Boston, July 2006. New

York: ACM New York, pp. 155-158.

GRAEPEL, T., HERBRICH, R., & GOLD, J., 2004. Learning to fight. In: Proceedings of the

International Conference on Computer Games: Artificial Intelligence, Design and Education. pp. 193-

200.

HE, S., DU, J., CHEN, H., MENG, J., & ZHU, Q., 2008. Strategy-Based Player Modeling During

Interactive Entertainment Sessions by Using Bayesian Classification. In: ICNC'08. Fourth International

Conference on Natural Computation, Jinan, October 2008. Los Alamitos: IEEE Computer Society, pp.

255-261.

HE, S., WU, G., MENG, J., CHEN, H., LI, J., LIU, Z., & ZHU, Q., 2008. Game Player Strategy Pattern

Recognition by Using Radial Basis Function. In: International Conference on Computer Science and

Software Engineering, Wuhan, December 2008. Los Alamitos: IEEE Computer Society, pp. 937-940.

HE, S., WANG, Y., XIE, F., MENG, J., CHEN, H., LUO, S., LIU, Z., & ZHU, Q., 2008. Game Player

Strategy Pattern Recognition and How UCT Algorithms Apply Pre-Knowledge of Player's Strategy to

Improve Opponent AI. In: 2008 International Conference on Computational Intelligence for Modelling

Control & Automation, Vienna, December 2008. Los Alamitos: IEEE Computer Society, pp. 1177-

1181.

Heavyweight Champ, 1976. [Arcade game]. SEGA. Japan: distributed by Sega.

HILDMANN, H., & CROWE, M., 2011. Behavioural game AI - A theoretical approach. In: 2011

International Conference for Internet Technology and Secured Transactions (ICITST), Abu Dhabi,

December 2011. pp.550-555.

HISASHI, H., 2014. Deep Boltzmann Machine for Evolutionary Agents of Mario AI. In: 2014 IEEE

Congress on Evolutionary Computation (CEC), Beijing, China, July 2014. IEEE, pp. 36-41.

HOLLAND, J., 1984. Genetic algorithms and adaptation. In: SELFRIDGE, O.G., RISSLAND, E.L.,

ARBIB, M.A., eds. Adaptive Control of Ill-Defined Systems. New York: Plenum Press, pp317-333.

131

HONG, J. H., & CHO, S. B., 2004. Evolution of emergent behaviors for shooting game characters in

Robocode. In: Congress on Evolutionary Computation, 2004. pp. 634-638.

HOULETTE, R., 2003. Player Modelling for Adaptive Games. In: RABIN, S., ed. A.I Game

Programming Wisdom 2. Hingham, MA: Charles River Media, pp. 557-566.

HOULETTE, R., & FU, D., 2003. The Ultimate Guide to FSMs in Games. In: RABIN, S., ed. A.I Game

Programming Wisdom 2. Hingham, MA: Charles River Media, pp. 283-301.

HSIEH, J. L., & SUN, C. T., 2008. Building a player strategy model by analyzing replays of real-time

strategy games. In: IEEE International Joint Conference on Neural Networks, 2008, IJCNN 2008.

(IEEE World Congress on Computational Intelligence), Hong Kong, June 2008. pp. 3106-3111.

HYDE, D., 2008. Using Bayesian Networks to Reason About Uncertainty. In: RABIN, S., ed. A.I Game

Programming Wisdom 4. Boston: Cengage Learning, pp. 429-441.

Ip Man, 2008. [Movie]. Directed by Wilson YIP. Mandarin Films, Hong Kong: Distributed worldwide by

Mandarin Films.

Ip Man 2, 2010. [Movie]. Directed by Wilson YIP. Mandarin Films, Hong Kong: Distributed worldwide

by Mandarin Films.

JOHNSON, D., & WILES, J., 2001. Computer games with intelligence. In: The 10th IEEE International

Conference on Fuzzy Systems, Melbourne, Dec 2001. pp. 1355-1358.

Karate Champ, 1984. [Arcade game]. TECHNOS JAPAN. Japan: distributed by Data East.

KAUKORANTA, T., SMED, J., & HAKONEN, H., 2003. Understanding Pattern Recognition Methods.

In: RABIN, S., ed. A.I Game Programming Wisdom 2. Hingham, MA: Charles River Media, pp. 579-

589.

KAUKORANTA, T., SMED, J., & HAKONEN, H., 2003. Role of pattern recognition in computer

games. In: Proceedings of the 2nd International Conference on Application and Development of

Computer Games, Hong Kong, January 2003. Hong Kong: City University, pp. 189-94.

KAWAMURA, Y., 2010. Experimental Studies on Various Types of Animal Mimicking Robots. In: IEEE

2010 International Conference on Broadband, Wireless Computing, Communication and Applications,

November 2010. IEEE, pp. 755-759.

KELLER, F., n.d. Clustering. Computer University Saarlandes Tutorial Slides

KENYON, S. H., 2006. Behavioral software agents for real-time games. Potentials, IEEE, 25(4), 19-

25.

132

KHOO, A., & ZUBEK, R., 2002. Applying inexpensive AI techniques to computer games. Intelligent

Systems, IEEE, 17(4), 48-53.

LAIRD, J. E., 2001. Using a computer game to develop advanced AI. Computer, 34(7), 70-75.

LEE, B., 1975. Tao of Jeet Kune Do. Burbank, CA: Ohara Publications.

LEE, G., BULITKO, V. & LUDVIG, E. A., 2014. Automated Story Selection for Color Commentary in

Sports. IEEE Transactions on Computational Intelligence and AI in Games, 6(2), 144-155.

LEE, L., 2005. Adaptive Behavior for Fighting Game Characters. Unpublished thesis (MSc.), San

Jose State University.

LENT, M., 2007. Game Smarts. Computer-IEEE Computer Magazine, 40(4), 99-101.

LIU, S., LOUIS, S. J. & BALLINGER, C., 2014. Evolving Effective Micro Behaviors in RTS Game. In:

2014 IEEE Conference on Computational Intelligence and Games (CIG). IEEE, pp. 1-8.

LU, F., YAMAMOTO, K., NOMURA, L. H., MIZUNO, H., LEE, Y. & THAWONMAS, R., 2013. Fighting

Game Artificial Intelligence Competition Platform. In: 2013 IEEE 2nd Global Conference on Consumer

Electronics, October 2013. IEEE, pp. 320-323.

LUCAS, S. M., & KENDALL, G., 2006. Evolutionary computation and games. Computational

Intelligence Magazine, IEEE, 1(1), 10-18.

LUEANGRUEANGROJ, S., KOTRAJARAS, V., 2009. Real-time Imitation based Learning for

Commercial Fighting Games. In: Proceedings of International Conference on Computer Games,

Multimedia and Allied Technology 2009.

MALLOUK, W., & CLUA, E., 2006. An Object-Oriented Approach for Hierarchical State Machines.

In: Proceedings of the SBGames conference in Computing, Recife, November 2006. pp. 8-10.

Man of Tai Chi, 2013. [Movie]. Directed by Keanu REEVES. Universal Studios, China and USA:

Distributed by Universal Pictures.

Marvel vs. Capcom 2, 2000. [Sega Dreamcast game]. CAPCOM. Japan: distributed by Capcom.

Marvel vs. Capcom 3, 2011. [PlayStation 3 game]. CAPCOM. Japan: distributed by Capcom.

McCARTHY, J., 2002. What is artificial intelligence? [online]. [viewed 19/01/2013]. Available from:

http://bcrc.bio.umass.edu/courses/fall2008/biol/biol270h/3-Discussions/13-ET_Intelligence/13f-

AI/13f-1_AI-Intro.pdf.

133

MILES, C., QUIROZ, J., LEIGH, R., & LOUIS, S. J., 2007. Co-evolving influence map tree based

strategy game players. In: IEEE Symposium on Computational Intelligence and Games, 2007. CIG

2007, Honolulu, April 2007. pp. 88-95.

Mortal Kombat, 1992. [Super Nintendo Entertainment System game]. MIDWAY. USA: distributed in

UK by Virgin.

Mortal Kombat, 2011. [PlayStation 3 game]. NETHERREALM STUDIOS. USA: distributed by Warner

Bros.

Mortal Kombat 3, 1995. [Super Nintendo Entertainment System game]. MIDWAY. USA: distributed

Williams Entertainment.

Mortal Kombat Trilogy, 1996. [PlayStation game]. MIDWAY. USA: distributed Williams Entertainment.

MotioninJoy, 2012. [PC software]. MOTIONINJOY.COM. Available from: http://www.motioninjoy.com/.

MOUCHET, A., 2005. Subjectivity in the articulation beetween strategy and tactics in team sports: an

example in rugby. Italalian Journal of Sport Sciences, 12(1), 24-33.

MultiDendrograms, 2008. [PC software]. FERNÁNDEZ, A., & GÓMEZ, S. Available from:

http://deim.urv.cat/~sergio.gomez/multidendrograms.php.

MUSASHI, M. & HARRIS, V., 1974. A Book of Five Rings. New York: Overlook.

n.d. Untitled Document. [online]. University of Maribor. [viewed 06 Jan 2014]. Available from:

http://www.ro.feri.uni-mb.si/predmeti/int_reg/Predavanja/Eng/2.Neural%20networks/_06.html

NAREYEK, A., 2007. Game AI is dead. Long live game AI!. Intelligent Systems, IEEE, 22(1), 9-11.

ORTIZ B, S., MORIYAMA, K., FUKUI, K. I., KURIHARA, S., & NUMAO, M., 2010. Three-subagent

adapting architecture for fighting videogames. In: ZHANG, B.T., ORGUN, M.A., eds. PRICAI 2010:

Trends in Artificial Intelligence. Berlin: Springer, pp. 649-654.

Pac-Man, 1980. [Arcade game]. NAMCO. Japan: distributed by Midway.

Panda3D, 2010. [PC software]. CARNEGIE MELON UNIVERSITY.

PEDERSEN, C., TOGELIUS, J., & YANNAKAKIS, G. N., 2009. Modeling player experience in Super

Mario Bros. In: IEEE Symposium on Computational Intelligence and Games, 2009. CIG 2009, Milano,

September 2009. IEEE Computational Intelligence Society, pp. 132-139.

Persona 4 Arena Ultimax, 2014. [PlayStation 3 game]. ARC SYSTEM WORKS. Japan: distributed in

UK by Sega.

134

PyGame, 2008. [PC software]. PYGAME.ORG. Available from:

http://www.pygame.org/download.shtml.

PyPad 360, 2010. [PC software]. RABID SQUIRREL GAMES. Available from:

https://code.google.com/p/mazeofnight/source/browse/trunk/Prototype/pyPad360.py?r=51.

Quake, 1996. [PC game]. ID SOFTWARE. USA: distributed by GT Interactive.

RAMIREZ, A. & BULITKO, V., 2014. Automated Planning and Player Modelling for Interactive

Storytelling. IEEE Transactions on Computational Intelligence and Artificial Intelligence in Games,

Unpublished.

RICCIARDI, A., & THILL, P, 2008. Adaptive AI for Fighting Games. [online]. [viewed 13/01/2013].

Available from: http://cs229.stanford.edu/proj2008/RicciardiThill-AdaptiveAIForFightingGames.pdf.

RICH, E., KNIGHT, K., 1991. Artificial Intelligence. New York: McGraw-Hill.

RIEK, L. D. & ROBERTSON, P., 2008. Real-Time Empathy: Facial Mimicry on a Robot. In: Workshop

on Affective Interaction in Natural Environments (AFFINE) at the International ACM Conference on

Multimodal Interfaces (ICMI 08). ACM.

ROBERTSON, G. & WATSON, I., 2014. A Review of Real-Time Strategy Game AI. Unpublished.

ROSADO, G., 2003. Implementing a Data-Driven Finite State Machine. In: RABIN, S., ed. A.I Game

Programming Wisdom 2. Hingham, MA: Charles River Media, pp. 307-317.

SAINI, S., CHUNG, P. W. H., & DAWSON, C. W., 2011. Mimicking human strategies in fighting

games using a Data Driven Finite State Machine. In: 2011 6th IEEE Joint International Information

Technology and Artificial Intelligence Conference (ITAIC), Chongqing, August 2011. Beijing: IEEE, pp.

389-393.

SAINI, S. S., DAWSON, C. W., & CHUNG, P. W., 2011. Mimicking player strategies in fighting games.

In: 2011 IEEE International Games Innovation Conference (IGIC), Orange County, November 2011.

IEEE, pp. 44-47.

SANTOSO, S. & SUPRIANA, I., 2014. Minimax Guided Reinforcement Learning for Turn-based

Strategy Games. In: 2014 2nd International Conference on Information and Communication

Technology (ICoICT), May 2014. IEEE, pp. 217-220.

SCHAAL, S., 1997. Learning From Demonstration. In: MOZER, M. C., JORDAN, M., PETSCHE, T.,

eds. Advances in Neural Information Processing Systems 9. Cambridge, MA: MIT Press.

Street Fighter, 1987. [Arcade game]. CAPCOM. Japan: distributed by Capcom.

Street Fighter 4, 2008. [Arcade game]. CAPCOM. Japan: distributed by Capcom.

135

Street Fighter II, 1991. [Super Nintendo Entertainment System game]. CAPCOM. Japan: distributed

by Capcom.

Street Fighter Alpha, 1995. [PlayStation game]. CAPCOM. Japan: distributed by Capcom.

Street Fighter Alpha 3, 1998. [PlayStation game]. CAPCOM. Japan: distributed by Capcom.

Street Fighter X Tekken, 2012. [PlayStation 3 game]. CAPCOM. Japan: distributed by Capcom.

Street Fighter Zero 3, 1998. [PlayStation game]. CAPCOM. Japan: distributed by Capcom.

Super Mario Bros, 1985. [Nintendo Entertainment System game]. NINTENDO. Japan: distributed by

Nintendo.

Super Street Fighter II Turbo, 1994. [PC game]. CAPCOM. Japan: distributed by Capcom.

Tales of Xillia 2, 2014. [PlayStation 3 game]. BANDAI NAMCO GAMES. Japan: distributed by Bandai

Namco Games.

Tekken 3, 1997. [Arcade game]. NAMCO. Japan: distributed by Namco.

Tekken 4, 2002. [PlayStation 2 game]. NAMCO. Japan: distributed by Namco.

Tekken Tag Tournament, 2000. [PlayStation 2 game]. NAMCO. Japan: distributed by Sony Computer

Entertainment Europe.

Tekken Tag Tournament 2, 2012. [PlayStation 3 game]. BANDAI NAMCO GAMES. Japan: distributed

by Bandai Namco Games.

The Expendables, 2010. [Movie]. Directed by Sylvester STALLONE. Millennium Films and Nu Image,

USA: Distributed worldwide by Lionsgate.

The Protector 2, 2014. [Movie]. Directed by Prachya PINKAEW. Sahamongkolfilm International,

Thailand: Distributed by Sahamongkolfilm International.

The Raid, 2011. [Movie]. Directed by Gareth EVANS. PT. Merantau Films in association with MNC

Pictures and XYZ Films, Indonesia: Distributed worldwide by Celluloid Nightmares.

The Raid 2, 2014. [Movie]. Directed by Gareth EVANS. PT. Merantau Films and XYZ Films,

Indonesia: Distributed worldwide by Celluloid Nightmares.

Thief, 1998. [PC game]. LOOKING GLASS STUDIOS. USA: distributed by Eidos Interactive.

THUNPUTTARAKUL, W. & KOTRAJARAS, V., 2007. Data Analysis for Ghost AI Creation in

Commercial Fighting Games. In: Proceedings of GAMEON 2007, Bologna, November 2007. Eurosis,

pp. 37-41.

http://researchr.org/alias/worapoj-thunputtarakul
http://researchr.org/alias/vishnu-kotrajaras
http://researchr.org/publication/ThunputtarakulK07
http://researchr.org/publication/ThunputtarakulK07

136

Tomb Raider Underworld, 2008. [PlayStation 3 game]. CRYSTAL DYNAMICS. USA: distributed by

Eidos Interactive.

TURNER, K., & VAN SCHUYVER, M., 1991. Secrets of Championship Karate. Chicago:

Contemporary.

TZU, S., 1910. The Art of War. Translated from Chinese by Lionel Giles.

Ultra Street Fighter IV, 2014. [PlayStation 3 game]. CAPCOM. Japan: distributed by Capcom.

VAN SCHUYVER, M. & VILLALOBOS, P. S., 2002. Fighting Strategies of Muay Thai: Secrets of

Thailand's Boxing Camps. Boulder, CO: Paladin.

Warcraft, 1994. [PC game]. BLIZZARD ENTERTAINMENT. USA: distributed by Blizzard

Entertainment.

XIULI, Z., HAOJUN, Z., PENG, L. & GUANGMING, L., 2006. Designing a Quadrupedal Robot

Mimicking Cat Locomotion. In: 2006 IEEE International Conference on Systems, Man, and

Cybernetics, Taipei, Taiwan, October 2006. IEEE, pp. 4471-4474.

X-Men vs. Street Fighter, 1996. [Arcade game]. CAPCOM. Japan: distributed by Capcom.

YAMAMOTO, K., MIZUNO, S., CHU, Y. C., THAWONMAS, R., 2014. Deduction of Fighting-Game

Countermeasures Using the k-Nearest Neighbor Algorithm and a Game Simulator. In: 2014 IEEE

Conference on Computational Intelligence and Games (CIG), August 2014. IEEE, pp. 1-5.

YAU, Y. J., & TEO, J., 2006. An empirical comparison of non-adaptive, adaptive and self-adaptive co-

evolution for evolving artificial neural network game players. In: 2006 IEEE Conference

on Cybernetics and Intelligent Systems, Bangkok, June 2006. IEEE, pp. 1-6.

Yie Ar Kung-Fu, 1985. [Arcade game]. KONAMI. Japan: distributed by Konami.

ZHOU, C. N., YU, X. L., SUN, J. Y., & YAN, X. L., 2006. Affective Computation Based NPC Behaviors

Modeling. In: Proceedings of the 2006 IEEE/WIC/ACM international conference on Web Intelligence

and Intelligent Agent Technology Workshops, 2006. WI-IAT 2006 Workshops, Hong Kong, December

2006. Los Alamitos: IEEE Computer Society, pp. 343-346.

137

Appendix A.1 – Move List

Table A.1 below shows the character representation of moves that can be made in the proof of

concept game. This representation is used when spooling data from the bouts and is the same

notation used in tables throughout this thesis.

16Table A.1 – Move Representation

Move Key

Jab j

Cross c

Right Hook r

Left Hook l

Uppercut u

Haymaker h

Right Body Shot n

Left Body Shot m

Short Jab 1

Short Cross 2

Back Evasion a

Left Evasion q

Right Evasion w

Push 3

Block b

Low Block p

Low Kick 5

Sidekick 6

Forward Lunge x

Backwards Lunge z

138

Appendix A.2 – Sample Human Transcript

The following table contains sample data from the human vs. human bout of strategy 1 as articulated

in Table 8.3. Such transcripts exist for all strategies in Table 8.3.

17Table A.2 – Sample Human Transcript

Opponent Player Player to be mimicked
Distance Moves

Play

through Health Morale Stamina Health Morale Stamina

100 50 100 100 50 99 5.210001 j 1

100 50 100 100 50 98 5.210001 j 1

100 50 100 100 50 97 4.310001 j 1

98 50 98 98 50 95 4.850002 j 1

97 50 97 98 50 95 4.850002 *j* 1

97 50 97 97 50 94 4.850002 j 1

97 50 97 97 50 93 4.760002 j 1

96 50 97 97 50 92 4.130002 j 1

95 50 96 97 50 92 4.130002 *j* 1

95 50 96 96 50 91 4.130002 j 1

94 50 95 96 50 91 4.130002 *j* 1

94 50 95 95 50 90 4.130002 j 1

86 50 85 89 50 79 3.860002 *3* 1

79 50 54 68 50 67 4.820003 b 1

79 50 54 68 50 67 4.820003 b 1

79 50 54 68 50 67 4.820003 b 1

79 50 54 68 50 67 4.820003 b 1

79 50 54 68 50 67 4.820003 b 1

79 50 10 68 50 50 4.460002 b 1

79 50 10 68 50 50 4.460002 b 1

79 50 10 68 50 50 4.460002 q 1

79 50 10 68 50 50 4.460002 b 1

79 50 4 66 50 47 3.470004 u 1

75 50 2 66 50 47 3.470004 *c* 1

75 50 2 66 50 45 3.470004 u 1

71 50 0 66 50 45 3.470004 *c* 1

139

Opponent Player Player to be mimicked
Distance Moves

Play

through Health Morale Stamina Health Morale Stamina

71 50 0 66 50 43 3.470004 u 1

67 50 -1 66 50 43 3.470004 *j* 1

67 50 -1 66 50 42 3.470004 5 1

63 50 -4 66 50 41 3.470004 *j* 1

63 50 -4 66 50 39 3.470004 u 1

59 50 -4 66 50 37 3.470004 u 1

55 50 -5 66 50 37 3.470004 *j* 1

140

Appendix A.3 – Sample DD FSM Transcript

The following table contains sample data from the human vs. DD FSM AI bout of strategy 1 as

articulated in Table 8.3. Such transcripts exist for all strategies in Table 8.3.

18Table A.3 – Sample DD FSM Transcript

Opponent Player AI Player
Distance State Moves

Health Morale Stamina Health Morale Stamina

100 50 100 100 50 100 5.660001 s2 _ u_

100 50 98 96 50 100 4.490001 s2 _ j j_

100 50 96 94 50 100 4.490001 s2 _ c j_

100 50 93 91 50 100 5.300004 s2 _ j c_

99 50 90 88 50 98 4.850004 s2 _ j_

98 50 89 87 50 97 4.850004 s2 _ j c_

82 50 79 77 50 82 4.670002 s2 _ j j_

80 50 77 75 50 79 4.670002 s2 _ j j_

65 50 63 59 50 63 3.590002 s2 _ j j_

64 50 61 57 50 62 4.490002 s2 _ u_

64 50 59 53 50 62 3.500002 s2 _ j j_

64 50 57 51 50 62 4.490002 s2 _ j_

59 50 56 50 50 58 4.490002 s1 _ u_

59 50 54 46 50 57 4.040002 s1

_ b b b b b b

b_

58 50 52 46 50 54 4.670002 s1

_ b b b b b b

b_

58 50 48 46 50 51 4.670002 s1 _ b b b b_

58 50 44 46 50 47 4.670002 s2 _ b b b_

58 50 41 46 50 45 4.490002 s2 _ 1 1_

57 50 39 42 50 42 3.680002 s2 _ 1_

53 50 38 40 50 37 3.410002 s2 _ 1 1_

47 50 36 36 50 34 3.410002 s2 _ 1_

47 50 35 34 50 29 4.220003 s2 _ 1_

33 50 34 32 50 20 4.760001 s2 _ 1 j u_

32 50 30 31 50 19 4.940001 s2 _ u_

141

Opponent Player AI Player
Distance State Moves

Health Morale Stamina Health Morale Stamina

31 50 28 31 50 17 4.490002 s2 _ 1 j_

31 50 26 30 50 16 4.940002 s2 _ u_

31 50 24 30 50 16 4.940002 s2 _ u_

28 50 22 30 50 15 4.220002 s2 _ 1 u_

28 50 19 28 50 15 4.670002 s2 _ 1_

28 50 18 26 50 15 3.680002 s2 _ 1_

28 50 17 24 50 15 4.760002 s2 _ u 1_

24 50 2 20 50 1 3.590004 s2 _ 1 u_

142

Appendix A.4 – Sample KNN Transcript

The following table contains sample data from the human vs. K nearest neighbour AI bout of strategy

1 as articulated in Table 8.3. Such transcripts exist for all strategies in Table 8.3.

19Table A.4 – Sample KNN Transcript

Opponent Player AI Player
Distance Moves

Health Morale Stamina Health Morale Stamina

100 50 100 100 50 100 8 __

100 50 100 100 50 100 5.570001 _ u_

100 50 98 96 50 100 4.580001 _ j j_

100 50 96 94 50 100 4.580001 _ j c_

100 50 93 91 50 100 4.580001 _ j_

100 50 92 90 50 100 4.580001 _ c j_

100 50 89 87 50 99 5.030005 _ j j_

97 50 87 85 50 93 4.490004 _ j_

74 50 86 84 50 77 5.210003 _ j_

73 50 85 83 50 75 5.660001 _ j j_

70 50 83 81 50 70 4.760001 _ j_

67 50 82 80 50 62 4.130001 _ c_

64 50 80 78 50 58 4.580002 _ b_

64 50 80 78 50 56 5.570002 _ c c_

62 50 76 74 50 51 4.490002 _ b b b b b b_

61 50 70 74 50 45 4.580002 _ j b_

60 50 67 73 50 44 4.580002 _ b b b b b b_

60 50 61 73 50 40 4.580002 _ b b b b b b b b_

60 50 57 73 50 36 4.580002 _ b b b b b b_

60 50 53 73 50 33 4.580002 _ u_

58 50 50 69 50 32 4.130001 _ u u_

58 50 46 61 50 30 3.590001 _ 1 1_

58 50 44 57 50 30 3.590001 _ 1 1_

50 50 42 53 50 24 3.410001 _ 1 1_

46 50 40 49 50 19 3.410001 _ n 1_

44 50 37 43 50 17 3.410001 _ 1_

143

Opponent Player AI Player
Distance Moves

Health Morale Stamina Health Morale Stamina

34 50 30 29 50 2 3.860001 _ 1_

30 50 29 27 50 -2 3.410002 _ m_

30 50 27 23 50 -2 3.680001 _ m m_

30 50 23 15 50 -2 3.680001 _ m_

30 50 21 11 50 -2 3.680001 _ m m_

30 50 17 3 50 -2 3.680001 _ u_

30 50 15 -1 50 -2 3.680001 _ u u_

