

Tampereen teknillinen yliopisto. Julkaisu 1349
Tampere University of Technology. Publication 1349

Teemu J. Heinimäki

Technology Trees and Tools: Constructing Development
Graphs for Digital Games

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB224,
at Tampere University of Technology, on the 27th of November 2015, at 12 noon.

Tampereen teknillinen yliopisto – Tampere University of Technology
Tampere 2015

ISBN 978-952-15-3633-5 (printed)
ISBN 978-952-15-3647-2 (PDF)
ISSN 1459-2045

Abstract

In the recent years, digital games have solidified their role as important parts

of life for a considerable portion of the population. Game development has

become an extremely important industrial branch with a great deal of com-

petition between developers and publishers. There is only a limited amount

of resources to put in the development of a game, but the modern customers

expect high quality.

Taking these constraints into account, this dissertation focuses on devel-

oping implementations of a structure that is used widely in different games:

technology trees (TTs). This term covers here also so-called skill trees, talent

trees, perk trees, and other such structures used to limit and guide in-game

development and define development possibilities. The aim is to propose

methods and usage of tools helping to achieve high TT quality, simultane-

ously facilitating the actual development process and reducing human work-

load.

The main contributions of this dissertation consist of ideas, models, meth-

ods, and software tool prototypes constructed during the research work. The

significance of the thesis is amplified by the fact that there are only very few

previous academic studies focusing on TTs.

The thesis proposes a generic approach to implement TTs. The design

and implementation work are facilitated by tool support and automated code

generation. The central prototype tool, Tech Tree Tool (TTT) is introduced,

first in its core form and then as improved by TT measuring (and limited

automatic adjusting) capabilities. The challenge of modifying TTs during

runtime is addressed, also taking advantage of related improvements on TTT.

Because TTs are often operated by artificially intelligent entities, discussion

iii

on a generic artificial intelligence approach and related tools is included.

Moreover, contemporary real-life TTs are analyzed and generic TTs charac-

terized.

Keywords:

code generation, scripting, software tools, tech trees, technology trees

iv

Preface

We are living in extremely interesting times. Lately, the academic community

has finally started to take research efforts concerning digital games somewhat

seriously. Although there are still people uncertain about this field, the

situation keeps changing. Digital gaming evolves and expands forcefully to

new areas such as education. Gamification has become a buzz word. So, I

consider myself fortunate for having been able to step on the shoulders of

giants and start my research career in these exciting circumstances.

My research work started a couple of years ago under supervision of Pro-

fessor Tommi Mikkonen. I learned much working in his projects and appre-

ciate his contribution for my initial research efforts. Professor Tapio Elomaa

has been my supervisor throughout most of my graduate studies. His ex-

pertise and guidance have continuously been invaluable assets. I would also

like to express my gratitude to my colleague Doctor Juha-Matti Vanhatupa

for inspirational discussions and his contributions for joint publications, one

of which is also included in this dissertation. During the pre-examination

phase, I got excellent advice from Doctor David W. Aha, Professor Ulf Jo-

hansson, Professor Peter Quax, and Adjunct Professor Jouni Smed. They

deserve special thanks for their efforts, as does my opponent, Professor Erkki

Sutinen.

Writing the doctoral thesis would certainly have taken more time, had I

not have the opportunity to make my living by solving the research prob-

lems. Fortunately, I had the chance to carry out my doctoral studies and the

thesis-writing process working with the late Department of Computer Sys-

tems and later with the Department of Mathematics of Tampere University

of Technology. I would hereby like to thank everyone involved in creating

v

and maintaining the stimulating and pleasant working environment. In addi-

tion to the funding provided by these departments, my work was financially

partly supported by the Tampere Doctoral Programme in Information Sci-

ence and Engineering, the Academy of Finland, and the Foundation of Nokia

Corporation.

The nature of research work is such that it cannot really be confined

within office rooms or predetermined office hours; it is more like a way of

living than a daywork. Therefore, it also casts a shadow on private life and

free time. I would like to apologize for being irritating and thank all the

affected persons for their understanding and patience so far.

Tampere, October 20, 2015

Teemu J. Heinimäki

Dedicated to Pörri and Ninjakissa.

vi

Contents

Abstract iii

Preface v

Contents vii

List of Figures ix

Abbreviations xi

List of Included Publications xiii

Author’s Contribution to the Included Publications xv

1 Introduction 1
1.1 Motivation . 2
1.2 Scope and Objectives . 3
1.3 Research Questions . 5
1.4 View to the Research Work and Applied Methodology 6
1.5 Contributions of the Thesis 8
1.6 The Outline of the Thesis . 9

2 Games and In-Game Development 11
2.1 Genres of Digital Games . 13

2.1.1 Computer Role-Playing Games 13
2.1.2 Strategy Games . 14
2.1.3 Other Relevant Game Types 16

2.2 Development as a Part of Gameplay 17
2.2.1 Non-Digital Games . 17
2.2.2 Digital Games . 19

2.3 Technology Trees . 20
2.3.1 Technology Tree Types and Related Mechanisms . . . 25
2.3.2 Using Technology Trees 30
2.3.3 Common Problems with Technology Trees 32

vii

3 Game Development, Tools, and Academic Interests 35
3.1 Game Engines and Software Tools 36
3.2 Game Developers and Content 39

3.2.1 Heterogeneous Developers: Content Providers and Pro-
grammers . 39

3.2.2 User-Created Content 42
3.3 On Scripting . 45
3.4 On Artificial Intelligence . 45
3.5 Related Work . 47

4 Separate Functional Modifiable High-Quality Technology
Trees and Constructing Them 53
4.1 Technology Trees as Replaceable, Independent Entities 54
4.2 Technology Tree Implementation Format Unification 56
4.3 Technology Trees as Functional Entities 59
4.4 Technology Trees as Scripts 61
4.5 Creating Technology Trees . 63

4.5.1 The Trinity of a Game 65
4.5.2 Automation and its Limits 66

4.6 Introduction to the Included Publications 67
4.6.1 Publication I: Technology Trees in Digital Gaming . . . 68
4.6.2 Publication II: Implementing Artificial Intelligence:

A Generic Approach with Software Support 68
4.6.3 Publication III: Considerations on Measuring

Technology Tree Features 70
4.6.4 Publication IV: Facilitating Technology Forestry:

Software Tool Support for Creating Functional Tech-
nology Trees . 70

4.6.5 Publication V: Quality Measures for Improving Tech-
nology Trees . 71

4.6.6 Publication VI: Augmenting Technology Trees:
Automation and Tool Support 71

5 Discussion 73

6 Conclusion 79
6.1 Answers to the Research Questions 80
6.2 The Future . 83

Bibliography 87

Publications

viii

List of Figures

2.1 Development and keeping track of it in traditional games. . . . 18

2.2 The basic idea of a TT. 21

2.3 A partial TT visualized within a game. 23

2.4 Buildings offering development options. 24

2.5 Several small “skill trees”. 26

2.6 Small trees do not mean that the development system is trivial. 30

2.7 TTs for clans and individual characters. 31

3.1 People associated with digital game development. 43

4.1 A TT with internal functionality. 61

4.2 Game creation: components, actors, and their relations. 64

5.1 The “tech web” of Sid Meier’s Civilization: Beyond Earth. . . 76

5.2 The slot system of The Witcher 3: Wild Hunt. 77

ix

x

Abbreviations

3D three-dimensional

4X eXplore, eXpand, eXploit, and eXterminate

ADR action design research

AI artificial intelligence

Civ Sid Meier’s Civilization (MicroProse 1991)

Civ 5 Sid Meier’s Civilization V (Firaxis Games 2010)

CLI command line interface

CO collectible object

CRPG computer role-playing game

FSM finite state machine

GOAP goal-oriented action planning

GTR graphical interactive technology tree representation

GUI graphical user interface

LOD level of development

NPC non-player character

PC player character

RQ research question

RTS real-time strategy

Shōgun 2 Total War: Shogun 2 (The Creative Assembly 2011)

Skyrim The Elder Scrolls V: Skyrim (Bethesda Game Studios 2011)

TBS turn-based strategy

TT technology tree (tech tree)

TTRC technology tree representation component

TTT Tech Tree Tool

UI user interface

Witcher 2 The Witcher 2: Assassins of Kings (CD Projekt RED 2011)

XP experience point

xi

xii

List of Included Publications

This thesis is a compendium of six original publications referred in the text

with the Roman numerals as indicated in the following list. The listing order

is not chronological or alphabetical, but the publications are presented in the

natural order considering the discussion to follow.

I T. J. Heinimäki. Technology Trees in Digital Gaming. In Proceedings of the

16th International Academic MindTrek Conference 2012 (AMT2012), pages 27–34.

Tampere, Finland, October 2012.

II T. J. Heinimäki and J.-M. Vanhatupa. Implementing Artificial Intelligence: A

Generic Approach with Software Support. Proceedings of the Estonian Academy of

Sciences, vol. 62, no 1, pages 27–38. Estonian Academy Publishers, March 2013.

III T. J. Heinimäki. Considerations on Measuring Technology Tree Features. In Pro-

ceedings of the 4th Computer Science and Electronic Engineering Conference 2012

(CEEC’12), pages 145–148 (orig. 152–155). Colchester, UK, September 2012.

IV T. J. Heinimäki and T. Elomaa. Facilitating Technology Forestry: Software Tool

Support for Creating Functional Technology Trees. In Proceedings of the Third

International Conference on Innovative Computing Technology (INTECH 2013),

pages 510–519. London, UK, August 2013.

V T. J. Heinimäki and T. Elomaa. Quality Measures for Improving Technology

Trees. International Journal of Computer Games Technology, vol. 2015, article ID

975371, 10 pages. Hindawi Publishing Corporation, April 2015.

VI T. J. Heinimäki and T. Elomaa. Augmenting Technology Trees: Automation and

Tool Support. In Proceedings of the 7th International Conference on Virtual Worlds

and Games for Serious Applications (VS-Games 2015), pages 68–75. Skövde, Swe-

den, September 2015.

xiii

All of the published conference papers (i.e., Publications I, III, IV, and

VI) have undergone double-blind peer review processes having at least two

referees each. The known acceptance rates (stated in the proceedings) of

the conferences corresponding to the conference papers are as follows: for

Publication I, 45%, and for Publication IV, 34%.

Concerning Publication V, the editor based his decision on the opinion of

at least one external reviewer (unknown to the author). The acceptance rate

of the journal is 33%.i Publication II was born as an invited journal article

based on a previous (refereed) conference paper. The article was reviewed

by three new reviewers before the decision of the editor.

The kind permissions of the copyright holders of the original publica-

tions for republishing them as parts of this thesis are hereby gratefully ac-

knowledged. Publication-specific copyright information can be found on the

corresponding cover pages of the publications.

ihttp://www.hindawi.com/journals/ijcgt/, accessed in May 2015.

xiv

Author’s Contribution to

the Included Publications

The author of this dissertation was the main author of all the included publi-

cations. The roles and contributions concerning individual articles and con-

ference papers are explained in more detail below.

I This conference paper is a short review-like introduction to technology trees used

in digital games. The author of this dissertation is the sole author of the paper.

II This journal article on implementing artificial intelligence is based on a prior pa-

per of the same authors, for which the second author contributed some text and

our original script state machine specification. The author of this dissertation im-

plemented the software tools presented and wrote the most of the text. He also

extended the original paper into this journal article.

III The paper contains original ideas of possibilities to measure technology tree features.

The author of this thesis is the sole author of the paper.

IV This paper introduces an approach to implement technology trees separately from

the programs using them and a software tool implemented for this approach. Mostly

the paper has been written and the software solely implemented by the author of

this dissertation.

V This article is effectively continuation for Publication III and presents new ideas for

measuring technology trees, as well as a software implementation. The author of

this dissertation has written the main body of the text, implemented the software,

and conducted the tests.

VI This conference paper considers technology generation and ways to make technol-

ogy trees dynamic. Most of the paper has been written, the software has been

implemented, and the tests have been conducted by the author of this dissertation.

xv

xvi

Chapter 1

Introduction

“It may be that all games are silly. But then, so are humans.”

– Robert Lynd a

During the past few decades, digital gaming1 has emerged as a noteworthy

phenomenon, both culturally and economically. Playing is an important part

of the daily life for many people, and the game industry generates a revenue of

tens of billions of dollars annually. Game development has become a serious

business, and, therefore, game developers should pay special attention to the

quality of their products.

Game development projects can span over several years and employ peo-

ple by hundreds [3]. However, the human resources involved in game de-

velopment are limited, so using them efficiently is a matter of paramount

importance. Automation and suitable methodology can help in improving

ahttp://thinkexist.com/quotes/robert_lynd/, accessed in May 2015.
1In this thesis, digital gaming refers to playing digital electronic games interacting with

human players via (at least) a view capable of presenting graphics and a hardware interface
to make it possible to control the game execution. These games include “computer games”
(referring to the games for general-purpose desktop computers or laptops), “console games”
(referring to the games for dedicated gaming machines), “arcade games”, game applications
for mobile devices, etc. “Video game” is another generic term that could be used to
cover the same ground, but we prefer “digital game” emphasizing the (digital) computing
involved, not the view. Sometimes “video game” is also used synonymously to “console
game”, so in order to avoid confusion, “digital game”may be a better choice. The author
of this thesis has personal experience mostly on computer games, but the issues discussed
in this dissertation are, to an extent, relevant for all the current digital gaming platforms.

1

the quality of games and facilitating the development work. There is much

to meliorate, and this thesis aims to present usable ideas to these ends.

This chapter is divided into several sections. In Section 1.1, the motiva-

tion for this work is discussed further, after which the scope and the objectives

are presented in Section 1.2. The exact research questions are given in Sec-

tion 1.3, and the research methodology is treated in Section 1.4. Then, the

central contributions of the work are stated in Section 1.5, and finally the

structure of the rest of the dissertation is introduced in Section 1.6.

1.1 Motivation

Digital games have nowadays a huge impact to our society in a number of

ways. In 2013, the global game revenues were over $75 billion, and they seem

to still continue their rapid growth [74]. Recent American gamer demograph-

ics show, for example, that most of the Americans play digital games, about

two of every five players are at least 36 years old, and there are nearly as

many female as male players [27].2 Similarly, games have become an impor-

tant part of life also elsewhere; for instance, there are over 33 million gamers

(concerning digital games) in the UK alone, which is nearly 70% of the pop-

ulation [50]. There also the number of gaming females has actually exceeded

that of males [50].

So, games and producing them are definitely not just some marginal phe-

nomenon and an awkward hobby of strange teenager boys to be ignored

anymore, but gaming reaches a huge portion of the population. The user

base of games is becoming indistinguishable from that of conventional ap-

plications [25]. Computing hardware has evolved rapidly, and digital games

as products have also changed considerably in a relatively short time. Dig-

ital game development is still a young field of industry, as is also software

development more generally.

Recent decades have seen a large number of new kinds of methodolo-

gies, paradigms, and tools, and game-developing companies and individual

2Published statistics may have their problems [92], but the main point here is the fact
that huge masses of different people play games, nevertheless.

2

developers have for sure learned from the games produced so far. However,

there are still many problems left to be solved and room for improvements.

Game development has become harder as the project sizes and the general

complexity of games have increased, and as a software type, games are typ-

ically very complex and demanding [10].3 Therefore, the author has been

interested in providing useful ideas and tools to improve the development

process. Both big companies and independent developers can benefit by us-

ing suitable methods, software tools, and automation. Besides the savings in

working time, efforts, and development costs, possible improvements in game

quality manifest themselves as happy and loyal customers, thus creating con-

tinuity and serving the common good.

1.2 Scope and Objectives

The leading idea of this thesis is that games should be of high quality, but

developing them ought not to be too tedious and need too much human work.

This thesis is about finding means to facilitate producing better games more

efficiently.

Developing better and faster graphics hardware and drivers was the main

approach in improving the user experience in digital games for years, and as

a result, current computer graphics can be extremely impressive. Nowadays,

many people agree that improving other areas such as the game artificial

intelligence (AI) has become a more important approach in developing better

games; even magnificent graphics cannot save a game, in which the basic idea

is poor, content is dull, or the gaming experience is frustrating due to route-

finding bugs, dumb dialogues, or other AI-related handicaps.

Several aspects of AI and related fields – for instance, pathfinding – used

in games have been studied rigorously. However, there are still many gaps

to fill and much work to do. The complexity of modern digital games makes

3Recently, games developed for mobile platforms have become an important subtype of
digital games. They naturally tend to be simpler and smaller in size than computer and
console games. However, the contributions of this thesis may be of help also in mobile
game development.

3

creating AI for game agents a challenging task [71]. Conventional AI algo-

rithms cannot often be used – at least not without major modifications: a

large portion of algorithms published by academic researchers so far has con-

sisted of methods that are unsuitable to be applied in digital games as such

due to the special requirements involved [10].

This thesis cannot tackle all the common problems present in contem-

porary games and their development processes. Therefore, the dissertation

focuses only on one mechanism, which the author finds interesting among all

the partial systems forming digital games: development choices and offering

them to players during the gameplay.

Typically, some kind of a development graph structure is used for structur-

ing the possibilities to advance in a game. The author calls those structures

technology trees (TTs). Creating such structures determining virtual devel-

opment possibilities and managing the effects of advancement is not trivial –

at least, when one strives towards high quality – and requires a good deal of

human labor. Therefore, the main theme of this work is improving TTs and

finding better ways to implement them economically without compromising

the quality.

Moreover, just implementing good TTs effectively is not enough, because

typically they should be usable by AI agents in addition to human play-

ers. Therefore, some generic game AI discussion is also included. As far

as prior publications concerning these issues are concerned, capability to

somehow use a predetermined TT (e.g., by constructing buildings) has been

included in several academic game AI implementations (see, e.g., reference

[81]). However, the foci of these studies have been elsewhere, so the scope of

this dissertation is unique.

As the context of the discussion the author mainly uses dedicated single-

player computer game applications that are run locally. However, some of

the ideas can be applied also to the currently trendy world of browser games,

cloud gaming, and other network-based gaming solutions.

Personally, the author finds single-player digital games more interesting

than multiplayer ones, but the popularity of the latter must be taken into

account, so there will also be some comments concerning them. Gamers “are

4

driven to networked games because of the failings of the computer characters”

[57]. Therefore, the author thinks that single-player games deserve special

attention, especially as far as game AI is concerned. However, for the main

topic of the thesis, TTs, the number of players as such is a matter of relatively

low importance – at least considering this particular study. Nevertheless,

when implementing TTs, one must, of course, take the cardinality of the

users into account. Some of the modern game applications and architectures

behind them must be able to serve a very large number of users [85].

Besides desktop computer environments, implementations generated with

tools to be presented in this thesis have been partially tested also in mobile

devices such as the Jolla phone. Computer games4 have been used as real-

world digital game examples.

1.3 Research Questions

Narrowing down the higher-level objectives and research interests has led

into a set of specific research questions. These are the essential questions, to

which the included publications and this thesis as a whole aim to answer:

Research Question 1 (RQ1):

How could the current practices of digital game development (especially from

the viewpoint of implementing TTs) be improved?

Research Question 2 (RQ2):

What kind of imperfections and problems are typical with TTs?

Research Question 3 (RQ3):

Can automation help with producing better TTs?

4The purpose of this thesis is not to specifically promote any single games. Repre-
sentative examples have been picked among the games that were conveniently available
when writing this thesis, but there are a large number of games that could have been used
instead or in addition. The selected ones, however, are able to fully demonstrate all the
essential facts intended to be demonstrated.

5

Research Question 4 (RQ4):

Can automation help with reducing human workload in TT construction?

Naturally, the possible approaches and methods that are found in con-

nection to answering the questions may be matters of interest also when

considering the other questions than RQ1. If RQ3 or RQ4 is answered in

the affirmative, the corresponding “how” question is a natural continuation

for the research question. The downsides and practicality of the possible

approaches are, of course, also important and deserve attention.

1.4 View to the Research Work and Applied

Methodology

When categorizing and describing the nature of the efforts taken for this

dissertation, the author considers design science research (in information

systems) as the main (high-level) research paradigm applied. “The design-

science paradigm seeks to extend the boundaries of human and organizational

capabilities by creating new and innovative artifacts” [46]. Basically all the

work done has, indeed, been about creating artifacts in order to extend the

boundaries of the practices and tools used in digital game development. The

approach is conventional – constructing artifacts has been a typical means of

proceeding in computer science and software engineering research [49]. The

work has been a cyclic alternation between building and evaluating. These

two activities can be seen as the basic activities of design science [65].

Because of the heavy emphasis on creating artifacts, methodologically

the research work is easy to classify as constructive. The used methods have

included both conceptual and technical development – both of the types of

constructive research methods [48]. During the process, a wide array of ar-

tifacts has been built. For example, terms have been defined, models and

algorithms have been developed, and prototype software tools have been

implemented. This means also that artifacts of all the four design science

product types (i.e., constructs, models, methods, and implementations/in-

6

stantiations) [65] have been produced. The artifact construction has been

based on acquired knowledge on recent and contemporary digital game de-

velopment and hypotheses on improving the process.

Construction, however, is not enough. It has been realized that con-

structs, models, and methods working in theory may not be viable in prac-

tice [65]. In order to acquire evidence of the (non)viability of the proposed

approaches and tools, empirical tests have been carried out. Therefore, con-

sidering Järvinen’s taxonomy of research approaches [51], the work conducted

for this dissertation could fit partly in the category “artifacts-evaluating ap-

proaches”, and, additionally, partly in “artifacts-building approaches”.

Carrying out the research project has manifested certain features of the

action design research (ADR) [93] approach. Most notably, evaluation has

been present all the time alongside building the artifacts, though a spe-

cific evaluation step has often been taken after getting an artifact ensemble

“ready”. The ADR process has four stages: “problem formulation” (Stage 1),

“building, intervention, and evaluation” (Stage 2), “reflection and learning”

(Stage 3), and“formalization of learning”(Stage 4) [93]. Problem formulation

has been done before actually moving on to the artifact creation phase, dur-

ing which also evaluation has been constantly performed. However, because

all the work has been carried out by a single person, proper “organizational

intervention” (see [93]) has been impossible. Trying to learn generally – not

only concerning specific instances – along the way has been an important

part of the process. This corresponds to Stage 3 in the ADR methodology,

and suggesting design principles and refinements to them could be seen as

Stage 4 operations.

The artifacts (e.g., concepts, software, frameworks, and methods) that

were created during the research process and are essential concerning this dis-

sertation are documented in the included publications (see Sections 1.5 and 1.6).

The experiments that have been performed with these artifacts are also de-

scribed in them.

7

1.5 Contributions of the Thesis

Six peer-reviewed publications are republished as parts of this thesis to serve

as a basis, on which to build. Their central ideas and results are put together,

filling gaps, in order to present a coherent view of the considered problems

and possible ways to tackle them.

The main contribution of this thesis is the presentation of tools and meth-

ods designed to facilitate implementing high-quality TTs and using them as

a part of digital games. In more detail, the dissertation

• introduces software tools and methods for designing TTs and gener-

ating corresponding functional script code automatically in order to

reduce workload of game developers,

• discusses and introduces tool support for measuring TT properties for

adjustments in order to achieve better quality,

• tries to convince and motivate the academic community to conduct

further research on TTs and implementing them in order to have better

games in the future, and

• provides answers for the research questions.

Due to the nature of the research process and this thesis, mostly the

evaluation presented consists of hardly more than initial impressions. It is

difficult to give numerical results, when dealing with subjective topics, such

as the quality of a TT. The same applies to, for instance, savings in working

time or efforts needed using certain tools or methods, because such matters

depend on the workers involved and the desired result of the work, among

other things. However, based on the presented ideas and results it should

be easy to carry on and conduct further studies thus advancing the collec-

tive knowledge and understanding of the field, hopefully leading to better

games.

8

1.6 The Outline of the Thesis

The dissertation consists of an introductory part and six publications. The

remainder of the introductory part is organized as follows. Chapter 2 presents

some background in order to establish a groundwork for the rest of the thesis.

The main themes are in-game (simulated, virtual, game-changing) develop-

ment, TTs, and their typical use and roles in digital games. Also, genres

of digital games are discussed. Chapter 3 continues on the topics of game

development, people involved in it, scripting, and AI. Moreover, related work

is covered.

In Chapter 4, the insights and visions of the author concerning creat-

ing digital games and especially TTs are explained; the chapter presents

the approach proposed to improve game development and solve the research

problems. Also, the content of the included publications is briefly explained

in order to clarify their roles as parts of the dissertation.

The results, achievements, feasibility, and problems related to the meth-

ods applied and the study as a whole are discussed in Chapter 5. After

that, the introductory part of the thesis is concluded in Chapter 6, which

includes answers for the research questions. Also, some future directions and

possibilities are covered.

After the introductory part, the six included publications can be found

at the end of the thesis. The main ideas and content of them are explained

in Section 4.6, and the publications are referred to wherever necessary.

9

10

Chapter 2

Games and In-Game

Development

“If Pac-Man had affected us as kids, we’d all be running

around in dark rooms, munching pills and listening to

repetitive electronic music.”

– Marcus Brigstocke b

It cannot be omitted that “videogames are a time-based medium” [38]. The

same holds true for any game of serial nature, considerable duration and sev-

eral different game states – i.e., basically all interesting and nontrivial games.

For a game to really appear interesting, it has to be able to keep its players

interested for a continued period of time. There is a common, fundamen-

tal mechanism aiming to achieve this: including upgrades and development

options in the game.

bhttp://izquotes.com/quote/213270, accessed in May 2015.

11

For example, a strategy game (see Section 2.1.2) should feature several

unit types to keep the number of battle combinations large [1],5 but this is

not enough. All the types should not be available from the beginning, so that

the weaker unit types would also get to be used [1]. The possibility to develop

better units during the game also adds to the complexity and interestingness

of the game.

The continuum of the in-game development structures that had been used

in the board gaming domain was reshaped, when TTs emerged in digital

games and evolved to take advantage of the possibilities offered by com-

puterization. TTs are graph-based structures offering upgrades and options

for development. Game mechanics based on these elements are used heav-

ily, because they can enrich games in various ways. For instance, TTs can

keep a game instance interesting by offering choices and defining develop-

ment effects. TTs also enlarge the replayability value of a game by providing

different paths to victory to be experimented with.

Traditionally, TT is a term associated with strategy games, but the idea

of such development possibility–defining and selection-guiding graphs has

been adopted also into other genres, like computer role-playing games, sports

games, management (god) games, action games, and different genre mixtures.

Creating portable TTs of high quality with ease and without genre restric-

tions is the focal point of this thesis. However, genres are discussed a bit fur-

ther in Section 2.1. Then, development generally as an in-game phenomenon

is considered in Section 2.2. Thereafter, Section 2.3 zeroes in on TTs – the

most essential structures and mechanisms of development concerning this

thesis.

5In other words, several unit types are needed for strategic and tactical use of combined
arms, which is essential in many strategy games. So-called Condorcet cycles concerning
the types are important; generally there should not be a single unit type dominating all
the others, and this can be achieved by intransitivity of strengths or weaknesses against
other unit types [70]. This kind of a “rock-paper-scissors”setting is a classic way to avoid
dominant strategies [1]. The mechanism can lead to interesting games by itself, but more
depth is achieved by having also a possibility to gradually develop better units within unit
type categories as a part of the gameplay.

12

2.1 Genres of Digital Games

Digital (and other) games are diverse and can be classified and categorized

in various ways into distinct genres. Several taxonomies have been created

(e.g., reference [43]), and there is some variation between different genre def-

initions found in the literature. Nevertheless, typical features characterizing

common genres can be pointed out. This section briefly describes some of

the most essential digital game genres concerning this thesis in order to give

the necessary background for non-gamers.

These genres are not the only ones, within which the ideas presented in

this thesis can be used, but they are the most obvious. It is also worth men-

tioning that many contemporary games cannot be classified purely into any

of the conventional genres, but they are actually mixtures of several of them.

Moreover, genres change over time, and new ones keep emerging continuously

due to, for example, the evolution of gaming media and platforms.

2.1.1 Computer Role-Playing Games

In role-playing games, “players create or take on a character represented by

various statistics, which may even include a developed persona”, and “this

term should not be used for games [. . .] in which identity is not emphasized

or important, nor where characters are not represented statistically” [114].

Computer role-playing games (CRPGs) follow the same basic idea of having

characters – typically, at least, a player character (PC) – to be distinguished

with their attributes, skills, or other (typically numerical) statistics.

These property values allow and enable character development, which

constitutes an essential part of these games; getting opportunities for a PC

to develop and grow continuously during a game is considered a matter of

paramount importance within this genre [44]. Experience points (XPs) are

used to track experience, and accumulating them leads to improvements of

skills or character levels [44].

In some CRPGs, the PC is initially formed using a character generation

process, which fixes various properties, such as the appearance, name, sex,

specializations, and so on [44]. The generation may be randomized, or the

13

player can be given the freedom to allocate, for instance, some initial “points”

available to be allocated into different statistics [44]. Also character classes

(e.g., a wizard, a warrior, a rogue, or a Jedi consular) are often used in

specializing a character. A class, on the one hand, often limits abilities that

can be developed or used, but on the other hand, also opens up special

possibilities of development and abilities that are characteristic to the class.

There are a large number of different digital games considered to be

CRPGs and also games officially or commonly classified differently with fea-

tures typical to CRPGs. As far as this thesis is concerned, the development

of characters (or creatures or objects representing players and possibly other

“player-like” entities) in terms of abilities, skills, and other statistics is an

important aspect of this genre.

2.1.2 Strategy Games

Strategy games let players control entities consisting of several individuals

(or other units). Typically, new units are created during a game, and in

order to do so, resources have to be collected and used [43]. There is much

variety within the genre, but the common factor of strategy games is – strat-

egy. Sometimes it might be better described just as tactics, but there are

also strategy games, in which more comprehensive overall strategies are im-

portant.

Decision-making has a central role in these games; players have to keep

continuously deciding, how to use their units, how to improve and develop

their empires, and how to overcome different obstacles – set by the game or

other players – along the path leading to the victory. Conflict and direct

acting against opponents are typical features distinguishing strategy games

from some of the other genres such as management and construction simu-

lations and puzzle games [1]. In addition to the aspect of physical combat,

there can be others, such as espionage and diplomacy [1]. Certain symmetry

is typical: different parties competing with each other in a strategy game

play somewhat similarly (which is not true for, e.g., action games featuring

a PC struggling against the rest of the world) [1].

14

Strategy games cover a variety of quite different titles. Therefore, in or-

der to be more specific, representatives of the genre can be classified further.

Strategy games are often divided into two main subgenres. These are dis-

cussed next separately, because there are certain fundamental differences –

concerning both gameplay and this thesis.

Real-Time Strategy Games

Games of the“strategy”genre have been described as ”games emphasizing the

use of strategy as opposed to fast action or the use of quick reflexes, which are

usually not necessary for success in these games” [114]. However, real-time

strategy (RTS) games are sometimes seen merely as “button mashing”. As

the name suggests, in RTS games events take place and the situation changes

in “real time”. The players do not have to wait while others are completing

their turns, but all the players are free to take actions at their own pace,

as their situations allow.6 Therefore, commands should be given rapidly in

order to be able to compete successfully with AI players having the advantage

of being able to command their forces via a programmatic interface without

any need to use clumsy pointing devices, controllers, or keyboards.

In the ideal case, however, it should be more important to be able to make

good strategic or tactical decisions in reasonable time than to hit buttons or

point and click with a pointing device very quickly. Typically, the focus of

RTS games is on military combat [82], and constant time pressure and the

need for making quick decisions as the situation develops suit well into this

kind of a setting. Especially this is true in tactics-oriented games trying to

mirror real-world tactical decision-making challenges.

Turn-Based Strategy Games

Classical turn-based strategy (TBS) games do not press the players to make

their decisions as quickly as RTS games. In a TBS game, a player makes

decisions and gives commands regarding one game turn at a time, typically

6The actual implementation may handle the game as a series of short “microturns”, but
from the human perspective, there are no observable distinct turns for different players;
they are allowed to play “simultaneously”.

15

being able to use as much time as needed before passing the turn to the next

player (which may be a human or an AI).

The time-related pressure in TBS games differs from that of RTS games; it

emerges from the fact that the turns should be spent as effectively as possible

in order to gain the upper hand over the opponents. The number of turns can

also be limited. Because there is more time to ponder on different options

than in RTS games, TBS games are also able to offer more possibilities for

(micro)management and making choices. Many players appreciate the depth

that can be offered this way.

On the other hand, sequential play and a variety of options combined with

unlimited time to be used for playing a turn also easily lead to increased

downtime. The situation called analysis paralysis [9] occurs when one is

overwhelmed by the large number of alternative ways to proceed and cannot

decide the next action to take. Such a condition is avoided in real-time

games [61], but it can be a problem in a TBS setting. The duration of a

TBS game can be considerable. To mitigate this and to keep the game pace

tolerable, it is possible to limit the allowed time for taking a turn. This

is especially useful in multiplayer game settings with several human beings

involved: unlike computers, humans tend to get irritated easily.

2.1.3 Other Relevant Game Types

In addition to CRPGs and strategy (RTS and TBS) games, different tax-

onomies introduce various genre labels and game types that may be relevant,

when seeking application areas for the approach of this thesis. For instance,

so-called 4X (eXplore, eXpand, eXploit, and eXterminate) games can be

treated as a subgenre of strategy games – as is done in this thesis – but 4X

can also be seen as a genre distinct from strategy games [43].

Management games (or “god” games) resemble strategy games: there is

a population in the game world, and the player can affect the population

[43]. Also resources (see Section 2.3.2) are involved in these games [43].

Resources, and possibly converting them into different forms (and sometimes

also destroying items in order to acquire resources for reuse) – thus affecting

16

the game world or the PC abilities – play a central role in building-oriented

games (including strategy games).

Development aspects can be present also in, for example, sports games, in

which one might train players or teams in different skills or improve vehicles

by adding and changing parts in them. Often, action games also feature

development elements. For instance, in a space shooter, the player may be

able to fly around hunting for weapon upgrades, or a first-person shooter

game may include CRPG elements and let the skills and weaponry of the

protagonist be improved along the way.

2.2 Development as a Part of Gameplay

Life consists of changes of, for example, situations, physical properties, capa-

bilities, knowledge, opinions, and relations – life can even be seen as nothing

but a constant change. For humans it is natural to strive towards better life

and attaining objectives that seem beneficial. Developing oneself and human

relations, advancing in social hierarchies, and amassing wealth and resources

are hardly strange ideas. Also, entities composed of humans, like nations,

federations, and organizations, have their objectives and ways to proceed

towards their respective goals.

Objectives, as well as changing conditions and properties, are typical

elements also in games; in a game, one aims at winning within the rules, and

there are different game states involved, through which the game proceeds.

Non-trivial games are largely won by successful development.

2.2.1 Non-Digital Games

Development in games takes different forms and happens on different levels.

For example, in go, the game proceeds, when the players build the “game

world”and the overall situation on the board stone by stone (see Figure 2.1a).

Being able to develop the situation on the board to eventually favor oneself

more than the opponent is the key to victory.

17

(a) In go, the game sit-
uation develops stone by
stone.

(b) In Magic: The
Gathering, properties
are tracked using, e.g.,
counters, dice, and card
orientations.

(c) In Clash of Cultures,
plastic cubes and card-
board tokens are used to
track advances and re-
sources.

(d) In shōgi, most of the
pieces can be promoted
by flipping them over to
show the promoted side.

(e) In Samurai Battles,
there are many ways to
track unit statistics.

Figure 2.1: Development and keeping track of it in traditional games.

Many card-based games involve constructing tableaux of cards giving ben-

efits for the rest of the game or points needed for the victory. Sometimes the

properties of individual cards can also change and be tracked by, for instance,

adding or removing different counters on them or attaching modifying cards

to them. Also, card orientations can be used for tracking purposes. These

means are used, for example, in Magic: The Gathering (Wizards of the Coast

1993). Example tableaux are illustrated in Figure 2.1b.

There are board games, like Clash of Cultures (Z-Man Games 2012), in

which advancement possibilities and their prerequisites (i.e., TTs) have been

18

defined in the form of cardboard templates, and the advancements of the

players are tracked with markers added on them, as illustrated in Figure 2.1c.

Some traditional board games – with boards and pieces – have been fea-

turing possibilities for individual piece promotions for at least several hun-

dreds – possibly even thousands – of years. This kind of unit upgrading adds

interesting elements to tactical games. Often the promotion is from one piece

type into another, beyond which one cannot proceed, because of the prac-

tical limitations of board gaming. For instance in shōgi, most of the pieces

have two usable sides: the basic version and the promoted version of the

piece, and pieces are flipped over on the board to reveal the promoted side,

when appropriate. In Figure 2.1d, two similar fuhyō (foot soldier, “pawn”)

pieces are shown. The upper one has been flipped to show the promoted side

(tokin).

To follow the development and properties of individual game pieces, it is

also possible to let them remain as they are, but attach (or remove) markers to

them or, for instance, to make notes to associated status cards. For example,

in Samurai Battles (Zvezda 2012) (see Figure 2.1e), an honor token can be

added to a unit flag pole as an indicator of the better-than-normal statistics

of the unit, and arrow models can be used to keep track of the arrow (or

other projectile or ammunition) situation of a unit. Models can be removed

from and added to unit bases, and besides, there is a unit card (not shown

in the figure) for each unit (consisting of a unit base and the models on it)

to, for example, record statistics.

2.2.2 Digital Games

The roots of many contemporary digital games run deep in board gaming.7

Board gaming is a very old invention [47], and it is impossible to say, when

and where exactly upgrading or acquiring benefit-giving entities within given

7Board gaming in this thesis refers to a wide array of tabletop gaming – or, basically,
any gaming that is not physically overly demanding and is performed by human players in
a local, constricted space. The board is not always necessary. Pen-and-paper role-playing
games are typically seen as a totally different gaming genre, but for our ends, they can be
handled as a subset of board gaming as well.

19

development rules during a game occurred for the first time. However, it can

be said that computerization has opened up new possibilities.

Traditionally, the development processes in games have been limited by

the human capabilities of the players, bookkeeping resources, and presenta-

tional difficulties, even though – as demonstrated in Section 2.2.1 – there

are different ways to track development. Computers have alleviated the dif-

ficulties considerably, and, therefore, one can find a large number of devel-

opment options in digital games. A computer can be used to keep track of,

for instance, career histories of simulated characters, modify their current

properties accordingly, and illustrate the essential status facts for the players

conveniently. Delegation of bookkeeping, calculations, and presentational

matters to a computer frees the human players to enjoy the development

without tedious work that a computer is more suited to handle.

2.3 Technology Trees

Section 2.2 discussed development in games generally. This section continues

by introducing and giving background on an especially important structure

used to enable in-game development in a variety of modern digital games: a

TT.

In role-playing games in general – and thus also in CRPGs – perceptible

character advancement is essential [44]. Development of a character is easily

tracked using numerical statistic values for attributes and skills [44]. Besides

straightforward basic skills to develop, a character may be able to acquire

totally new abilities during the game, and the corresponding player may

be able to steer the development and choose which perks are learnt. This

is an element typical also to strategy games, although in them the effects of

development might be quite different and target more than a single character.

Often the possibilities for development depend on the current status.8

This status comprises the aspect of the acquired development, possible wealth

8If development was a stochastic process, the Markov property would often hold. How-
ever, typically the point is to let the players control the development, and normally the
process is deterministic, though some randomness may be involved.

20

Figure 2.2: The basic idea of a TT.

in forms of different resources related to development options, and possible

other limitations. It has been found convenient to model and represent such

development possibilities using augmented graph structures that define possi-

ble prerequisite relationships of these options and contain also other necessary

data.

TT is a common and traditional term to refer to such structures in strat-

egy games. When searching the origins of such conventional TTs, typically

the board game Civilization by Francis Tresham (Hartland Trefoil 1980) is

given the credit of introducing them. Sid Meier’s Civilization (MicroProse

1991) (Civ), an iconic computer strategy game, is famous, among other

things, for using them. Since Civ, TTs have been used in various digital

games.

Although creating a good TT is generally a demanding task, and the

details vary, the basic idea of TTs and using them in digital games is simple.

Consider the graph illustrated in Figure 2.2. Let the nodes T1–T11 be

benefit-providing entities and let the player be able to proceed in the structure

by “developing” these nodes one by one in order to obtain their respective

benefits. Let the edges of the graph control the availability of the nodes in

21

such a way that initially, only T1, T2, and T3 are available. Developing,

for instance, T2 unlocks T5 and T6 so that they can be developed as well.

Depending on the TT semantics, developing T5 or T6 alone may suffice to

unlock T8, or both of them may be required. Advancing in a TT requires

typically time and (other) game resources. Therefore, the player is forced to

prioritize and encouraged to plan ahead, when making decisions on what to

develop and when.

As stated in Publication V, TTs“are typically seen either as (1) structures

(mechanisms) for defining and controlling development (upgrading), based on

dependency relations of technologies, or (2) flow-chart-like presentations on

these dependencies”. This thesis focuses on the former interpretation; TTs

should generally be understood as abstract models, which may or may not

have visualizations. An example of an in-game visualization of a TT can be

seen in Figure 2.3.

In order to further clarify and crystallize the intended interpretation of

TTs concerning this thesis, let us state that a TT should generally be under-

stood as an abstract structure that

• can be modeled as a (multi)digraph with associated additional data

and

• can be implemented programmatically so that this implementation can

be used to define or model, within a game, development options (cor-

responding to the nodes in the underlying graph) and their mutual

dependencies (corresponding to the edges in the graph).

Similar rather generic TT interpretations can be found in the game liter-

ature. A TT has been described, for example, as “a structure that controls

progress from one technology to a better technology, enabling the player to

create better facilities or more powerful units” [70].

However, mostly the term TT tends to be used only in relation to strat-

egy games. For other genres, different names (e.g., “talent tree” or “skill

tree”) are used. This is where the interpretation used in this thesis distin-

guishes itself from others; it is very generic and nonlimiting, allowing all

these depelopment-guiding structures to be discussed as TTs. There is no

22

Figure 2.3: A partial TT visualized within a game. A screen capture from Sid
Meier’s Civilization V (Firaxis Games 2010) (Civ 5). This kind of graphical
representations of development possibilities (prerequisite graphs) are often
offered to players for making decisions about the current and future develop-
ment focus areas.

need to use different words only because there is some variation concerning

the objects of the development and the nature of the elements offered to be

developed – which the author invariably calls technologies9 for the rest of the

introductory part of this thesis.

Technologies – the nodes in TT graphs and goals for development efforts –

come in various forms. They can represent technologies in the normal sense of

the word, but they can also be, for example, new building types (or abilities to

build such), new political systems, or new spells to cast. The benefits given by

technologies are also diverse. One distinction could be made between passive

abilities – affecting, for instance, by giving a permanent income boost of a

certain percentage – and abilities to do something new and requiring some

kind of an activation to make the technology count, like learning a new spell

or obtaining the ability to train samurai cavalry units.

TTs are simple structures by nature, but they can add to the interest-

ingness of a game considerably, if used correctly. They tend to combine two

“basic attitudes governing play” of Caillois [16], namely agôn and mimicry.

9It is also common to use the abbreviated version tech for TT-related technologies, and
correspondingly refer to TTs as tech trees.

23

Figure 2.4: In Age of Empires III (Ensemble Studios 2005), barracks offer,
e.g., access to training of several military unit types, and buildings of other
types offer their respective benefits and development possibilities. A screen
capture from the game.

TTs are about calculating and using the possibilities offered by the game

in a clever and efficient way in order to win (agôn), but on the other hand,

they can help in customizing, for instance, the PC in order to play a role as

wanted (mimicry). It is also possible to add the attitude alea by introducing

randomness to a TT.10

For a more thorough introduction to the essence of TTs, see Publication I.

It offers a general overview on the subject of TTs and their roles in digital

games. In the paper, aspects for classifying TTs are pondered, and examples

of real games are presented. In Publication IV, TT functions are explained

and TT components are characterized in a generic way.

10Caillois considered alea and mimicry as a “forbidden relationship”, but here mimicry
is seen more widely – including role-playing-like, not totally free, simulation.

24

2.3.1 Technology Tree Types and Related Mechanisms

The publications should be consulted concerning the basic nature of TTs

as prerequisite-defining graphs (with extra information). The same is true

concerning the variety of TTs and classifying them. However, this section

present a focused view to these topics.

In addition, a mechanism of acquiring benefits based on game-world ob-

jects – common in action games and CRPGs – is discussed. This mechanism

is worth mentioning, because it is commonly used and related to TTs. The

two approaches can even both be used in a single game.

Technology Trees in Different Games

Conventional TTs in digital games emerged as a part of the strategy gaming

genre in the early 1990s, and the TT of Civ is an example that cannot be

omitted – for many people Civ is probably the first mental association with

the term. The game created a model that was applied and further modified

by countless games since.

Civ is a TBS game, and Civ -like TTs – like the one of Civ 5, partially

seen in Figure 2.3 – are typical to this genre. A characteristic property for

such TTs is being composed of several (tens or hundreds of) heterogeneous

technologies. Several (more than one) prerequisite dependencies for develop-

ing a technology are typical, although there may also be “linear”, chain-like

portions, in which a technology is the sole prerequisite for another one, which

is the only prerequisite to yet another, and so on.

In RTS games, there may not be TT structure visualizations shown to

the players for development selections, but often TTs are effectively present

nevertheless. It is common that development happens in or in relation to

buildings. Constructing a building of a certain type may open up possibil-

ities to train certain kinds of units (see Figure 2.4) or build other kinds of

buildings. In addition to opening up new options for development, buildings

may bring along their individual in-game effects and offer, besides building

and unit types, also other kinds of technologies to be developed.

25

Figure 2.5: In Skyrim, the skills available to the PC have been divided into
several small TTs (“skill trees”). A screen capture from the game.

The applicability of the idea of modeling development options and pre-

requisite relationships with graphs is by no means restricted to strategy

games only. TTs can be used to offer options, for instance, for character

advancement in CRPGs. Eric Schaefer describes the “character skill tree”

implemented in Diablo II (Blizzard North 2000) as “the most revolution-

ary new idea” of the developers [90]. In the 21st century, such TTs have

been rather common in CRPGs and games featuring role-playing elements.

These TTs are usually rather modest in size. However, there can be several

of them within a single game. For instance, The Elder Scrolls V: Skyrim

(Bethesda Game Studios 2011) (Skyrim) features separate “trees” for differ-

ent skill groups. A few of these are visualized in Figure 2.5.

Similarly to CRPGs, the TT idea can be straightforwardly applied to

action games featuring role-playing elements as well as to games of other

genres involving individual or collective in-game development of virtual en-

tities. This is useful especially, when there are prerequisite dependencies

between the technologies. For instance, in a racing game, the player might

26

be able to obtain new vehicle designs based on the existing ones and the

parts and partial design blueprints he or she acquires.

Collectible Objects and Their Relation to Technology Trees

Especially in CRPGs, also additional means of offering chances to power up

a character are sometimes used. For instance, a PC may be able to obtain

(e.g., buy, find, or loot) and equip items in the game world, and these items

may alter PC statistics or give abilities. Despite the fact that such collectible

objects (COs) are – at least apparently – outside the TTs, the available COs

or their properties can, for instance, be determined by the development status

of the PC. It is also possible to have COs “leveling up” with the PC, or let

players upgrade, enhance, or modify COs. For such purposes, COs may use

their own TTs.

The main reason to try to acquire or develop technologies in a game

is to gain benefits, and thus make it easier to survive and eventually win

the game. In addition, developed technologies may serve as “collectibles”,

something to boast about. In this sense, COs obtained are similar entities;

by obtaining them one can typically get benefits, and they can be collected.

One main difference between them and technologies of TTs is the typical lack

of prerequisites, when COs are concerned.11

In addition to the prerequisite relationships, there may also be other re-

strictions to developing technologies in a TT. Similarly, possessing or using

COs can be restricted in various ways. A typical restriction is the limited ca-

pacity of possessing objects simultaneously. Carrying each CO often requires

space in a corresponding inventory, and COs may also have associated weight

attributes (or such) affecting the capability to carry them. These features

are uncharacteristic for technologies.

Often COs can also be easily discarded, and sometimes they may be

usable only once. Developed technologies, on the other hand, are typically

11However, technology sets can be treated as TTs even without any prerequisite rela-
tionships. This may not be typical, but, for instance, the tool of Publication IV does not
require defining prerequisites, and typically TTs are not graph-theoretically proper trees
anyway.

27

quite permanent – at least in TBS games. In RTS games featuring building-

based technology development, the loss of the last of the buildings of a certain

type is often seen as losing a“developed”status of a technology corresponding

to the building type.

Rewarding players continuously during a game is important in order to

keep them interested [44]. It is natural to use COs as such rewards for

completing quests such as clearing a dungeon, but similarly obtaining new

technologies can be rewarding, and letting players make meaningful selections

is also a way to nourish their interest. Such strategic selections are typical

to TTs.

Technology Trees as Prerequisite Graphs

Let us also consider the aspect of TTs as prerequisite-defining graphs a bit

further; the prerequisite relations between technologies (the edges of the TT

graph structures connecting technology nodes) are, after all, basically the rea-

son of discussing TTs and not merely sets of technologies. Also, concerning

this aspect, TTs differ from each other. However, the definitive idea is that

technologies may act as prerequisites for other technologies, and these rela-

tionships are naturally represented or modeled as edges in the corresponding

TT graphs.

Let us consider distinct technologies A and B that are prerequisite tech-

nologies for yet another technology C. Let the development statuses of A and

B be binary: either a technology is “developed” or not. (The author calls

such technologies Boolean ones, because it is possible to store the essential

development information with Boolean variables.) As far as the semantics of

the relationship edges are considered, there are two base cases: in the case

of conjunctive prerequisite relationships, both A and B are required to have

“developed” statuses in order to develop C, but in the case of disjunctive

relationships, having either A or B developed is enough. Sometimes TTs

mix these two relationship types, using conjunctive prerequisites for some

technologies and disjunctive prerequisites for others.

28

This kind of a simple description of the basic idea and semantics of a TT

applies to many real TTs quite well, but in Publication IV a more general

characterization and related notation are presented in order to be able to

cover also more eccentric cases. For instance, instead of using binary devel-

opment status values, technologies may have several levels of development

(LODs) for a player to achieve12, and development-allowing or development-

denying conditions for edges may be something more complicated than the

development statuses of single technologies. Publication IV can be consulted

for more details.

The Witcher 2: Assassins of Kings (CD Projekt RED 2011) (Witcher 2)

is an example of a game, in which some technologies (“abilities” that can be

purchased using “talents”) have more than one LODs. There are technologies

that can be further modified by mutation, and sufficient development in one

of the four “separate” TTs is required before the player can invest into the

other three trees. The Witcher 2 TT structures are illustrated in the screen

capture presented as Figure 2.6.

Categorizing Technology Trees

Because of the diversity of TTs, discussing them generally is difficult. This

difficulty can be alleviated by a categorization of TTs. It enables discussing

subsets of TTs with common properties, and, therefore, one can express one-

self more clearly. In Publication I, several classification criteria are presented.

Besides structural issues, rigidity, technology types, resources, and pre-

requisite relationship types (mentioned in Publication I), TTs can be catego-

rized based on the entities that are affected by the developing technologies.

In CRPGs, the affected entity is typically the PC or other character. In strat-

12The author uses a convention, in which LOD 0 corresponds to a state, in which the
technology has not been developed, and LOD 1 corresponds the first possible state (lowest
level) of the“developed”status. All the possible higher development levels are numbered by
always adding one to the LOD number of the previous, required LOD. It should be noted
that common Boolean technologies can be discussed more generally as technologies with
two LODS. The possible development modes of them, “not developed” and “developed”,
can be seen as LOD 0 and LOD 1, respectively. In this thesis, “achieving”, “acquiring”,
“obtaining”, “buying”, etc., a technology means performing an operation that raises the
LOD value of the technology under scrutiny from zero to one.

29

Figure 2.6: A screen capture from Witcher 2. Despite the ostensibly small
sizes of the TTs, the development system is nontrivial, and the possibilities
for character development are numerous.

egy games, TTs – at least the “main TTs” – affect typically the whole faction

(e.g., a clan, a nation, or a species) the player is guiding. However, there

are also strategy games, like Total War: Shogun 2 (The Creative Assembly

2011) (Shōgun 2), featuring, besides two “main TTs” (see Figure 2.7a), also

TTs for individual characters (units) (see Figure 2.7b).

2.3.2 Using Technology Trees

Sometimes all the technologies are intended to be achieved in a game, but

often this is not the case. In a strategy game, not being able to achieve them

all leads to the factions remaining personalized [79], and the same principle

applies to different genres as well. This way the resulting winning entities

– such as PCs, factions, or species representing different players – probably

differ from each other. However, TTs can also be seen as a wrong place for

such personalization [79], and not being able to obtain all technologies may

irritate some players. On the other hand, one of the main reasons to include

30

(a) A partial screen capture from
Shōgun 2. Two “main” TTs of the
game: “Bushido” and “Way of Chi”.

(b) A partial screen capture from
Shōgun 2. A TT of a ninja.

Figure 2.7: In Shōgun 2 , there are two TTs with clan-wide effects, but also
generals, ninjas, and other important characters have their own TTs.

TTs in a game is exactly to force players to make – possibly even difficult –

meaningful decisions. Differences of game types must be taken into account,

but a general rule is that TTs should be able to offer enough interesting

technologies to develop for the whole duration of a game – regardless of, for

instance, the winning conditions.

TTs set different limitations for the development: if a player could, in

the beginning of a game, just decide to take all the technologies with their

corresponding benefits, the TT structure would be meaningless. Therefore,

in addition to mutual prerequisite relationships of technologies, there are

costs for developing them. The costs can be paid with in-game resources

that come in many forms.

Even if other resources are not demanded, time is practically always

spent in the process of acquiring a technology, at least in strategy games.

In CRPGs, on the other hand, advancements are often atomic and momen-

tary operations, but in these games acquiring the other resources necessary

for a development operation requires time, nevertheless.

Sometimes the “raw” resources are not eligible to be directly converted

into technology LODs, but there may be also intermediate “refined resource”

31

forms. For instance, conversions from mud to bricks, ore to iron, or wood

logs to planks may be required. In 4X games and other conventional strategy

games, typical ways to proceed in a TT are by constructing buildings (espe-

cially in RTS games) and by research. Construction tends to require at least

“raw” resources and sometimes also refined forms of them. Research work

can be a totally abstract process, requiring at least time and possibly other

resources as well, or it can be modeled to take place, for example, in research

facilities by scientists. Other possibilities to obtain technologies or achieve

LODs are, among others, espionage and trade with other game factions. Such

mechanisms also require investing resources in them.

Games with CRPG elements normally base their development in gather-

ing XPs by performing activities that make the PC more experienced. These

activities require at least some time to be spent, and possibly other resources

as well, depending on the nature of the activities. Experience can be gained,

for example, by finishing quests, killing beasts, crafting items, or just running

or jumping around, depending on the game.

For instance, a predefined amount of XPs – either fixed or depending

on, for instance, the current character level – may be required to gain a skill

point (or, e.g., a “talent”as in Witcher 2), and skill points (refined resources)

can be used to buy technology LODs allowed by the TT. Also, buying LODs

directly with, say, game currency may be possible, for example, in the form

of getting trained in a skill by a non-player character (NPC) acting as an

instructor (in which case the education offered by the instructor serves as

a refined resource). Sports games and action games use somewhat similar

mechanisms.

2.3.3 Common Problems with Technology Trees

Most TTs are rigid in the sense that once they have been defined, the struc-

ture and properties remain fixed until possible changes and corrections are

made in patches and expansion packs. This kind of rigidity applies to almost

all TTs in digital games published so far, and it is a direct consequence of the

fact that TTs ought to make sense and be “good” and balanced, and, there-

32

fore, they are designed and created manually by humans. Publication VI

introduces ideas to partly tackle possible rigidity-related problems and to

generate technologies at runtime as needed.

Even if a customary design process is carried out by experienced profes-

sionals, the resulting TT may be of poor quality. When a TT offers many

alternative ways to proceed – which is generally the idea – it is extremely

hard to test all the possible routes of development combined to the actual

gameplay. Even if problems in the tree are found, correcting them may not be

trivial. A simple local correction – for instance, to a variable value defining

a property of a single technology – may solve the immediate problem ob-

served in a certain situation, but the fix may also have influence concerning

well-behaving development path options and parts of the tree, thus introduc-

ing other problems manifesting themselves in other kinds of situations. In

order to design TTs of high quality, evaluating their goodness is naturally

important. Recognizing TT properties that are useful for such evaluations is

paramount, as is also being able to measure these properties. TT properties

and measurements are discussed in Publications III and V.

There are many ways for a TT in a game to manifest its poor quality and

have a negative effect to the enjoyment of the gameplay. For instance, one

can simply find that a technology progression allowed by the TT does not

make sense semantically. For example, having a technology called Calendar

to allow developing Cat Food Factory is a rather questionable choice without

further explanation, because the nature of the relationship is not obvious.

Even if technologies are clearly related, temporal oddities and “incorrectly”

defined prerequisite relationships may cause the players to react negatively:

it does not feel right, for instance, to have Cavalry Archers available before

achieving Archery or Horses. Some kind of familiar – or at least understand-

able – causality is generally expected.

Another way for a TT to be flawed is to offer too obvious good choices.

The TT is basically rendered needless, if the players always make the same,

optimal-looking selections. Dominant strategies should be avoided. This is

related to the issue of TT rigidity. Fixed TTs have a problem of letting

33

players follow the same paths over and over again – something people tend

to do; therefore, such TTs may appear as dull [104].

In any case, players should know what they are doing. It is problematic,

if one does not know enough about the effects and consequences, when mak-

ing choices, in which case selecting technologies easily becomes a frustrating

“lottery”.13 Other common TT-related problems are listed in Publication V.

13To mitigate the effect of bad choices, sometimes possibilities to reassign, e.g., skill
points are offered. Also, in strategy games an option to switch developed upgrades to
others can be seen as a good idea [70]. However, such reallocations cannot often be used
for free, so frustration may still occur.

34

Chapter 3

Game Development, Tools, and

Academic Interests

“Man is a tool-using animal. Without tools he is nothing,

with tools he is all.”

– Thomas Carlyle c

As a phenomenon and an art form, digital games are still relatively young.

It is impressive, how rapidly game development as a process has evolved. In

a couple of decades, the hobby of lone coders has become a massive branch

of industry of great companies with hundreds of employees, dedicated meth-

ods, and specialized tools. However, the motivation for this thesis lies in the

fact that there is still room to improve game development processes further

in many ways. Developing good techniques, methods, and tools for imple-

menting digital games is becoming more and more important. Modern games

should be produced in an economically viable manner, and the products of

the process – games – ought to be of good quality in order to please the de-

manding customers of our times with continuously increasing expectations.

Game development has certain special characteristics distinguishing it

from typical software engineering. This section continues covering essential

background by discussing the nature of game development and related topics.

chttp://www.brainyquote.com/quotes/quotes/t/thomascarl399446.html, ac-
cessed in May 2015.

35

Software tools play an important role in game development. Therefore,

Section 3.1 covers programs and reusable program components and their

use. Thereafter, Section 3.2 gives an overall view to the variety of people

needed in the process. Moreover, two main game developer categories of

interest are introduced and game modifications by end users are discussed.

Section 3.3 continues by offering an introductory view to scripting – a widely

used method that is important also concerning this thesis. After that, game

AI is considered in Section 3.4. Finally, this study is given more context in

Section 3.5 by discussing prior publications by others, other work in related

fields, and tendencies within the academic community.

3.1 Game Engines and Software Tools

Nowadays, developing a digital game starts only rarely from scratch – es-

pecially, when considering commercial games, which are produced by large

companies and targeted to masses. Instead, digital game development is

largely based on using and specializing different game engines14 and combin-

ing them with other ready-made software components.

Game engines offer varying degrees of support for designing, implement-

ing, and compiling a game from pieces. For instance, the educational game

engine CAGE [109] provides basic support for AI scripting, importing 3D

models created with an external 3D modeling tool, playing sounds, rendering

graphics, and so on. Some commercially used engines come with specialized

visual tools for content creation and a multitude of functionalities. On the

other hand, there are also engines with rather specific and limited scopes; for

instance, graphics engines focus quite strictly on offering graphics support

only. Customization and fresh code is needed in order to add on features and

to modify the existing ones to suit the game under construction.

14Here the term game engine (and just engine) refers rather widely to different frame-
works that are specialized and extended in order to create games. In this context any
clear distinction between, e.g., graphics engines, physics engines, and “real” game engines
– used to create game mechanics – is not needed; anyway, the terminology varies. A game
engine can also be understood as an ensemble comprising parts such as rendering engine
and physics engine [108].

36

Using engines, libraries, and other components saves time considerably

and may also be practically necessary to meet the high requirements (con-

cerning, e.g., graphics) of the customers. Also, portability can often be im-

proved by using the engine approach – at least, if engines supporting multiple

computing platforms are used. Moreover, game engines can be reused: ex-

ploiting an engine built for a specific game probably continues by using it to

create also other games [108].

Hence, generally game engines are considered useful, like using ready-

made libraries and such; it is commonly acknowledged that in software de-

velopment a wheel should not be invented but once. On the other hand,

however, it is highly improbable for any single engine to be perfect for the

needs of a new game realizing novel and innovative ideas. Effects or func-

tionalities that are not directly supported and that are hard to implement on

a given engine may be needed. Using frameworks and components designed

by others limits the freedom of the developers and sets constraints in vari-

ous ways. For instance, the possible formats of usable external data may be

dictated by the engine used.

An example of such data are three-dimensional (3D) models. Importing

them to be used within a given rendering engine may only be supported

for models in a very limited set of formats. Such a limitation may affect

several aspects of the development process and the product: the quality of 3D

models, viable modeling tools to be used, space requirements, and so on. For

these reasons selecting wisely the ready-made components and frameworks to

be used in a game development process is of utmost importance to minimize

the extra work needed, to keep the structure of the program clear, and to be

able to finally end up with a satisfying product.

Besides making use of benefits offered by different frameworks, libraries,

and such components, game creation is facilitated by creating and putting

parts of a game together using a wide array of software tools. Graphics are

created with suitable graphics manipulation programs, character models and

world shapes are created using 3D tools, and so on. Such applications, typ-

ically designed for some other ends, however, may not be optimal for the

needs of game development [10]. In addition to such general-purpose pro-

37

grams, there are different tools designed especially for game development,

and, as mentioned, tools may also be bundled with game engines. Moreover,

game-producing companies often use self-made, proprietary special tools for

different tasks. Level editors are typical tools created specifically for game

development projects [87]. Typically these in-house tools are, unfortunately,

kept undisclosed, and, therefore, the proverbial wheels are continuously in-

vented over and over again.

Tools of high quality are crucial, but often creating them is still over-

looked, and programming time for tool development is allocated insufficiently

[87]. In real game development projects it has been found that suitable tools

can result in considerable time savings and have a huge impact on the success

of the process, and on the other hand, without good tool support the devel-

opment can be quite tedious [84, 90, 98, 115]. Publishers consider toolsets

as important factors when making decisions on backing game development

projects [68]. Powerful tools that one could keep using to create different

games and that still could answer to their specific demands well enough would

be invaluable, but there is a trade-off situation between generic usability and

suitability for a specific task.

Nowadays, a typical application interface is graphical. Graphical user

interfaces (GUIs) have several advantages over more traditional command

line interface (CLI) approaches; for example, learning using GUIs is faster

[37] and easier [107], their use leads to fewer errors [37], and they can be seen

as more intuitive [107]. However, GUIs may also be objected for lacking the

needed precision, and designing good GUIs is not a trivial task [107]. CLI is

sometimes more suited to tasks requiring more control, but it suffers its own

problems.

As far as world creation tools (level editors and such) are concerned, it

is important that the created content is presented visually to the designer

during the editing [87]. The human visual system has powerful capabilities to

recognize patterns [19], and the author firmly believes that using visualization

(already during the design phase) is generally recommendable, because it

helps to understand abstract structures. GUIs and visual representations

have also been the mainstream approach already for a long time and become

38

a norm concerning various tools and other computer applications, so they

are typically expected by potential users.

For these reasons, the tools introduced in this thesis are graphical. They

are intended to be easy to use and suitable for design tasks (besides their

other aspects and purposes). When creating the tools, the goal has also

been to make them let users have as much control over definitions, processes,

and results as they would have using comparable CLI tools tailored to fulfil

similar purposes.

3.2 Game Developers and Content

This section discusses mainly the diversity of game developers. The presen-

tation is simplified by classifying some of them into categories of interest.

In addition to discussing the employees of developer companies, game

modifications by end users are covered. Modifiability of games is an impor-

tant issue which also relates to the developer classification, because gamers

can be considered as developers, if they are able to modify games.

3.2.1 Heterogeneous Developers: Content Providers

and Programmers

The design is, naturally, a crucial part of every piece of software of some

quality. As far as traditional software engineering and conventional applica-

tions – such as text editors or database systems – are concerned, software

architects (and such experts using other titles) design the structure of the

software based on the customer requirements. They may dictate, for in-

stance, technologies to be used in the actual implementation, since they have

solid understanding of them. In addition to the software architecture, for

example, interfaces may require design work.

Partly such basic facts of software development apply also in the case

of developing games. However, when discussing “design”, it should be taken

into account that when the term is used in game-related contexts, it tends to

contain (even) more aspects, meanings, and connotations than in non-game

39

settings. In fact, “game designers” often have only modest, if any, actual

programming skills [106].

The development teams of the first digital games were small in size; a

team could consist of a single person who did everything involved in the pro-

cess. However, when games grew larger, more complex, and graphical, more

developers were needed, and thus the team sizes also grew. Furthermore,

specialization was called for due to the increased demands. On the other

hand, it also occurred naturally, when teams grew larger: all the persons in-

volved in the development were not able to know and do everything equally

well, but each had his or her own areas of expertise.

In order to create a “good” and interesting game, one should be able to

provide a variety of different elements. Good game idea and design are crucial

for all games. Depending on the game, a well-written story or meaningful

quests may be needed. Nowadays, customers are used to require also lively

sounds and vivid graphics. A seemingly intelligent AI is greatly appreciated

and can turn a game to a success. All these elements should, of course, be of

high quality and form a balanced ensemble together. The game should also

be marketed, distributed, and the development process should be directed.

Therefore, large heterogeneous developer teams with many different groups

of people involved are typical.

Even if marketing, public relations, administration, and legal aspects –

requiring their own respective staff members – are omitted and the focus is

kept solely on the people contributing more directly to the actual product,

there are still various roles left to consider. There are artists, software ar-

chitects, programmers, game designers, playtesters, and so on. Of course, in

order to achieve high product quality (i.e., to be able to create good games)

and to keep also the developers happy, the goal is to distribute these roles

based on the skills and interests of the individuals.

Therefore, creating narratives, level designs, graphics, 3D models, music,

etc. are tasks often taken care of by specialists. On the other hand, there are

also programming-oriented people – close to “traditional software developers”

– involved, and they form a quite different personnel group [76]. This kind

of an arrangement of using specialized developers makes it possible to excel

40

concerning individual areas of development, if suitable experts are found.

However, the other side of the coin is that creating and selling the actual

game successfully requires good communication with mutual understanding

between the personnel groups despite their different viewpoints and skills.

This communication is one of the great challenges of the modern game de-

velopment. Difficulties can be somewhat mitigated by using suitable tools,

and this thesis aims at introducing such – see Publication IV.

In this thesis, the two personnel groups mentioned are called respectively

content providers and programmers.15 The basic ingredients of a game can be

classified into two categories according to and explaining the nature of these

categories; the division reflects the idea of a game consisting of a generic part

(game engines and other general-purpose components) and content (distin-

guishing a game from others).

As discussed in Section 3.1, engines, generic libraries, and other such pro-

gram components are essential in game development. People referred in this

thesis as programmers are those who actually make additions and modifica-

tions to game engines and other “core” program components and implement

the features needed. They also integrate different parts contributing to the

whole together. Programmers are expected to be skilled in programming and

in software development more generally.

On the other hand, besides generic program components, also content is

needed in order to create a meaningful game. There are various types of con-

tent: game rules, textures, items, quests, characters, music, and so on [105].16

Content is created by content providers. These people include graphic artists,

story writers, narrators, composers, modelers, voice actors, level designers,

and so on. They are a rather heterogeneous group of experts of different art

15Many classifications divide game-developing personnel into several professional groups.
For instance, Fullerton [36] uses seven distinct titles to address these people: game designer,
producer, programmer, visual artist, quality assurance engineer, specialized media, and
level designer. However, concerning this thesis, using only two groups suffice because of
the focus and the nature of the approach. This also simplifies the presentation that follows.

16TTs define rules to be applied in the game, often they have visual representations,
and they can be closely related to characters (or other corresponding entities). Therefore,
it is easy to add TTs into the set of our examples. In other words, labeling TTs as content
based on their properties is natural.

41

forms and able to effectively use corresponding tools needed to create content

for games. In contrast to programmers, however, content providers may lack

actual programming and software development skills. Typically the majority

of a game development team consists of content providers [112].

Concerning a single person, the roles of a content provider and a pro-

grammer may sometimes overlap. However, many people involved in game

development processes can be clearly classified into exactly one of these cat-

egories; in modern large-scale game projects it is rare to have, say, a designer

that is also a programmer [87].

3.2.2 User-Created Content

Nowadays it is common not to have to rely only on the content offered by the

developer company. The end users of a published game are often provided

with means to modify its content and even to create new assets for it. The

terminology concerning the game-altering consumers and content created by

them varies, and, for instance, the word “mod” can be interpreted in various

ways [89]. The fan-programmer taxonomy of Postigo [83] makes a distinc-

tion between “modders”, “mappers”, and “skinners” based on the type of the

provided content. In this thesis, all these are called modders. Respectively,

the phenomenon of the end-users creating modified or additional content or

changing the way a published game works is calledmodding, and the creations

of modders, modifying or extending games, are called mods.

Modding phenomenon is not only beneficial for the modders (who gain

fame and enjoyment based on their creations), but also for game developer

and publisher companies. The value of fan-created content and gaming com-

munities has been recognized by several companies [83]. Support for mods

can, for instance, extend the full-price shelf life of a game [68], and is appre-

ciated among the end users – naturally modders, capable of creating their

mods, but also other consumers, able to get additional or alternate content

and “fixes” to the basic game from the modding community.

42

Figure 3.1: Some essential groups of people associated with digital game
development. The modders have been depicted as a subset of end users, as
it is hard to imagine a modder that does not use his or her own mod, but
technically there could, of course, be such modders also. However, typically
modders are seen as gamers (and fans of the games they provide content to).
The areas of the set and intersection depictions are chosen arbitrarily and
are not meant to demonstrate, e.g., cardinality relations.

Modders can be seen as content providers17 for games, but typically they

come from outside of the corresponding original game development teams.

Often they are active gamers themselves. As end users they are normally

able to start modifying a game and adding new content to it only after its

publication. Figure 3.1 represents the people groups of interest as a diagram.

The shaded region corresponds to content providers (union of the original

content-providing developers and the gamers creating additional content or

modifying the game).

Although development tools generally tend to be kept undisclosed, in or-

der to allow modifying game content, it is common for a developer company

17Let us focus here only on the typical modifications – the ones concerning solely content,
not the generic parts of games.

43

to publish alongside the game itself a “modkit”, a special tool set for mod-

ders. Offering an attractive UI and restricting and documenting the modding

possibilities as wanted typically requires modifying and polishing the origi-

nal developer tools. This additional work, however, may pay itself back in

additional revenues generated due to the user-made content. With adequate

documentation and tool support, the creativity of potentially large masses of

end users can be harnessed.18

All the companies have not, however, chosen to offer tools or even make

it legal to modify their games. There are many reasons for this, such as the

additional work required to develop modding tools and the desire to“protect”

the company image and the content created by the employees from unlicensed

or inappropriate use; it must be kept in mind that producing games is highly

competitive business. It is also a safe choice not to allow arbitrary tinkering

with the content used by a game, since users do not typically know the

requirements for the data that can be used within the game successfully. For

example, picture files may have very specific requirements concerning color

palettes, sizes, alpha channels, etc. While this protective attitude of many

commercial game companies is understandable, it may still be exaggerated.

One way to get user-created content created in quantity is, instead or in

addition to offering traditional modding tools, to move content creation to

be a part of the game. This lowers the threshold of gamers to contribute

– content creation may even be the only way to proceed. A representative

example of a game, in which in-game content creation has a major role, is

Spore (Maxis 2008). In-game modifications of TTs might also be something

to think about, but in this thesis content creation is treated as development

work that can be done separately from playing. However, the ideas of TTs

that evolve while games are played and possibility of gamers to affect this

process are not dismissed. Actually, Publication VI discusses runtime TT

generation.

18Of course typically it is, nevertheless, expected that companies develop “ready”games
that can be played without mods. Some companies have been accused of using the player
community as free workforce in order to finish games and make them actually playable.
Intentional and transparent “make your game based on the tool set we offer” approach
should be clearly distinguishable from “here is a (modifiable) game for you” approach.

44

3.3 On Scripting

The diversification of game developers has led to diversified code, and script-

ing languages have been put to use along with the conventional compilable

programming languages; technical artists or level designers can create con-

tent, such as AI behaviors, with a simple enough scripting language [68].

According to a survey [8], scripting is widely supported by game engines,

and scripts are heavily present in commercial games. Scripting is often used

as a means to create data-driven programs [5]. One goal of this thesis is to

introduce and promote the idea of moving the implementations of TTs into

the scripts as well.

There are several scripting languages commonly used in the game indus-

try. The language selection depends on things like personal affections of

people in charge, library support, overhead size, and speed. Many general-

use languages can be used for game scripting as such or with modifications –

for instance, Lua, Scheme variants, and Python are viable choices – but also

custom languages designed for particular games are used [68]. The purpose of

this thesis is not to specifically promote any single scripting language, since

the features that are needed and constraints that have to be applied vary

depending on the game. The automated script-generation support offered by

the tools created as a part of this study generate code in Lua. This language

has been chosen to be used for its speed and because it is easy to interface

with and use within typical main programs.

Facilitating the production inside a game-developing company is not the

only benefit obtained by using scripts. Decisions such as providing content

by scripting and moving descriptions and behavior outside the main binary

in easily modifiable form also benefit modders.

3.4 On Artificial Intelligence

Although this thesis focuses more on producing good TTs than actually using

them, the subject of use cannot be totally omitted. Not only producing TTs,

but also implementing AI agents that can use them in a clever way, should be

45

easy and cost-effective, since technology-advancing AI players have a central

role in many typical computer (strategy) games.

In an ideal situation, a game should treat AI players (“synthetic players”)

and human players similarly [97]. As far as human players are concerned, it

is enough to offer a clear user interface (UI) to a TT implementation and let

the human brain decide how to use it. Offering an interface for an AI is not

hard, but generally producing a good game AI capable of making human-like

choices and decisions is.

Therefore, to increase the challenge for human players and to make AI

look clever, game rules are not always similar for human players and AI

agents. “Cheating” is common [97] – it can even be seen as a “standard tool”

in AI programming [53]. For instance, AI players can have access to data

(like the state of the whole game world) that human players do not possess,

or AIs can be given free units or technologies. Sometimes such methods can

be used successfully, but generally human players should be kept unaware

of applying different rules to different players – otherwise the game is easily

seen as unfair and possibly unnatural.

Creating a clever and efficient AI is often an intriguing and challenging

task. However, it should be kept in mind that an AI playing optimally in

order to win the game is not always the best one. An AI should not appear

too foolish [87], but, nevertheless, applying artificial stupidity [60] suitably

can make a game more enjoyable in many cases. The key for creating a good

game AI is to make it act as a human being – seemingly quite cleverly, but

not unerringly. One of the key issues, when creating game-playing AIs, is

the adjustability of the challenge level. Hardcore players may tolerate even

clear “cheating”, if they in return are able to get enough challenge, but casual

gamers and beginners may not be as forgiving. They easily get frustrated, if

the AI plays too well.

The most common AI technology in digital games are finite state machines

(FSMs) [35]. They have been used in digital game programming basically

for the whole existence of these games, but still remain common [11]. FSMs

are conceptually simple and easy to understand, and often also able to offer

good performance. There are several ways to extend the basic construct [35],

46

and for instance hierarchical FSMs offer certain kind of scalability. However,

FSMs are not an effective solution for every possible need.

Goal-oriented action planning (GOAP) [78] and other goal-based ap-

proaches have been heavily used in recent digital games. Goal-directed be-

havior can be applied – not only to NPCs, but also to TT-using AI players

[24].

In Publication II, a generic AI approach suitable for GOAP and imple-

menting, for instance, AI opponents for strategy games is introduced, as is a

related software tool. Also a tool implemented for creating easily functional

FSMs that can be used from within applications is discussed. The tool makes

use of visualization and automated code generation.

3.5 Related Work

Games“have generally been regarded as simple and insignificant pastimes for

children” for a long time, and studies concerning them have largely focused

on history and equipment concerned [16]. However, during the twentieth cen-

tury, publications of Huizinga [47] and Caillois [16], among others, elevated

cultural aspects and the nature of play and games to a topic of study. Since

then, digital games have emerged as a distinguishable and important subset

of games with special features; computerization has opened up options that

make digital games something unprecedented in the history of games.

Also, game theory was solidified as its own field during the twentieth cen-

tury by numerous publications (such as references [72, 73]), although game-

theoretical results had already been known to date back a long time before

them. Game-theoretical games are very easy to find in real life, and game

theory is applied in several fields of science [22]. Concerning many games,

combinatorial game theory (see, e.g., reference [20]) is an important subfield.

Roughly speaking, game theory is about making (optimal) decisions in a

given setting, “game”. In this dissertation, structures used to offer options

in the context of digital games are studied, as is constructing these struc-

tures. Once an actual game (including all the necessary structures) has been

defined and possibly implemented, game-theorists may apply their methods

47

in order to determine, how the game should be played. However, real-world

commercial digital games are extremely complex pieces of software, and be-

cause often they are only played for fun, game theory has better application

areas elsewhere.

Nowadays, digital gaming is a wide field and suitable environment for

approaches of different disciplines and interdisciplinary studies. On the one

hand, this offers intriguing possibilities to cooperate and achieve interesting

results, but on the other hand, this also may hinder the understanding and

lead to misinterpretations and clashes between different views, schools of

thought, and colliding research cultures.

The academic world needs time to adapt and form conventions concerning

unaccustomed phenomena like digital games. The rift between ludologists

and narratologists (see, e.g., references [28, 29]), misunderstandings [33] and

the question whether (digital) games need their own discipline at all have

stigmatized academic conversation and efforts in relation to digital games.

Games have been used in education for a long time. Already in the 1600s

there were war games that can be seen to have been used educationally, and

since the 1950s, gaming and simulations have found new educational areas

to be applied in besides military planning [40]. Recently, digitalization and

computers have opened up new opportunities, and educational games and

possibilities to use game elements in education have become popular research

topics. There are a large number of publications (e.g., references [4, 32, 110])

available focusing on these issues. Concerning the focus on this thesis, it

is particularly worth mentioning that also technology trees used in games

have aroused educational interest [102]. Education is by no means the only

possible use for “serious games”. On the contrary, the application fields are

numerous, and include also, for example, military, health, and government

[86].

Health disciplines have also demonstrated interest (see, e.g., publications

[55, 56]) in nonserious, conventional games played for entertainment – and

especially their effects on players. The questions if there is a relation between

gaming and violent behavior in real life and what exactly are the possible

effects of violent games have remained popular – and well popularized –

48

topics for quite a time already. Many different theories and results have

been published. However, so far consensus has not been achieved, and the

applied research methodology has been problematic. Once again, there are a

great number of publications (e.g., references [30, 41, 95]) available for more

information. Besides negative effects, also positive impacts of gaming have

been studied – see the review by Connolly et al. [18].

Gamification, which can be defined as “the use of game design elements

in non-game contexts” [21], has also received a great deal of attention since

2010 [42], and the number of publications on the issue has been growing [45].

Education, once again, is a representative field of application for gamification

efforts [100].

The game industry and its evolution and foundations have been studied

from different viewpoints (see, e.g., publications [6, 80]). Also gender-related

gaming and game character issues have been found interesting, which can be

deduced from the multitude of publications on these topics (such as references

[13, 54, 75, 113]).

The research projects and publications focusing on digital games have so

far been largely about game design, games themselves, and social impacts

of gaming. Studies of game design are important, because a badly designed

game can never be good. So far the “unified theory of game design” is still

missing [91], although there are various game design models and publications

on the topic.

However, not even a good design is enough: an implementation is also

needed in order to actually have a game. Engineering is considered the

hardest part of developing a game [10], so there is a demand for academic

studies concerning it too. The author of this thesis does by no means think

little of game studies as they typically are. He, however, is currently more

interested in practical solutions and views of game development from the

implementational point of view than analyzing existing games or their effects

or writing more papers on abstract game design. The design is strongly

present in this thesis, though, because one of its central themes is automatic

implementation based on design and reducing the workload of both game

designers and programmers.

49

Many algorithmic solutions used in digital game development have been

borrowed and adapted from fields like AI and computer graphics. Naturally,

different more-or-less formal software development models, practices, and

methodologies have been applied to game development. In the end, digital

game development is software development.

Digital games also create a challenging environment for AI studies, and

several AI researchers have been focusing on the problems related to them

[82]. Game AI techniques differ considerably from techniques used in other

fields [77]. Moreover, traditional AI methods able to tackle problems present

in symbolic games do not often scale well to cope with digital ones [67].

Therefore, there is a demand for new methods.

Simulation games with their needs for decision-making within strict time

constraints are extremely suitable to be used as testbeds in real-time AI

studies [15]. Many games feature autonomous agents inhabiting virtual game

worlds, in which they encounter varying AI challenges, and solving these

problems has gained attention. Examples of relevant questions are, among

others, how to adapt into a dynamic environment and how to plan behavior

[71] – and even how to identify interaction possibilities with objects [94].

Digital gaming is known to be“an excellent platform for research in intelligent

adaptive agents” [67].

There is a huge number of academic papers focusing on developing ma-

chine learning or game AI methods and testing them by implementing them

for specific games (e.g., references [52, 64, 81, 101, 111]). Although games

differ from each other, their AIs have similarities, and solving AI problems

on a conceptual level can help to reduce code duplication and to allow

better AI design [88]. There even are general game-playing AIs, such as

CadiaPlayer [31], capable of learning to play a wide variety of games. Nu-

merous textbooks (such as references [11, 14, 68]) have been written on the

subject of implementing AIs for games.

Also publications of software tools for AI development (e.g., references

[23, 34]) exist. AI architectures and middleware tools – such as TIELT [2, 69]

– that can be integrated with different game engines have been developed.

The approach of this thesis also promotes such portability. Moreover, even

50

possibilities to generate game mechanics and design games automatically by

AIs have been studied (see reference [118]).

TTs, the central focus area of this thesis within the digital games, have

not been paid much academic attention. So far, publications really focusing

on them, such as the article by Ghys [39], are very scarce. The communal

pressure to make the “right” development choices in massively multiplayer

online games and its effects are briefly discussed in [103]. There are also

textbooks, like the one by Adams [1], discussing TTs. However, the under-

standing of the author is that this thesis and the included publications are

unique in tackling the practical matters of implementational aspects of them.

End-user-created content and modifying games have been studied quite

extensively, and several publications (e.g., references [26, 89, 99]) considering

these issues exist. The TT approach presented in this thesis aims, among

other things, to facilitate these activities. Tools usable by game designers

without programming skills have been developed for generating scripts before

[66]. However, specialization on TTs in this dissertation is something new.

51

52

Chapter 4

Separate Functional Modifiable

High-Quality Technology Trees

and Constructing Them

“Games are the most elevated form of investigation.”

– Albert Einstein d

This chapter introduces the main contributive ideas of this thesis regarding

TTs and producing them. Also, the main content and contributions of the

included publications are explained. The suggested approach to facilitate

creating good TTs with moderate workload consists of few ideas that are

strongly connected and partly intertwined. Nevertheless, they are given their

respective sections in order to express the components of the approach as

clearly as possible.

In Section 4.1, effects of separating TTs from game engines and main

game implementations are covered. It is followed by Section 4.2 about unifi-

cation of TT development methods and formats. Section 4.3 discusses having

functionality in TT implementations, after which Section 4.4 considers the

benefits of implementing TTs as scripts. Then, Section 4.5 focuses on the

view of the author concerning the preferable creation process of high-quality

dJ. McGonigal: Reality is Broken: Why Games Make Us Better and How They Can
Change the World. Random House, 2011.

53

TTs and combines the elements of the approach in order to give a summa-

rizing view to the whole. Finally, Section 4.6 briefly presents the contents of

the included publications in order to clarify their contribution to this thesis.

4.1 Technology Trees as Replaceable,

Independent Entities

Based on the facts stated in Sections 3.1 and 3.2, the author proposes clearly

separating TTs from other program components. TTs should be basically

independent entities bindable to their respective users (main games or other

programs) via a suitable interface. Modularity is a generally used principle in

software development, and there are no reasons to make TTs an exception.19

There are many benefits to be obtained. Separating the TT entities

clearly from the other components of a game would, at least,

• clarify the structure of the implementation,

• facilitate distributing20 TTs,

• make it easier to build tools for manipulating them, and

• help in parallelizing game development.

Provided that the programmers knew the interface via which the main

game communicates with a modular TT, they could use standard test TTs or

TT stubs while building the game. Concurrently, the content providers (e.g.,

game designers) could create the actual game TTs using suitable tools created

for dealing with such replaceable modular TTs. This possibility to parallelize

19BinSubaih and Maddock [7] have also noticed the benefits of enabling the existence of
game logic, object model, and game state independently of game engines. Their approach
and architecture (“game space architecture”) aim to improve the portability of these three
(rather generic) aspects and thus to facilitate migrating from a game engine to another.
The approach presented in this thesis, on the other hand, does not aim at separating “the
whole game”from the game engine, but focuses on TTs and thus is more specific. However,
this approach can be used as a part of wider-scope separation schemes.

20This includes here, for instance, sharing products among gamers, offering them com-
mercially, and dividing parts of a game implementation into different machines including
server-based multiplayer schemes.

54

development work could be used to save time in the game-producing process.

Moreover, the quality of the design could be evaluated early by a design tool

(or a separate testing tool) – not only by the playtesters based on the more

or less finished product, when it may already be too late.21 The resulting

high-quality TT could then be trivially put into the actual game by simply

replacing the placeholder TT by it.

The modular approach would also facilitate modding: as a mechanism,

simply swapping TTs with each other is extremely simple – at least, if TT

entities are encapsulated in, say, TT files. Also distribution of mods would

be easy, if TTs could be distributed as such, without any extra payload.

Multiplayer games connecting people over networks have become popular

over the past several years. There has been a great deal of general and

also academic interest in these games. This was the case already in 2000

[117], and the interest has not ebbed since. In a multiplayer setting, opening

up a gaming system to be modified too much by gamers can easily lead

to actions that are considered cheating [59]22. However, online games with

dedicated servers can overcome this problem by storing the official versions

of the critical parts that should work similarly for all the players, and using

them on the server side.

If TTs were implemented separately from their users, it would be easy to

apply this idea to them. Uploading modified versions to be applied for all the

players in a session by the governing server – even an “official” one – could

also be allowed. This kind of a centralized system would make it possible to

guarantee certain fairness. However, adequate computational server capacity

and good network connectivity would, of course, be required. In addition,

centralized systems are vulnerable to, for instance, denial of service attacks.

21Evaluating the quality of a TT programmatically is, of course, not trivial – it is a
totally subjective matter that depends, among other things, on the game it is to be used
with. However, some general guidelines and heuristics based on easily obtainable measures
can be established and used in order to detect possible problems and enhance the design
automatically. For more details, consult Publication V.

22Although the potential for such detrimental effects related to the modding phe-
nomenon must be acknowledged and constantly kept in mind, generally the benefits that
are obtained by allowing modding greatly outweigh the drawbacks. Therefore, it is gen-
erally a recommendable idea to allow modding. Moreover, it must not be forgotten that
games can also be totally immune to harmful mod-based cheating.

55

In single-player games, local (or otherwise personal) copies of critical parts

can be allowed to be modified and used freely. This is one of the reasons to

focus on single-player games in this thesis; the fairness is not an issue, when

the sole player is allowed to freely use whichever modifications he or she likes.

4.2 Technology Tree Implementation Format

Unification

Modularity and replaceability of TTs serve well, when considering the devel-

opment of a single game; the developers know all the necessary details, so

they can take advantage of the features. However, in order to get benefits on

a larger scale, unification of the ways to implement those modular TTs and

their interfaces (i.e., standardization of TT implementation formats and in-

terfaces) is needed. In the ideal case, all the game-developing companies and

other developers would implement their TTs similarly and use standardized

interfaces for communication between a TT and its users.23

In practice, of course, getting such a widely used specification for generic

TT implementations produced requires the major parties interested in creat-

ing and modifying TTs to be able and willing to agree on a common format

(or a small set of formats). This may be a challenging goal – traditionally,

sharing technologies or interfaces has not been considered beneficial when

trying to gain a competitive advantage – but, nevertheless, worth striving to

achieve. The format should also be public.

Concerning this standardization, this thesis focuses solely on TTs, but

other structural parts of game implementations should also be considered

similarly taking into account the aspects of unifiability and possible benefits

obtainable by generic tool support for editing hypothetical standard-format

structures. The author believes that making game content – at least to some

23One might, of course, object the claim of this being the ideal case by stating that
innovation is driven by competition, which is a valid argument, per se. However, the matter
of optimality depends on viewpoints and objectives. In this thesis, reducing “unnecessary”
development time and getting rid of frustrating incompatibilities are considered to be
matters of high importance.

56

extent – more widely available, allowing modding, and facilitating it by uni-

fication concerning tools, formats, and methods used by different developers

would be beneficial for all.

As already stated, modularization facilitates creating TT-related tools.

It is a widely known fact that good software tools are essential in the game

development, so it is generally worthwhile to create such tools (although

sometimes developers fail to do so). However, unification of formats and

interfaces makes it even much more worthwhile to invest in producing so-

phisticated tools for designing, implementing, and testing TTs. This is the

case, because the use of a tool suitable for handling TTs in the hypothetical

unified format is not limited to a single game or few similar games. Instead,

it can be applied successfully in different game projects – even by different

developers agreeing on the format. Hence, the returns of investments are

considerably larger than with traditional tools, if good results are achieved.

Therefore, having a clear and easily available specification on a generic

TT format and the corresponding user interface would facilitate creating

tools to manipulate such generic structures. However, the ease of creation of

tools does not mean that there should necessarily be several of them for any

TT-related task. On the contrary, a wheel should only be invented once, and

in an ideal case there could only be one tool that all the interested parties

(including different large-scale commercial game developers and independent

developers, as well as individual modders) could benefit from.24 This means

that there would be no need for every developer to implement an in-house

version of virtually the same tool, and the game developers could focus on

actually developing games.

Using the same (possibly open source, free-to-use) tools for original cre-

ation and modding the content after the publication by fans makes sense:

there would be no costs for developing special modkits, if the modders could

use the same tools as the original developers. This way the developers could

24Unfortunately, we do not live in an ideal world, so maybe there will not be any single,
perfect tool. However, the public common TT format would make it easy to produce
generally useful TT tools, e.g., by open source projects using liberal licences, and game
developers could benefit from them without necessarily using much resources on the tool
development themselves.

57

save time and money while letting their products be modded with high-

quality tools.

As far as the scenario is considered from a point of view of a single devel-

oper or publisher, the quality of the tools naturally matters considerably. No

one wants to use low-grade tools voluntarily – and even less keep using them

for different products, as would be the case with generic TT tools. On the

other hand, the general applicability of the hypothetical tools implemented

for creating and modifying various kinds of TTs means that investing re-

sources into making them reality pays itself back manyfold: having a quality

tool that can be used after and beyond the immediate need – the game cur-

rently under development – is invaluable for game developers. The capability

to offer finished tools to modders without great additional efforts is also a

huge bonus.

For these reasons, if a format was agreed on, the developers would have a

vested interest to get their hands on such tools, even if it took some time and

money. Instead of undisclosed in-house projects, these efforts should be put

into open source projects, even though this might benefit also competitors,

because this would speed up the process of adopting the format by different

developers, strengthen the whole idea, and increase the benefits obtained.

Although letting modders change parts of a game (for instance, TTs)

freely is generally a desirable goal, some developers may want to limit or

restrict modifications (while still allowing some). This should be supported

by the tools used in TT development. Such limitations may be necessary, for

example, if the main program makes non-standard assumptions. Therefore,

the TT implementation format should offer possibilities to impose restric-

tions and include suggestions. For instance, lower and upper bounds for

the safe operating intervals for variable values could be included in order to

avoid “mystical” problems. If developer companies would like to protect, for

instance, their heuristic functions for tree evaluation, the tools could be ex-

tended or modified in-house, but the TT compatibility with the basic versions

of tools available to modders should be maintained, nevertheless.

The firm belief of the author of this thesis, based on a prototype tool

implementation (see Publications IV and V), is that such generic tools and

58

TT formats are viable. The challenge now is to get the game developers to

endorse the approach (and then to define the exact format and get the actual

tools created and used).

4.3 Technology Trees as Functional Entities

TTs could be implemented as augmented graph data structures that store

technologies (nodes), dependence relations (edges), and all the required ad-

ditional data (that could be, e.g., textual, numeric, and pictorial). If such a

structure could be edited programmatically via a suitable interface, such trees

could be used by main programs. Tools to manipulate such structures easily

could be developed, and if the structures were encapsulated to be effortlessly

replaced and distributed, they would basically satisfy the requirements for a

good TT implementation presented so far.

However, such a solution would essentially be only a relatively simple

container, and this view fails to capture the whole essence and nature of

TTs. They are definitely more than containers: in games their meaning and

importance come from using them, and TTs are relevant, because the devel-

opment affects the game. A good TT implementation might offer support

for realizing these crucial aspects.

TTs come in various forms in different games. There are, however, func-

tional requirements common to a large portion of real-world TTs. The func-

tionalities could be realized in the main program code, but on the other hand,

TT implementations themselves could also be made capable of performing

typical tasks.25 The author thinks that this is the preferable approach, be-

cause nowadays, for example, various data structures26 included and used in

different libraries and languages can perform complicated tasks, and the pop-

ular object-oriented programming paradigm endorses objects that are able

25This idea does not contradict the content of Section 4.1, because game-dependent
functionality is not to be moved into TTs, but only generic TT functionality.

26One possible angle to TTs is to see them as data structures, and they may be imple-
mented as such.

59

to act: encapsulating data with operations operating on them is one of the

“key aspects of object-oriented structuring” [58].

TTs are typically meant to be used by different software agents as well

as human beings. However, often the interaction is simply selecting the next

technology or technologies to be developed. It is also possible to include AI

components capable of making such decisions into TTs, and in some cases it

may even be wise to do so. Because often there are also other – not directly

TT-related – decisions to make, it may feel natural to have, for each TT-

using software agent, a dedicated program component that implements the

needed AI functionality. However, this “main AI” might delegate a part of

its work to TTs.

Whether a TT is allowed to make the decisions concerning development

by itself or not, it should be aware of the current development possibilities.

Even if the decisions are dictated by some other part of the software (as is the

case at least when human players make the choices that are then conveyed

to the actual TT implementations), it simplifies the matters if the TT can

provide information about which (if any) technologies can be developed in

the current situation. After all, a TT is the program component that has

the knowledge of the technology requirements, and passing unnecessary data

within a program should be avoided in order to keep the operation simple and

to save computational resources. However, in the name of versatility, for in-

stance, different queries and manipulations concerning statuses of individual

technologies via the user interface of a TT should be enabled.

In Figure 4.1, the main idea of a functional TT is illustrated. The user of

a TT (main program) is able to get information of the tree and manipulate

the state of it directly, but it is also possible to let the tree govern itself, in

which case the role of the user is basically to feed the tree with resources to

be consumed.

In addition to the basic functionalities such as automatic development,

resource bookkeeping, or calculating statistics, there are also other function-

ality types that TTs can implement. An interesting example of such is the

capability to perform self-modifications. A functional TT can be able to build

or augment itself (see Publication VI). It could also, for instance, modify its

60

Figure 4.1: A TT with internal functionality to perform TT-related tasks.

properties based on what it learns from the player in order to enhance the

playing experience. (So far, such functionality has not been included in the

prototype TT format. It is, however, an interesting and natural addition to

be made in future.)

4.4 Technology Trees as Scripts

Previous sections have discussed having functional TTs in a unified format

separate from their users. Such structures could still be implemented in var-

ious ways. This thesis proposes using a scripting language and standardizing

a format for TT implementations in it.

Scripting languages have already been used widely in game development,

so the approach ought not to come across as exceedingly exotic, but useful,

nevertheless. There are at least four good reasons backing scripting TTs:

• understandability offered by typical scripting languages makes the

code written in them ideal to be edited even manually, if needed;

• accessibility of the data by using normal text editors (in an absence

of sophisticated TT tools) increases robustness;

61

• intrinsic capability to create functionality of scripting languages

facilitates implementing functional TTs using them; and

• some scripting languages offer such ease to interface with them that

the separation of TTs and other parts of games does not become a

burden.

Using scripting languages offers various benefits. For instance, if a script

is interpreted at runtime and not compiled beforehand – as often the main

program is – modifying and tuning scripted behavior or variable values do

not require compilation before testing. This may result in considerable time-

savings in the development process.

Conventionally, scripts have been used, for instance, for AI purposes.

Some games actually have already implemented also their development pro-

cesses using scripts. For instance, the PC development of The Witcher

(CD Projekt RED 2007) is based on Lua scripts [63]. However, scripting

formats tend to be specific to the corresponding games. Moreover, possibili-

ties to adjust TT properties using scripts may be quite limited; for instance,

restructuring and augmenting an actual TT graph (i.e., adding and remov-

ing technologies and connections between them) may be impossible, if the

structure and the graphical representation in the GUI are hard-coded.

If one desires to create a game that is modifiable (by modders), content

should be kept in an easily editable form in the final product. Typically,

however, much of such content is included in the final games in a form, in

which one cannot easily modify it – at least not directly with only common

general-purpose tools.27 Modkits can offer access to data and perform for-

mat conversions, but the author finds that in order to keep implementations

simple and to facilitate tool creation, simple textual formats28 should be fa-

vored as far as they are practical and applicable without major drawbacks.

27One typical reason – besides striving to secrecy – may be the need to compress the data
in order to limit the (often huge) disk space requirements. As far as TTs are concerned,
the typical sizes are quite reasonable, even with, e.g., associated graphics. Therefore, the
benefits of using compressed formats to store TTs are rather limited.

28Of course, other “open formats” can be used as well, but textual ones have the benefit
of being straightforwardly understandable by humans.

62

This means that using scripting is a good alternative as a means to support

modders.

The scripting approach is suggested in this thesis, among other things,

in order to achieve freedom to modify TTs easily. The goal of establishing

a common implementational format – a language combined to a generally

known structure and its semantics – for TTs may seem to be restrictive and

against the freedom of developers. However, a good format does not restrict

modifying trees, but only fixes interfaces.

Within a TT implementation format of high quality, one can still make

the tree behave as desired, and the requirements should not make this overly

difficult. Naturally, the (fixed) interfaces between trees and their users must

also be versatile enough, so that they do not become a bottleneck limiting

creativity concerning TTs. These issues must be taken into account, when

pursuing to create such a common implementation format. However, the

prototype format, which the tool introduced in Publication IV uses in its

TT generation, and the corresponding interface, via which these TTs can

be used, show that this is a realistic task. Designing script-based, generally

usable TT formats is, indeed, quite possible.

4.5 Creating Technology Trees

The previous sections have revealed – at least on a high level – what kinds of

entities TTs ought to be. Besides these principles and characterizations, one

of the most crucial contributions of this thesis is a proposal to use specific

software tools, built regarding these points of view, in order to actually im-

plement high-quality TTs easily. In this section, the overall tool-facilitated

TT creation process is discussed.

Figure 4.2 summarizes the “big picture”. On the left-hand side, devel-

opers are divided into content providers and programmers. Modders can be

included in content providers, but also a separate modder (the upmost actor

in the figure) has been depicted to use a special modkit and via it to create

or modify scripts. A modkit could also include, for instance, modeling or

image manipulation capabilities, so there could be an arrow pointing also to

63

Figure 4.2: An example of a digital game (and content) creation process
presenting important components, actors, and their relations.

the “art” block besides the one pointing to the “scripts” block. However, as

far as TT property and logics modding is considered, the “scripts” block as

outputs suffices. Below the modkit, several other examples of tools needed

in game creation are shown.

Tools should be suitable for their tasks and effective and efficient in per-

forming them. Programmers ought to have appropriate tools for building

main game programs (which, in the approach presented here, depend on the

external game content). In order to create high-quality content, good content

creation tools are invaluable. By creating and using replaceable content, the

64

content creation can be efficiently parallelized with main program develop-

ment.

4.5.1 The Trinity of a Game

In Figure 4.2, a game consists of three major parts: modifiable content, TT

representation component (TTRC) (or several of them), and main program.

Let us consider them next, starting from TTRCs, which are basically ready-

to-use program components acting as adapters and enabling the versatile use

of the approach in different environments.

TTs often affect the game graphically. They can store pictorial and de-

scriptive data, for example, in order to present the correct unit graphics in a

given state of the world and so on. Such data can also be stored separately

and used as guided by TTs. Moreover, many games also require a graphi-

cal representation of the TT structure itself. On the one hand, offering an

overview of the graph structure and possibly also detailed information on

particular technologies to players visually is often desirable. On the other

hand, typically these graphical representations (the corresponding software

components) should also be able to let players guide development by easily

selecting technologies to be developed. Visualizing the viabilities of making

different choices is a part of this. In other words, graphical interactive TT

representations (GTRs) act as parts of the GUIs of games, and the purpose of

these parts is to let players interact with TTs easily and meaningfully. Sev-

eral screen captures in this thesis are examples of GTRs (see, for instance,

Figure 2.3).

There are different kinds of graphics solutions used by various games

and engines. Therefore, GTRs are somewhat problematic. However, in-

stead of implementing GTR components always from scratch for each game,

the author proposes producing easily customizable GTR components29 that

could use the standardized TT implementations via the known interface. The

29Such a component could be, e.g., a widget to be used within a graphical main program
in order to produce the TT-related part of its GUI.

65

TTRC part in Figure 4.2 represents such components. The appearance and

behavior of them could be specialized and adjusted by scripting.

If TTRCs using standardized scripting and script-using interfaces were

implemented for different engines, environments, and platforms, getting a

working GTR as a part of a game would be easy. A main program could use

suitably selected TTRCs like any other graphical components used in the

game-implementing environment, the TTRCs could use TTs implemented

as scripts in a standardized format, and such TT implementations could be

produced taking advantage of automated code generation offered by suitable

software tools. Modifying the appearance and behavior of TTRCs would be

easy by scripting, and the necessary scripts could also be generated automat-

ically by the high-quality software tools used to produce TTs.

Main programs can be specialized and extended game engines and they

can use external resources like libraries and databases. They also offer the

needed UIs for their end users (players) and implement core functionalities

that should not be modified or are hard to move to the block of modifiable

content, which is the third key game component in the illustration.

The “modifiable content” block is divided in two sub-blocks, “scripts” and

“art”. The “scripts” block consists of content in script formats (which, in a

finalized game, may be either textual or binary). To a considerable extent,

important data – for instance, attributes used to define NPC characteristics

– and logic can be scripted so that benefits are obtained. However, for some

content, other (binary) representation formats may be more suitable. The

“art” block in the illustration includes examples of such content.

4.5.2 Automation and its Limits

A TT can be designed using easy-to-use graphical software tools, and the

actual implementation can then be generated automatically (see Publica-

tion IV). Automated code generation used to produce TTs is one more rea-

son to have functionality in them: when generating TTs (semi)automatically,

there is no need to restrict the software to produce only a structure to store

the essential data and fill it, but typical TT functionalities can also be gen-

66

erated automatically as parts of the TT implementation without practically

any drawbacks or additional costs after implementing the generation capa-

bility in a tool.

Automating TT code generation is straightforward as far as the imple-

mentation format in a scripting language is known. Therefore, standardiza-

tion of formats used to represent content makes it easier to implement good

generic tools, because the efforts can be focused on few targets instead of

many tools for different implementation formats. As mentioned, also cre-

ation of TTRC-customizing scripts can be automated.

Improving TTs and monitoring their quality form another important area,

in which automation can be successfully applied. The process can be at least

partially automated. Publication V discusses these matters. It is possible

to find potential design or parametrization problems, and even to improve

TTs designed by humans automatically already during the content creation.

Considering aspects of evaluating TT designs, computers have their own

strengths, when compared to humans. These strengths should be used, and

not only in the traditional testing phase of the development cycle, but as

early as possible.

Time savings achievable in a game development process by simple au-

tomated code generation are obvious. Also, measuring TT properties and

making adjustments automatically seems to be a beneficial approach, even

though more testing involving real game development is needed. However,

it is also obvious that estimating all the interesting features of TTs auto-

matically cannot be done easily. Some features are trivial for human beings

to evaluate, but challenging for computers, and vice versa. Therefore, it

seems that both are needed in a development process in order to optimize

the quality for now.

4.6 Introduction to the Included Publications

This chapter has discussed the proposed approach to TT creation. Partially

the ideas have been presented in Publications I–VI. This section briefly sum-

67

marizes the actual content of the publications in order to crystallize their

roles and contributions to the whole.

The descriptions are kept short, because the actual publications are in-

cluded. They should be consulted in order to get more detailed view of the

ideas, methods, implementations, and results.

4.6.1 Publication I: Technology Trees in

Digital Gaming

Publication I is an overview on TTs and their roles and usage in different

digital games. The paper creates a foundation for the other included publi-

cations by introducing TTs generally and by presenting fundamental views

of the author on them. Therefore, it is recommended to read Publication I

prior to the other publications.

Several possible TT classification criteria are introduced in the paper. The

criteria discussed there affect the publications about measuring TT proper-

ties (i.e., Publications III and V). Publication I also contains a table repre-

senting observations of 17 real computer games with respect to the criteria

mentioned.

4.6.2 Publication II: Implementing Artificial

Intelligence: A Generic Approach with

Software Support

Even though the main focus of the thesis is on creating – and not as much

on using – TTs, they should also be usable by artificially intelligent entities.

Therefore, Publication II has been included. Although it does not discuss

TTs directly, it introduces an approach consisting of two methods and corre-

sponding tools for creating AI implementations. Both the methods and the

tools can be used, for instance, to create TT-using AI agents.

The discussed AI implementation approach corresponds to the view of

the author on how to implement TTs: it is generally a good idea to separate

AI implementations from the main programs and create them in scripting

68

languages using performance-boosting tools. The reasons are similar to the

reasons concerning these matters in TT creation. In fact, the whole idea to

strive for a unified format and tools to create scripted TTs was born based

on the good experiences gained in relation to the AI study that led to writing

Publication II.

The article discusses mostly creating AI implementations for NPCs. How-

ever, the encountered challenges are largely the same also concerning TT-

using AI agents. Proceeding in a TT can appear as a simpler activity than,

for instance, a holistic management of the state, goals, and activities of a

complex NPC. However, similar qualities are useful for both kinds of AIs;

for example, believability, human-like behavior, and ability to plan ahead are

important common requirements.

The main scientific contribution of Publication II is presenting a general-

purpose AI framework. Technologically, the publication contributes by intro-

ducing two software tools created to facilitate implementing AI agents. The

tools and the suggested approach are demonstrated to be practical by using

them to implement three example game AI scenarios. One of them includes

GOAP NPC AI implementations, and the other two are different adversary

AIs: one for acting as an opponent in a board game and another for playing

as a strategy manager in a RTS game.

The AI approach proposed in the publication is very generic and applica-

ble to various needs. Concerning this thesis, the strategy manager example

implementation is interesting, because it demonstrates a cascading and hi-

erarchical way to use “AI machines” in order to achieve an AI that is easy

to understand in terms of both structure and functionality. This kind of an

approach is suitable and useful also when dealing with TTs; a TT-using AI

component could be guided by components governing, for example, attitudes

towards other players, economy, and strategic or tactical planning. Such a

modular structure of a player AI consisting of several simple cooperating AI

modules – including a TT-using AI – with their own responsibilities would

clarify the implementation and facilitate parallel development work.

69

4.6.3 Publication III: Considerations on Measuring

Technology Tree Features

Publication III starts considering possibilities to measure properties of TTs in

order to be able to automate enhancing them. Three viewpoints to analyzing

TTs are highlighted: local, global, and temporal.

Besides the three aspects and general discussion on the problems and

possibilities of measuring TTs, the publication contributes by introducing a

way to represent a simple TT in a fashion that makes it easier to spot certain

kinds of problems visually. This format for TTs is called “time layer topology

format”. Also, an algorithm for converting a TT into this form is given.

Discussion in the publication is rather abstract and theoretical, and the

presented ideas and characterizations are refined in the publications following

it. Nevertheless, Publication III functions as a crucial stepping-stone on a

journey towards the technological contributions of Publications IV and V.

4.6.4 Publication IV: Facilitating Technology Forestry:

Software Tool Support for Creating Functional

Technology Trees

Publication IV is about creating TT implementations according to the prin-

ciples promoted in this dissertation. A model for implementing generic func-

tional TTs, separate from the programs using them, is presented. Moreover,

a prototype software tool (Tech Tree Tool, TTT) capable of actually gener-

ating such TT implementations as Lua scripts based on the designs created

via a GUI is introduced.

The paper highlights the variety of TTs and sketches a generic model that

can be used very flexibly in order to create different TTs. TTT serves as a

proof of concept demonstrating the feasibility of visual tools able to partly

automate TT creation processes. A simple game using TTT-generated TTs is

discussed, and the overall approach of creating functional TTs implemented

as separate scripts with the help of graphical tools is found viable; the TTT

GUI turned out to be suitable for TT creation, the TTs created could be

70

easily used by the main program, and the desired functionality could be

achieved without difficulties.

4.6.5 Publication V: Quality Measures for Improving

Technology Trees

Publication V continues the discussion on TT property measurement possi-

bilities started in Publication III. While Publication III is basically a short

theoretical introduction, Publication V applies and deepens the presented

ideas.

The central contribution is introducing and explicitly pointing out several

measures that can help one to understand the characteristics of a TT. The

article also illuminates, how TTT (see Publication IV) has been augmented

in order to automatize the measurements. For a demonstration, TTT is used

to measure properties of a real commercial game, Civ 5.

4.6.6 Publication VI: Augmenting Technology Trees:

Automation and Tool Support

Augmenting TTT, introduced in Publication IV and improved in Publica-

tion V, with additional capabilities continues in Publication VI. In this paper,

generating technologies automatically (based on a given starting situation)

is discussed. A particular approach to model and implement technologies

is covered; the idea is to make the design work performed by humans more

abstract and to let the computers take care of the details of generating tech-

nologies using the given design guidelines.

The automated technology implementation adheres to the principles es-

tablished in the other publications: TTs are still functional, scripted entities

separate from their users. Based on preliminary testing, the approach is

found viable.

71

72

Chapter 5

Discussion

“Always pass on what you have learned.”

– Yoda e

In this chapter, general thoughts and issues that occurred during the research

work are discussed. These matters are more related to the research process

and observations than any single publication. Moreover, some general notions

concerning the research topic and the state of the art are presented.

TTs are a surprizingly deep and complex phenomenon. Basically they are

very simple structures that may not even seem worth studying, but actually

the diversity of real-world samples is overwhelming. The real depth and

extent of the subject did not occur to the author before actually starting

studying TTs.

Consequently, because there is a huge number of various possibilities to

use different kinds of TTs, one might think that the traditional way of cre-

ating ad hoc implementations is the correct one. However, despite all the

variety concerning functionality, representations, and purposes, the proto-

type implementation format for functional TTs created during the research

process is suitable to be used to imitate all the TTs of the real games that

the author has been able to remember, test, or study during the work.

ehttp://www.yodaquotes.net/always-pass-on-what-you-have-learned/, ac-
cessed in May 2015.

73

This means that TTs – in all their diversity – seem to have such a common

core structure that they can be implemented using fixed (e.g., scripting)

formats. Naturally, the expressive powers of such formats must be adequate,

but at least based on the prototype, it seems that overwhelmingly complex

or large structures are unnecessary. When starting studying TTs, it was

unclear, if it was possible to find such a relatively simple format or not.30

Research work focusing on TTs has – at least for the time being – some

special difficulties associated with it. One major issue has been the lack of

prior publications on the topic. In the beginning of the pursuit towards the

dissertation, the author could not find practically any peer-reviewed scientific

publications focusing on TTs in digital games, and still they are very rare.

Hopefully this thesis encourages more people to continue with the topic.

Another issue has been the difficulty to get information on the real com-

mercial game implementations. Lacking actual commercial game develop-

ment experience so far, the author has had to rely on a variety of sources

of varying reliability. He believes that the overall impression established is

rather correct, but some more openness by game companies would make it

easier to conduct scientific studies. In order to verify the established views

and to get more insight into “typical” ways to develop TTs, three companies

were asked questions concerning their TT development processes and needs.

Only one of the companies actually answered. These answers [17] are in

line with the general statements regarding game and TT development in this

thesis.

One should be able to compare the new technologies with the alternatives

used in the industry [96]. However, in this case, this has not been possible.

Because there have been no relevant software or other artifacts available to

30Of course, a format suitable for different kinds of TTs could have been defined by
taking a union of all the formats defined particularly for each different kind of a TT
encountered and thus defining a format with several separate modes. This, however,
would not have been very useful; it would be laborious to create tools for such a combined
format, and the users of these tools could not benefit very much from their prior experience
of working with other kinds of TTs. Moreover, a specification for such a format would be
very large and hard to maintain. Therefore, it is a satisfying result that pretty different
functional TT implementations can be scripted so that they feature a simple, common
interface for using them and a smallish, common set of internal functions. This also
facilitates creating generic TT-creating tools.

74

compare the products of the work with, the evaluation possibilities have been

somewhat limited. The constructive and experimental pioneer approach has

led only to“proof of concept”–type demonstrations, which are far from perfect

evaluations, although common in the field of software engineering [96].

Were there other similar tools available to be compared with the ones

developed during this work, one could arrange tests and formally evaluate

the results better. Although the scientific value of this thesis is, on the one

hand, diminished by its lack of formal evaluation, on the other hand, in

future, the created methods and artifacts can be used as references when

evaluating new approaches.

The non-quantitative results allow some subjective bias, when interpret-

ing them, but on the other hand, in this case the author does not really have

any vested interest to “make the results good”. Of course, it is pleasant, if

the artifacts will really be useful in real game development some day, but on

the other hand, as far as this dissertation is concerned, the results as such

do not really matter. Had the author felt that the methods are of no use,

that result would have done as well. The author honestly believes that the

artifacts are usable and suitable for many games, purposes, and situations.

The lack of prior scientific work focusing on implementing TTs calls the

importance of the whole topic into question. It is probably true that generally

creating TTs is not recognized as a major problem in the game industry; there

are many other demanding tasks to consider as well, and it is easy to select

one of them to focus on.

Nevertheless, TTs are important elements present in many games, and

the quality of a TT directly affects the quality of the game using it. Software

tools are crucial in game development and greatly affect the efficiency of

the development process. Also, finding design flaws as early as possible is

important, because typically fixing a design becomes more expensive as time

passes. For these reasons, the approach presented in this thesis should not

be overlooked and ignored. Moreover, besides implementing TTs, some of

the ideas can be applied to other tasks and subproblems as well.

In the game industry, there have been some attempts to replace tradi-

tional TTs with other kinds of structures. A recent example is Sid Meier’s

75

Figure 5.1: In the “tech web” of Sid Meier’s Civilization: Beyond Earth,
the starting technology is topologically in the center of the graph. A screen
capture from the game.

Civilization: Beyond Earth (Firaxis Games 2014), in which the pretty linear,

“Civilization style” TT (see Figure 2.3), characteristic to the earlier games in

the Sid Meier’s Civilization series, was replaced by so-called tech web (see

Figure 5.1). There is more freedom to choose the direction of the develop-

ment, and the graph structure resembles a graph-theoretical tree even less

than before, but nevertheless, this structure still fits to the definition of a

TT used in this thesis and can be modeled and manipulated with the tools

presented without problems.

Another interesting example of a recent game is The Witcher 3: Wild

Hunt (CD Projekt RED 2015), in which one can select technologies (“skills”)

to be developed from different TTs, but only a selected subset of a limited

cardinality of these technologies can be active at any given time. During a

game, the player can freely alter the subset by inactivating technologies and

activating other ones by assigning them to slots defining the technologies

currently in use. The number of available slots is slowly increased during the

76

Figure 5.2: A screen capture from The Witcher 3: Wild Hunt, which features
a slot-based system for activating technologies and mutating them.

game. Moreover, they are grouped in order to allow enhancing the technology

effects by mutagens, as can be seen in Figure 5.2. The slot system is an

interesting invention. However, the technology development itself works quite

conventionally.

It remains to be seen, if genuinely new approaches to deal with develop-

ment within games, able to challenge TTs as the predominant development

option mechanism, will emerge. For now, however, the prototype imple-

mentation model for TTs seems adequate and capable of coping with the

challenges encountered in the contemporary games. It can also be easily

modified, should a need arise.

77

78

Chapter 6

Conclusion

“As long as there are games to play it is not over.”

– Alex Ferguson f

The introductory part of this thesis is concluded in this chapter. To shortly

summarize the essential content of the introductory part, it suffices to state

that creating TTs for digital games as independent functional entities, sepa-

rate from their users, and using scripting languages for such TT implemen-

tations were discussed and generally found to be a beneficial approach.

The research work that was conducted contributed both scientifically and

technologically. During the process, several academic publications on TTs

and implementing them were published. Prototype software artifacts were

implemented to test the proposed methods.

Section 6.1 revisits the actual research questions and crystallizes the an-

swers found. After that, Section 6.2 discusses possibilities for continuation

of the work and illuminates future plans.

fhttp://www.brainyquote.com/quotes/quotes/a/alexfergus424730.html, ac-
cessed in May 2015.

79

6.1 Answers to the Research Questions

This section states the central results found in the process of preparing this

thesis and conducting the related research work. This is done with respect

to the research questions introduced in Section 1.3.

The answers themselves are basically simple and could be given quite

concisely. However, as we are not living in a black and white world, some

extra thoughts clarifying the situation are also presented, when deemed ap-

propriate.

RQ1: How could the current practices of digital game development

(especially from the viewpoint of implementing TTs) be improved?

The typical digital game development process could be improved in several

ways. The most – and quite – fundamental change proposed was unifying the

habits and formats of important game developers used to implement TTs. A

central principle of the TT creation approach presented is also to make the

unified format easily modifiable, and the specifications and tools inexpensive

and available. The same principles could also be applied in other areas of

game development.

The obvious benefits would be numerous. For instance, generally usable

development and modding tools could be created, which might lead to higher

quality than is common concerning game specific tools. It would become eas-

ier to work with several different games, and costs for acquiring development

tools would be reduced.

In practice, of course, getting the developers to use the common formats

may be very hard (and if these formats are to be easily modifiable, even more

so). Cooperation in this matter might, however, be a huge benefit for the

participants, if it led to a format suitable for their needs. Of course, the

format (and tools) could be created by anyone, but marketing it and getting

users and thus “momentum” enough would be challenging.

Another challenge after creating a format with different developers as

users would be keeping the users and the format together. Branching to

80

different versions should be, if not totally prevented, at least limited. If all

of the companies derived their own (mutually incompatible) versions, the

situation would be – at least to a certain degree – returning to what it used

to be before. Instead of branching, the main format should be developed and

versioned further as needed. Backward compatibility ought to be maintained,

nevertheless.

Besides the format unification itself, another – although strongly related –

change that can be suggested is making more use of automation opportunities

offered by development tools. Specifically, automatic quality monitoring al-

ready during the early stages of a development process can save the valuable

testing time later for rectifying nontrivial problems.

RQ2: What kind of imperfections and problems are typical with

TTs?

There are many different kinds of problems, and Publication V lists many

common reasons for complaints. These have been found especially interesting

during the research process:

• TTs have typically a rigid structure fixed beforehand without any tem-

poral variations. Even though this is not always a problem – many

fixed TTs are suitable for their purposes and work well and reliably –

the author thinks that games could often be improved by introducing

some temporal variation in their TTs.

• TTs may be poorly balanced temporally or resource-wise. TTs have

many roles to play. One of them is to guide and restrict (“gate”) the

game flow in order to create a meaningful and pleasant gaming experi-

ence. If a TT works badly regarding this aspect, the players may feel

either being held back artificially or achieving goals too easily. Both

cases can lead to negative feelings and frustration.

• TTs may offer too obvious efficient technology development routes to

follow. This diminishes the role of the other parts of the TTs – or even

makes them irrelevant.

81

Although the quality of a TT is largely a subjective matter, there are

properties that can be generally declared as defects. The listed ones are

good examples of these (with the reservation concerning the rigidity).

RQ3: Can automation help with producing better TTs?

The answer of the author is affirmative. Of course, the “goodness” of a TT

always depends on many things, and not least on the personal opinions of its

users. However, some of the“clear”problems (that can be defined as problems

without too many objections – see the answer to RQ2) can be found by

measuring TT properties programmatically. Moreover, TTs can be adjusted

in order to make them better – at least in the light of the measurements.

Publication V introduces some TT measures that can be applied in order

to estimate TT quality and to spot possible problems. As far as computers

need human support in improving TTs, different property visualizations are

of tremendous value, and suitable software tools can be used to offer them.

It should be taken into account that both automated and manual modi-

fications aiming to fix certain aspects of a TT may always cause other kinds

of problems. Therefore, attention should be paid to the risks, and results

of corrective steps taken should always be evaluated from several points of

view.

RQ4: Can automation help with reducing human workload in TT

construction?

It has become clear that many possibilities to save human efforts needed for

TT construction are available by the means of using software automation.

Especially two of them have been covered in this thesis:

• Automated code generation to create TT structures and their internal

functionality can reduce programming work considerably, when com-

pared with ad hoc approaches or reusable but non-automated methods.

82

• Automated measuring and problem-spotting features in software tools

can reduce the need to iterate during the testing and modifying phases

of the development, if defects can be found and corrected early in the

process because of these features.

Moreover, if improving TTs based on the measurements can also be au-

tomated, or at least possible corrections can be suggested automatically by

the development tools, the workload is once again reduced. It is obvious that

many kinds of automated corrections (or suggestions) can be made relatively

easily.

6.2 The Future

Answers for many questions and problems were found during the research

process, but several were also still left to be found, and on the other hand,

a wide array of new ones emerged. The prototype tools and algorithms

created can be improved, and more tests can be carried out. Particularly

important would be to get the approach tested with real game development

cases, although the applicability seems unquestionable based on the tests

conducted so far.

If a common format (and a common tool set) used by several real-world

game developers could be established, the effects on the games and game

development would be interesting to see. In order to speed up achieving

this goal – or at least to promote the idea further – the prototype tools

developed for this thesis might be released as an open source project, when

they are mature enough. (This, of course, requires rights to do so, and at the

moment the rights belong to Tampere University of Technology.) Although

the GUIs are designed to be easy to use, some improvements, additions and

feature changes should be made prior to any such release. One should also

document the tools and the TT implementation format and its user interface

thoroughly, because poor documentation may lead to “over-large learning

humps” [12] and prevent wide adoption.

83

TT feature measurement methods should be developed further. One

should persistently keep developing and testing new heuristics and means

to evaluate and fix TTs. No doubt, there are still meaningful measures to be

found and measuring algorithms to be developed. This thesis has only been

able to scratch the surface, and what lies beneath it is interesting. The goal

in the future work should be to find a set of properties, complete enough to

cover the “goodness” of a TT well, and to create algorithms and implementa-

tions to measure these properties efficiently. The possible dependencies and

relations of the measures should be understood well.

The next step would be to add new techniques into the arsenal of au-

tomated adjustment methods. Some of the methods might be trivial tree

manipulations targeting tuning particular measurable properties, but other

possibilities should be considered, too.

Besides enhancing TTs automatically when creating them, the process

could continue during the actual gameplay. Therefore, also runtime func-

tionality (to be standardized) of TTs should be improved. As mentioned

in Section 4.3, a TT could contain self-modifying runtime methods. They

could improve the TT based on, for example, learning player preferences and

observing, how the game is played.

Real-time adaptation – for instance, adjusting game difficulty – based on

observing the player during gameplay has already been applied in games [1]

and studied [116]. Possibilities to adapt to a player also include generating

customized content before the game is played [62]. Until now, adaptations to

a player have been applied to several targets including game mechanics, AIs,

NPCs, narratives, game scenarios, and quests [62]. The topic of extending

customized content generation and in-game adaptations to TTs deserves a

further study.

One must, of course, also keep observing closely the trends characterizing

the actual games that will be published, and react to possible fundamental

changes prudently. However, when writing this, it seems very unlikely that

TTs would disappear in the near future. Although they have often been criti-

sized for different reasons, no better solutions have been presented to replace

them. Offering players possibilities to choose among different development

84

options (and such) will most likely remain as a central mechanism in digital

games; the history shows that people find development to be an interesting

aspect in gaming, and computerization has made it possible to use it in the

ways that are impractical in traditional games.

To summarize: developing the methods discussed in this thesis should be

continued in order to make them appeal to the industry. Developing also

the prototype format for implementing TTs and the software tools created

during the process further is a natural side-effect. Although the ultimate

benefits of the approach can only be achieved, if several developers can agree

on implementing their TTs using a common format, which may still seem a

distant goal, this should not discourage one from advancing towards this goal

and continuing research work with perseverance. The author hopes that this

thesis encourages also others to study TTs and ways to make them, digital

games, and the world better.

85

86

Bibliography

[1] E. Adams. Fundamentals of Game Design. New Riders Publishing,

second edition, 2009.

[2] D. W. Aha and M. Molineaux. Integrating learning in interactive gam-

ing simulators. In Challenges of Game AI: Proceedings of the AAAI’04

Workshop (Technical Report WS-04-04), San Jose, California, USA,

2004. AAAI Press.

[3] R. Al-Azawi, A. Ayesh, I. Kenny, and K. A. Al-Masruri. Towards an

AOSE: Game development methodology. In S. Omatu, J. Neves, J. M.

Corchado Rodŕıguez, J. F. De Paz Santana, and S. Rodŕıguez González,

editors, Proceedings of the 10th International Conference on Distributed

Computing and Artificial Intelligence (DCAI 2013), volume 217 of Ad-

vances in Intelligent Systems and Computing, pages 493–501, Sala-

manca, Spain, May 2013. Springer.

[4] A. Amory, K. Naicker, J. Vincent, and C. Adams. The use of com-

puter games as an educational tool: identification of appropriate game

types and game elements. British Journal of Educational Technology,

30(4):311–321, 1999.

[5] E. F. Anderson and C. E. Peters. No more reinventing the virtual

wheel: Middleware for use in computer games and interactive computer

graphics education. In The 31st Annual Conference of the European

Association for Computer Graphics (Eurographics 2010) – Education

Papers, pages 33–40, Norrköping, Sweden, May 2010.

87

[6] Y. Aoyama and H. Izushi. Hardware gimmick or cultural innovation?

Technological, cultural, and social foundations of the Japanese video

game industry. Research policy, 32(3):423–444, 2003.

[7] A. BinSubaih and S. Maddock. G-factor portability in game devel-

opment using game engines. In Proceedings of the 3rd International

Conference on Games Research and Development (CyberGames 2007),

pages 163–170, Manchester Metropolitan University, UK, Sept. 2007.

[8] A. BinSubaih, S. Maddock, and D. Romano. A survey of ‘game’ porta-

bility. University of Sheffield, Technical Report CS-07-05, 2007.

[9] S. Björk and J. Holopainen. Patterns in Game Design. Game Devel-

opment Series. Charles River Media, Inc., 2004.

[10] J. Blow. Game development: Harder than you think. Queue, 1(10):28–

37, Feb. 2004.

[11] D. M. Bourg and G. Seemann. AI for Game Developers. O’Reilly

Media, Inc., 2004.

[12] P. J. Brown. Tools for amateurs. In D. Néel, editor, Tools & No-

tions for Program Construction: An Advanced Course, pages 377–390.

Cambridge University Press, 1982.

[13] J. Bryce and J. Rutter. Killing like a girl: Gendered gaming and girl

gamers’ visibility. In F. Mäyrä, editor, Proceedings of the Computer

Games and Digital Cultures Conference, pages 243–256, Tampere, Fin-

land, June 2002. Tampere University Press.

[14] M. Buckland. Programming Game AI by Example. Wordware Publish-

ing, Inc., 2005.

[15] M. Buro. Real-time strategy games: A new AI research challenge.

In Proceedings of the 18th International Joint Conference on Artificial

Intelligence (IJCAI 2003), pages 1534–1535, Acapulco, Mexico, Aug.

2003. Morgan Kaufmann.

88

[16] R. Caillois. Man, Play and Games. University of Illinois Press, 1961.

Translation of Les jeux et les hommes, 1958, by Meyer Barash.

[17] Civilization Development Team. private communication, Mar. 2015.

[18] T. M. Connolly, E. A. Boyle, E. MacArthur, T. Hainey, and J. M. Boyle.

A systematic literature review of empirical evidence on computer games

and serious games. Computers & Education, 59(2):661–686, 2012.

[19] T. A. DeFanti, M. D. Brown, and B. H. McCormick. Visualization:

expanding scientific and engineering research opportunities. Computer,

22(8):12–25, 1989.

[20] E. D. Demaine. Playing games with algorithms: Algorithmic com-

binatorial game theory. In J. Sgall, A. Pultr, and P. Kolman, edi-

tors, Proceedings of the 26th International Symposium on Mathemati-

cal Foundations of Computer Science 2001 (MFCS 2001), volume 2136

of Lecture Notes in Computer Science, pages 18–33, Mariánské Lázně,

Czech Republic, Aug. 2001. Springer.

[21] S. Deterding, D. Dixon, R. Khaled, and L. Nacke. From game design

elements to gamefulness: Defining ”gamification”. In Proceedings of

the 15th International Academic MindTrek Conference: Envisioning

Future Media Environments (Academic MindTrek 2011), pages 9–15,

Tampere, Finland, Sept. 2011. ACM.

[22] A. Dixit, S. Skeath, and D. H. Reiley, Jr. Games of Strategy. W. W.

Norton & Company, Inc., third edition, 2009.

[23] C. Dragert, J. Kienzle, and C. Verbrugge. Reusable components for

artificial intelligence in computer games. In Proceedings of the 2nd

International Workshop on Games and Software Engineering: Realiz-

ing User Engagement with Game Engineering Techniques (GAS 2012),

pages 35–41, Zürich, Switzerland, June 2012. IEEE.

89

[24] E. Dybsand. Goal-directed behavior using composite tasks. In S. Rabin,

editor, AI Game Programming Wisdom 2, pages 237–245. Charles River

Media, Inc., 2003.

[25] J. Dyck, D. Pinelle, B. Brown, and C. Gutwin. Learning from games:

HCI design innovations in entertainment software. In Proceedings of

Graphics Interface 2003 (GI 2003), pages 237–246, Halifax, Nova Sco-

tia, June 2003. A K Peters, Ltd.

[26] M. S. El-Nasr and B. K. Smith. Learning through game modding.

Computers in Entertainment, 4(1):3B:1–3B:20, Jan. 2006.

[27] Entertainment Software Association. 2014 Essential facts about the

computer and video game industry. http://www.theesa.com/facts/pdfs/

esa_ef_2014.pdf, accessed May 16, 2014.

[28] M. Eskelinen. The gaming situation. Game Studies, 1(1), 2001.

[29] M. Eskelinen. Cybertext Poetics: The Critical Landscape of New Media

Literary Theory. Bloomsbury Publishing, 2012.

[30] C. J. Ferguson. Blazing angels or resident evil? Can violent video games

be a force for good? Review of General Psychology, 14(2):68–81, 2010.

[31] H. Finnsson and Y. Björnsson. Simulation-based approach to general

game playing. In Proceedings of the Twenty-Third AAAI Conference

on Artificial Intelligence (AAAI-08), pages 259–264, Chicago, Illinois,

USA, July 2008. AAAI Press.

[32] S. M. Fisch. Making educational computer games ”educational”. In

Proceedings of the 2005 Conference on Interaction Design and Children

(IDC 2005), pages 56–61, Boulder, Colorado, USA, June 2005. ACM.

[33] G. Frasca. Ludologists love stories, too: Notes from a debate that never

took place. In M. Copier and J. Raessens, editors, Proceedings of the

Digital Games Research Conference 2003 (The 2003 DiGRA Interna-

tional Conference: Level Up), pages 92–99, Utrecht, The Netherlands,

Nov. 2003. Faculty of Arts, Utrecht University.

90

[34] D. Fu and R. Houlette. Putting AI in entertainment: An AI authoring

tool for simulation and games. IEEE Intelligent Systems, 17(4):81–84,

July 2002.

[35] D. Fu and R. Houlette. The ultimate guide to FSMs in games. In

S. Rabin, editor, AI Game Programming Wisdom 2, pages 283–302.

Charles River Media, Inc., 2003.

[36] T. Fullerton. Game Design Workshop: A Playcentric Approach to Cre-

ating Innovative Games. Morgan Kaufmann Publishers, Inc., second

edition, 2008.

[37] W. O. Galitz. The Essential Guide to User Interface Design. John

Wiley & Sons, 2007.

[38] A. Gazzard. Unlocking the gameworld: The rewards of space and time

in videogames. Game Studies, 11(1), Feb. 2011.

[39] T. Ghys. Technology trees: Freedom and determinism in historical

strategy games. Game Studies, 12(1), 2012.

[40] M. E. Gredler. Games and simulations and their relationships to learn-

ing. In D. H. Jonassen, editor, Handbook of Research on Educational

Communications and Technology, pages 571–582. Lawrence Erlbaum

Associates, second edition, 2004.

[41] M. Griffiths. Violent video games and aggression: A review of the

literature. Aggression and Violent Behavior, 4(2):203–212, 1999.

[42] F. Groh. Gamification: State of the art definition and utilization. In

N. Asaj, B. Könings, M. Poguntke, F. Schaub, B. Wiedersheim, and

M. Weber, editors, Proceedings of the 4th Seminar on Research Trends

in Media Informatics (RTMI 2012), pages 39–46, Ulm, Germany, Feb.

2012. Institute of Media Informatics, Ulm University.

[43] E. A. A. Gunn, B. G. W. Craenen, and E. Hart. A taxonomy of video

games and AI. In Proceedings of the AI and Games Symposium at the

91

AISB 2009 Convention, pages 4–14, Edinburgh, Scotland, Apr. 2009.

The Society for the Study of Artificial Intelligence and the Simulation

of Behaviour (SSAISB).

[44] N. Hallford and J. Hallford. Swords & Circuitry: A Designer’s Guide to

Computer Role-Playing Games. PRIMA TECH’s Game Development

Series. Prima Publishing, 2001.

[45] J. Hamari, J. Koivisto, and H. Sarsa. Does gamification work? —

A literature review of empirical studies on gamification. In R. H.

Sprague Jr., editor, Proceedings of the 47th Annual Hawaii Interna-

tional Conference on System Sciences (HICSS-47), pages 3025–3034,

Hawaii, USA, Jan 2014. IEEE.

[46] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in

information systems research. MIS Quarterly, 28(1):75–105, Mar. 2004.

[47] J. Huizinga. Homo Ludens – A Study of the Play-Element in Culture.

Beacon Press, 1971.

[48] J. Iivari. A paradigmatic analysis of contemporary schools of IS de-

velopment. European Journal of Information Systems, 1(4):249–272,

1991.

[49] J. Iivari. A paradigmatic analysis of information systems as a design

science. Scandinavian Journal of Information Systems, 19(2):39–64,

2007.

[50] Internet Advertising Bureau UK. More women now play video games

than men. http://www.iabuk.net/about/press/archive/more-women-now-

play-video-games-than-men, 2014, accessed Mar. 5, 2015.

[51] P. H. Järvinen. Research questions guiding selection of an appropri-

ate research method. In H. R. Hansen, M. Bichler, and H. Mahrer,

editors, Proceedings of the 8th European Conference on Information

Systems, Trends in Information and Communication Systems for the

92

21st Century (ECIS 2000), pages 124–131, Vienna, Austria, July 2000.

Wirtschaftsunivsitat Wien.

[52] U. Johansson and L. Niklasson. Why settle for optimal play when you

can do better. In C. Tse Ning, editor, Proceedings of the International

Conference on Application and Development of Computer Games in

the 21st Century (ADCOG 2001), pages 130–136, Hong Kong, China,

Nov. 2001. City University of Hong Kong.

[53] S. Johnson. The unique challenges of turn-based AI. In S. Rabin,

editor, AI Game Programming Wisdom 2, pages 399–403. Charles River

Media, Inc., 2003.

[54] H. W. Kennedy. Lara Croft: Feminist icon or cyberbimbo? On the

limits of textual analysis. Game Studies, 2(2), 2002.

[55] D. L. King, M. Gradisar, A. Drummond, N. Lovato, J. Wessel, G. Micic,

P. Douglas, and P. Delfabbro. The impact of prolonged violent video-

gaming on adolescent sleep: an experimental study. Journal of Sleep

Research, 22(2):137–143, 2013.

[56] D. L. King, M. C. Haagsma, P. H. Delfabbro, M. Gradisar, and M. D.

Griffiths. Toward a consensus definition of pathological video-gaming:

A systematic review of psychometric assessment tools. Clinical Psy-

chology Review, 33(3):331–342, 2013.

[57] J. E. Laird and M. van Lent. Human-level AI’s killer application:

Interactive computer games. AI Magazine, 22(2):15–25, 2001.

[58] K. Lano. Formal Object-Oriented Development. Springer-Verlag New

York, Inc., 1995.

[59] G. W. Lecky-Thompson. AI and Artificial Life in Video Games. Course

Technology (Cengage Learning), 2008.

[60] L. Lidén. Artificial stupidity: The art of intentional mistakes. In S. Ra-

bin, editor, AI Game Programming Wisdom 2, pages 41–48. Charles

River Media, Inc., 2003.

93

[61] S. Loh and S. H. Soon. Comparing computer and traditional games

using game design patterns. In Proceedings of the 2006 International

Conference on Game Research and Development (CyberGames 2006),

pages 237–241, Perth, Australia, Dec. 2006. Murdoch University.

[62] R. Lopes and R. Bidarra. Adaptivity challenges in games and simu-

lations: A survey. IEEE Transactions on Computational Intelligence

and AI in Games, 3(2):85–99, June 2011.

[63] Lua. http://djinni.wikia.com/wiki/Category:LUA, accessed Dec. 15,

2014.

[64] J. Ludwig and A. Farley. Examining extended dynamic scripting in a

tactical game framework. In C. Darken and G. M. Youngblood, editors,

Proceedings of the Fifth Artificial Intelligence and Interactive Digital

Entertainment Conference (AIIDE 2009), pages 76–81, Stanford, Cal-

ifornia, USA, Oct. 2009. AAAI Press.

[65] S. T. March and G. F. Smith. Design and natural science research

on information technology. Decision Support Systems, 15(4):251–266,

Dec. 1995.

[66] M. McNaughton, M. Cutumisu, D. Szafron, J. Schaeffer, J. Redford,

and D. Parker. ScriptEase: Generating scripting code for computer

role-playing games. In Proceedings of the 19th International Conference

on Automated Software Engineering (ASE 2004), pages 386–387, Linz,

Austria, Sept. 2004. IEEE Computer Society.

[67] R. Miikkulainen, B. D. Bryant, R. Cornelius, I. V. Karpov, K. O.

Stanley, and C. H. Yong. Computational intelligence in games. In G. Y.

Yen and D. B. Fogel, editors, Computational Intelligence: Principles

and Practice, pages 155–191. IEEE Computational Intelligence Society,

2006.

[68] I. Millington. Artificial Intelligence for Games. The Morgan Kauf-

mann Series in Interactive 3D Technology. Morgan Kaufmann Publish-

ers, Inc., 2006.

94

[69] M. Molineaux and D. W. Aha. TIELT: A testbed for gaming envi-

ronments. In M. Veloso and S. Kambhampati, editors, Proceedings

of the Twentieth National Conference on Artificial Intelligence, pages

1690–1691, Pittsburgh, Pennsylvania, USA, July 2005. AAAI Press.

[70] D. Morris and L. Hartas. Strategy Games. The Ilex Press Limited,

2004.

[71] A. Nareyek. Review: Intelligent agents for computer games. In T. A.

Marsland and I. Frank, editors, Revised Papers from the Second In-

ternational Conference on Computers and Games (CG 2000), volume

2063 of Lecture Notes in Computer Science, pages 414–422, Hama-

matsu, Japan, Oct. 2000. Springer-Verlag, 2002.

[72] J. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische

Annalen, 100(1):295–320, 1928.

[73] J. von Neumann and O. Morgenstern. Theory of Games and Economic

Behavior. Princeton University Press, 1944.

[74] Newzoo. Global games market will reach $102.9 billion in

2017. http://www.newzoo.com/insights/global-games-market-will-reach-

102-9-billion-2017-2/, accessed May 16, 2014.

[75] L. Nooney. A pedestal, a table, a love letter: Archaeologies of gender

in videogame history. Game Studies, 13(2), 2013.

[76] T. Nummenmaa, E. Berki, and T. Mikkonen. Exploring games as for-

mal models. In Proceedings of the 2009 Fourth South-East European

Workshop on Formal Methods (SEEFM 2009), pages 60–65, Thessa-

loniki, Greece, Dec. 2009. IEEE Computer Society.

[77] S. Ocio and J. A. Lopez Brugos. Multi-agent systems and sandbox

games. In Proceedings of the AI and Games Symposium at the AISB

2009 Convention, pages 70–74, Edinburgh, Scotland, Apr. 2009. The

Society for the Study of Artificial Intelligence and the Simulation of

Behaviour (SSAISB).

95

[78] J. Orkin. Applying goal-oriented action planning to games. In S. Rabin,

editor, AI Game Programming Wisdom 2, pages 217–227. Charles River

Media, Inc., 2003.

[79] PC Gamer. Age of Empires Online interview: Tech trees and civ cus-

tomization. http://www.pcgamer.com/2012/05/21/age-of-empires-online-

interview-tech-trees-and-civ-customization/, 2012, accessed July 19,

2012.

[80] M. Picard. The foundation of geemu: A brief history of early Japanese

video games. Game Studies, 13(2), 2013.

[81] M. Ponsen, H. Muñoz-Avila, P. Spronck, and D. W. Aha. Automati-

cally generating game tactics through evolutionary learning. AI Mag-

azine, 27(3):75–84, 2006.

[82] M. J. V. Ponsen, S. Lee-Urban, H. Muñoz-Avila, D. W. Aha, and

M. Molineaux. Stratagus: An open-source game engine for research in

real-time strategy games. In D. W. Aha, H. Muñoz-Avila, and M. van

Lent, editors, Proceedings of the 2005 IJCAI Workshop on Reasoning,

Representation, and Learning in Computer Games (Technical Report

AIC-05-127), pages 78–83, Edinburgh, Scotland, July 2005. Navy Cen-

ter for Applied Research in Artificial Intelligence (NCARAI).

[83] H. Postigo. Of mods and modders: Chasing down the value of fan-

based digital game modifications. Games and Culture, 2(4):300–313,

2007.

[84] M. Pritchard. Ensemble Studio’s Age of Empires II: The Age of Kings.

In A. Grossman, editor, Postmortems from Game Developer, pages

115–126. CMP Books, CMP Media LLC, 2003.

[85] P. Quax, B. Cornelissen, J. Dierckx, G. Vansichem, and W. Lamotte.

ALVIC-NG: State management and immersive communication for mas-

sively multiplayer online games and communities. Multimedia Tools and

Applications, 45(1–3):109–131, Oct. 2009.

96

[86] P. Rego, P. M. Moreira, and L. P. Reis. Serious games for rehabilitation:

A survey and a classification towards a taxonomy. In Proceedings of the

2010 5th Iberian Conference on Information Systems and Technologies

(CISTI 2010), pages 47:1–47:6, Santiago de Compostela, Spain, June

2010. IEEE.

[87] R. Rouse III. Game Design: Theory and Practice. Wordware Publish-

ing, Inc., second edition, 2004.

[88] F. Safadi, R. Fonteneau, and D. Ernst. Artificial intelligence in video

games: Towards a unified framework. International Journal of Com-

puter Games Technology, 2015: article ID 271296, 30 pages, 2015.

[89] W. Scacchi. Computer game mods, modders, modding, and the mod

scene. First Monday, 15(5), 2010.

[90] E. Schaefer. Blizzard Entertainment’s Diablo II. In A. Grossman,

editor, Postmortems from Game Developer, pages 79–90. CMP Books,

CMP Media LLC, 2003.

[91] J. Schell. The Art of Game Design: A Book of Lenses. CRC Press,

2008.

[92] D. Scimera. The gender inequality in core gaming is worse than you

think. http://venturebeat.com/2013/09/19/gender-inequality/, 2013, ac-

cessed Aug. 12, 2014.

[93] M. K. Sein, O. Henfridsson, S. Purao, M. Rossi, and R. Lindgren.

Action design research. MIS Quarterly, 35(1):37–56, Mar. 2011.

[94] P. Sequeira, M. Vala, and A. Paiva. “What can I do with this?” –

Finding possible interactions between characters and objects. In E. H.

Durfee, M. Yokoo, M. N. Huhns, and O. Shehory, editors, Proceedings

of the 6th International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2007), pages 5:1–5:7, Honolulu, Hawaii,

USA, May 2007. International Foundation for Autonomous Agents and

Multiagent Systems (IFAAMAS).

97

[95] J. L. Sherry. The effects of violent video games on aggression. Human

Communication Research, 27(3):409–431, 2001.

[96] D. I. K. Sjøberg, T. Dyb̊a, and M. Jørgensen. The future of empir-

ical methods in software engineering research. In L. C. Briand and

A. L. Wolf, editors, Proceedings of the Workshop on the Future of Soft-

ware Engineering (FoSE 2007) at the 29th International Conference

on Software Engineering (ICSE 2007), pages 358–378, Minneapolis,

Minnesota, USA, 2007. IEEE Computer Society.

[97] J. Smed and H. Hakonen. Synthetic players: A quest for artificial

intelligence in computer games. Human IT, 7(3):57–77, 2005.

[98] B. Smith. Poptop Software’s Tropico. In A. Grossman, editor, Post-

mortems from Game Developer, pages 137–146. CMP Books, CMP

Media LLC, 2003.

[99] O. Sotamaa. When the game is not enough: Motivations and practices

among computer game modding culture. Games and Culture, 5(3):239–

255, July 2010.

[100] S. de Sousa Borges, V. H. S. Durelli, H. M. Reis, and S. Isotani. A

systematic mapping on gamification applied to education. In Proceed-

ings of the 29th Annual ACM Symposium on Applied Computing (SAC

2014), pages 216–222, Gyeongju, Republic of Korea, Mar. 2014. ACM.

[101] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and E. Postma. Adap-

tive game AI with dynamic scripting. Machine Learning, 63:217–248,

2006.

[102] K. Squire and H. Jenkins. Harnessing the power of games in education.

InSight, 3(1):5–33, 2003.

[103] C. Steinkuehler and M. Chmiel. Fostering scientific habits of mind

in the context of online play. In Proceedings of the 7th International

98

Conference on Learning Sciences (ICLS 2006), pages 723–729, Bloom-

ington, Indiana, USA, June/July 2006. International Society of the

Learning Sciences (ISLS).

[104] T. Tahkokallio. Designers’ notes #9: Technology tree.

http://boardgamegeek.com/thread/650731/designers-notes-9-technology-

tree/, 2011, accessed July 19, 2012.

[105] J. Togelius, N. Shaker, and M. J. Nelson. Introduction. In N. Shaker,

J. Togelius, and M. J. Nelson, editors, Procedural Content Generation

in Games: A Textbook and an Overview of Current Research, pages

1–15. Springer, 2014.

[106] P. Tozour. The perils of AI scripting. In S. Rabin, editor, AI Game

Programming Wisdom, pages 541–547. Charles River Media, Inc., 2002.

[107] A. Unwin and H. Hofmann. GUI and command-line – Conflict or syn-

ergy? In M. Pourahmadi and K. Berk, editors, Proceedings of the 31st

Symposium on the Interface of Computing Science and Statistics: Mod-

els, Predictions, and Computing, pages 246–253, Schaumburg, Illinois,

USA, June 1999. Interface Foundation of North America (Interface).

[108] J.-M. Vanhatupa. Tool Support for Computer Role-Playing Game Pro-

gramming: Foundations, Guidelines and Applications. DSc thesis,

Tampere University of Technology, Tampere, Finland, 2014.

[109] J.-M. Vanhatupa and T. J. Heinimäki. Scriptable artificial intelligent

game engine for game programming courses. In C. Hermann, T. Lauere,

T. Ottmann, and M. Welte, editors, Proceedings of Informatics Educa-

tion Europe IV (IEE IV 2009), pages 27–31, Freiburg, Germany, Nov.

2009.

[110] M. Virvou, G. Katsionis, and K. Manos. Combining software games

with education: Evaluation of its educational effectiveness. Educational

Technology & Society, 8(2):54–65, 2005.

99

[111] B. G. Weber, M. Mateas, and A. Jhala. Building human-level AI for

real-time strategy games. In Proceedings of the AAAI Fall Symposium

on Advances in Cognitive Systems, San Francisco, California, USA,

2011. AAAI Press.

[112] W. White, C. Koch, J. Gehrke, and A. Demers. Better scripts, better

games. Communications of the ACM, 52(3):42–47, Mar. 2009.

[113] H. E. Wirman. Playing The Sims 2 – Constructing and negotiating

woman computer game player identities through the practice of skin-

ning. PhD thesis, University of the West of England, Bristol, UK,

2011.

[114] M. J. P. Wolf. Genre and the video game. In M. J. P. Wolf, editor, The

Medium of the Video Game, pages 113–136. University of Texas Press,

2002. Cited from http://www.robinlionheart.com/gamedev/genres.xhtml.

[115] R. Wyckoff. DreamWorks Interactive’s Trespasser. In A. Grossman, ed-

itor, Postmortems from Game Developer, pages 183–194. CMP Books,

CMP Media LLC, 2003.

[116] G. N. Yannakakis and J. Hallam. Real-time game adaptation for op-

timizing player satisfaction. IEEE Transactions on Computational In-

telligence and AI in Games, 1(2):121–133, June 2009.

[117] J. P. Zagal, M. Nussbaum, and R. Rosas. A model to support the

design of multiplayer games. Presence: Teleoperators and Virtual En-

vironments, 9(5):448–462, Oct. 2000.

[118] A. Zook and M. O. Riedl. Automatic game design via mechanic gen-

eration. In C. E. Brodley and P. Stone, editors, Proceedings of the

28th AAAI Conference on Artificial Intelligence (AAAI 2014), pages

530–537, Québec City, Québec, Canada, July 2014. AAAI Press.

100

Publication I

I
T. J. Heinimäki. Technology Trees in Digital Gaming. In Proceedings of

the 16th International Academic MindTrek Conference 2012 (AMT2012),

pages 27–34. Tampere, Finland, October 2012.

The author is fully aware of the fact that Dungeons & Dragons (Gary Gygax and Dave Ar-

neson 1974) (D&D) is a role-playing game, and, as “the first one”, an especially important

representant of the genre. However, this paper uses the same, rather broad definition of

board games that is used throughout the thesis, so in this publication D&D is mentioned

as a board game, even though any board is not necessarily used when playing. Using such

inaccurately describing genre naming conventions is actually rather common; some prefer

referring to D&D-like games as pen and paper role-playing games or tabletop role-playing

games, but it is possible to play also without pens and papers or even without a table . . .

Heinimäki, T. J. ”Technology Trees in Digital Gaming,” in Proceedings of

the 16th International Academic MindTrek Conference, pp. 27–34, Tam-

pere, Finland, October 2012. c© 2012 Association for Computing Machinery,

Inc. Reprinted by permission. http://doi.acm.org/10.1145/2393132.2393139

Technology Trees in Digital Gaming

Teemu J. Heinimäki
Department of Software Systems
Tampere University of Technology

P.O. Box 553, FI-33101 Tampere, Finland
teemu.heinimaki@tut.fi

ABSTRACT
Technology trees have been used in the digital game indus-
try for over two decades. They are in very common use at
least in strategy and role-playing games. However, the aca-
demic interest towards thematter seems to be almost nonex-
istent. Although the basic concept may be rather simple and
well-understood as far as the industrial points of view are
considered, we believe that it would be beneficial to study
the issue also academically. In this survey we discuss using
technology trees in digital games and present classification
criteria for facilitating further studies.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and Networks; E.1 [Data
Structures]: Trees; H.5.0 [Information Systems]: Infor-
mation Interfaces and Presentation—general ; H.5.2 [Infor-
mation Systems]: Information Interfaces and Presenta-
tion—user interfaces; I.2.1 [Artificial Intelligence]: Ap-
plications and Expert Systems—games; I.2.1 [Artificial In-
telligence]: Problem Solving, Control Methods, and Search;
I.6.5 [Simulation and Modeling]: Model Development;
I.6.3 [Simulation and Modeling]: Applications; J.0 [Com-
puter Applications]: General; K.2 [Computing Milieux]:
History of Computing—software; K.4.0 [Computing Mi-
lieux]: Computers and Society—general

General Terms
Design, Human Factors

Keywords
Digital gaming, gaming, technology trees, techtrees

1. INTRODUCTION
Recently, the game industry has become an extremely im-
portant branch of industry. The computer and video game
markets are huge, as is the amount of money involved; the
U.S. sales grew rapidly from $2.6 billion in 1996 to $10.5
billion in 2009 [10]. Hence, several aspects of digital gaming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MindTrek 2012, October 3–5, 2012, Tampere, FINLAND.
Copyright 2012 ACM 978-1-4503-1637-8/12/10 . . . $10.00.

have been studied rigorously. However, some interesting and
widely used issues have virtually been omitted. There are
some publications about optimizing decision-making policies
in strategy games, but as far as we are aware of, the funda-
mental structures defining the development possibilities in
many games – different kinds of progression graphs – have
not been studied much. This makes it hard to give mean-
ingful references to related academical work – and thus to
carry out research work on the matter.

Technology tree, also known as techtree or tech-tree, is a tra-
ditional name for a progression graph defining or depicting
the relations and dependencies between technologies. Tech-
nology trees are often fundamental parts of modern com-
puter games. This is especially the case, when consider-
ing games of the genre “explore, expand, exploit, and exter-
minate” (4X). There are technology trees in most strategy
games [17, 28]. They are used for presenting the hierarchical
structures of development possibilities of different technolo-
gies and keeping track of the achieved – for instance, scien-
tific – development levels. Nowadays, also other game genres
use similar progression graph structures, which also can be
seen as technology trees with liberal enough definition of the
word “technology”.

The aim of this paper is to consider different technology tree
semantics and usages found in actual games. We present
observations on subtypes and possible classification criteria
for technology trees. Besides, the overall purpose of this
paper is to promote and encourage further research work on
the topic.

This paper proceeds as follows. After the situation concern-
ing the related work is illuminated briefly in Section 2, our
views and basics of technology trees are discussed further
and some terminology used is explained in Section 3. Then,
a short overview of the history of using technology trees in
digital games is given in Section 4. After that, Section 5
proposes possible technology tree classification criteria. No-
tions of them, based on an example game selection, are fi-
nally presented in Section 6 before concluding the paper with
Section 7.

2. RELATED WORK
There is a wide array of literature available considering digi-
tal games. Different textbooks cover various topics like game
design (see, e.g., [3], [18], or [1]) or artificial intelligence (AI)
in games (see, e.g., [13], [7], or [6]). Some of these books

27

mention the existence of technology trees, but usually only
with couple of words.

Nowadays there are also a lot of academic game publica-
tions. They, also, cover many important topics from finding
routes to creating AIs for playing a given game. However,
we are aware of only one peer reviewed publication [12] fo-
cusing on technology trees so far. In that paper, ideas for
analyzing technology trees and measuring their properties
are discussed.

Besides that, the most closely related peer reviewed publica-
tions seem to be those considering decision-making processes
and strategies in real-time strategy (RTS) game settings –
settings including technology trees in some form. Also mak-
ing decisions about constructing buildings – which buildings
should be built and when – have been included in this kind
of studies. For instance, dynamic scripting has been used
for this [23, 24]. However, the relevance of these publica-
tions for this paper is somewhat limited; while some kind
of a simple technology tree is often used in these kind of
studies for fixing the action possibilities, the research focus
is typically in completely other matters, and trees are only
used as given.

Different AI frameworks and game engines have been imple-
mented and competitions have been organized for improving
the quality of digital game AI in general. See, for instance,
[8]. However, the main focus aspects seem to differ from the
research or technology development process.

3. SEMANTICS AND BACKGROUND
Often the term technology tree refers only to the graphical
representation of a hierarchy of technologies. In this paper,
however, the term is also used, when referring to the corre-
sponding graph-like information structure or to the abstract
idea of the hierarchy with some semantics attached. The
meaning should be clear based on the context.

Despite the name, technology trees are not necessarily proper
tree structures, but resemble usually directed acyclic graphs1

(DAGs). Often nodes of different branches have common
children. This is the case, when a technology has prerequi-
site technologies (parents) from different branches. In tech-
nology trees there can also be several possibilities for the
first technology to be developed2.

A part of an example technology tree is depicted in Fig-
ure 1. There are two possible initial technologies, “Stick”and
“Stone Tools”, and the directed edges (dependencies between
technologies) are represented as arrows. One may develop

1Usually there can be at most one edge between two nodes,
but directed multigraphs can also be used – with the as-
sumption of edges being individual objects with their own
properties. This way, some expressive power can be added
to the conventional graph representation – parallel edges
can represent, for instance, different processes leading from
a technology to another.
2It would be tempting to call such nodes roots, but as they
are not necessarily roots according to the common defini-
tion in graph theory – all the other nodes in a technology
tree cannot necessarily be reached via a path starting from
this kind of a node – we refrain from calling them roots for
avoiding confusion.

Figure 1: A simple (partial) technology tree.

technologies only after having developed corresponding pre-
requisite technologies, i.e., “Agriculture” can be achieved
only after having knowledge of “Fire” and “Wheel”, and so
on.

Technology trees are usually basically dependency graphs.
The general requirement for acyclicity is easy to derive for
the common cases, in which all the dependencies must be
satisfied in order to develop a technology; if there were cy-
cles, they could not be entered. (Cycles can, of course, be
allowed, if all the edges of a graph are not interpreted as
prerequisite relationships, or if satisfying only some of the
prerequisites is enough for developing a technology. How-
ever, cyclic structures are not conventional.)

Another misleading convention is to refer to a collection con-
sisting of several separate internally connected DAGs (or
other “trees”) as a single technology tree. It would be more
clear to use the term technology tree only, when referring
to a connected digraph (used to represent development pos-
sibility relations with some needed data associated to the
nodes and edges). Collections of such separate “trees” could
be referred as technology forests, but in this paper we stick
with the convention and use the term technology tree. We
allow technology trees be arbitrary directed graphs with
semantics and possible additional data attached to them.
Thus, they may be composed of separate subtrees, not con-
nected to each other. (On the other hand, while such sub-
trees also fulfill our definition for technology trees, the term
does not need to mean always the whole subtree collection,
but may refer to a single subtree as well.) The short form
“tree” should also be understood to refer to such a technol-
ogy tree for the rest of the paper.

So-called technologies appear in many flavors. It is hard
to characterize, what makes a technology a technology in
the structures conventionally referred as technology trees.
Moreover, other progression graphs, like “skill trees”, “feat
trees”, “perk trees”, or “talent trees” used in character devel-
opment in computer role-playing games (CRPGs), do not
really differ from conventional technology trees. Therefore
we choose not to make a distinction between different types
of progression graphs; we use the word “technology” in this
paper extremely liberally: basically anything achievable by a

28

research, training, building, or other process, typically with
some other technologies as prerequisites, can be seen as a
technology. Thus, we use technology trees as a general term
covering progression graphs in digital games.3 For instance
the following have been used in real games as technologies
in the sense we use the word: Armory, Barracks, Hellfire
& Brimstone, Fox Lady, Heaven and Earth, Ninjutsu, Pig
Farm, The Five Elements, Way of Chi, Rifling, Replaceable
Parts, Flight, Stealth, and Computers [27, 4, 5, 21].

By“developing a technology”wemean any process that aims
at achieving the benefits (and disadvantages) of it. Such a
process could be, e.g., simply building some advanced build-
ing. Usually the “scientific” development process is called
research; it is possible, for instance, that virtual researchers
contribute producing science points, and when there are
enough of them, the technology that is researched can be
unlocked. In many 4X games and CRPGs this unlocking
mechanism is binary: either a technology has been developed
or not. However, this does not have to be the case; tech-
nologies can, in some cases, be developed gradually. For in-
stance, in Space Empires V (Malfador Machinations 2006),
many technologies have several levels [26]. After developing
a technology to some level, one may continue researching
the same issue in order to obtain higher-level benefits of the
same technology. Often different levels of such technologies
give the same advantage, with the magnitude depending on
the level. For instance, level 1 in “crowd control” could pre-
vent one inhabitant in every city from rising up in mutiny,
level 2 could prevent two inhabitants from doing that, and
so on.

Of course, for the technology tree system to have any pur-
pose at all, developing technologies should reward the player
somehow. In modern RTS games, it is almost always ben-
eficial to traverse the technology tree [2]. New technolo-
gies may offer, for instance, access to more advanced units
or buildings, government types etc. (For some games it is
enough to have building and unit types as technologies.) On
the other hand, technologies may also have downsides. Us-
ing some advanced technology can, e.g., be expensive, or
it can disable the possibility to use some (or all) benefits
offered by another technology. Sometimes all the technolo-
gies in the tree cannot be developed, but the player may be
forced to choose between technologies or branches of the tree
to be explored. Thus, developing a technology can close a
possibly more suitable path to proceed.

So-called gating is an important concept, when discussing
the flow of a game. The term emerged from an assessment
(play-testing) program of Portal (Valve Software 2007) [20].
The idea was to limit the possibilities of a player to rush
forward too fast and thus become frustrated by too hard
challenges. Gating can be seen as a wide area of controlling
the game flow. There can be many kinds of advance-limiting
mechanisms – or “gates”. Often technology trees play an im-

3We could, of course, have chosen to use, for instance, term
“progression tree” to emphasize the inclusive nature of the
term used. However, we wanted to avoid introducing new
terminology; technology tree is an established term. It also
highlights the presence of some kind of “progression nodes”
(even if the name technology may not always be very de-
scriptive), unlike “progression tree”.

portant role in this gating process; one cannot advance (at
least successfully) in a game without good enough technolo-
gies. In addition, developing technologies may open totally
new in-game possibilities and make it possible to try and
tackle new kinds of challenges.

Technological research work can also be seen as a means of
exploration in non-physical domain [17]. If considered as
such, it is essential to offer players meaningful and interest-
ing possibilities for conducting technological development;
while humans are curious creatures, exploring new frontiers
can be intriguing. Thus, a good technology development
process – usually meaning good technology trees – can im-
prove dramatically the interestingness of a game.

4. TECHNOLOGY TREES IN DIGITAL

GAMES: A GLANCE TO THE PAST
This sections presents a short overview of the history of using
technology trees in digital games. For this purpose, some
games are mentioned, but many other good examples have
been omitted simply for brevity.

Digital games (video games) can be seen as ”natural growth
of traditional games into a new medium” [19]. The roots
of digital strategy games are in board game domain [17].
Thus, many early digital games featuring technology trees
were heavily influenced by board games. While the neces-
sary bookkeeping could be done by the computers instead
of human beings, the technology development mechanisms
were able to grow more complex than those used in board
gaming. Digital games can feature objects having states
defined by complex variable sets because of the abilities of
programs of tracking the variables. [11].

Technology trees (using our liberal definition) are known to
be used with board games (like Dungeons & Dragons (Gary
Gygax and Dave Arneson 1974)) in the 1970s, maybe even
earlier. The first – at least commonly known – technology
tree in the conventional sense appeared in the board game
Civilization by Francis Tresham in 1980.

In 1991, Sid Meier’s Civilization (MicroProse 1991) – a com-
puter game inspired, among others, by that board game –
was released. It (often called shortly Civilization or Civ)
gained popularity and influenced heavily later digital strat-
egy games. Sometimes this Civilization is mentioned as the
first digital game using technology trees.

However, technology development had been around in com-
puter gaming domain even before that. As an example, let
us mention Reach for the Stars (Roger Keating and Ian
Trout 1983) – an important game for the birth of the 4X
genre. It was published in 1983 and had possibility to de-
velop “ship tech”. In 1993, Master of Orion (Simtex 1993)
was published by MicroProse. A review of it [9] used abbre-
viation XXXX, from which 4X was derived.

Civilization and Master of Orion were early, popular ex-
amples of turn-based strategy (TBS) games, in which tech-
nological advancement (and technology trees) played a cen-
tral role. The ideas were soon adopted also to the RTS
genre. Dune II: The Building of a Dynasty (Westwood Stu-
dios 1992) featured building upgrades for developing better

29

units (i.e., a technology tree). This scheme was followed by
several other representants of the genre, like Warcraft: Orcs
& Humans (Blizzard Entertainment 1994) and Total An-
nihilation (Cavedog Entertainment 1997). Technology de-
velopment based on constructing buildings became de facto
standard of proceeding in RTS games.

Still other genres adopted the idea of technology trees, most
notably CRPGs. In these games, the focus is on the de-
velopment of individual characters, not in the development
of armies or empires. Therefore, the technologies in role-
playing game settings typically represent personal abilities,
perks, traits, feats or skills – i.e., different personal charac-
teristics. Terms like “feat tree” or “perk tree” are often used,
but with our definition for technology, the term technology
tree can be used as well. Some examples of CRPGs with
technology trees are Star Wars: Knights of the Old Republic
(BioWare 2003), Witcher (CD Projekt RED STUDIO 2007),
Dragon Age: Origins (BioWare 2009), Deus Ex: Human
Revolution (Eidos Montreal 2011), and Skyrim (Bethesda
Softworks 2011).

5. CLASSIFICATION ASPECTS
There are many kinds of technology trees and different ways
to use them. Thus, there are also several aspects that could
be used for characterizing and classifying technology trees.
In following subsections, some of them are discussed.

For identifying these aspects, the usage of technology trees in
several games was considered. However, the consideration
was not based on any standard game set. In fact, giving
any explicit list of games of influence would be misleading,
as such a list would almost necessarily be incomplete: the
ideas for different aspects are results of observing numerous
games over a long time. However, some of these games are
listed in Table 1 (see Section 6). The set of games used is
definitely biased, e.g., by personal interests and availability.
Thus, we do not claim the set of classification aspects to be
complete, but rather a set of aspects identified so far.

5.1 Graph Structure and Organizational

Semantics
As we use the term technology tree rather liberally, our con-
sideration is not limited to expanding, forest-like technology
trees. Although such trees occur often, for instance, in Civ-
ilization-style strategy games, there are also different struc-
tures. For instance, technologies can be organized simply as
a set without prerequisite technologies. In other words, it is
possible to have a technology tree without edges. Of course,
the benefit of thinking technology trees as graph structures
is somewhat lost, if there are no edges. Star Ruler (Blind
Mind Studios 2010) uses a mesh-like “research web” tech-
nology collection. Some games use separate – sometimes
chain-like – technology trees for different technology cate-
gories or research tracks, while some use heavily branching
technology trees with intertwining research areas.

In addition to changing the organization and hierarchy be-
tween the technologies, one can adjust the semantics of them.
Usually edges between technologies are used to control the
possibilities to develop successor technologies. There may
be exceptions to this rule of thumb, but even in this basic

case the semantics of the edgesmay differ; most importantly,
there may be AND prerequisites and OR prerequisites for
technologies. By OR prerequisites we mean technologies ca-
pable of making it possible to develop a successor technol-
ogy by themselves, while in the case of AND prerequisites,
a high enough level of development (LOD) is required for
all of them, if the corresponding successor technology is to
be developed. It is not conventional to mix these different
kinds of dependencies into a single technology tree, but it is
possible. Perhaps dependency type mixing could be used for
obtaining more realistic trees; in the real world, some things
have several obligatory prerequisites, while others can be
achieved with different approaches and backgrounds (i.e.,
with different prerequisite technologies).

5.2 Rigidity
Usually technology tree structures in games are fixed and in-
variable. This is a problem, when considering replayability
[22]. As the replayability value of a (story oriented) game
can be increased by storyline variations based on player be-
havior [29], similarly variations in technology trees on dif-
ferent times a game is run make the game more interesting
and replayable. Having such variable technology trees is,
however, extremely rare. Of course, it is “safe” to use only
fixed technology trees; play-testing and balancing can then
be carried out more reliably.

Although if the technology trees are rigid, they can be dif-
ferent for different game factions. For instance, in Galactic
Civilizations II: Dread Lords (Stardock 2006), each species
has its own technology tree [22]. This way, the replayabil-
ity value can be increased with some degree – if the players
are willing to change factions from time to time (or even for
every new game).

Different tricks can be used for making a technology tree ap-
pear to be changing temporally. For instance, certain tech-
nologies in the tree can be revealed by in-game events. An
example of this ismaking a language translation technologies
appear only when the corresponding species is encountered
for the first time.

Sword of the Stars (Kerberos Productions 2006) and Sword
of the Stars II (Kerberos Productions 2011) are examples
of digital games with variable technology trees. They ran-
domize their technology trees for each game [14]. How-
ever, the randomization means simply leaving some non-
core technologies out. So, the “base technology tree” is still
a rigid structure, and it is modified by removing technolo-
gies. Similar randomization scheme was also used already
over a decade earlier in Master of Orion.

The variability seems to be more usual among board games,
but often they have basically only flat sets of possible tech-
nologies to develop, as, for instance, the 4X space strategy
board game Eclipse (Touko Tahkokallio 2011) does. The
lack of complex tree structures simplifies the matter of of-
fering variability.

5.3 Technology Types
Technology trees are used for various purposes. In tradi-
tional 4X games, at least following technology types are of-
ten used:

30

• abstract technologies,

• building technologies, and

• movable unit technologies.

Building and movable unit technologies are “physical tech-
nologies”, of which instances – buildings and movable units –
can be produced to perform tasks. Buildings are usually spa-
tially fixed, unlike movable units. Often movable units per-
form tasks like gathering or producing resources and fight-
ing. These tasks can also be performed by buildings – for
instance, cannon tower can attack nearby enemies, oil plat-
form can be used for extracting oil, and library can produce
science. One important role of buildings is to provide mov-
able units: for instance, archers may be trained at archery
ranges, swordsmen at barracks, and so on. Both movable
units and buildings can in many cases be upgraded. Both
of them may have some “health point” amounts for keeping
track of their integrity. Because of the only fundamental
difference between movable units and buildings is usually
the ability to move, we use term unit to cover both of these
types.

By abstract technologies we mean technologies that do not
have “physical” instances in the game. Developing such
technologies can lead to possibilities to produce new kinds
of units or units of higher quality, or give other benefits.
An important role of abstract technologies is often only to
make it possible to develop other technologies; thus, they
can serve as gating factors, controlling development possi-
bilities. They can be added on a technology tree skeleton
and thus the properties of the final technology tree can be
adjusted.

Technology development process based on constructing and
upgrading buildings (or other units) is traditionally used a
lot in RTS genre, while abstract research has been heav-
ily used in TBS games. When considering the unit-based
approach, constructing a unit with production or further
upgrading capabilities can also be seen as acquiring an ab-
stract technology with the benefits given by the physical
unit. Therefore, unit technologies can occasionally be seen
– not only as products of having a technology, but as incar-
nations of technologies themselves. On the other hand, other
games offer really abstract technologies – often in a tree –
making it possible to produce certain kinds of units. In this
case, such units cannot be equated with the technologies.

Technologies in trees used in modern digital games con-
taining role-playing game elements represent typically feats,
skills, traits, or perks of game characters. Usually, these
kind of trees are used for making development of the main
protagonist (and possible party members) possible; often
the player may choose new abilities to be unlocked, when
gained enough experience and“leveling up”. Some skillsmay
also grow better, when performing enough actions related to
them – on the other words, through practice – as in, e.g.,
Skyrim or in preceding games of the Elder Scrolls series. For
instance, picking a lot of locks may make a game character
better in the art of lockpicking.

On the other hand, also some strategy games, like Total
War: Shōgun 2 (The Creative Assembly 2011), use perks
or traits that accumulate on units (or their leaders) – thus

adding a layer of personalities into the game. The player
may not have – at least full – control over such develop-
ment. Even if units do not have truly individual perks or
traits in a strategy game, some kind of an experience bonus
system – and technology trees for different units – may be
offered. This makes it possible to see development happen-
ing in unit level and to distinguish between otherwise similar
units. For instance, combat experience may reward a unit
with a veteran status and some advantage for the battles to
come.

5.4 Size
The size of a technology tree is usually rather small. How-
ever, there is great variance between different games. There
are games with massive technology trees with hundreds of
technologies. An example of such a game is Warzone 2100
(Pumpkin Studios 1999, nowadays developed as an open-
source game by Warzone 2100 Project) with a technology
tree over 400 distinct technologies. Civilization V (Firaxis
Games 2010), on the other hand, features “only” 74 of them
in its main technology tree. Skill trees and the like are often
even considerably smaller. For certain point of view, this is
understandable; this way players do not feel overwhelmed by
the enormous amounts of possibilities. Usually technology
trees are also planned and realized by human beings with
limited time and other resources. Balancing huge technol-
ogy trees is a very hard task [25]. It is challenging to find
and root out all the possible “invincible combinations” in a
large set of possible paths of development.

The matter of size is somewhat related to the matter of
rigidity: if “intelligent” and efficient ways of generating tech-
nology trees automatically will be developed, the sizes will
be able to grow. (Of course, players can still be protected
from the information overflow, if necessary, by limiting the
view of the possibilities or by pruning.)

5.5 Technology Development Process
Many games use simple “binary development process”, in
which technologies are either developed or not. Occasion-
ally it is, however, beneficial to have more LODs. For in-
stance, in the games of the Space Empires series, there are
often several levels to be researched for a single technology.
Technologies can be developed either one at a time, as in
Star Ruler, or the research (or corresponding) can be dis-
tributed somehow among different development projects, as
in Master of Orion.

Time for developing a technology is typically fixed or de-
pends straightforwardly on the resources allocated for the
development. However, some games, like Sword of the Stars,
try to emulate the uncertainties of the real life regarding
schedules and results; the player can see only an estimate of
the time needed for (possibly) developing a technology.

5.6 Resources
In some games technological advancement is only a matter
of prerequisite technologies and time. Often, however, also
other resources besides time – like money or metal – are re-
quired for conducting research or carrying out construction
work needed for technological advancements. In many strat-
egy games, it is essential to secure sources of resources and

31

Table 1: Technology tree properties of some real games.

transport lines from them in order to be able to build units.
It is rather common to have some kind of a “worker” unit
type, capable to harvest and transport resources for storing.
A typical example of such a game would be, for instance,
Warcraft: Orcs & Humans. In Total Annihilation, resources
are not collected and transported in lumps, but they are
“streamed” from their sources with a constant rate.

There are large differences between games, when consider-
ing the amounts of separate resource types used. There are
games with very few types and others with wide collections
of them. This choice seems to be a matter of the focus and
the target audience of the game. Some kind of a way to
handle economy is usually wanted, but many games take a
somewhat simplistic line – and use only few resource types
– for keeping the game fun. On the other hand, there are
players that enjoy managing a complex economy with sev-
eral kinds of resources.

For instance, in Sword of the Stars there are only money and
industrial points in use [15], while Star Ruler features eight
resource types (six “global” resources and two planetary re-
sources). Civilization V divides its resources into three cat-
egories: there are 6 bonus resources, 6 strategic resources,
and 15 luxury resources [21]. Although the total amount
of resource types is rather large, it should be kept in mind
that not all of these are equally important for succeeding in
the game. The strategic ones are typical resources, needed,
for instance, producing certain kinds of units. Other types
can be used for gaining additional benefits, for instance, by
trading them with other factions.

Different resource types involved in technology development
processes could – especially in strategy games – be classified,
e.g., into harvestable (often “natural”) resources, refined re-
sources, and abstract resources. Traditional harvestable re-
sources are the resources that can be collected and gathered
from suitable world locations. Refined ones are the resources
that can be obtained by refining harvestable or other refined
resources (or combinations of them) by special units, like
factories. Abstract resources are resources that are not har-
vestable or refined ones, e.g., money or science points. They
can be produced by different – possibly complex – processes,
often by population or facilities.

The traditional resource harvesting process – and resource-
carrying workers – can be abstracted away; some games, like
Star Wars: Empire at War (Petroglyph 2006) and Company
of Heroes (Relic Entertainment 2006), have effectively re-
placed the resource harvesting scheme by getting resources
by controlling strategic locations.

6. OBSERVATIONS
Based on the presented classification criteria, data of some
representative real games have been gathered to Table 1.
While the data set is rather limited, it is hard to draw
definitive conclusions, but certain notions can still be made.
The uppermost games listed are taken from the TBS genre.
They are followed by representants of RTS games, and in
between there are two games, Sword of the Stars and To-
tal War: Shōgun II, mixing turn-based strategic game with
real-time battles. After RTS games appear games featur-
ing role-playing elements. Inside each of these game classes,
games appear in the temporal publishing order. (See the
“Year” column for the publishing years.)

The technology tree layouts for most of these games are
somewhat similar; the technologies are divided into differ-
ent categories based on semantics, and there is a subtree
for each category. Category amounts and sizes vary a lot.
Civilization V and Warzone 2100 can be mentioned as ex-
eptions; the division between categories is not clear, and
there are inter-category connections. Star Ruler has quite
peculiar approach with its grid-like technology tree and pos-
sibility to find connections.

Inside the “Tree size” column of the table, every asterisk
denotes 50 technologies, with rounding done upwards. Only
the sizes of the“main technology trees”are considered. Many
games, however, use technology trees for several purposes (so
that it is natural to consider them as separate trees); thus it
may be hard to define, which one is the main tree. We also
only have considered“different”technologies when determin-
ing the technology amounts, meaning that the technologies
should have, for instance, different names or influences to
the game. If each technology level is considered separately
as a technology, the total amount of such technologies may
be very high in games featuring several LODs. Regarding
to the RTS games, we only have considered building types

32

as technologies, even if some unit types could also be seen
as such. Comparing the sizes of different trees in different
games with different technology development requirements
and time steps is extremely hard, so the size of the tree as
such is a poor measure, when classifying technology trees.
Thus, the sizes, as they appear in the table, should not be
considered as hard facts, but rather only as fuzzy indicators.

Generally it seems that RTS games tend to have smaller
technology trees than TBS games. (Exceptions occur, of
course, like the RTS gameWarzone 2100 with over 400 tech-
nologies.) Many RTS games focus on military combat [16].
This may explain the difference in tree sizes; the RTS games
generally emphasize battles and tactical aspects, while TBS
games put typically more weight on strategic technology de-
velopment – thus needing bigger trees. It may also be more
demanding to construct large technology trees with basi-
cally mere buildings and unit upgrades – as is conventional
in the RTS genre – than to construct large technology trees
with abstract technologies – as is often done for TBS games.
Also, in some RTS games consisting of several levels or bat-
tles, the technology development may start from the begin-
ning in each of them, which reduces the total amount of
technologies needed.

Also different trees of character perks, traits, feats, or talents
in games with role-playing elements tend to be rather small
in size. One explanation could be the fact that often such
games are strongly story-driven and “tube-like”. Often they
are also rather short. While the plot advances rapidly, there
is no need to offer many technologies, as the player would
not have possibilities to develop them anyway. If a game
is sandbox-like, offering players the freedom to explore the
world freely and advance with the (possible) plot with their
own schedules, there are often also more technologies to be
developed.

The technology types used in the considered technology trees
are given in the “Tech type” column. Abstract technologies
are denoted by “a”. There are some games, in which the
technologies can be classified as abstract ones, but many of
them represent concrete parts or weapons usable in, e.g., ve-
hicle construction purposes after developing the correspond-
ing technology. These cases are marked with“a*”. Buildings
and other structures (units) as technologies are denoted by
“b”. The character “p” stands collectively for perks, talents,
skills, and feats, as different sources tend to use these terms
in an incoherent way. In Star Wars: Knights of the Old
Republic, force powers are an interesting addition to “nor-
mal” technologies, and in Deus Ex: Human Revolution, the
technologies are called augmentations.

The “Edge type” column tells the types of dependencies.
Using AND prerequisites is a common choice. This case is
denoted by“and”, and using OR prerequisites is correspond-
ingly denoted by “or”. It is also popular to have at most one
parent technology, in which case the semantics is clear even
without such a classification. These cases are denoted by
“–” character. Especially different CRPGs tend to use these
kinds of trees, often even with linear progression and branch-
ing factor one. Often each different, separate characteristic
has its own linear tree of development, in which each level
(technology) offers related (additive) perks.

The “Rigidity” column is about offering different variations
of the technology trees. Often the technology trees used in
CRPGs, themselves, are completely rigid, but different sets
of these trees may be offered as the “whole technology tree”,
based on, for instance, the character class or species of the
player. Exactly the same scheme is often used in strategy
games: the technology tree may be combined from different
trees chosen from a predefined set with similar criteria as
within CRPG genre. Some games, like Master of Orion and
Sword of the Stars, offermore variation by randomizing their
trees for each game.

As the “Means of developing techs” column tells, each genre
discussed have their own dominant ways of developing tech-
nologies. In TBS, the main method for acquiring technolo-
gies is research, while in RTS games the technological devel-
opment is mainly driven by constructing units. In CRPG
domain, it is generally important to gather experience in or-
der to develop a character. Usually the mechanism is based
on rewarding getting experience by some kind of advance-
ment points for purchasing perks from a tree.

The“LODs”column tells if technologies have several possible
levels or not. The binary case, in which technologies can
simply be either developed or not, is denoted by the number
1, and the case of several LODs is denoted by the asterisk
character.

Entries of the “Parallel” column tell, if more than one tech-
nology can be developed simultaneously. While typically
in RTS games different buildings can be constructed at the
same time, and construction is the way of developing tech-
nology, RTS games not allowing parallel technology develop-
ment are rare. While in CRPGs the technologies are usually
developed using atomic operations (like using an advance-
ment point for purchasing a new perk), it is not seen to be
meaningful to consider the matter of parallelism within this
genre.

The rightmost column, “Time rand.”, presents information
about the predictability of the schedule of a technology de-
velopment process. In many games, the exact time needed
for completing a development project may vary because of
different factors, like the availability of resources. However,
often there are no possibilities for real surprises in the sched-
ule. Some games, however, apply some randomization, mak-
ing it possible to complete projects early or late compared to
the estimated time of development. Such games are marked
with “yes”.

Although technology development processes and their in-
game presentations have many faces and forms, the concept
of technology tree can be used without difficulties with all
the games we encountered. So, it seems that the concept is
indeed worth further scientific research; the possible results
might be widely applicable.

7. CONCLUSIONS
In this paper, different types and properties of technology
trees present in several real-world digital games have been
discussed. Also possible classification criteria for technology
trees have been presented for further use. Moreover, some

33

technology tree–related general properties of different game
types have been identified and discussed.

With this paper, we wanted to emphasize the fact that tech-
nology trees and technology development processes of dig-
ital games in general are an important, yet so far scarcely
researched – at least among the general scientific commu-
nity – area; further studies should be carried out. We have
tried to demonstrate that the old concept of technology tree
– with a suitable definition – works well with quite different
games. Therefore, results for the technology development
process of a specific game may be applicable for other cases
also.

As future work, we intend to continue studying technology
trees. We are to create a generic tool for facilitating im-
plementing technology tree–based technology development
processes for games. We also intend to consider automated
possibilities for technology generation and tree balancing. It
would also be interesting to investigate, how technology tree
design relates to other subtopics of the game design field.

8. ACKNOWLEDGMENTS
This work was partly funded by Tampere Doctoral Pro-
gramme in Information Science and Engineering (TISE).

9. REFERENCES
[1] Adams, E. Fundamentals of Game Design, 2nd

Edition. New Riders Publishing, 2009.

[2] Bakkes, S., Spronck, P., and van den Herik, J.

Rapid adaptation of video game AI. In IEEE
Symposium on Computational Intelligence and Games
CIG’08 (2008), IEEE, pp. 79–86.

[3] Björk, S., and Holopainen, J. Patterns in Game
Design. Charles River Media, 2004.

[4] Blizzard Entertainment. Starcraft.
http://ftp.blizzard.com/pub/misc/StarCraft.PDF,
accessed January 9, 2012.

[5] Blizzard Entertainment. Warcraft II Battle.net
edition. http://ftp.blizzard.com/pub/misc/
Warcraft%202%20Battlenet%20edition.pdf, accessed
January 9, 2012.

[6] Bourg, D. M., and Seemann, G. AI for game
developers. O’Reilly Media, Inc., 2004.

[7] Buckland, M. Programming game AI by example.
Wordware Publishing, Inc., 2005.

[8] Buro, M. ORTS – a free software RTS game engine.
http://skatgame.net/mburo/orts/, accessed
February 1, 2012.

[9] Emrich, A. Microprose’ strategic space opera is rated
XXXX! Computer Gaming World 110 (1993), 92–93.

[10] Entertainment Software Association. Essential
facts about the computer and video game industry.
http://www.theesa.com/facts/pdfs/ESA_

Essential_Facts_2010.PDF, accessed August 5, 2012.

[11] Fullerton, T. Game Design Workshop: A
Playcentric Approach to Creating Innovative Games.
Morgan Kaufmann, 2008.

[12] Heinimäki, T. J. Considerations on measuring
technology tree features. In Proceedings of the 4th
Computer science and Electronic Engineering
Conference 2012 (CEEC’12) (Sept. 2012). In press.

[13] Millington, I. Artificial Intelligence for Games (The
Morgan Kaufmann Series in Interactive 3D
Technology). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2006.

[14] Paradox Interactive. Manual: Sword of the stars
II – Lords of winter.
http://www.paradoxplaza.com/sites/default/

files/pdx6105us_sots_ii_onlinemanual_1.1.pdf,
accessed January 30, 2012.

[15] Pitruzzello, J. Sword of the stars: Ultimate
collection PC review.
http://www.avault.com/reviews/pc/sword-of-the-

stars-ultimate-collection-pc-review/, accessed
February 1, 2012.

[16] Ponsen, M. J. V., Muñoz-Avila, H., Spronck, P.,

and Aha, D. W. Automatically acquiring domain
knowledge for adaptive game AI using evolutionary
learning. In Proceedings of the National Conference on
Artificial Intelligence (2005), vol. 20, Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press;
1999, pp. 1535–1540.

[17] Rollings, A., and Adams, E. On Game Design.
New Riders Games, 2003.

[18] Salen, K., and Zimmerman, E. Rules of Play:
Game Design Fundamentals. The MIT Press, 2003.

[19] Schell, J. The Art of Game Design: A book of
lenses. Morgan Kaufmann, 2008.

[20] Schiller, N. A portal to student learning: what
instruction librarians can learn from video game
design. Reference Services Review 36 (2008), 351–365.

[21] Sid Meier’s Civilization V. http:
//downloads.2kgames.com/civ5/site13/community/

feature_manual/Civ_V_Manual_English_v1.0.pdf,
accessed January 9, 2012.

[22] Solo, A. Innovative tech trees in space strategy
games. http://www.spacesector.com/blog/2009/07/
dynamic-and-specialized-technology-research-

in-space-strategy-games/, 2009, accessed January
18, 2012.

[23] Spronck, P. Dynamic scripting. AI Game
Programming Wisdom 3 (2006), 661–675.

[24] Spronck, P. H. M. Adaptive game AI. PhD thesis,
Universitaire Pers Maastricht, 2005.

[25] Tahkokallio, T. Designers’ notes #9: Technology
tree. http://boardgamegeek.com/thread/650731/
designers-notes-9-technology-tree, 2011, accessed
July 19, 2012.

[26] Tech tree (SEV). http://wiki.spaceempires.net/
index.php/Tech_Tree_%28SEV%29, accessed May 17,
2011.

[27] Total war: Shogun 2.
http://www.totalwar.com/shogun2/, accessed May
10, 2011.

[28] Tozour, P. Introduction to Bayesian networks and
reasoning under uncertainty. AI Game Programming
Wisdom 1 (2002), 345–357.

[29] Vanhatupa, J.-M. Guidelines for personalizing the
player experience in computer role-playing games. In
Proceedings of the 6th International Conference on the
Foundations of Digital Games (FDG’11), Bordeaux,
France (June 2011), pp. 46–52.

34

Publication II

II

T. J. Heinimäki and J.-M. Vanhatupa. Implementing Artificial Intelligence:

A Generic Approach with Software Support. Proceedings of the Estonian

Academy of Sciences, vol. 62, no 1, pages 27–38. Estonian Academy

Publishers, March 2013.

Copyright c© 2013 Estonian Academy Publishers.

Reprinted with permission.

Proceedings of the Estonian Academy of Sciences,

2013, 62, 1, 27–38

doi: 10.3176/proc.2013.1.04

Available online at www.eap.ee/proceedings

Implementing artificial intelligence:

a generic approach with software support

Teemu J. Heinimäkia∗ and Juha-Matti Vanhatupab

a Department of Mathematics, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere, Finland
b Department of Pervasive Computing, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere, Finland;

juha.vanhatupa@tut.fi

Received 18 August 2011, revised 25 November 2012, accepted 17 December 2012, available online 20 February 2013

Abstract. In computer games, one of the eminent trends is to create large virtual worlds with numerous non-player characters.

Usually their artificial intelligence (AI) is implemented by scripting, which can be a burden for the application developers involved.

This paper suggests an approach facilitating designing AI functionalities and striving to reduce, via software tool support, the

amount of hand-written AI script code needed. Our approach is suitable for, e.g., creating autonomous agents with personal

characteristics, capable of behaving in a natural manner. For instance, the goal-oriented agent paradigm can be applied easily with

the approach. The definitions needed are written using a script language. Therefore, the agent configurations can be tested rapidly.

We have extended an existing AI environment and created a script framework for implementing general-purpose AIs. Moreover,

we have implemented software tools capable of generating script code for helping in the AI structure design and for simplifying

the actual code-writing task. For demonstrating the applicability of our approach, three example scenarios specialized from the

framework are presented.

Key words: artificial intelligence, autonomous agents, finite state machines, software tools.

1. INTRODUCTION

Over the recent years, virtual worlds of computer
games have expanded beyond measure. They have
become complicated constructs with numerous non-
player characters (NPCs) and places. Having a huge
number of NPCs makes it possible to offer lots of
possible opponents, allies, sources of information, and
trading partners. Thus, by increasing the number of
NPCs, the game can often be made more interesting.
However, this also means more time spent on implement-
ing artificial intelligence (AI) for these NPCs. The NPC
AI is a crucial aspect of computer games, but achiev-
ing sophisticated intelligent behaviour for a very large
number of NPCs is not possible using conventional AI
methods or engines [19]. The great challenge for the AI

is to get the NPCs to behave in a believable, human-like
fashion. The player should be able to imagine that inter-
actions between real characters take place. The same
facts apply also when considering AI agents (without
graphical presentation) for, e.g., playing strategy or
board games.

In this paper we propose a novel script-based1

AI approach for computer game development. It is
applicable with several kinds of games, and can be
applied also outside the gaming domain. We use a
separate AI framework that can be attached to the actual
game engine or other program using the AI features. The
purpose of the AI framework is to offer virtually all the
AI support needed for creating interesting games. Thus,
the application developers can concentrate on the real
AI problems instead of writing lots of similar scripts

∗ Corresponding author, teemu.heinimaki@tut.fi
1 Nowadays, game AIs are often implemented by means of scripting; scripts may be used, among other things, for

communication dialogues, decision logics, stage direction, and fighting tactics [1,3]. The separation of the AI code and the

main program simplifies the development process and makes it easier to modify the AI by different interested parties, like

game designers or end user “modders”. The matter of scripting AIs is discussed more, e.g., in [5].

28 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 27–38

for different agents. Scripting is used as a helping
method, but most of the actual work is done by the
framework. This paper is a derivative of the existing
conference article [7], and has been extended with
numerous additional considerations, clarifications, and
an extra demo scenario. Also the software tool support
has been extended and improved since the original paper.

Our approach is based on the famous idea of
dividing and conquering: we aim at splitting the
problem into smaller ones, and structuring the code
accordingly. Moreover, our goal is to facilitate the
work of AI developers by making it easier to design
the AI structure naturally, in terms of the temporal flow
of, e.g., the decision-making process. In addition, our
approach is meant to make it easy to take advantage
of personalization of the agents and goal-oriented
action planning (GOAP) [12] principles. For these
ends we have developed a general-purpose scripting
framework and software tools for creating specialized AI
implementations easily.

Our hypothesis is that using the approach, the
productivity of AI programmers can be increased, as
implementing AI features requires less work; the tools
help in saving time and work in many ways. The ultimate
goal of this work is to improve the quality of AIs in
digital games by facilitating more efficient use of the AI
programmer resources.

The framework was obtained by extending, modify-
ing, and generalizing the AI support part of our existing
CAGE game engine [18] and by making it totally
independent from CAGE. At the beginning of this work,
CAGE supported directly only NPC AIs implemented
via state machines, and the application developer had to
create more sophisticated AI implementations manually,
if needed. Since, CAGE AI framework was extended
with GOAP support, before the generalization and
separation into our current framework.

The approach of this paper combines the use of finite
state machines with the use of new kind of machines
for implementing general-purpose AIs. With these
machines, e.g., goal-oriented agents can be implemented
easily. For testing the applicability of the approach,
we have programmed three example scenarios using the
framework. For taking advantage of our framework the
software tools created for specializing the framework are
essential.

The rest of the paper is organized as follows.
In Section 2 some background and related work are
covered. After that, in Section 3, we present our general
AI approach in more detail. In Section 4 we explain the
prototype AI framework – a realization of the general
idea. Then, in Section 5, the implemented software
tools and the benefits offered by them are discussed.
In Section 6 we present example scenarios featuring AI
implementations created by specializing the framework.
The concluding remarks are given in Section 7.

2. BACKGROUND AND RELATED WORK

Almost all virtual worlds of computer games contain
less intelligent NPCs in the form of animals and humans
with simple behaviour; there are servants, guards,
shopkeepers, and so on. State machines are a suitable
method to model their behaviour. According to [12],
the most of the decision-making systems in current
games are implemented using state machines along with
scripting. A problem with state machines is their
rigidity: when encountering situations that have not been
foreseen, the resulting behaviour can be poor [6].

Game worlds may contain also more intelligent
agents, whose behaviours should be as complex as those
of the player characters (PCs). Alas, in practice, often AI
implementations – and thus, the resulting behaviours –
of these agents are too simple. It is quite common to just
stand still waiting for the interaction initiated by the PC,
or to live only to die by the sword of the PC. This kind
of simplified behaviour of NPCs can lead to boring, self-
repeating, and unnatural virtual worlds. Therefore, our
approach aims at facilitating creating intelligent agents
of high quality.

One possibility for a basis of creating a sophisticated
AI is to model personal characteristics, moods, and
knowledge of the agent for inducing its behaviour. Often
the AI can be improved by adding in-game interactions
between NPCs. (The significance of them is discussed,
e.g., in [17].) Also other methods for making games
more interesting, developed over several decades by the
multi-agent system community, can be used. However,
the basic problem remains: often simply too much work
is required to implement the wanted behaviour properly
with conventional methods. Our approach strives to
tackle this problem.

The usual approach for implementing new computer
games is to use game engines; modern games are
seldom developed from scratch [12]. Instead, a suitable
game engine is modified for the new game, which is
then implemented using the engine as a framework.
Often some scripting language is used in addition to a
conventional one. The differences between game engines
are huge; their capabilities and features, including AI
support features, differ a lot. It is common that the AI
implementation of a game is not really supported by the
game engine used, but the AI is somehow glued into
the main game. On the other hand, many commercially
used game engines offer some sophisticated AI support
features. However, to the best of our knowledge, none
of them use such a personal trait-based2 approach as
presented in this paper.

There is a wide array of publications on solving
different kinds of AI problems in game worlds by NPCs
and other agents. However, most of them seem to be
solving quite specific problems in specific environments.
Our framework, on the contrary, aims to be very generic.

2 Our approach can be successfully used also without personality features, but the original CAGE AI framework extension was

designed especially for using them.

T. J. Heinimäki and J.-M. Vanhatupa: Implementing AI: a generic approach with software support 29

Despite the genericity, it is as a rule easily applicable in
a given task. The exact easiness depends on the case, but
the lack of artificial limitations in the framework and tool
support for specializing it help a lot.

The “Scripted Artificial Intelligent Basic Online
Tank Simulator” (SAI-BOTS) [2] lets the players script
the behaviours of their tanks using the Lua scripting
language and then fight each other with them. It
resembles, for instance, the CAGE system in the sense
that its main programming language is C++ and it
uses Lua for scripting. When using our approach, the
application developer writes definitions for agents, which
calculate their actions autonomously. In SAI-BOTS, on
the other hand, the behaviour of the tanks is pre-scripted
conventionally. Moreover, CAGE is a prototype game
engine, which can be used to develop computer games
of different genres. SAI-BOTS, instead, is a specific,
scriptable computer game.

The AI structure of “being-in-the-world” [4],
a multi-user dungeon (MUD) agent, consists of
two asynchronously working modules. The reasoning
module includes, e.g., logical reasoning and goal
maintenance, while the real-time coping module deals
with the world. The basic structure of the solution
could be implemented using our approach, while it might
not be the best possible way to perform ontological
reasoning. The solution of being-in-the-world resembles
that of the CAGE engine for goal-oriented agents. While
our AI framework uses Lua, being-in-the-world has been
written in Common Lisp. The framework presented in
this paper is general enough to be suitable for different
kinds of games and other purposes, but being-in-the-
world is a MUD agent created for surviving in a certain
kind of MUD.

Basketball Artificial Intelligence Tool (BAiT) [16] is
a data-driven software tool system for implementing AI
for a basketball game. It aims at offloading work from
programmers by transferring some of it to designers.
Our approach strives to offer help for generic AI
implementation – not only for implementing a finite
set of AI features for a single game (or genre). This,
on the other hand, means that we cannot offer as
high a level of abstraction as BAiT does; we expect
the users of our tools to know as much of the target
system and its interfaces as if they were to script
the AI conventionally. (Of course, application-specific
simplified scripting interfaces can be offered to be used
via our tools, if necessary.) BAiT takes benefit of the fact
that basketball as an activity is sequential by nature. This
is the case in most sports. Also our approach is extremely
suitable for creating AIs for such sequential activities.

3. ARTIFICIAL INTELLIGENCE APPROACH

For ensuring suitability for different needs, our approach
includes both state machines and more advanced
methods intended originally to be used with autonomous
agents with personalities. We divide artificial agents into
two categories according to the methods used: there are
state machine agents (SMAs) and advanced AI agents
(AAIAs). Instead of state machines, AAIAs use a new
kind of AI machines (AIMs) for behaviour generation.
The focus of this paper is on AAIAs, but the support for
SMAs is included in our approach, as sometimes trying
to mimic complex human-like “thinking” processes for
inducing actions can be an overkill. This matter is
discussed, e.g., in [10].

In modelling and developing agents, the goal
orientation as a paradigm is increasingly recognized [15].
AAIAs support fully creating goal-oriented agents
(GOAs) that model and use goals and motivations in their
action-generating processes. We consider them as a sub-
category of AAIAs. The agent types of our AI approach
are depicted in Figs 1 and 2.

In our approach, the application developer describes
– depending on the type of the agent – either the
agent behaviour as a finite state machine or AIMs for
generating behaviour autonomously. (This is the original
idea of using AIMs, but they can be applied freely
and offer benefits also in other kinds of settings.) The
descriptions are given using a script language3. Script-
ing allows rapid application development and testing.
Downside of this is the lack of efficient debugging
capabilities. However, it is possible to implement the
needed machines piece by piece and to test each added
code block separately, without any need to recompile the
framework during the process.

����������	
������
��

����������	
������
��

����������	
������
��

����

Fig. 1. State machine agents. Several agents may share the

same state machine model.

3 Using script languages or writing scripts are not bad things per se; the important thing is how and when to script. When

scripting AI traditionally, the application developer writes the whole AI implementation with the given language somehow.

Various methods can be used, including using state machines. This means that we recognize the usefulness of some traditional

scripting methods in some cases. However, at least as far as the AAIAs are considered, instead of giving the application

developers a language and free hands to use it, we want to reduce their workload by defining a clear structure and making

automatic code generation possible without taking away their freedom to apply their creativeness.

30 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 27–38

Fig. 2. Advanced AI agents. Goal-oriented agents can be seen as a special case.

Our approach enables the creation of huge virtual
worlds with lots of different inhabitants with diverse
AI capabilities. Of course, when the number of
agents grows enough, making any kind of individual
AI calculations for all of them in real time will
become impossible. While our approach cannot solve
this fundamental problem, it facilitates and speeds up,
nevertheless, the creation of a large number of believable
AI implementations. The AAIAs are not only suitable for
advanced NPCs, but also for believable and seemingly
intelligent co-players or adversaries. AAIAs can even be
used in implementing different decision-making systems,
planners, and so on. Similarly, SMAs can be used for
various purposes.

3.1. State machine agents

Although the main focus of this paper is in AAIAs,
we have included the support for conventional state
machine-based agents as well for convenience. Simple
behaviour, after all, is easily achieved using them.
Another good side (in some cases) in them is the
high predictability of the actions4. Moreover, finite state
machines are not generally computationally expensive
[11].

State machines could easily be implemented using
AIMs. However, we choose to use a specific structure
for implementing them. They are, after all, rather simple
constructs that do not really benefit from being imple-
mented as AIMs.

The application developer describes the state
machine models by scripting. This work includes defin-
ing the states, state transitions, and inputs capable of
firing the state transitions. It is possible to define a
separate state machine model for each agent, but several
agents having similar behaviour can also share one. This
reduces the needed amount of copying and pasting code.
An example state machine model is depicted in Fig. 3.

In [7], the general idea was that each agent using
state machines has its own state machine instances and

�����

������ 	

���

��
���

�����������

�����������

��
������������
�����

�����������

������������

Fig. 3. An example state machine model.

can be in a different state than other agents regardless
of whether they use the same state machine model or
not. Connecting only one agent to a state machine
instance was suggested for simplicity and general
implementability. However, currently we are focusing
on using shared state machines. This requires keeping
track of states of individual agents, either by themselves
or by the state machine construct, but in many cases con-
siderable space savings can be achieved by not replicat-
ing similar machines.

3.2. Advanced AI agents

In our approach, every AAIA uses a number of AIMs
that may modify its personal parameters, possibly adding
also new ones. The application developer defines these
attributes for the agent, as well as the set of AIMs to
calculate new agent parameters, for example, goals and
means to acquire them, and to modify the existing ones.
The AIM set establishes the desired AI architecture.

The composition of a single AIM is depicted in
Fig. 4. Each machine can contain several layers of
calculation nodes (CNs). A CN may perform com-
parisons, calculations, and basically any program code.
However, the idea is to keep the logics of an individual
CN as simple as possible. The layers are iterated through
in a fixed order according to their numbering (in Fig. 4,
from Layer 1 to Layer n). Inside of a layer, the execution

4 Of course, there are numerous state machine-based approaches that use probabilities and randomness, but they are out of the

scope of this paper.

T. J. Heinimäki and J.-M. Vanhatupa: Implementing AI: a generic approach with software support 31

Fig. 4. The components of an AIM.

order of CNs is not fixed5. (By executing a CN we mean
running its respective code block.) Because of this, the
code of a CN must not depend on attributes altered on the
same layer. It may only trust that the operations of the
previous layers have been performed. Possible common
initialization or input filtering code can be run before
executing the CN layers. Feedforward artificial neural
networks can be seen as special cases of AIMs.

The purpose of suggesting the use of several
machines instead one is to simplify the overall AI
construction by splitting it into logical pieces. The whole
AI functionality is then achieved by chaining the AIMs,
as shown in Fig. 5. The arrows pointing downwards in

�������������	
���

����

������������������	
���

����

�����������	
���

�����

���
�� ���

Fig. 5. Overview of the approach. A chain of machines is used

to produce new data, like goals and actions to perform. The

different rectangle widths depict possible growth of the number

of the parameters.

the figure represent the flow of execution. Passing the
information from an AIM to another is accomplished
by simply modifying the attribute data to which the
machines have a shared access. Thus, defining any kind
of complex input/output interfaces is not necessary.

Naturally, the usage of AIMs is not limited into this
kind of single cascade structures. They are often viable
and sufficient, but if needed, several AIM cascades can
be run in parallel, or hierarchical AIM structures can be
built.

The initial attributes can contain many kinds of data,
including the personal traits and the moods of an agent.
These parameters are simple key–value pairs. Data
requiring more complex representation, like knowledge,
other history-related data, and perceptions, can also
be present, represented by suitable data structures. In
every stage in the process, the existing attributes can be
modified and new ones can be added, so the cardinality
of the set of the final attributes may be greater than that
of the set of the initial attributes.

The AIMs can be easily used to decide goals,
generate action possibilities, and eventually produce a
priority list of actions (or sequences of them) to carry
out. Thus AIMs are a suitable tool for applying GOAP
techniques. In Fig. 6, an example machine architecture,
the basic GOAP system of the CAGE framework, is
depicted. This architecture implements the general idea
of Fig. 5 and uses AIMs at three levels. First, there is a
machine for generating the goals based on the personality
and the environment. The next machine generates tasks
to be performed based on the most important goals given
by the first machine. Finally, there is a separate machine
for splitting the tasks into short-term actions. Effectively
all the machines manipulate the importance values of
their respective output parameters so that decisions can
be made based on priority lists. For keeping the goals

5 The purpose of not fixing the order is to make it possible to write parallel implementations easily.

32 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 27–38

Environmental

inputs

Activities

Short-term goals Long-term goals

Actions

Goal-generating

machine

Task-generating

machine

Tasks

Action-generating

machine

Actions

Agent

attributes,

status

parameters,

personality

parameters,

and

knowledge

Fig. 6. Architecture of the CAGE GOAP system.

and tasks updated, the machine chain for an agent is run
periodically, always when completing a task, and always
when important environmental events occur.

4. STRUCTURE OF THE F1I2A3 FRAMEWORK

For implementing and evaluating our approach, we
defined the structure of the actual code so that the
development process could partly be easily automated.
The resulting high-level AI framework is called F1I2A3.
The name comes from “Framework for Individually
Intelligent Autonomous Artificial Agents”. The frame-
work provides support for SMAs and AAIAs. It is also
possible for an AAIA to command SMAs and other
AAIAs belonging to its group using a simple message-
passing mechanism.

The F1I2A3 framework was obtained by extending
and generalizing the existing AI framework of the CAGE
game engine, so the language of choice is the scripting
language Lua [9]. It is a dynamically typed popular
language, which has been used in several games and
industrial applications [8]. Lua is also very fast [3].
Moreover, Lua is an easy language to bind with other
languages. This was an important factor when originally
deciding the scripting language to be used in the CAGE

AI framework. Thus, F1I2A3-based AI implementations
can be easily attached to different game engines or other
“main programs”.

4.1. Implementing state machines

The state machine implementation principles of F1I2A3

are basically those of the original CAGE AI framework
(although nowadays we use shared state machines
actively). For using CAGE state machines, the applica-
tion developer defines the state machine models consist-
ing of state models, and connects SMAs to them. The
state models include the state transitions on suitable con-
ditions, and are written in Lua.

An example F1I2A3 implementation of a state model
is shown in Fig. 7. The modelled state is an attack state
of a simple agent, which could be used, for example, in a
first person shooter game. When the agent is in the attack
state and sees a PC, it attacks. When there are no more
enemies in the vicinity, the agent falls asleep. If injured
severely, the agent will retreat.

In Fig. 7, the basic code-level structure of state
models can be easily seen: they are implemented as Lua
tables with three functions. One is called when entering
the modelled state, one when executing corresponding
state actions and triggering possible transitions, and one
when leaving the state. Besides individual state models,
state machine model implementations include functions
for creating agent tables, setting agent properties, and
running the modelled state machines for different agents.

4.2. Implementing advanced AI machines

Besides CNs, an AIM includes some metadata and
functions for running and cascading the machines. The
most important function is run X(agent), in which X is
replaced by the machine name (that serves as a unique
identifier (UID)). This function is used for running the
code segments of the CNs in the order determined
by the machine structure. Using the agent parameter,
some suitable information about the agent for which the
machine is meant to be run is passed for it. The parameter
may, for instance, contain only a string containing the
name or the UID of the agent, or it can be a pointer
to a complex agent class with methods usable from the
Lua code. There are also helper functions (achievable
from the CN code blocks) for, e.g., sorting and handling
priority lists.

An example implementation of a CN of the CAGE
Goal Generating Machine is shown in Fig. 8. The CN is
responsible for updating the hunger status parameters of
the NPCs. Updating takes place each time the game time
passes.

T. J. Heinimäki and J.-M. Vanhatupa: Implementing AI: a generic approach with software support 33

Fig. 7. An attack state model implementation. In this case, agent is a Lua table that stores necessary properties and functions of an

AI agent using the state machine model.

Fig. 8. An example calculation node implementation. The

variable agent that has been given to the machine-running

function as a parameter can be used inside the CNs. In this case,

agent refers to a class instance with a method called get name()
callable from the Lua code.

5. TOOL SUPPORT

In the case of AAIAs, specializing the F1I2A3 framework
requires fixing the number and the layer structure of
CNs and writing their respective code blocks. It is
easy to automate the generation of the other parts of
a normal specialized AI implementation. So, to help
application developers in the creation of AIMs, we have
implemented a software tool, called Machine Creator, for
building them. Defining the layer structure of a machine
and inserting the required script code for the CNs can
easily be done via the graphical user interface (GUI)
offered by it. A screenhot of the Machine Creator GUI is
shown in Fig. 9.

After the structure of the machine under construction
has been defined and the desired content of the CNs has
been added, one can order the software to generate the
AIM in F1I2A3 format. In the Machine Creator version
used in [7], the agent parameter value initializations had
to be added to the script files by hand, but nowadays,
an arbitrary initialization code can be added via the
GUI. Everything else is generated automatically. The
tool support speeds up the machine creating process
considerably.

The Machine Creator tool has been implemented
using the Qt framework [14] in order to get an easily
portable tool for different platforms. It has been success-
fully used in Linux and Microsoft Windows environ-
ments.

Besides adding the possibility of giving the
initialization code via the GUI, we have improved the
Machine Creator tool in many other ways since [7]
was published. The GUI has been enhanced visually,
and alternative ways of performing actions have been
added. Nowadays, the Machine Creator can also load
the generated scripts from files for further modifications.
Moreover, a syntax checking feature has been added: the
tool can check the syntactical correctness of each code
block. This makes debugging – and in the first place,
generating bugless machines – considerably easier. Also
Lua syntax highlighting support was added for making
code-writing more pleasant and less error-prone.

Our AAIA approach would only have little use
without the Machine Creator: GUI, syntax checking,
and realization of our framework by automated code
generation are the means for trying to achieve our goal
of reducing the burden of AI developers. The time and

34 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 27–38

Fig. 9. The Machine Creator user interface.

work savings come from multiple sources; the main
benefits of using the tool (and our general approach) are
• the possibility of implementing scripts naturally, based

on temporal (decision-making etc.) flows;
• the easiness of locating the relevant pieces of code,

when necessary;
• the easiness of implementing agent personalization and

GOAP features;
• the savings obtained due to automation of imple-

menting logics related to the execution order;
• helper functions offered;
• syntax checking in the code block level; and
• easiness of writing code to be executed truly con-

currently6.
Of course, the actual savings in the amount of

work or time used when implementing an AI are highly
case-dependent. In some cases, our approach might
not offer any benefit, while in other cases, the savings
could be considerable. We do not try to make any
numerical comparison against conventional scripting, as
it is impossible to choose a generally applicable and fair
baseline; if some AI feature was fixed to be implemented
first conventionally and then with our tool, the results
would not mean much, as there are many ways to
solve a problem in either way. However, based on
our experiments (see Section 6), we claim that at least
in some cases using our AAIA approach and Machine
Creator is truly beneficial.

The size of the script code overhead generated for
structuring the AIMs and using them grows a (small)
constant amount for each CN and a constant amount
for each AIM. Compared to the size of the hand-written
code, the size of the automatically generated code may
be considerable with simple AI implementations with
several AIMs and CNs and negligible with complex
implementations with only a few AIMs and CNs. Ideally,
all the code written by the AI developer should be
“effective” and closely AI-related, but the exact number
of the lines of the code needed for some implementation
depends on the skills of the programmer and the chosen
way to use our tool.

We also have implemented another tool, called State
Machine Editor, for creating and modifying finite state
machines via a GUI and for generating Lua implementa-
tions automatically. The GUI is demonstrated in Fig. 10.
With this tool, our goals are to
• provide a visual view to the logics and thus help in the

design process and
• speed up the development: the time savings gained

by generating the state machine code automatically
are substantial.

The Qt framework has been used also for imple-
menting the State Machine Editor for the same reasons
as it was used in the Machine Creator implementation.
Also the State Machine Editor runs at least in Linux and
Microsoft Windows environments.

6 It is trivial to split the generated code to pieces to be run concurrently, and the GUI of the Machine Creator helps with

visualization of the code parallelization.

T. J. Heinimäki and J.-M. Vanhatupa: Implementing AI: a generic approach with software support 35

Fig. 10. The State Machine Editor GUI.

6. EXAMPLE SCENARIOS

We have implemented three example scenarios by
specializing the F1I2A3 framework to test our AAIA
approach. The first one is a scenario called Gunslinger,
in which the PC plays a role of a sheriff in the situation
in which a group of bandits has stolen a chest full of
gold. The purpose of this scenario was to verify the
applicability of F1I2A3 for its original intended task,
creating NPC AI implementations. (The problem domain
analysis considering the role of a sheriff is omitted here
for brevity because it is not crucial given our goal.)

The second scenario is called Gomoku. It was
implemented to demonstrate that it is possible to create
also a board game opponent AI using the framework.
The third scenario, Wargus AI, was implemented to
test the applicability of F1I2A3 for creating hierarchical
manager systems. We created a simple strategy manager
AI for playing a real-time strategy (RTS) game.

6.1. Gunslinger

In the Gunslinger scenario, initially there are five bandits
guarding a chest full of gold. All the bandits use the
same AIM, but differ in personal traits. Additionally,
one of the bandits is the leader of the group. The leader
can command the others, and the commandments are
normally obeyed.

State machines could have been used for this basic
operation of the bandits. However, the bandits are meant

to model human beings, and human beings have different
personal urges. For modelling these, AIMs are handy.
So, if some personal need of a bandit to do something,
for instance to flee, outweighs the authority of the leader,
the bandit can also commit “rebellious acts”.

The personalities of the bandits are modelled by
the following parameters: authority, bravery, alertness,
tiredness, and greed. The tiredness value grows as
time passes. The observations about the environment
affect also: the PC can be seen, as can be the gold
chest. Moreover, the bandits are aware of the casualties.
In this simple scenario, there are five possible actions
the bandits can perform: guarding, sleeping, attacking,
alarming, and fleeing. In addition, the leader can
command the others to perform these tasks.

As the game engine (providing the graphics, the
game loop, etc.) we used CAGE run in Ubuntu 10.04.
Attaching the AIM to it was trivial and required only
minor modifications as CAGE already was capable of
running Lua scripts. A screenshot, in which the PC is
attacking a bandit, is shown in Fig. 11a.

By using the Machine Creator tool, the implementa-
tion of the scenario, in which the individual charac-
teristics of the bandits are clearly reflected into their
behaviours, required roughly 40 hand-written lines of
Lua code for the CN logics. There were a total of
eight CNs forming an AIM used by all of the bandits.
The scenario implementation clearly demonstrated that
the Machine Creator tool and our approach in general
could be successfully used for speeding up NPC AI
implementations.

36 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 27–38

(a)

(b)

Fig. 11. Screenshots from example scenarios: (a) the Gun-

slinger scenario, (b) the Gomoku scenario.

6.2. Gomoku

The F1I2A3 framework is meant to be a general-purpose
AI framework. Thus, it should be applicable not only
in creating the AIs for NPCs, but also in creating
AIs that could be used as opponents or co-players.
For demonstrating this, an AI for playing Gomoku
(also known as Five-in-a-row) was implemented. This
scenario was created for a self-made, general-purpose
simulator software run in Ubuntu 10.04. A screenshot
from a game between an AAIA and a human being is
shown in Fig. 11b.

The basic implementation is simple: all the possible
places for setting a counter are evaluated each round
and the one with the best evaluation score is chosen.
The scoring is based on the overall numbers of counters
in the horizontal, vertical, and diagonal rows around
the potential place and the lengths of continuous rows
around it. Immediate victory moves and the rows of three
counters with open ends are recognized as the special
cases.

For making the AI behave like a human, the
evaluation is affected by three parameters: ac, r, and

absent-mindedness
interest

tendency to get nervous
aggression
pedantry

ac

r

asvm

Gomoku machine

absent-mindedness
interest

tendency to get nervous
aggression
pedantry

Fig. 12. Generating the playing parameters from the player

agent characteristics using an AIM.

asvm. Their values are evaluated for each ply of the
game, using a single AIM, as depicted in Fig. 12.
The “attacking coefficient” ac tells how strongly the
decisions are biased towards considering only the
agent’s own counters. If the value of ac is low,
the agent will play defensively considering mostly the
opponent’s possibilities of winning the game. Random-
ness coefficient r is used for making random mistakes
in the counter placement, and the parameter asvm
represents the ability to spot places leading to victory.

The base parameters for different player agents
are absent-mindedness, interest in playing the game,
tendency to get nervous during the game, aggression,
and general pedantry. By altering these initial values,
the playing style of an agent changes to reflect the given
characteristics.

The AIM uses only four CNs, each having only one
Lua line of code. In addition, some code was needed for
binding the parameter values to the actual game-playing
code. Still, the amount of the code and time for creating
an opponent AI was minimal, and the resulting AI seems
to work as expected.

Based on this scenario, the AI approach presented
in this paper seems to be suitable also for non-NPC
AI implementations. In this scenario, as well as in
the Gunslinger scenario, the benefit gained by using the
Machine Creator tool was obvious. Without using it,
the corresponding AI features would have required much
more time to be implemented.

6.3. Wargus AI

RTS games are often seen as ideal test-beds for AI
development. They offer a wide variety of challenges
to be coped with. Wargus is a clone/modification of the
well-known RTS game Warcraft II: Tides of Darkness
(Blizzard Entertainment 1995). Instead of the original
engine, Wargus runs on an open-source engine called
Stratagus. The Stratagus engine has been previously used
in different AI studies [13]. Therefore it seemed also to
be a relevant test environment for our framework and we
chose to implement a test scenario for it.

T. J. Heinimäki and J.-M. Vanhatupa: Implementing AI: a generic approach with software support 37

Fig. 13. The structure of the AI system implemented for Wargus using AIMs.

We tested cascading and hierarchical use of AIMs
by creating an AI implementation for Wargus 2.2.6. It
tries to beat its opponent by gathering an attack force and
attacking the enemy relatively early in the game without
giving the enemy much time to prepare; i.e. it does not
rely on supremacy gained by developing technologies,
but on speed. The structure of the AI implementation is
depicted in Fig. 13.

The AI is two-tiered: there are command and
executing levels. The executing level consists of two
AIMS in a cascade. The first of them manages the
economy, i.e. recruits peasants for workforce and
gives orders about how to balance the efforts between
gathering different resources, like lumber or gold.
The second one issues orders related to constructing
buildings, gathering army, and organizing attacks. This
machine, however, is not allowed to work totally
autonomously, but it must ask permissions to proceed.
The command level consists of a single AIM that may
give or deny these permissions.

The three AIMs needed were constructed using the
Machine Creator. A total of 13 CNs were defined. The
normal approach for implementing an AI for Wargus
would have been writing a lengthy Lua script giving
different orders concerning different things. We, instead,
used such a normal AI script only for running our
machines (which were implemented, of course, also as
Lua scripts). Although the AI implemented was rather
simple, it still took hundreds of lines of code. Writing
and organizing it would have been more difficult without
using the Machine Creator tool, which let us organize
the code block execution with visual feedback, check
the syntactical validity of each block separately, and
split the total AI implementation into several simple
machines without practically any additional work: while
working already in a Lua scripting environment, the tool
was able to generate all the code needed to run the
machines automatically. Due to sharing the attribute
data between the AIMs of an AAIA – in this case, our
Wargus AI system – it is extremely easy to implement
systems requiring message-passing between different
components. This was also verified in implementing the
Wargus scenario. A screen capture taken along the way
of developing the Wargus AI using the Machine Creator
is shown in Fig. 9.

7. CONCLUSIONS

In this paper we presented a general AI approach suitable
for computer games and different kinds of simulations
using intelligent, autonomous agents. The approach
can ease the development of computer games containing
large virtual worlds considerably. A crucial part of the
contribution of this paper was introducing a new kind of
artificial intelligence machines.

The approach was organized into a framework.
Using the support offered by it, application developers
can define their agents and create living virtual worlds
with relatively little effort. The applicability of the
framework was tested by creating tools for specializing
it easily, and finally by implementing example scenarios.
The preliminary results are promising: we were able to
create believable and naturally behaving AIs quickly and
easily.

7.1. Future work

The future work includes creating more different test
scenarios and honing the framework structure and the
Machine Creator tool based on the observations. We
intend also to conduct tests with the State Machine Editor
and demonstrate its usefulness. (This issue was left out
of this paper, as the focus was on AAIAs.)

ACKNOWLEDGEMENTS

This work was partly funded by the Academy of Finland,
partly by the Graduate School on Software Systems and
Engineering (SoSE), and partly by the Tampere Doctoral
Programme in Information Science and Engineering
(TISE). Also the Foundation of Nokia Corporation has
supported the work.

REFERENCES

1. Bourg, D. M. and Seemann, G. AI for Game Developers.

O’Reilly Media, Inc., 2004.

38 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 27–38

2. Brandstetter, W. E., Dye, M. P., Phillips, J. D., Porter-

field, J. C., Harris, F. C., Jr., and Westphal, B. T. SAI-

BOTS: scripted artificial intelligent basic online tank

simulator. In Proceedings of the 2005 International

Conference on Software Engineering Research and

Practice (SERP ’05). 2005, 793–799.

3. Buckland, M. Programming Game AI by Example. Word-

ware Publishing, Inc., 2005.

4. DePristo, M. A. and Zubek, R. being-in-the-world. In Pro-

ceedings of the 2001 AAAI Spring Symposium on

Artificial Intelligence and Interactive Entertainment.

2001, 31–34.

5. Doulin, A. Scripting your way to advanced AI. In AI Game

Programming Wisdom. Vol. 4. Charles River Media,

2008, 579–591.

6. Fairclough, C., Fagan, M., Mac Namee, B., and

Cunningham, P. Research directions for ai in

computer games. In Proceedings of the Twelfth Irish

Conference on Artificial Intelligence and Cognitive

Science. 2001, 333–344.

7. Heinimäki, T. J. and Vanhatupa, J.-M. Layered artificial

intelligence framework for autonomous agents. In

Proceedings of the 12th Symposium on Programming

Languages and Software Tools (SPLST’11). 2011,

102–113.

8. Ierusalimschy, R., Celes, W., and de Figueiredo, L. H.

About. http://www.lua.org/about.html (accessed

20.09.2011).

9. Ierusalimschy, R., Celes, W., and de Figueiredo, L. H.

The programming language Lua. http://www.lua.org/

(accessed 20.09.2011).

10. Khoo, A., Dunham, G., Trienens, N., and Sood, S. Effi-

cient, realistic NPC control systems using behavior-

based techniques. In Proceedings of the AAAI 2002

Spring Symposium Series: Artificial Intelligence and

Interactive Entertainment. 2002, 46–51.

11. Lecky-Thompson, G. W. AI and Artificial Life in Video

Games. Course Technology (CENCAGE Learning),

2008.

12. Millington, I. Artificial Intelligence for Games. The

Morgan Kaufmann Series in Interactive 3D

Technology. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2006.

13. Ponsen, M. J. V., Lee-Urban, S., Muñoz-Avila, H.,

Aha, D. W., and Molineaux, M. Stratagus: an open-

source game engine for research in real-time strategy

games. In Papers from the IJCAI 2005 Workshop

on Reasoning, Representation, and Learning in

Computer Games. 2005, 78–83.

14. Qt – cross-platform application and UI framework.

http://qt.nokia.com/ (accessed 20.09.2011).

15. Shen, Z., Miao, C., Tao, X., and Gay, R. Goal oriented

modeling for intelligent software agents. In Proceed-

ings of IEEE/WIC/ACM International Conference on

Intelligent Agent Technology, 2004 (IAT 2004). 2004,

540–543.

16. Snavely, P. J. Custom tool design for game AI. AI Game

Programming Wisdom, 2006, 3, 3–12.

17. Sterling, L. and Taveter, K. The Art of Agent-Oriented

Modeling. Intelligent Robotics and Autonomous

Agents. The MIT Press, 2009.

18. Vanhatupa, J.-M. and Heinimäki, T. J. Scriptable artificial

intelligent game engine for game programming

courses. In Proceedings of Informatics Education

Europe IV (IEE IV 2009) (Hermann, C. et al., eds).

2009, 27–31.

19. White, W., Demers, A., Koch, C., Gehrke, J., and

Rajagopalan, R. Scaling games to epic proportions. In

Proceedings of the 2007 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’07.

ACM, New York, 2007, 31–42.

Tehisintellekti rakendus: üldine lähenemine koos tarkvaratoega

Teemu J. Heinimäki ja Juha-Matti Vanhatupa

Arvutimängude realiseerimisel on tähtis genereerida virtuaalne maailm, keskkond, kus tegutseb suur hulk mitte-
mängijatest tegelasi. Nende tegelaste jaoks loodav tehisintellekt (TI) teostatakse tavaliselt skriptidena (stsenaariumi-
dena), mille koostamine on mängu realiseerijatele lisakoormuseks. Käsitsi kirjutatavate skriptide hulga vähendamiseks
pakume käesolevas artiklis lähenemise ja vastava tarkvaratoe TI funktsionaalsuse projekteerimiseks. Meie lähenemise
abil võib mänguväljale luua näiteks erinevate omadustega loomulikul viisil käituvaid ja eesmärgile orienteeritud
autonoomseid agente. Vajalikud mõisted spetsifitseeritakse vastavas skriptikeeles ja kohe seejärel saabki agentide
konfiguratsioone kiiresti testida. On välja arendatud TI keskkond ja skriptide kirjeldamise raamistik, mis sobib ka
üldotstarbelise tehisintellekti loomiseks ning vastavate skriptide automaatseks genereerimiseks. Artiklis on lähenemise
rakendatavust näidatud kolme näite varal.

Publication III

III

T. J. Heinimäki. Considerations on Measuring Technology Tree Features.

In Proceedings of the 4th Computer Science and Electronic Engineering

Conference 2012 (CEEC’12), pages 145–148 (orig. 152–155). Colchester,

UK, September 2012.

Copyright c© 2012 IEEE.

Reprinted, with permission, from Teemu J. Heinimäki, Considerations on

Measuring Technology Tree Features, Proceedings of the 4th Computer Sci-

ence and Electronic Engineering Conference, September 2012.

In order to comply with the terms of IEEE concerning online use, the “ac-

cepted” version of the paper has been included – not the “published” one.

In reference to IEEE copyrighted material which is used with permission

in this thesis, the IEEE does not endorse any of Tampere University of Tech-

nology’s products or services. Internal or personal use of this material is per-

mitted. If interested in reprinting/republishing IEEE copyrighted material

for advertising or promotional purposes or for creating new collective works

for resale or redistribution, please go to http://www.ieee.org/publications_

standards/publications/rights/rights_link.html to learn how to obtain a Li-

cense from RightsLink.

Considerations on Measuring

Technology Tree Features

Teemu J. Heinimäki

Department of Software Systems

Tampere University of Technology

P.O. Box 553, FI-33101 Tampere, Finland

Email: teemu.heinimaki@tut.fi

Abstract—Given the recently emerged importance and rapid
growth of social and economical impacts of the digital game
industry, it is crucial to carry out research work for being able to
develop better games. Technology trees is a topic covered hardly
at all in academic papers so far. This paper discusses measuring
different features and properties contained in them. The long-
term goal is to facilitate producing good technology trees by
the means of measurement-based enhancing and balancing algo-
rithms.

I. INTRODUCTION

The game industry has recently gained importance rapidly,

if measured, for instance, by its monetary value. So-called

technology trees (TTs) have been used a lot for a long time,

yet the concept is virtually omitted in the academic studies [1].

This paper focuses on measuring features of TTs, because it is

a matter of importance for solving the questions “how to make

good TTs” and “how to improve existing ones”. Answering

these questions is important, because technology development

modeled using TTs is an essential part of many digital games.

Especially this is the case within the genre of strategy games,

but nowadays TT-like structures are used also within other

genres.

Naturally, TTs can be designed manually without any spe-

cific methods or explicitly given algorithms – by instinct. The

resulting trees can be tested in their intended environments

and adjustments can be made based on the observations. This

is a method used successfully in practice. However, if TTs are

large in size, automating the process of making adjustments

could result in considerable savings of time (and money) and

improve the overall TT quality, as more factors could be

considered and more adjusting done within available time.

While probably ideas and methods resembling those we are

going to present are used, they are not publicly available,

but undisclosed information of game developer companies.

This paper discusses thoughts related to work-in-progress,

but the main contribution of it is to try and open up the

issue of developing TTs of high quality to be considered

also among the scientific community. Getting thoughts and

ideas exchanged and evaluated critically and more openly

– i.e., applying the peer review method to the production

methodology – could benefit even the game industry itself.

This work has been funded by Tampere Doctoral Programme in Information
Science and Engineering (TISE).

This paper assumes the TTs discussed to be used in a game

setting, but similar approaches might be transferred into other

kinds of settings using TT-like structures straightforwardly as

well. The focus is on offline methods – i.e., the trees are

measured as static entities outside the environment they are

to be used – but general ideas apply also for developing

online methods – measuring (and dynamically adjusting) TTs

as players proceed in them.

We proceed as follows: Section II defines the essential terms

and notations used in this paper and explains the semantics as

needed. Then, Section III discusses different generic aspects

for measuring TT features. Finally, related work is briefly

discussed in Section IV before the concluding remarks of

Section V.

II. TERMINOLOGY, NOTATION, AND SEMANTICS

In this paper, the word tree is used synonymously to TT.

TT is a structure defining relations and dependencies between

technologies possible to develop. Despite its name, a TT might

not be a graph-theoretical tree, but we expect (the graph aspect

of) it to be a directed acyclic graph (DAG)1. In addition to the

underlying graph structure, different attributes and values for

them can be attached to the nodes – representing technologies

– and to the edges – representing (possibly different) relations

between them. This kind of interpretation of the essence of a

TT is similar to that of [1] and [2].

Usually an edge in a TT represents a possibility (and

requirements) of developing a technology (the end node) given

another one (the start node) allows, typically by being already

developed itself. In this paper, we limit ourselves into this

typical usage for simplicity. A partial example TT is depicted

in Fig. 1.

The word balancing is not used in this paper in the normal

tree-balancing sense, when “balancing trees”, but carrying the

idea of making distinct TTs (nearly) similar in respect to

some important properties. For instance, different parties in a

strategy game – say, different virtual species – could have their

own TTs. This is a good and viable way of making the parties

different and thus also making the game more interesting.

However, if such trees are not balanced well, some party may

have an unfair advantage over others.

1A multidigraph could also be used, but in this paper, we consider only
structures having at most one edge from a node to another for simplicity.

Fig. 1. A part of an example TT demonstrating the basic idea of the concept;
technologies can be developed only if their prerequisites are met, and TTs are
used to define or depict such dependencies.

We also aim at “balancing” trees internally to prevent

the distributions of the calculated estimate values for given

properties from changing too steeply when proceeding in them.

For instance, the flow of the technological development a

tree is limiting and guiding ought to be somewhat steady

throughout the whole tree for “applying the science” to remain

interesting.

Normally, roots of a digraph are defined to be those nodes,

from which there is a directed path to every other node in

the digraph. As our TTs are not required to be quasi-strongly

connected, however, they do not necessarily have roots. Let

us define a somewhat similar concept more suitable for our

purposes: let entrance nodes be the nodes in a digraph not

having any incoming edges, i.e., the nodes n having in-degree

(d−(n)) zero. We use the word leaf as it is normally defined

for (graph-theoretical) trees: the node m is a leaf ⇔ the out-

degree of m (d+(m)) = 0.

The case, in which proceeding in a tree via edge e is allowed

by the start node of it, v, is denoted as
⊙

(e). Usually this

means that the status of v is “developed” (to a high enough

level, if there are several possible levels of development). An

edge starting from node a and ending to node b is denoted as

e(a, b).

III. FEATURE CONSIDERATIONS AND DIFFERENT

ASPECTS TO TECHNOLOGY TREES

It would be pleasant and quite sufficient, if there was a

simple, well defined measure for “goodness” of an arbitrary

TT. Alas, this is not the case. There are several things to be

considered when trying to determine how good or fitting a TT

is. Moreover, one cannot treat every TT similarly, as they can

be used for various purposes in different environments and

within different constraints; the definition of goodness must

change with the application and desired properties of the tree.

So, for analysis (and adjustments), some features of interest,

estimating the goodness in some sense, must be chosen. The

estimates for the numerical values of them should be easy

to obtain (calculate). Moreover, for making adjusting the tree

viable, there should be clear ways of affecting the values in a

deterministic (or at least foreseeable) fashion. These features

can be rather general concepts, like “flow of development”

or “military might”, but they can be observed from different

points of view. It is useful to consider them at least

• locally – per node or per edge,

• globally – on (sub)tree-wide scope, and

• temporally.

Depending on the tree under scrutiny, there may be several

other interesting aspects as well. These three, however, have

been chosen to be discussed in the following subsections in

more detail because of their generically useful nature.

A. Local Analysis

Local approach is needed in spotting the possible bottle-

necks and such problems of a local nature in a tree. When they

are identified, surgical adjustments can be made in order to try

and make the tree work better. Even if TTs are not usually very

large in size, computing the property values for a given node or

edge several times should naturally be avoided. (In the future,

the applications using larger TTs may be common.) Therefore

we strive for being able to calculate the local values going

through the tree in a single pass. With conventional, fully-

known TTs this goal is also achievable with many interesting

features.

So, we are interested in determining an estimated value

for a given (abstract) feature for a given node or edge. For

simplicity, let us assume that the development status of each

technology (represented by a node) is Boolean; a technology

either is developed or it is not. Let us also assume that

each edge represents the cost of developing a technology “via

that edge”, i.e., developing the end node technology of the

edge with the permission given by the fact of the start node

technology being already developed. The cost can consist of

several types of resources, time among them.

If a feature to be analyzed is of additive and cumulative

nature, it is possible to determine an estimated probability

distribution of its value for a node only based on the properties

of the parents of it. (Of course, a reasonable order of evaluation

is required.) The count of parents of a typical node is rather

limited, so this leads in practice to linear time complexity of

analyzing distribution estimates of a feature for all the nodes

in a tree in terms of the number of nodes (the tree size).

Some features suitable for this kind of evaluation could be,

e.g., overall level of enlightenment (scientific development),

military potential, or ability of producing certain kind of a

unit.

However, there are also interesting features, for which the

local values cannot be determined only based on the parents

of a node or the start node of an edge. For instance, if we

consider the speed of being able to proceed from a technology

to another (“the maximal edge flow”), the situation with other

possible parents of the goal technology – and their parents and

so on – might affect the distribution.

For some cases it might be enough to extend the consider-

ations to cover only, for instance, the Markov blanket of the

node. However, unfortunately, there are many properties of the

local nature one cannot evaluate only based on few local nodes

or edges. For instance, the size of the subtree – that could be

used as a measure of the overall usefulness or “gate factor

value” of a node – is such a property (although it happens to

be also quite easy to evaluate).

Let us denote a node to be developed g and its set of parent

nodes as P = {p1, p2, ..., pq}. Let us also denote the set of

Fig. 2. A conventional TT presentation.

edges corresponding the parents as E = {e1, e2, ..., eq}, such

that ∀n ∈ {1, 2, ..., q} : en = e(pn, g). There are basically two

different possible edge semantics commonly used: either it is

required that ∀e ∈ E :
⊙

(e), or it is enough that ∃e ∈ E :⊙
(e) for g to be developed (the development process of g to

be started). In the first case, we speak about having AND type

edges, and in the latter one about having OR type edges.

While often this kind of a simple classification is satisfac-

tory and sufficient, we suggest a less restrictive characteriza-

tion allowing different trees to be handled in a uniform way:

for each edge, a set of identifiers – that can be, for instance,

integer numbers – is given. Let us denote this identifier set

of edge e as Ie. Let U =
⋃

e∈E Ie. Now, all the edges

can be handled as AND type edges: g can be developed

⇔ ∃i ∈ U : ∀n : en ∈ E
∧

i ∈ Ien ⇒
⊙

(en). (Of course,

the possibility to develop a technology depends often on the

resource situation or some other limiting factors, but here we

are considering only the prerequisite relationships.)

B. Global Analysis

Analyzing the tree features locally plays a significant role

when aiming at improving a tree by local adjustments. How-

ever, occasionally it is useful also to try and see the “big

picture”. Tree-wide analyses can be performed for getting

descriptive data on a TT (or its subtree) as a whole. The eval-

uations of (probability distribution estimate) values for global

features may use results of local measurements; for instance,

tree flow could be obtained by averaging the individual values

for edge flows. Another example of a tree-wide analysis would

be to solve the distribution of different technology types2

occurring in the tree under scrutiny.

Analyzing a tree on the global scope can be interesting, but

the full value of analyses is obtained only when there are more

trees to be analyzed; if the goal is to balance the trees with

each other, measurements must be obtained for guiding the

adjusting process. In some cases, trees can be balanced with

each other successfully (with “rough” adjustment operations –

like multiplying the values of some property by a constant co-

efficient throughout the tree) only based on this kind of general

characterizations. Moreover, even if further micromanagement

2It s common to have the technologies divided into several distinct types
or categories, like military, scientific or economy-related technologies.

Fig. 3. The tree converted into time layer topology format.

is needed, it might be a good idea to first apply macroscopic

fixing, so that the local methods could really be used for their

intended purpose – solving local problems.

C. Temporal Layer Analysis

TTs are not (normally) only presentations of technology

relations, but structures related to time very closely: they are

used for defining the possibilities of changing in time. This

aspect cannot be omitted, if the actual technology development

possibilities offered by a tree are to be measured.

We suggest analyzing technology development on different

temporal layers. In Fig. 2, a typical TT digraph presentation is

shown; each technology occurs only once. The required time

steps3 for the development processes represented by the edges

are depicted beside the corresponding arrows. The topology

of the graphical representation is just “somehow pleasant”

without carrying any additional information value.

Fig. 3 presents the same TT differently: the node topology

has been altered and some nodes have been duplicated. The

idea is to represent different possible paths of development

individually. We do it by forming a set of real graph-theoretical

trees based on the original TT in a rather simple way.

There are two entrance nodes in the original TT. Each of

them serves as a root for the corresponding (real) tree. Starting

from them, the possible paths of development are followed: a

node corresponding to every child technology is added “on

the right layer in time” based on the knowledge of the time

required for the corresponding development process (edge).

The process is continued until the leaves have been reached.

The algorithm is given more precisely in Fig. 4.

In digital games featuring technology development pro-

cesses, they are usually meant to form a central part of the

gameplay. Thus, it is important that there are not too long

periods without anything notably happening in this area for

a game to remain amusing. Therefore we consider different

kinds of “flow” parameters important; possible problems in a

tree can be detected by finding the lowest flow values, and the

tree might be improved by getting rid of these problematic

parts somehow – for instance, by making local adjustments to

the properties affecting the flow. From the time layer topology

3Here we assume discrete time, but the numbers could as well represent
the durations of continuous temporal intervals. For simplicity, time is also the
only resource required for development in this example.

1 //Let T be the TT to be converted and S the

2 //tree set to be created. A, B, and N are FIFO queues.

3 S ← ∅; C ← ∅; A.clear(); B.clear()

4 for s in T.entrance nodes() do

5 t ← new empty tree()

6 t.add(s.copy()) // as the root node without children

7 o ← t.root

8 o.time ← 0

9 A.push(s)

10 while not A.empty() do

11 n ← A.pop(); C ← n.children; N.clear()

12 for i in C do

13 c ← i.copy()

14 e ← edge(n,i)

15 c.time ← o.time + e.time requirement

16 A.push(i); B.push(c); N.push(c)

17 end

18 o.set children(N); o ← B.pop()

19 end

20 S.add(t)

21 end

Fig. 4. An algorithm for converting a TT into a set of (real) trees tracking
possible paths of development in time.

representation it is easy to spot obvious flow problems; nothing

very interesting with respect to the TT can happen on the time

layers without any technologies. Therefore, several subsequent

layers without technologies may indicate a serious design or

parametrization problem.4

The set of technologies on a given time layer consist of

those technologies that can be obtained on that time. Usually,

however, all of them cannot be obtained simultaneously,

because the research or producing capacity is limited; often

the proceeding in a TT is even limited into proceeding via

only one edge at a time. However, in such a situation, the

structure can be easily updated dynamically based on the

development selections made; when time is used to develop

some technology, the other (real) trees are moved in time

layers accordingly. In other words, a constant time is added to

the time information of every technology except those in the

tree one is proceeding in.

Another way to use the time layering is to consider the

development of probability distributions of having different

technologies in terms of time as a Markovian process. For

instance the probabilities of having certain technologies in a

given point in time could be evaluated this way.

IV. RELATED WORK

To our best knowledge, there are no peer reviewed papers

focusing on TT-related issues. There are lots of publications

about digital games and even about developing artificial intel-

ligences for real-time strategy games, in which constructing

buildings and determining the build order often play a major

role (see, e.g., [3] or [4]). TTs could be used to model

such relations, but normally they are not even mentioned;

the existing academic publications tend to focus on totally

different aspects.

In [5], a state lattice for the real-time strategy game Wargus

is presented. The states (nodes) represent sets of completed

4Naturally, graphical representations are not needed for applying the idea,
but they may be convenient, if analyses are performed by human beings.

buildings and transitions correspond to constructing new ones.

The representation resembles a bit the result of the time layer

conversion of a TT presented in this paper. In the general case,

the set of technologies on a single time layer can be seen as a

state. However, the semantics of this kind of time layer states

differ from the semantics of the lattice states of [5].

There are, naturally, lots of different studies on general

graph properties and algorithms. TTs being interpretable as

DAGs, generic graph and network algorithms can be applied,

and ideas for different graph applications modified for using

with TTs. At least for balancing, resource allocation, and

strategy selection algorithms, also game-theoretic concepts and

methods might be useful. (Analogies can be found, e.g., among

load balancing tasks discussed in [6]). There are also several

case-based reasoning systems (see, e.g., [7]) that could be

adapted for TT-related tasks. Generic AI frameworks like [8]

might also be useful for implementing AIs using, constructing,

or analyzing TTs.

V. CONCLUSION

In this paper we have discussed generally the problem

domain of measuring TT features for being able to compare

different TTs and trying to improve them or balance them

internally or with each other. We have also presented an

algorithm for converting a TT into a format taking the usual

time-dependant nature of TTs into account. Besides covering

some work-in-progress, the purpose of the paper was to

highlight the lack of academic studies focusing on TTs.

We intend to continue working with the issue of measur-

ing TT features. The goal is to produce usable algorithms

for the measuring itself and for adjusting trees based on

the measurements. Some experiments can be carried out

by extending the functionality of the existing software tool

for creating functional TTs introduced in [2]. For a decent

evaluation of the methods, however, a (game) development

project of some magnitude should probably be carried out,

or at least an existing open-source application using a suitable

TT implementation should be found. Then, comparative results

could be achieved by conducting queries among test users.

REFERENCES

[1] T. J. Heinimäki, “Technology trees in digital gaming,” in Proceedings of

Academic MindTrek Conference 2012 (AMT2012), in press.
[2] ——, “Facilitating technology forestry: Software tool support for creating

functional technology trees,” unpublished.
[3] K. Dill, “Prioritizing actions in a goal-based RTS AI,” AI Game Pro-

gramming Wisdom, vol. 3, pp. 321–330, 2006.
[4] P. H. M. Spronck, “Adaptive game AI,” Ph.D. dissertation, Universitaire

Pers Maastricht, 2005.
[5] D. W. Aha, M. Molineaux, and M. Ponsen, “Learning to win: Case-

based plan selection in a real-time strategy game,” Case-based reasoning

research and development, pp. 5–20, 2005.
[6] B. Vöcking, “Selfish load balancing,” in Algorithmic Game Theory,

N. Nisan, T. Roughgarden, É. Tardos, and V. V. Vazirani, Eds. Cambridge
University Press, 2007, pp. 517–542.

[7] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “On-line case-based
planning,” Computational Intelligence, vol. 26, no. 1, pp. 84–119, 2010.

[8] T. J. Heinimäki and J.-M. Vanhatupa, “Layered artificial intelligence
framework for autonomous agents,” in Proceedings of the 12th Sympo-

sium on Programming Languages and Software Tools (SPLST’11), Oct.
2011, pp. 102–113.

Publication IV

IV

T. J. Heinimäki and T. Elomaa. Facilitating Technology Forestry: Software

Tool Support for Creating Functional Technology Trees. In Proceedings of

the Third International Conference on Innovative Computing Technology

(INTECH 2013), pages 510–519. London, UK, August 2013.

Copyright c© 2013 IEEE.

Reprinted, with permission, from Teemu J. Heinimäki and Tapio Elomaa,

Facilitating Technology Forestry: Software Tool Support for Creating Func-

tional Technology Trees, Proceedings of the Third International Conference

on Innovative Computing Technology, August 2013.

In order to comply with the terms of IEEE concerning online use, the “ac-

cepted” version of the paper has been included – not the “published” one.

In reference to IEEE copyrighted material which is used with permission

in this thesis, the IEEE does not endorse any of Tampere University of Tech-

nology’s products or services. Internal or personal use of this material is per-

mitted. If interested in reprinting/republishing IEEE copyrighted material

for advertising or promotional purposes or for creating new collective works

for resale or redistribution, please go to http://www.ieee.org/publications_

standards/publications/rights/rights_link.html to learn how to obtain a Li-

cense from RightsLink.

Facilitating Technology Forestry:

Software Tool Support for Creating

Functional Technology Trees

Teemu J. Heinimäki and Tapio Elomaa

Department of Mathematics

Tampere University of Technology

P.O. Box 553, FI-33101 Tampere, Finland

Email: {teemu.heinimaki, tapio.elomaa}@tut.fi

Abstract—Technology trees are frequently used in digital
games, but academic studies considering them are few. This
paper puts forward a general approach for modeling functional
technology trees and implementing them separately from the pro-
grams utilizing them. A scripting language framework created for
portable and modular implementations is discussed. Moreover, a
software tool for designing technology trees and for generating
corresponding script code automatically is introduced.

I. INTRODUCTION

Encapsulation of functional program entities like data struc-

tures has emerged as a leading principle in programming and

software development. Object-oriented programming has taken

this approach to even further. The advantages of separating

the implementation of a stack, say, from the application code

making use of it are many. Forcing the application to use a

standard interface to access the stack, for one thing, reduces

the risk of misusing the data structure (programming errors).

As a side effect, the stack implementation can be reused

in other application programs. Today, standardized program

libraries of course take care of most common functional

program entities in many programming languages.

Digital game industry today is a fast growing software

development area. The rapid pace of advancement has led

gaming industry sometimes to overlook the golden rules of

software engineering in their design principles. In this paper

we want to promote the use of good programming practices in

digital game programming. In particular, we provide a way to

encapsulate functional technology trees as semi-independent

entities and to create them easily. Our approach (and the tool

we provide) enables reusing technology tree implementations

easily and facilitates the actual work of game developers. The

main contributions of this paper are evaluating this kind of an

approach in general and providing insights based on empirical

experimentations on the approach itself and the applicability

of our novel software tool for technology tree generation.

The rest of the paper is organized as follows. In Section II,

essential terms used in this paper are explained and the

role of technology trees in digital games is discussed. The

overall approach is presented in more detail in Section III. In

Section IV, we shed light on our view to an issue highly related

to technology trees – different resource types. In Section V,

a general structure for functional technology tree implemen-

tations is proposed. A framework based on this structure is

shortly discussed and a software tool for facilitating creating

functional trees is presented in Section VI. The tool is evalu-

ated in Section VII. Related work is discussed in Section VIII

before giving the concluding remarks in Section IX.

II. TECHNOLOGY TREES: THE ESSENCE, IMPORTANCE,

AND SEMANTICS

Technology tree is an important and widely used concept in

digital games. The majority of strategy games use technology

trees [1], [2], and it is also common to have similar structures

(“skill trees” etc.) in games with role-playing elements. Al-

though representing technological development using tree-like

structures is challenging (see, e.g., [3]), technology trees are

extremely useful: despite their apparent structural simplicity,

they can be successfully used for various purposes. A technol-

ogy tree can be seen, e.g., as a release mechanism of beneficial

entities or abilities or as a narrative tool creating the structure

for the game and offering immediate goals for the players [4].

In our considerations, technology trees are directed graphs

with suitable semantics, data, and functionality attached to

them. They are used for keeping track of the achieved levels

of development (LODs) of different technologies and present-

ing and defining the hierarchical structures of development

possibilities. “Technology” refers to basically anything that

can be achieved or acquired by a development process like re-

search, training, or building. Typically, technologies offer some

benefits, and for making it possible to develop a technology,

some other prerequisite ones are typically needed. We use the

word “tree” as an abbreviation for “technology tree” (although

technology trees are not necessarily trees in graph-theoretical

sense).

This paper considers technology trees in the context of

digital games, and in games there are players. (See, e.g., the

definition of game by Salen and Zimmerman [5].) Each player

– either a human (through a software interface) or an artificial

intelligence (AI) implementation – can be seen as an agent.

More generally, the word agent used in this paper can be seen

to refer to any party using technology trees, regardless, if a

game or some other setting is considered.

III. THE APPROACH: SEPARATE, MODIFIABLE, AND

FUNCTIONAL TECHNOLOGY TREES WITH A GENERIC

UNIFIED FORMAT

Nowadays scripting is an essential method of implementing

AI in many kinds of digital games. The separation of the

game engines (conventional code) and the behavioral designs

(AI scripts) has emerged as the development team sizes

have grown and the complexity of the process of producing

games has increased [6]. Scripts can also be used for game

adjustments and other purposes. Many end users appreciate

possibilities for modifying the behavior of the end product,

and such an option can easily be offered by preserving the

separation used in the development process in the final product

and by using an understandable script language.

The traditional way of using technology trees is depicted in

Figure 1: the trees are hard-coded. Some parts – like the AI –

of the program may be scripted, but technology trees and their

logics are not among these. We, however, suggest extending

the separation scheme also to technology trees; they should be

separated from the software components using them (i.e., the

main game and its agents).

The motivations for separating, e.g., AI components from

the game engine, are applicable also for technology trees;

the separation can simplify the development process and

increase the modifiability of trees by different parties. So, the

technology tree implementations should not only be separated

physically, but also to be easily modifiable.

There are already some real-world applications using sep-

arate and even modifiable technology tree descriptions. For

instance, Star Ruler [7] (Blind Mind Studios 2010) uses tech-

nology trees described in text files using an easily understand-

able description format. However, such real-world formats –

and technology tree semantics – differ from each other, so the

trees are not interchangeable between different applications,

and it may be hard to convert a tree from one application

to be used with another.1 The (possibly existing) tools for

creating trees in an application specific format are useless

with other applications using different formats. Occasionally, a

standardized textual representation format (like XML) is used

for describing technology trees. However, the mapping of data

into such a format can be made in multiple ways.

For making technology trees reusable, they ought to have a

similar structure and communicate with other parties through

1We do not claim it to be common to want to swap technology trees
between different applications, or even to want to take a tree from an existing
application and use it as such in a new application. However, it could be
efficient to be able to, for example, take the tree of an application as basis
for the tree of its sequel or an otherwise more-or-less similar application. The
modifications needed could require significantly less effort than implementing
the whole tree from a scratch. Also when implementing an existing application
for a new platform, having technology trees as separate entities capable to
work as such on several platforms could be extremely cost-effective; the
technology trees and their functionalities could possibly be transferred as
verbatim copies without any modifications.

Fig. 1. Traditionally, technology tree implementations are internal and
integral parts of the programs using them. There might be, however, some
external modifiable parts, like AI scripts.

well-known, common interfaces. This kind of trees could po-

tentially be used by several different programs. The separation

of trees from their users and unified interface and structure also

facilitate research work on technology trees and implementing

tools for generating and modifying user-independent trees.

With the existing formats it is typically only possible in

practice to represent the structure of the tree. The approach

proposed in this paper, however, is based on functional

trees – not only structure representations or data containers.

Therefore, in addition to the previous requirements, a tree

must be able to contain also the implementation for generic

technology tree functionality and offer useful services to the

user via the interface. With this idea we aim at reducing the

workload of application programmers, which can be achieved,

if technology trees in accordance to our approach can be

implemented easily. This paper demonstrates – by introducing

a software tool for the task – that this really is the case. The

tool also offers a higher level of abstraction than just writing

all the code manually. This can be beneficial, as often technical

(coding) skills of game designers are somewhat limited [8].

IV. TIME AND OTHER RESOURCE TYPES

Resources are a fundamental concept, when considering

typical games using technology trees. In this paper, we assume

that a game may feature several resource types (e.g., gold,

hydrogen, or unicorn horns) with arbitrary names (and other

information). Agents may have different sources producing

resources, and normal resources can be stockpiled by them.

Upgrading a technology requires some (either fixed or calcu-

lated) amount of each resource type, and degrading may return

some resources to the resource pool of the agent.

The medium of digital games is time-based [9], and control-

ling the game experience in terms of time is one of the most

important purposes technology trees are used for. Therefore,

time is a central resource type.

In Section IV-A we consider technology development pro-

cess possibilities from the angle of using resources. In Sec-

tion IV-B we explain, how all the different resource types can

be handled similarly despite the peculiarities of time.

A. Time, Development Process, and Genericity by Similarity

In the simplest case, a technology development process only

requires time2 without any other costs; technologies can be

chosen to develop or be studied without other resources spent.

This is the case, e.g., in Total War: Shōgun 2 [10] (when

considering the “Mastery of the Arts” trees). In more complex

situations, the cost of a technology can consist of several parts;

for instance, some science points, some money, and some

special metal can be required for developing a technology.3

Sometimes the development may not require any time, but

happens instantaneously after the development order has been

issued. However, often the case is more complicated. Usually

the technology development processes are not instantaneous,

but it may take several turns in a turn-based game, or several

seconds or minutes in a real-time game, for an ordered

development process to complete. This models the real-world

time demands of research, training, construction, or upgrading

tasks.

The waiting phase between issuing an order to develop a

technology and actually getting the development task com-

pleted is closely connected to the cost in terms of resources

like gold or lumber. Often all such needed resources are

reserved – subtracted from the total pool of resources available

– in the beginning of the development process (right after

the command to develop a technology has been given), and

after that developing a technology takes a fixed amount of

time. However, there are also games, in which the agent can

control the development more freely – e.g., put a project

temporarily on hold. The player may also be able to control the

spending of resources for an ongoing development project, i.e.,

a technology development task may be completed gradually

and be allowed to consume resources bit by bit, without the

need to stockpile all the resources beforehand. In some games

a number of resources (e.g., science points) are generated each

turn (or otherwise over time) and directed to technologies un-

der development. The technologies are achieved or upgraded,

or levels of them gained, after stockpiling enough of these

cumulating resources. In these schemes, the resource feeds for

development tasks naturally affect the respective technology

development times.

Clearly, the characteristics of time often differ quite a lot

from the characteristics of, e.g., ore, timber, or science points.

Therefore, it would be tempting not to consider time as just

2In another extremely simple resource model basically only gathering
experience points matters. This is common considering, e.g., so-called skill
trees or talent trees. However, when using such trees, an intermediate level of
complexity is usually added in the form of ”skill points” or something similar.
Experience can also typically be gained in various ways, so we consider “time
only” model simpler – at least, when time is measured using homogeneous
portions, like turns.

3In [11], also opportunity costs – i.e. what one does have to give up for
performing an action – are considered as a cost type. We agree that such things
are important to consider, when managing technology tree usage and trying
to solve dilemmas of selecting one of mutually exclusive paths to follow.
However, opportunity cost estimates can be derived based on the internal
basic properties of the tree (as characterized in Section V), and are more
related to design and usage than fundamental structure, so this cost type is
henceforward omitted.

one resource type among others, but handle it separately.

However, flexibility is gained by considering time as a normal

resource type – and letting potentially any of the resource

types behave as time typically does. Instead of complicating

matters, this actually simplifies the resource-handling process.

B. The Means for Uniform Resource Handling

In our approach, one can define two significant quantities

of each resource type for each possible development process:

initial requirement and total requirement. The idea is that for

initializing the process one must spend the resources indicated

by the initial requirements, then during the process one can

spend more resources, and when the overall amount of the

spent resources matches the total requirements (plus possible

side costs occurred during the process), the task is completed

and the LOD changed. This way

• there is no need to define explicitly, if a technology can

be developed gradually or not,

• all the technologies can be handled similarly, and

• even cases between the two conventional development

models can be used: some amount of resources may be

needed for starting to develop, but this threshold may be

less than is required for completing the task.

Naturally, for the time resource (if present), the initial

requirement for all technologies should be zero, as it (at least

typically) cannot be stockpiled. All the resource types have

also two boolean properties, “omnipresence” and “stockpil-

ability”. When a portion of a resource is given to be used

by an agent, the omnipresence value defines, if it can and

should be “copied” to all the ongoing development tasks as

such instead of distributing minor portions of it to different

tasks (if applicable). Stockpilability, on the other hand, defines,

if a resource can be stockpiled. Time, of course, is a typical

omnipresent and non-stockpilable resource type.

Time also is conventionally unstoppable by its nature.

Therefore, it can be “wasted” – the total amount of time used

for getting a technology developed may not equal the time

actively developing it, if there has been pauses during the

development process, as time continues to flow also during

these pauses. In some scenarios one might want to consider

total time of development and effective time of development

separately. For being able to handle all the resources –

including time – similarly (and for allowing similar behav-

ior to potentially all the resources) we let the technologies

start accepting all the resources that are allocated for them,

when starting a development task – including the omnipresent

resources available for all the ongoing tasks. The development

process may be put “on hold” in respect to any resource

type; that type is then blocked from being used, but further

resource allocations of that type are rather marked as wasted

contributions. The process can later be continued in respect to

that particular resource type.

Fig. 2. Every agent uses its own technology tree instance handling its relevant
TIs. The trees can be structurally similar or different.

V. PROPOSED TECHNOLOGY TREE STRUCTURE

A technology tree stores and organizes data. Thus, its imple-

mentation is effectively a data structure with some semantics

attached to it. Moreover, it must be able to contain its internal

functionality and to interface with its users. Of course, many

different approaches for implementations are possible.

Although the specifics of a good implementation can depend

on the environment and requirements, some general guide-

lines, like simplicity, ought to be followed. In our approach,

technology trees are composed using simple building blocks

(effectively forming decorated DAGs offering interfaces for

users and having internal management and functionality imple-

mentations). In the following subsections we introduce them

and their relations to each other.

A. Technology Items

The most fundamental units are called technology items

(TIs). As the name suggests, they are used for modeling

technologies.4 They can be seen as nodes in the digraph

structure defining the tree, augmented with the necessary data.

Typically names and labels are important for presentation

purposes. This is the case also with TIs: they represent

technologies, and technology names are useful for referring to

them. Thus, every TI should store a name of the corresponding

technology. The technologies of a game are commonly orga-

nized into different categories; there can be, for instance, eco-

nomic, cultural, and military technologies available. Therefore,

each TI also contains a category attribute. The categories may

affect different matters in the gameplay – e.g., having some

number of technologies of the given category developed may

be a prerequisite for advancing, or the cost of a technology

could be modified by already having technologies of the same

category. Naturally, a TI must also be aware of its development

status. Moreover, while it often is the case that developing a

technology to some level (upgrading or degrading) may trigger

some program code to be executed, the corresponding code,

naturally, needs to be known. Similarly, some other code could

be executed, say, once in every turn in turn-based games or

every x milliseconds in real-time games, given a TI has been

4Technology as a word is not very illustrative, as it is used very liberally
in the context of technology trees in digital games. However, as was the case
with technology trees, we stick to using the established term. Technologies
can be categorized, e.g., into abstract technologies, building technologies, and
movable unit technologies [12], but in this paper, the nature of them does not
play any role.

Fig. 3. Agents may share technology tree instances. In this case the tree
must be able to distinguish between TI values for different agents. The agent
bookkeeping can be implemented on tree level or on TI level.

developed to a high enough level. While it may in the practice

be rather rare to run TI specific code when dropping a LOD

or when being not developed above some threshold level,

these cases are included for flexibility. In fact, we want to

allow different code blocks to be executed for every possible

level of development, if necessary. In addition to technology

names, e.g., images or more detailed textual descriptions can

play representational roles. These “other things” we include

as application specific additional data.5

So, every complete TI contains information about its

• name (textual),

• category (textual or other identifier),

• LOD for each agent using the tree (generally a numeric

value, but quite often a Boolean one is sufficient),

• code to be run when changing the LOD,

• code to be run when on a given LOD, and

• additional data.

Of course, sometimes merely a subset of these is enough.

The unneeded data items can be left out or dummy stub entries

can be used.

We could choose to instantiate separate technology trees for

each agent, as depicted in Figure 2, or allow multiple agents

to share trees, as illustrated in Figure 3. Each agent having

its own tree instances is a comparably inefficient solution

in terms of space needed, if the number of agents is large.

On the other hand, this way one does not need to handle

the resource situations etc. for each player in each tree or

TI implementation. So, if the amount of agents is limited

and small enough, it might be a good idea to use separate

technology tree structures for each agent for simplicity. If this

is not the case (as, e.g., in so-called massively multiplayer

games), the necessary agent-specific bookkeeping must be

handled by the trees. In this case, tracking data like the LODs

of the agents falls naturally to be carried out by TIs. If different

kinds of agents use dissimilar technology trees, several tree

structure instances are needed anyway, but the number of them

is typically significantly smaller than the number of the agents,

5Also “age” or “era” of a technology, present in some games, can be
included in the additional data. The limitations etc. to the technology de-
velopment caused by them can be implemented in the code blocks associated
with TIs.

because normally the agents can be divided into few classes,

each using one kind of a tree (or a small set of trees).

B. Technology Item Connections

Conventionally, there are some kind of connections between

technologies in a technology tree; otherwise, the “tree” would

be reduced to a mere set. These connections are essential

for describing prerequisite relationships and thus (at least

partially) defining, if a technology can be developed in a

given situation. They can be straightforwardly included in our

technology tree model: let us consider connections between

TIs. We treat them as edges of the tree-defining digraph with

additional data attached to them. Let us call these augmented

edges technology item connections (TICs).

The edges in a technology tree graph could indicate the

resources needed for upgrades [13], but in our scheme, the

resources are not handled by TICs. (For information on

resource handling, consult Section V-C.)

In Figure 4, a simple example technology tree is illustrated.

The boxes represent TIs. The entrance nodes (the TIs to be

initially available for development) are on the top of the

figure, and children are represented below their parents, as

the TIC arrows indicate. (In this example, the only possible

level change for all the TIs is from the “undeveloped” state to

the “developed” state.)

When considering a customary “normal” connections be-

tween a TI and its parents, sufficient development of some

of the parents is a necessary condition for the technology

represented by the child TI to be developed. It may or may

not be a sufficient condition. If it is, the development of

the child can be made possible via a single parent (OR

prerequisite). Otherwise, a set of parents, typically all of them,

(AND prerequisites) must be developed to high enough level

to enable the child technology development. For instance, in

Figure 4, “Fire” and “Gunpowder” should be AND prereq-

uisites for “Rocketry”, as semantically it makes sense that

both of them are needed. On the other hand, “Mechanics”

and “Electronics” are OR prerequisites for “Computers” – the

achieved computers could be either of mechanic or electronic

nature, and thus it would be enough to have one of these

prerequisite TIs developed.

Normally, the purpose of a technology tree is to make it

possible to develop technologies given some prerequisites are

met, but occasionally it may also be beneficial to be able to

prohibit technology development based on existing technolo-

gies. Using inhibiting connections with (or instead of) enabling

ones for this could be tempting in some situations. However,

in this paper we only consider enabling connections.6 This

means, that by default TIs cannot be developed. To change

this, some (or all) arriving TICs are required to “fire”, i.e.,

6If it is possible to have both inhibiting and enabling connections arriving
to a TI, some kind of an overriding priority order needs to be defined, and
the big picture becomes unclear. Later on (see Section V-C), we tackle the
issue of making it possible to inhibit the development of a TI without any
need for increasing the complexity of incoming TICs.

Fig. 4. A simple (partial) technology tree.

to allow the development on their behalf.7 This means that

we are considering TIs as prerequisites for other TIs only

indirectly; the firing statuses of arriving TICs are to be used

as parameters for the AND or OR operators (depending on

the desired semantics), not properties of the parent TIs, when

checking, if a technology can be developed or not.

The firing conditions of TICs can basically be arbitrary, but

for keeping the tree intuitive, they should mainly be based

on the LODs of the corresponding start TIs. Naturally, the

firing condition should also take the intended level change into

consideration, if there are several possibilities. When applying

our terminology to the existing game technology trees, the

most usual firing condition is the requirement of high enough

LOD of the start TI for increasing the LOD of the end TI

(often from the “undeveloped” state to the “developed” one).

Many simple technology trees could operate successfully,

even if the firing condition was a property of a TI. In this case,

all the TICs having the same start TI would fire as a group.

However, for flexibility, it would be beneficial to be able to

have different firing conditions for different TICs originating

in a single TI; therefore we consider the firing conditions as

properties of TICs.

Let us follow the notation used in previous work [14] and

denote the case, in which TIC e fires, by
⊙

(e). Let us

denote the case, in which TI i is allowed to be developed

(in the context under observation, including the intended level

change) by its parents, △(i). For △(i) to be true, only some

incoming TICs or all of them may be required to allow the

development – i.e., fire – depending on the prerequisite type

used.

In the real world there may be several distinct ways to

acquire a technology. For one to be able to model this

properly with technology trees, it must be possible to define

several alternative prerequisite TIC combinations for a TI to

be developed. For obtaining this kind of improved flexibility

we use the characterization suggested in [14]: the central idea

is to treat all TICs as AND-type ones and to apply the AND

operator for subsets of incoming TICs rather than for all of

7For the entrance nodes (the TIs without incoming TICs) other means must
be used for enabling their development: see Section V-C.

them, when evaluating, if it is possible to develop a TI. These

subsets are formed in such a way that for each subset S of

incoming TICs with respect to a given TI i to be developed it

holds that (∀s ∈ S:
⊙

(s)) ⇒ △(i). Let us call these TIC sets

sufficient and-type connection sets (SACSes). For instance, in

the tree of Figure 4, one SACS could be composed of the

TICs starting in TIs “Spoken language” and “Ink” and ending

in TI “Writing”, as for learning to write, a language and some

way to store symbols – for this specific SACS, using ink –

are needed.

Now, it is essential to know, if a TIC belongs to a given

SACS. A TIC can also be a member of several different

SACSes simultaneously. For these ends, we indicate the SACS

memberships by letting each TIC have a set of and bunch

identifiers (ABIs). These identifiers for distinguishing between

different SACSes can be, for example, integer numbers. A TIC

is a member of a SACS if and only if its ABI set contains the

ABI corresponding to that SACS. In Figure 4, example ABI

sets are shown besides their respective TIC arrows.

For each TI, ABIs for each SACS among the incoming TICS

must naturally differ from each other. However, ABIs do not

have to be globally unique, as demonstrated in Figure 4. (In

this case, two distinct ABI values are enough: for each TI,

there are at most two corresponding SACSes.) The technology

“Writing” can be developed, when “Spoken language”, and

either “Engraving” or “Ink” are developed, and “Computers”

can be achieved either based on “Mechanics” or “Electronics”.

The development of other technologies requires all of their

prerequisite technologies to be developed, as all the incoming

TICs have only ABI “0” in their respective ABI sets.

After these considerations, we can characterize a TIC as a

quadruplet [a, b, f, I]. In this representation, a stands for the

start TI (parent of b), and b is the end TI (child of a). Function

f: A×B×B → {True, False},8 in which A is the set of possible

LODs of a and B is the set of possible LODs of b, is the firing

condition function, and I is the ABI set.

C. Development Items

When considering a TI development task using our ap-

proach, there are two restrictive layers. The first one is that

of requiring approvals from the TICs (and thus indirectly

from the parent TIs). The second one is about the matters of

time and other resources required for the task. For handling

the functionality of this second layer and for modeling the

development process from the issued order to the desired

change in the LOD of a TI, we introduce development items

(DIs).

One DI is meant to be able to handle the development

processes of one technology, so each TI has a DI associated to

it. A DI should be able to perform the calculations needed to

update its information content as needed, and not only serve

as a data structure. While it might be possible – and maybe in

many cases even natural – to implement DIs as parts of their

8A larger set, like R, could also be used as the codomain. However, in this
paper only the binary set is considered for simplicity.

respective TIs, we consider DIs in this paper separately. This

is done for clarity. Proper implementation of a DI may require

a lot of code, and on the idea level, it is easy to distinguish

between the ordinary TI code and DI code dealing with the

development process.

DIs contain information about

• arbitrary conditions of development (ACs),

• the target LODs for each agent attached to the tree (the

current LOD of an agent meaning the technology is not

under development by it),

• phases of LOD-changing tasks (POTs) of the agents for

their ongoing tasks (i.e., “readiness” or “health” values

of the goal technology levels for different agents, values

in the range [0.0, 1.0]),

• amounts of available (unused) resources allocated for

their respective development tasks by different agents

(including possible working units like constructors or

scientists),

• booster coefficients (used for hurrying up or slowing

down the development) of the agents for their respective

ongoing tasks handled by the DI,

• effective resource usages for different agents, tasks, and

different resource types so far,

• total resource usages (“pauses” – i.e., blocked resources

– included),

• a progress function for calculating increments for the

POTs of an agent (given the resources to spend) and for

updating the resource stockpile situation,

• Boolean pause statuses of the tasks for combinations of

agents and resource types: paused or not,

• functions for (possibly) returning resources to the re-

source pool, if the development is canceled,

• functions for (possibly) randomizing the needed amounts

of resources for the tasks,

• a function for implementing the degrading model applied,

and

• functions for (probabilistic) special events taking place

during the development processes.

The POT values keep track of the progress of the current

development tasks of an agent. They are initialized to the

value 0.0. The idea is to modify the value corresponding to an

agent and a task every time the progress situation changes. The

correction for the POT value is given by the progress function.

The desired LOD change is executed (and the respective TI

code run) when POT meets the value 1.0. In this case, the POT

value will be returned to 0.0. If, however, the value 0.0 is met

again after some initial development without hitting the value

1.0 first, a special function can be run, as one might want

to handle this kind of “failures” in some special way. This

function can be defined only once by the tree and used by all

the DIs. Same applies to other DI functions. However, the DIs

Fig. 5. DIs constraining development. For the entrance nodes TI 1, TI 2, and
TI 3, the ACs of their respective DIs define the conditions that must be satisfied
in addition to the ordinary resource needs for enabling the development.
Developing TI 4 should not be possible after developing TI 3 in this example,
and the AC of DI 4 is used to implement this constraint.

should be free to override the default functions by ones suited

to their individual needs, when necessary.

One reason to include the possibility of defining ACs is

to offer the entrance nodes a way to restrict the development

also in other terms than those of resources: they do not have

incoming TICs, so an alternative way is needed. ACs can also

be used to emulate inhibiting connections discussed earlier.

This is demonstrated in Figure 5. One should also be able

to connect each AC with an arbitrary code block to be run

in the case, in which the technology development is blocked

by not satisfying the condition; in this way, ACs can be used

for handling different situations and serve different purposes

flexibly.9

Often gradual technology degrading over time is not needed

or desired, but in some development models it is an essen-

tial property. For instance, in Total Annihilation (Cavedog

Entertainment 1997), a project put on hold loses progress

slowly, therefore requiring more time and resources eventually

to be completed. Therefore DIs need also knowledge about the

degrading model to be applied.

Sometimes the estimated development time is not desired to

be a hard fact about the actual process, but some randomization

offering possibilities to complete the project before or after

the scheduled time may be wanted. Thus, we include also

functions for implementing the desired randomization scheme.

D. Development Manager

The fundamental technology tree building blocks explained

and their mutual relations are depicted in Figure 6. (We find

a UML class diagram to be an illustrative and clear way

to represent them, but naturally the concepts do not have to

be implemented as classes.) The development manager (DM)

9For instance, in some cases one might want to limit the maximal time of
a development task. This kind of a time limit can be implemented as an AC,
handling the consequences of exceeding the allowed time in the corresponding
code. (One can, for instance, get the corresponding TI unlocked (or leveled up)
– given enough time, one could overcome the lack of resources. An alternative
is to make the agent start the development again from scratch – the resources
can be lost because of, e.g., decaying during the long storing time. Probably
denying the development totally after an unsuccessful development attempt is
generally not a good idea in normal games, but there might be exceptions for
this rule of thumb.)

Fig. 6. The technology tree components.

occurring in the figure represents the part of the technology

tree implementation managing resources, distributing them

for technology development tasks and possibly getting some

resources back from the development processes.

In order to fulfil its task, the DM communicates directly

with DIs that manage resource consumption and stockpiling

for individual development tasks. It also communicates with

the set of SACSes (composed of TICs) connecting TIs, be-

cause it must be aware of the development limitations posed

by them. The task of offering the interface for users also falls

naturally for DM, as it is a managing entity “keeping the tree

together” and having the necessary connections.

VI. TOOL SUPPORT

Based on the ideas presented, we have defined a general

framework for implementing technology trees – each usable

simultaneously by several agents – easily with Lua scripting

language. As explained, we wanted the implementations to be

portable and usable in modular fashion with different game

engines and other applications. Therefore, Lua was chosen to

be used: it is easy to bind with other languages and it can be

used on different platforms. Moreover, Lua is fast, light-weight

and widely used in the game industry [13].

While the structure of the elements in the technology

tree presentation of the framework is rather simple, it was

possible to automate the technology tree specialization process

with reasonable effort. So, we implemented a software tool

for creating functional technology trees via a graphical user

interface (GUI). The resulting trees can easily be used from

the actual game (or other program) code. The tool, called Tech

Tree Tool (TTT), was written using the C++ language. The

GUI (see Figure 7) was created using the Qt framework (Qt

4.7.0).

TTT serves as a decent editor for designing technology

tree structures graphically. One can easily, e.g., add, remove,

and move TIs and modify their properties (like categories)

Fig. 7. The TTT user interface.

and resource requirements, as well as define ACs and default

functions for different purposes. Default functions can also

be overridden for specific technologies, if needed. Defining

prerequisite relations can be done easily by drawing edges

between TIs (and by adjusting ABI sets, if needed). Created

technology tree models can be saved and reloaded.

These features combined with the most important property

of TTT – the ability to generate Lua code automatically based

on the created tree models – makes the tool quite useful. It

is possible to create technology trees with TTT and then use

them easily from other applications via a simple interface

(containing, at the moment, 37 functions). Prototyping – as

well as producing final versions of – technology trees is easy

and quick using the tool.

TTT is still work-in-progress, but most of the ideas pre-

sented in this paper are already present in the generated Lua

code (that relies heavily on using Lua tables). However, some

simplifications are made for now. The TI contents discussed

are included, but the additional data is restricted to be textual

for now. It is also assumed that the LOD information of a

TI is binary – that a technology either is developed or not –

and increasing the development level is always the goal, not

reducing it.

TICs with their corresponding ABI sets are encoded into

the Lua scripts to make it possible to make dependency

inquiries. Our intent is to include functions for making these

inquiries also into the Lua interface offered to the main

program, but at the moment, the TIC knowledge is used

only internally on the Lua side. Other interface functions still

to be implemented include functions for setting weights for

allocating resources for developing different technologies (if it

is possible to develop several technologies simultaneously), as

well as functions for directing the automated goal technology

selection of the development manager and for setting (long-

term) goals explicitly.

The aim of the interface implemented so far is to make it

possible to initialize the starting situation (regarding to tech-

nology levels and resource stocks of different agents), and after

that simply to tell the development manager, when it should

act. (This could be once in each turn in turn-based games.)

When agents gain or lose resources, time passes, or when

new technologies to be developed must be set automatically

or are chosen by players, the DM can be informed using simple

functions.

For the main application and the technology tree scripts

to be able to communicate with each other using common

terms, we use unique identification numbers for every TI and

agent. If several different technology trees – i.e., technology

trees generated separately using TTT, or by other means – are

used, the difference between them is made by their respective

names (adjustable in TTT).

Naturally, there is still room to expand the code generation

abilities significantly and to create more extensive set of

interface functions to be used in real applications. However,

based on our preliminary tests with the current interface, we

believe it is a good core set of functions to start with.

VII. EVALUATION

TTT compiles and runs without problems at least in Ubuntu

11.04, Ubuntu 12.04, Microsoft Windows XP Professional,

and Microsoft Windows 7 Enterprise environments. For con-

firming the suitability of TTT to its intended use, some test

were conducted. Two different desktop PC systems were used

as test environments. First of them (System 1) was BlackStorm

X6 running Ubuntu 12.04, having AMD Phenom II processor

and 8 GBs of RAM. The other one (System 2) ran Microsoft

Windows 7 Enterprise and had Intel Core 2 Duo E8400

processor and 4 GBs of RAM. Such systems were chosen,

as they could be seen as somewhat ordinary and common PC

environments at the time of writing this paper.

A. Efficiency Test

A technology tree with 200 TIs was designed via TTT

user interface. This quantity was believed to be high enough

for typical use, as the main technology tree of Sid Meier’s

Civilization V – the latest product of a game series that is

fundamental regarding using technology trees in digital games

– features “only” 74 technologies [15]. Often technology trees

are even smaller. Ten distinct resource types were used. This

number was believed to be higher than in typical cases (see,

e.g., [12]). Editing the tree was considered to be easy and

fast. Of course, these are vague and subjective terms, but

at least it can be said for sure that the GUI sped up the

planning and editing process considerably, when comparing

to the alternative – writing all the code by oneself.10

10Of course, one could question the benefits of using a GUI. It might also
be fast and easy to edit, for instance, a well structured text file and add
and modify technologies by copying and pasting text blocks within such a
file. However, this kind of an approach requires good knowledge about the
application-dependent tree representation format, while our approach aims at
providing a unified view to the problem of tree creation and modifying on a
higher lever of abstraction. We claim that in the general case the tree structure
is easier to understand based on a graphical representation, than a textual one
(given that the graphical representation is suitable for its intended purpose).

Fig. 8. The development tree of settlements in the demo game.

The average branching factor of the test tree was 1.5, which

we believed to be close to typical cases. TTT had no problems

whatsoever with handling the test tree. Editing, adding or

moving TIs or defining their properties did not induce any

inconvenient delay. Loading such a tree from a hard drive,

however, required in System 2 approximately 3060 ms of time.

This was not seen overly problematic, as loading a tree is

a relatively rare operation to be performed. System 1 could

handle the loading in 730 ms. (The saving operation seemed

to be approximately 10–30 times faster than loading.)

B. Demo Game

For testing the automatic Lua code generation and the

interface offered by the generated code, a demo game was

implemented. It is a turn-based strategy game for human

players, written in C++. There are two movable unit types:

warrior groups and worker groups. The world is divided into

regions, and there are five different terrain types: plains, hills,

forest, mountains, and water. Each region has a designated

terrain type. Each turn, the units having movement points

(MPs) left can be ordered to move by designating an adjacent

target region. This way, a player can append regions to the

path, until the MPs of the unit are used up. The MP amount

required to move from a region to an adjacent one depends on

the terrain types of the regions, the type of the unit, and the

movement bonuses affecting it. The amount of MPs available

for a unit each turn depends on its type and specializations

(i.e., technological development).

Besides the movable unit types, there are fixed units: differ-

ent kinds of settlements. Each player commands a faction with

a number of units. Workers are capable of building camps and

upgrading them into more advanced settlements given enough

time, which depends on the terrain type of the region. The

main purpose of warrior groups is to execute war. The worker

groups are also capable of fighting, but they are not even nearly

as effective as equal-sized warrior groups.

Each unit type has an associated technology tree. The tree

for settlements is sketched in Figure 8. A camp can be up-

graded into a village, and that can be converted either into city

or a palisade that can be upgraded even further into a castle.

The (additive) bonuses given by different settlement types are

presented roughly in the figure. The upgrade requirements are

not shown, but they can be given in terms of time, population

amount and worker amount in the region. The population of

each movable unit grows (or shrinks) in the beginning of each

Fig. 9. The specialization tree of warriors and workers in the demo game.

Fig. 10. A screenshot of the demo game.

turn. The growth is affected by the unit type, possible other

units present in a region, and (pseudo)randomness.

Warriors and workers share a common technology tree.

There are several different specialization or equipping cate-

gories or “lines” in the tree, as depicted in Figure 9. Some of

them are reserved for warriors only, some of them for workers,

and some of them can be chosen to be developed by either

type.

Each warrior or worker group can only develop technologies

of at most two of them. There are sentinel technologies

that give defensive bonuses, stormer technologies that boost

attacking abilities, weapons technologies that can give gen-

eral combat bonuses, mounted technologies giving movement

bonuses, supply technologies affecting the morale of the units

in the same region and making it more probable that wounded

units recover, and tools technologies that improve the working

speed of the workers.

A screen capture of the game is presented in Figure 10.

Due to the lack of space, the details of the game rules, combat

mechanics etc. are omitted, as they do not affect the evaluation

of the possible benefits of using TTT.

Based on the demo game implementation, it seems that with

TTT the workload concerning implementing technology tree

structures is reduced significantly, if compared to conventional

implementations. TTT was found to be useful even with these

tiny trees, and we strongly believe that in more complex cases

with increased amounts of TIs and rules, the benefits offered

by a GUI and automated code generation manifest themselves

even better. The functional Lua technology trees generated by

TTT were found to be easily usable by a somewhat typical

kind of a technology tree–using program.

VIII. RELATED WORK

The publications focusing on technology trees are scarce.

Some textbooks, like [16], present notions on them, but it is

extremely hard to find academic, peer reviewed papers on the

issue. A recent article [4] discusses, among other things, the

deterministic nature of technology trees and compares trees

found in four strategy games with each other. A conference

paper [12] presents an overview of using technology trees

in digital gaming and offers some classification criteria. In

another one [14], matters related to measuring features of

technology trees are considered. There are also different

articles on gameplay optimizations for different games (see,

e.g., [17]), but they are related only indirectly and rarely even

mention technology trees.

Different tools are available for creating and altering appli-

cation specific trees. Different undisclosed tools are used in

the game industry. As far as we know, there are, however, no

existing publications or tools with a goal of unifying the ways

of implementing technology trees. TTT strives to be a generic

tool, offering automated generation of universally usable and

platform independent technology tree implementations.

IX. CONCLUSIONS

We have presented a general approach of modeling tech-

nology trees, a widely used concept in the game industry. We

have also presented a way to use the model in real applications

by structuring the approach as a framework that makes it

possible to easily create modular and functional technology

tree implementations outside the main program. For creating

such implementations in an automated fashion, a software tool,

TTT, has been created, and empirical experiments have been

carried out. Our approach aims at providing a unified way of

implementing technology tree structures for better reusability

and interchangeability.

Exhaustive testing has not been conducted yet, but the

results of preliminary experiments are promising. The ideas

behind the tool seem to be applicable for creating functional

technology trees. The tool itself is capable to facilitate the

work of designing and implementing technology trees signifi-

cantly: the actual code generation is automated and the design

work needed can be carried out using a GUI designed for the

task.

It is worth noting, that TTT is not only a software offering

a GUI for editing a simple data structure, but it also generates

generic technology tree functionality, thus saving time con-

siderably. While the functional technology trees are generated

as Lua scripts, they can be easily further modified by hand, if

necessary. Using Lua also allows the resulting technology trees

to be used on several platforms without any modifications.

As the interface for using technology trees from external

(main) applications is clearly defined and simple (although

adjusting and augmenting it continues for now), attaching

TTT-generated technology trees in modular fashion to games

is easy. Trees can be created quickly with TTT, and main

programs can use them straightforwardly. This approach re-

moves the burden of implementing technology trees as internal

structures of the programs needing them, and thus helps

keeping things simple. The independence of technology trees

of their respective users may also help in parallelization of

software development processes.

As future work, we intend to use technology trees generated

by TTT with more realistic applications. We are going to

conduct tests in different settings and to modify the tool and

the ideas behind it, should a need arise. The automatically

generated Lua interface offered to the main application will

be extended with more functions. The existing functionality

will also be augmented, for instance, by implementing proper

ready-made planning functionalities. Performance enhance-

ments will also be made, especially concerning time usage

of loading technology tree models from a disk.

ACKNOWLEDGMENT

This work has been funded by Tampere Doctoral Pro-

gramme in Information Science and Engineering (TISE). Also

the Foundation of Nokia Corporation has supported the work.

REFERENCES

[1] P. Tozour, “Introduction to Bayesian networks and reasoning under
uncertainty,” AI Game Programming Wisdom, vol. 1, pp. 345–357, 2002.

[2] A. Rollings and E. Adams, On Game Design. New Riders Games,
2003.

[3] E. Watrall, “Chopping down the tech tree: Perspectives of technological
linearity in god games, part one,” http://www.gamasutra.com/view/
feature/131570/chopping down the tech tree .php, 2000, accessed
July 19, 2012.

[4] T. Ghys, “Technology trees: Freedom and determinism in historical
strategy games,” Game Studies, vol. 12, no. 1, 2012.

[5] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamen-

tals. MIT Press Ltd, 2003.
[6] I. Millington, Artificial Intelligence for Games (The Morgan Kaufmann

Series in Interactive 3D Technology). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2006.

[7] Blind Mind Studios, “Star ruler,” http://starruler.blind-mind.com/, ac-
cessed February 1, 2012.

[8] P. Tozour, “The perils of AI scripting,” AI Game Programming Wisdom,
vol. 1, pp. 541–547, 2002.

[9] A. Gazzard, “Unlocking the gameworld: The rewards of space and time
in videogames,” Game Studies, vol. 11, no. 1, Feb. 2011.

[10] “Total war: Shogun 2,” http://www.totalwar.com/shogun2/, accessed
May 10, 2011.

[11] V. Harmon, “An economic approach to goal-directed reasoning in an
RTS,” AI Game Programming Wisdom, vol. 1, pp. 402–410, 2002.

[12] T. J. Heinimäki, “Technology trees in digital gaming,” in Proceedings of

the 16th International Academic MindTrek Conference 2012 (AMT2012),
Oct. 2012, pp. 27–34.

[13] M. Buckland, Programming game AI by example. Wordware Publish-
ing, Inc., 2005.

[14] T. J. Heinimäki, “Considerations on measuring technology tree features,”
in Proceedings of the 4th Computer Science and Electronic Engineering

Conference 2012 (CEEC’12), Sep. 2012, pp. 152–155.
[15] “Sid Meier’s Civilization V,” http://downloads.2kgames.com/civ5/site13/

community/feature manual/Civ V Manual English v1.0.pdf, accessed
January 9, 2012.

[16] E. Adams, Fundamentals of Game Design, 2nd Edition. New Riders
Publishing, 2009.

[17] C. A. Paul, “Optimizing play: How theorycraft changes gameplay and
design,” Game Studies, vol. 11, no. 2, May 2011.

Publication V

V

T. J. Heinimäki and T. Elomaa. Quality Measures for Improving

Technology Trees. International Journal of Computer Games Technology,

vol. 2015, article ID 975371, 10 pages. Hindawi Publishing Corporation,

April 2015.

Copyright c© 2015 Teemu J. Heinimäki and Tapio Elomaa.

The work is distributed under the terms of the Creative Commons Attribu-

tion License 3.0 (http://creativecommons.org/licenses/by/3.0/). Originally,

the article was published in the International Journal of Computer Games

Technology by the Hindawi Publishing Corporation.

Research Article

Quality Measures for Improving Technology Trees

Teemu J. Heinimäki and Tapio Elomaa

Department of Mathematics, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland

Correspondence should be addressed to Teemu J. Heinimäki; teemu.heinimaki@tut.�

Received 23 October 2014; Accepted 22 March 2015

Academic Editor: Yiyu Cai

Copyright © 2015 T. J. Heinimäki and T. Elomaa. 	is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

	e quality of technology trees in digital games can be improved by adjusting their structural and quantitative properties.	erefore,
there is a demand for recognizing and measuring such properties. Part of the process can be automated; there are properties
measurable by computers, and analyses based on the results (and visualizations of them) may help to produce signi�cantly better
technology trees, even practically without extra workload for humans. In this paper, we introduce useful technology tree properties
and novel measuring features implemented into our so
ware tool for manipulating technology trees.

1. Introduction

Skill progression of player characters (PCs), acquiring new
talents, achieving perks, and developing available technolo-
gies are essential parts inmany popular digital games.Mental,
physiological, and material upgrades signi�cantly a�ect the
narration of a game.	ey also partly establish the game logic
and make it visible and understandable for the player. When
players are able to grasp the intended logic, a feeling of more
logical consequences follows. It leads to more profound user
immersion and increases the enjoyment of play.	e upgrades
can also be used to partition the game horizon into separate
stages or eras. Furthermore, the accumulating abilities set
short-term goals for the player.

Technology trees (or tech trees for short), as they are called
especially in strategy games, are structures used routinely
to model and implement these aspects of gameplay. 	ey
describe and de�ne the dependencies of technological (in a
very broad sense) progress followed in the game. In other
game genres, tech trees are called with di�erent names such
as skill trees or talent trees. Also within the genre of strategy
games there is some variance in the terminology; for instance,
the term tech web is sometimes used. In this work, however,
we categorize all such structures under the common concept
of tech trees.

Despite the central status of tech trees in modern (real-
world, commercial) games, our experience and a survey show

that they su�er from many de�ciencies in practice. In this
work, we demonstrate that weaknesses in tech trees can be
automatically screened and detected by using suitably de�ned
quality measures. 	at opens up the possibility to rectify
the defects that might have been introduced to tech trees
unintentionally. Our vision is that in the future automatic
improvement possibilities o�ered by generic tools will be
available for tech trees failing to meet the given quality
criteria.	e primary reasons for striving for such automation
are our aim to improve e�ciency and the desire to overcome
the human limitations and guarantee a high game quality.
One should also remember the fact that a gamedesigner is not
necessarily a programmer [1]. Di�erent easy-to-use so
ware
tools are already used for many purposes in real-world game
development. 	ey have o
en a considerable positive impact
on the quality of the end products, so why not create and use
tools also to construct, measure, and adjust tech trees?

	e main contribution of this work is the introduction
of several measures for monitoring the quality of technology
trees. In addition, a general-purpose so
ware tool called Tech
Tree Tool (TTT) [2] is improved by implementing quality
monitoring. In order to empirically qualify the measures, we
determine them, as applicable, for Sid Meier’s Civilization V
(Firaxis Games, 2010) (Civ 5) and discuss the results.

Even though we use Civ 5 as our default example, the
results and observations are by no means restricted to this
particular game or even the genre it represents. We could as

)JOEBXJ�1VCMJTIJOH�$PSQPSBUJPO
*OUFSOBUJPOBM�+PVSOBM�PG�$PNQVUFS�(BNFT�5FDIOPMPHZ
7PMVNF�����
�"SUJDMF�*%�������
����QBHFT
IUUQ���EY�EPJ�PSH��������������������

2 International Journal of Computer Games Technology

well have used, for instance, Kerbal Space Program (Squad,
Beta Version 0.90.0 2014) as an illustrative example; it is a
quite di�erent game: a space �ight simulator. However, in
order to expose the illustrations to as wide an audience as
possible, we stick to Civ 5 as our running example.

Next, in Section 2, we focus on the nature of technologies
and characterize tech trees. We continue in Section 3 by
pointing out some typical problems within them. A
er that,
we introduce themeasures that we �nd usable as indicators in
quality assurance, �rst for technology trees (in Section 4) and
then for individual technologies (in Section 5). 	erea
er,
Section 6 sheds some light on our automated measuring
implementation, which is then tested with Civ 5 in Section 7.
Finally, Section 8 discusses brie�y thematter of adjusting and
improving tech trees based on measurements, and Section 9
concludes the paper.

2. The Nature of Technologies and
Technology Trees

Tech trees have become essential structures forming crucial
mechanisms in digital games. 	ere are di�erent kinds of
tech trees, and they “ful�ll various strategic and narrative
functions” [3]. Traditionally, technology trees have been
associated with strategy games, of which most feature them
[4], but e�ectively similar constructs are used also within
other game genres. A classical example is Diablo II (Blizzard
North, 2000) that is o
en mentioned as the game that truly
introduced such structures within the genre of computer
role-playing games. 	e idea of the “character skill tree” of
the game was based on technology trees of strategy games
[5]. Adoption to di�erent genres and subgenres has led to
variance in terminology; a tech tree-like structure may come
under the disguise of a di�erent name, but the di�erence
is essentially only in the terms used for the items (e.g.,
“technologies,” “perks,” or “talents”) that can be selected to be
developed or purchased.	e targets of their e�ects also vary;
for instance, “talents” typically a�ect individual characters
and “technologies” larger entities such as tribes, nations, or
species. However, the basic idea of the structures remains
the same. In this paper, we consider all these variants as
technology trees. Correspondingly, those selectable items are
henceforth called technologies or shortly techs.

A tech tree can be seen, for instance, as “a structure
that controls progress from one technology to a better
technology, enabling the player to create better facilities or
more powerful units” ([6], page 141), or simply “a �ow-chart
showing the dependencies of upgrades and buildings” ([6],
page 72). 	ese views re�ect the main two sides of the coin
called technology tree; tech trees are typically seen either
as (1) structures (mechanisms) for de�ning and controlling
development (upgrading), based on dependency relations of
technologies, or (2) �ow-chart-like presentations on these
dependencies. In this paper, we concentrate more on the
former point of view.

Tech trees are not usually trees in graph-theoretical sense
but can take forms of di�erent, typically acyclic andweighted,
(multi)digraphs. It is natural to treat technologies as nodes of

a graph and de�ne their relations using weighted edges. (In
order to be able to handle di�erent technology trees using
a general characterization, we use a derivative of this basic
approach: we basically consider weights to be associated with
sets of edges. Sections 4 and 6 illuminate this more.) In
addition to these basic components of any graph, additional
data, for instance, information related to presentation or
e�ects of the technologies, are typically needed.

Games come in various forms and �avours, and so do
technologies used in them. For instance, personal properties,
perks, traits, feats, and talents of game agents (e.g., PCs)
can be seen and modeled as technologies, if the agents
can learn or otherwise acquire them. Such techs are o
en
found in games featuring roleplaying elements. For instance,
a thievery-oriented PCmight be improved bymaking it learn
Basic Lockpicking or, already having acquired, say, Improved
Stealth, advancing it to Stealth Mastery.

In strategy games, on the other hand, the players typically
act as commanders, “controlling things from a discrete
distance” [7].	is is re�ected on the “traditional tech trees” of
these games: the e�ects of technologies target typically larger
wholes than individual characters.

Even when discussing these original tech trees, the word
technology is used quite liberally: not all “technologies”
found in strategy games are technical in nature at all. A
player might, for example, develop Banking in order to
bolster the economy of the controlled nation, invent Free
Time to raise the general morale, or let the citizens learn
Ghuli’Xi’ulian Language to be able to communicate with a
neighboring game faction. 	ese are abstract technologies
[8]; their manifestations do not correspond to visible unit
instances “on the board.” Abstract techs can represent, for
instance, cultural or administrative innovations and achieve-
ments. Various subtypes, like forms of government, religions,
ideological movements, monuments, and pieces of art, fall
into these categories. However, abstract techs can also contain
technologies, technical devices, and technological inventions
in the conventional sense (such as Printing Press or Jet
Engines).

Sometimes, technologies represent di�erent unit types
(like samurai, healer, or dragon) used in the game, or, more
accurately speaking, the abilities to produce units of the
corresponding types. For instance, developing a technology
called Flu�y Bunny could let the player produce �u�y bunnies
(visible unit instances of the type “�u�y bunny”) within
the game world (given that other possible prerequisites, e.g.,
being able to pay the production costs and having necessary
production facilities, are met). A single technology may
also have several e�ects of possibly various natures; it is
possible to have techs enabling unit production and giving
simultaneously also other abilities [9].

Similarly, building types (if buildings are not treated as
units) may have their speci�c construction-enabling tech-
nologies, and technologies can, in addition to their other
e�ects, allow constructing buildings of certain types. Espe-
cially in real-time strategy games, the capability to con-
struct buildings o
en depends on the types of the buildings
already built. Buildingsmay enable “developing technologies”

International Journal of Computer Games Technology 3

in them, but also the dependencies between building types
can be modeled by technology trees.

Technology trees serve many purposes. According to
Sid Meier, undoubtedly the most famous computer game
designer in the western world, the addictiveness of SidMeier’s
Civilization (MicroProse, 1991) is at least partially due to
“interesting decisions” [10]. A tech tree is certainly one of the
most obvious ways to provide a player with possibilities to
make such decisions. In addition to functioning as an upgrad-
ing system, tech trees can be used to represent technological
history, as release mechanisms, and as narrative tools [3].
	e decisions made by a player are o
en goal-oriented: the
overall goal is typically victory, but acquiring technologies
sets also short-term goals. Even if a technology does not have
any signi�cant impact on the gameplay, having it developed
may, nevertheless, be something to brag about (see the article
by Gazzard [11] concerning di�erent rewards). As Huizinga
([12], page 50) put it, “in all games it is very important that
the player should be able to boast of his success to others.”

3. On the Demand for Monitoring
Tech Tree Quality

Various properties a�ect the observed quality of a technology
tree, and many common defects may reduce it. In order
to �nd features typically considered problematic, we have
been conducting an informal (unpublished) survey since
2012 by observing severalWWWdiscussion forums. Because
of the nature of the data, they may be biased; they have been
acquired from a (somewhat arbitrary) set of forums, some
of which concentrate on speci�c games (the sites we have
been monitoring include, e.g., http://www.quartertothree
.com/game-talk/, http://forums.2k.com/, http://forums.civfa-
natics.com/, http://www.gamespot.com/forums/, and http://
forums.steampowered.com/forums/).Occasionally, also inter-
preting and categorizing the actual problems based on web
publicationsmay be problematic. Because of these di�culties,
we do not announce any exact results, but only claim that by
analyzing hundreds of writings (by various authors) we have
found several problems that seem signi�cant based on the
frequency of them being mentioned or otherwise. We leave
it as future work to validate the importance of the identi�ed
defect types.

Based on this survey, our experience, that of some of
our fellow gamers, and WWW articles found using search
engines, the most typical problems concerning existing tech
tree implementations in real games seem to include

(i) too small or too large number of technologies,

(ii) too few requirements for developing technologies
(allowing bypassing techs in an undesirable way),

(iii) too obvious strong paths (not encouraging to explore
the tree, but only to exploit the known e�cient
strategy),

(iv) poor balancing (temporal or resource-wise),

(v) too limited possibilities to explore the tech tree during
a game,

(vi) typically �xed and rigid (prede�ned) structure with-
out any possibility of temporal variation or, for
instance, variation between di�erent game instances,

(vii) meaningless technologies (with onlyminor e�ects not
motivating to advance in a tech tree),

(viii) requirements that do not make sense semantically,
thematically, or historically.

	e list presented here is not intended to be generally
comprehensive. Grievances concerning visualization, aes-
thetics, and interaction issues are omitted (although com-
mon), because our focus lies on the structure and functional-
ity, not on user interface (UI) details.

Of course, the quality of a tech tree is a highly subjective
matter, and adjusting tech tree properties is all about making
tradeo�s. However, in order to make justi�ed adjustments to
any direction, one must be able to evaluate tree properties.
Common concerns serve as a good guideline for deciding
which features are important. Balancing tech trees in terms of
time and (other) resources is a generallymeaningful problem.
In this paper, we focus on such balancing, since somewhat
objectively measurable tech tree features a�ecting the issue
can be found. Balancing can be either internal balancing
(within a tech tree) or balancing between di�erent tech trees.

One typical central function of a technology tree is to
control game �ow with respect to time; tech trees are used
for so-called gating and for controlling the narration or
the overall “big picture game experience.” 	erefore, the
temporal aspect cannot be overlooked, when analyzing a tech
tree. By internal balancing we mean a process of modifying a
tech tree formaking it behave internally in amore favourable,
balanced manner. If two technologies are supposed to be
relatively on the same requirement level in the tech tree (e.g.,
they could belong to the same historical period), more or less
same amount of e�orts ought to be required for achieving
them.

Typically, such e�orts manifest themselves as gathering
and spending resources. Time can be a resource type itself,
but also cumulating assets, like science points or energy, can
be used. In a more general characterization, of course, also
noncumulating assets besides time can be allowed. However,
in practice, such are seldom (if ever) used.

If a player is free to develop a technology, the time con-
sumption for obtaining it depends o
en quite directly on the
other resource requirements and the resource income at the
corresponding game situation; a certain amount of resources
must be accumulated and allocated for the development task
in order to acquire the desired tech. Some additional time
can be spent in carrying out the development task itself, in
particular, if all the needed resources must be collected in
advance.

	e means and methods of gaining resources vary.
Resources can be, for example, won in war, collected by
peasants from mines, produced in factories, or gained by
research work. However, the resource income can o
en be
estimated as a function of game time, regardless of the exact
earning method. When proceeding in a balanced tech tree,
the requirements for developing each technology should be
in accordance with the desired temporal �ow (or “resource

4 International Journal of Computer Games Technology

Javelin

Cruise
Missile

Axe

20

30

Integrated
Circuit

10

28

Satellite
Navigation

2

21

6 4 3

9

1618

X

Y

Figure 1: A problematic technology tree. Rounded rectangles depict
technologies. 	ey are of Boolean nature: either one possesses a
technology, or not. 	e dependencies (marked with arrows) are of
type OR. 	e numbers indicate costs in gold nuggets for advancing
in the tech tree along the arrows. 	e costs for obtaining entrance
nodes (ENs, the nodes representing the technologies that are initially
available for development) are marked inside the corresponding
rectangles.

�ow”) so the game proceeds smoothly and is gated as
intended.

Consider the illustrative tech tree of Figure 1. Both Axe
and Javelin are meant to be easily achievable primitive
technologies. 	e minimum costs for obtaining them are of
the same magnitude (six and �ve gold nuggets, resp.). Also
Integrated Circuit, Satellite Navigation, and Cruise Missile are
intended to be mutually “on the same level”: they represent
rather advanced technologies of the same historical era. All
the three have powerful game e�ects, although this is not
directly visible in the �gure. However, via Javelin, Cruise
Missile can be developed by using only seven gold nuggets.
On the other hand, the minimum cost for getting Integrated
Circuit is 62 nuggets, and that of Satellite Navigation is 60
nuggets. 	ese two costs are relatively close to each other, as
they should be, but the cost for obtaining Cruise Missile is
signi�cantly lower. Suchmagnitude di�erence implicates that
the design is faulty. In this case, the problem is, naturally, the
overly inexpensive technology Cruise Missile, which would,
based on its achievability, belong to the same technological
level with Axe and Javelin, but thematically, and based on the
e�ects of the techs, this does not make much sense.

	e problem with the design is also a �ow problem; one
should not be able to achieve an advanced technology like
Cruise Missile too early; not only would such a feature be
narratively awkward, but it might also manifest itself as a
problem of strong paths, clearly superior routes to follow.
Given the chance to obtain a powerful technology at an early

stage via a certain route, probably that route is practically
always chosen. 	e strong path problem can be alleviated
by good internal balancing. If di�erent techs are supposed
to represent the same requirement level, the corresponding
costs for obtaining them should be close to each other. Hence,
a more balanced tech tree (in this sense) can be obtained by
smoothing out di�erences between the costs of such techs.

In a balanced tech tree, the problem may only arise if the
original assumption of the suitable requirement level for a
tech is wrong. Looking from another perspective, e�ects of
a tech should always be suitable for and on a par with the
intended requirement level.	erefore, adjusting a tech tree in
order to �x the problem requires estimates for game impacts
of technologies involved. 	ese estimates should be based
on proposed requirement levels and o�ered game-dependent
bene�ts.

So, internal balancing deals with a single tech tree, trying
tomake it better. By balancing between di�erent tech trees, on
the other hand, we mean a process aiming to make di�erent
tech trees behave similarly enough. 	is kind of balancing
is important, for instance, when creating various tech trees
to be used by di�erent factions (e.g., nations) competing
against each other. 	e common reason to use individual
tech trees for the factions is the desire to clearly distinguish
between them.	erefore, the dissimilarities between the tech
trees should not be only cosmetic (e.g., di�erent tech names):
there should be actual variation in advantages, disadvantages,
options, and meaningful strategies. However, the feeling of
fairness in a game is important [13], and normally all the
playable factions should be able to win.	e playing should be
enjoyable and meaningful. 	erefore, none of the tech trees
ought to be strongly underpowered or overpowered despite
their di�erences.

4. Indicators for Characterizing
Technology Trees

To make it easier to discuss measuring tech tree features, let
us de�ne some quality (and other) indicators. Let � be a tech
tree with � distinct technologies. For simplicity, we assume
here that there is only one resource type of interest, �, to
be considered at a time. If there are several resource types
a�ecting the situation, the indicator values can be de�ned
separately with respect to each of them.

Useful global indicators describing the properties of � as
a whole are at least

(i) its size, which we consider in terms of distinct tech-
nologies (and not the number of edges, as is the
graph-theoretical convention), so here it would be �
techs,

(ii) tree requirement (TR), the minimum amount of
resources of type � needed to get all the � distinct
technologies in � developed,

(iii) average resource consumption for acquiring technolo-
gies (ARCFAT),

(iv) expected �nal tech coverage (ETC),

(v) average branching factor (ABF) of �.

International Journal of Computer Games Technology 5

In order to de�ne ARCFAT, a measure of local nature is
needed.We call it resources expected to be needed for acquiring
a tech locally (REAL). ARCFAT is the arithmetic mean of the
REAL values of all the techs in �.

	e REAL value concerning the development of tech-
nology � is the arithmetic mean of its local costs (in �).
	ese costs correspond to the parent combinations that can
allow (and are here assumed to allow) the development. In
a simple (deterministic) case, a tech has only a single �xed
local cost value, and the averaging over alternative parent
combinations leading to the tech is unnecessary. In a more
complicated case, the REAL value could be a�ected by, for
example, randomization.

An interesting special case is REAL in respect to time
(that we consider here as a resource among others). In this
case, the REAL value for technology � is e�ectively the average
of the expected development time requirements correspond-
ing to the possible parent technology combinations allowing
� to be developed. Such a measure can be straightforwardly
used, for instance, to facilitate planning and constructing a
tech tree, when targeting for some desired (expected) game
duration.

	e ETC value for � in a game featuring sequential
technology development and technologies of Boolean devel-
opment statuses can be de�ned as �/(� ⋅ �), where � is the
expected gain of resource � of a game and � is the ARCFAT
value of �. 	e ETC values are useful, when striving to tackle
the problem of too limited possibilities to explore the tech
tree during a game, ormore generally, when trying to provide
the players with the possibility to explore as much of a tree as
desired in a typical game.

Knowing the exact ABF of a tech tree is usually not
needed in time or space complexity analyses of the algorithms
manipulating tech trees due to their modest sizes and the
fact that the ABFs are typically small. However, one can draw
conclusions on the structure and nature of a tech tree based
on the ABF value of it. If the value is high, one probably has to
really keepmaking choices frequently, but in the case of a low
value, the tech tree probably has almost linear paths, and the
focus is more on selecting the path(s) to follow and changing
it when appropriate.

	e values of the global indicator measures can be used
for rough comparisons between tech trees. 	ey are also
useful in improving a single tech tree or designing such (and
related game properties) from scratch. To clarify this, let us
assume that we are creating a tech tree � and have formed a
prototype with the following known (measurable) indicator
values: ARCFAT = 350 r, TR = 5000, and size = 20 techs.
We want ETC to be around 90 percent. Resources of type �
are somehow produced or gathered during the game, and we
want to de�ne the details for the resource system. A simple
estimate for the total amount of resource type � that one
should be able to gain during a game can be obtained simply
by taking the TR value andmultiplying it by the desired ETC.
In this case, the estimate is 0.9 ⋅ 5000 � = 4500 �.

Typically, the �rst technologies to obtain are relatively
inexpensive, and the costs increase when advancing in a tech
tree. Hence, technologies which are eventually not obtained
in a game probably include many of the most expensive ones.

	erefore, the estimated value might be more than enough.
However, generally using the ARCFAT for calculating the
lower bound in order to de�ne the desired resource gain is
a better solution. In our example, there are 20 techs, and on
average each of them requires 350 � to be developed. Hence,
an ARCFAT-induced lower bound in this case would be 0.9 ⋅
(20 ⋅ 350 �) = 6300 � (during a typical game).

O
en, it is a good idea to give players some extra
resources to let them have more freedom to proceed via
nonoptimal routes; all the players are not interested in
optimizing exactly, when playing. Too scarce resource supply
may lead to players never proceeding to expensive techs, thus
rendering them unnecessary. On the other hand, of course, if
there is an upper tech coverage limit de�ned that is not to be
exceeded, resources should not be granted too generously, or
the number of achievable techs should be limited in another
way.

Consider another example. Let � and 	 be tech trees
intended to be used for the same purpose by two di�erent
mutually competing factions (one tech tree for each of them).
If the expected curves of income for these factions (in �, as
a function of wall time or play turns) are similar, one can
assume that the total amounts of � gained by the factions
during a game are near to each other, as long as the game starts
and ends at the same time for both players. Typically, the sizes
of� and	 should be about the same.	is, of course, assumes
that ARCFAT values and the desired ETC values are also near
to each other. In some rare cases, this assumption might not
hold, but nevertheless, the measures are useful and help in
making desired adjustments. 	e ARCFAT values should be
adjusted suitably for maximizing the enjoyment of advancing
in a tech tree. It is frustrating to have to wait for a very long
time for even simple technologies, but on the other hand, a
game most probably has also other contents besides making
tech choices, so all the gaming time cannot be used for that.
To summarize, as a rule of thumb, the sizes and the ARCFAT
values of � and 	 ought to be similar. If this is not the case,
adjustments to at least one of the tech trees are probably
needed.

A simple, but quite powerful, way to roughly adjust
the global properties of a tech tree is to choose a suitable
coe�cient,
, and then, for each tech �, simply to multiply the
needed resource requirements by
 (for all the possible parent
technology combinations allowing the development of �).
	is a�ects directly the REAL values and thus also ARCFAT
measures. Moreover, via ARCFAT, the e�ect of the operation
reaches to ETC. Game length can also be manipulated this
way via REAL and ARCFAT values for time resource.

5. Indicators for Characterizing Technologies

Besides REAL, there are also other important indicator
measures of a local nature to be found. Let � be a technology in
a tech tree � with a total number of � distinct technologies,
and let � be the set of those technologies in �, into which
there are nontrivial paths from �. Interesting local indicators
for the single node � include at least

6 International Journal of Computer Games Technology

(i) gating indicator number 1 (GIN1) = �/(� − 1), where �
is the cardinality of the set �,

(ii) gating indicator number 2 (GIN2)=
/(�−1), in which

 is the number of technologies in � that require �
to be developed prior to their own development (i.e.,
there are no alternative routes leading to them and
bypassing �),

(iii) optimal cost (OC) = the minimum amount of resour-
ces of type � needed to get � developed without any
prior development in �,

(iv) requirement ratio (RR) = OC/TR (assuming TR dif-
fers from zero).

	ese local indicators can be used, for instance, to
estimate which technologies should receive extra attention.
As an example, a high value of GIN2 for a technology �
indicates that it should be possible,maybe even easy, to obtain
�, because otherwise a large portion of the existing tech tree
is e�ectively not needed for anything.

	e tech tree of Figure 1 has 19 nodes in total, so that
� − 1 = 18. From node Axe 14 nodes (the grey ones plus
� and �) can be reached. 	us, GIN1 for Axe is 14/18 =
7/9. 	e value is relatively high, as expected: it is easy to
check visually from the �gure that only a small portion of
the tech tree is inaccessible via Axe. Technologies � and
� could be developed without Axe via Javelin and Cruise
Missile. 	erefore, these two technologies are not counted to
number
 when calculating GIN2 value. 	e 12 grey nodes
in Figure 1 represent technologies that require Axe prior to
being developed themselves. Hence, the indicator GIN2 has
the value 12/18 = 2/3, which is less than the value ofGIN1 but
still rather large; the grey nodes alone make a large portion of
the tech tree, and Axe is a mandatory node in all the possible
paths leading to them.

OC values were already calculated for the argument of
Cruise Missile being too cheap to achieve in the example of
Figure 1. For instance, the OC value for Satellite Navigation
is 60 gold nuggets by minimization over alternative routes
leading to its development. In order to demonstrate TR
and RR, let us use even smaller example tree illustrated in
Figure 2.

Let us determine the TR (with respect to �) assuming
OR-type dependencies. 	is problem resembles closely the
graph-theoretical minimum directed spanning tree problem,
but with tech trees instead of one root there can be several
ENs. To obtain A, B, C, D, E, G, and I, there are no choices
to be made: the cost for getting these nodes developed is (1 +
2 + 5 + 8 + 3 + 10 + 24) � = 53 �. We can consider them to
have been paid for and developed. Now, the optimal choice
for developing� is via�using 7 �, and for developing� (a
er
developing �) it is via � using 15 �, so that TR = 53 + 7 + 15
= 75. Now, the OC value (still with respect to �) for, say, �, is
1 + 5 + 9 = 15, so RR value for � is 15/75 = 1/5. On the other
hand, theRR value of � equals (1+8+10+24)/75 = 43/75.	is
value is considerably larger than 1/5, which indicates that � is
more expensive than �.	erefore, � is suitable to be the more
advanced technology of the two.

A B

C D E

F G

H I

1 2

3
5 8

79 10

15 20 24

Figure 2: A simple example tech tree depicted using the conventions
established in Figure 1. 	e costs are expressed in resources of type
�.

6. Measuring the Indicators: Implementation

In a previous work [2], we proposed a generic approach for
implementing technology trees to obtain diverse bene�ts.
We also introduced a so
ware tool for creating technology
trees easily and partially automating the process of tech tree
creation. We have now augmented our so
ware tool, TTT,
with a capability of measuring important tech tree properties.

Our previous paper [14] discusses temporal layer analysis.
	e basic idea is presented in Figure 3. A technology tree is
converted into a forest consisting of real (graph-theoretical)
trees by duplicating nodes (representing technologies) as
necessary. 	en, the nodes, having visual representations,
are arranged topologically in a way that makes it easy to
analyze tech tree properties visually and �nd problems.
In Figure 3, there are six di�erent time layers corresponding
to speci�c points in time, and there is a node corresponding
to a technology on a layer if and only if it is possible to get the
tech developed at the time represented by the layer. Time is
assumed to be the only resource type in use, the development
status of each node is Boolean, and having one developed
parent is a su�cient precondition for developing a tech node
in this setting (that is, the dependencies between technologies
are treated as OR-type ones). 	e progress is assumed to be
sequential and without any slack time.

We implemented a modi�ed version of this conversion in
TTT.	e idea is still mostly the same, but in order to limit the
amount of nodes to be generated and drawn,we only consider
possible paths leading to a given technology, not necessarily
the whole tech tree. On the other hand, the topologies are
presented for all required resource types, not only time. We
call this approach generalized time layer approach (GTLA).

Resource demands (of the resource types under scrutiny)
are accumulated into eachnode along di�erent routes starting
from the ENs. 	e resource requirements of each node are
resolved for each requested resource type, and the values
are “pushed” top-down to (new) nodes corresponding to the
children in the original tech tree. 	en, these newly created
nodes are processed similarly, and the process continues,
until all the nodes have been exhausted.

International Journal of Computer Games Technology 7

Time
layer:

0

1

1

1

2

2 2

2 333

4

5

A

A

B

B

C

C

D

D

E

E

F

F

FG G

G

Figure 3: Generating a forest (on the right-hand side) based on
a tech tree (on the le
-hand side) and representing the optimal
times to achieve technologies via di�erent routes topologically.
	e numbers next to the tech tree edges are corresponding time
requirements.

Figure 4: A part of a simple example tech tree. A partial screen
capture from TTT.

Consider the tech tree structure of Figure 4 and applying
GTLA to obtain possible paths leading to Computers. In
Figure 5, the graphical presentation of these paths (in terms of
di�erent resource type requirements) is shown, as presented
in the TTT UI.

From the graphical representation, it is easy to detect,
for instance, the paths leading to optimal total resource
consumptions in terms of the resource type of interest as well
as the OC values themselves. Even simpler representation,
with fewer plot points to consider, can be obtained by aggre-
gating di�erent resource types into a more general resource
requirement plot.Di�erentweights for distinct resource types
can be used.

Figure 5: Possible technology paths to Computers in the tech
tree of Figure 4 plotted for three resource types. 	e paths are
depicted as horizontal successions (from le
 to right) of circles, each
representing a technology. A partial screen capture from TTT.

So, GTLA can be used, among other things, to determine
OC values. However, the method in its simplicity is only
suitable for tech trees, in which any technology can be
developed, if allowed by any parent technology. 	is is
(typically) true for tree-like tech trees, in which a technology
has at most one parent, and for tech trees based on OR-type
dependency relations, like the one in Figure 4. In the example
tree there are two technologies,Writing and Computers, with
two parents each. However, having a single parent technology
developed su�ces to develop the corresponding child. In the
TTT UI (see Figure 4), this fact is visible as the identi�er sets
attached to edges starting on di�erent parents, {0} and {1},
containing di�erent elements.

	e idea is that the identi�ers, and-bunch identi�ers
(ABIs), of the edges arriving from the parent nodes determine
su�cient edge sets that allow a tech to be developed. In
order to develop it, for an ABI present in the ABI set of
some incoming edge, it must hold that all the incoming
edges having this ABI in their ABI sets must �re (accept the
development) simultaneously [2]. In this paper, we assume
for simplicity that an edge �res, whenever the technology
corresponding to its start node has been developed. 	is is
typically the case with real-world tech trees with binary tech
development statuses.

In order to illustrate the idea behind ABIs, let us modify
the example tech tree of Figure 4 a bit. In the tech tree of
Figure 6, there are AND-type dependencies involved. Spoken
Language is not anymore a prerequisite for Engraving or Ink,
and to be able to developWriting, one must have in addition
to Spoken Language either Engraving or Ink developed. 	e
freedom to determine several su�cient AND-type parent
groups for a technology (and the ABI set characterization)
adds considerably to the overall �exibility of tech trees and
facilitates using thematically sensible dependency structures.

GTLA proceeds locally from ENs towards the leaf techs
without considering all the necessary requirements (parents)
when used with this tech tree. Hence, it gives too optimistic

8 International Journal of Computer Games Technology

Figure 6: A modi�ed example tech tree. A partial screen capture
from TTT.

(1) function approximate OCs():
(2) � ← the set of ENs
(3) while |�| > 0 do

(4) � ← 0
(5) for each � in � do

(6) handle node(�)
(7) swap(�,�)

Algorithm 1: A function for going through a tech tree appropri-
ately. Executing this results in having OC estimates for each node,
as well as estimated optimal ancestor sets and optimal ABIs.

OC results in this case. 	erefore, a more general method for
copingwith this kind ofmore complex tech trees and estimat-
ing their OC values and optimal routes was developed and
implemented in TTT. Now, each tech may have several dif-
ferent parent subsets allowing its development, and each such
subset may have its own respective resource requirements.
In other words, a technology may have several alternative
price tags, with the actual cost to be paid depending on the
developed prerequisite tech combination.	eOC estimation
algorithm, usable with acyclic tech trees, is presented in
Algorithm 1 as the pseudocode function approximate OCs.
	e function handle node, used by approximate OCs, is
given in Algorithm 2.

	e functions do not aim at plotting the possible paths
leading to a tech, since their number in nontrivial tech
trees can be large because of di�erent possible orders of
developing prerequisites. Instead, for every technology in the
tech tree, the OC value is estimated and a corresponding
ABI set, via which one probably achieves the tech optimally,
is determined. Estimated optimal route for developing the
technology of interest is available in the form of the set of
optimal ancestors (opt anc) for each node a
er executing
approximate OCs.

To simplify the presentation in Algorithms 1 and 2,
the resource type under scrutiny has been omitted in the
pseudocode, and it is assumed that all the relevant operations

(1) function handle node(�):
(2) �.
������ ← 0
(3) for each � in �.�
� ���� do
(4) � ← 0
(5) �
� ���V�� ← true

(6) for each incoming edge � of � with ABI � do

(7) � ← �.����� ����
(8) if �.���V�� then

(9) � ← � ∪ {�}
(10) else

(11) �
� ���V�� ← false

(12) if �
� ���V�� then

(13) �.
������ ← �.
������ + 1
(14) ! ← ⋃

�∈�
�.��� ��

(15) � ← �.
���(�) + ∑
V∈�

V.
���(V.��� �
�)
(16) if � < �.���
��� then
(17) �.���
��� ← �
(18) �.��� �
� ← �
(19) �.��� ��
 ← ! ∪ {�}
(20) if �.
������ = |�.�
� ����| then
(21) �.���V�� ← true

(22) for each
 in �.
ℎ������ do

(23) if not
.���V�� then

(24) � ← � ∪ {
}
(25) else

(26) � ← � ∪ {�}
(27) for each � in �.������� do
(28) if not �.���V�� then

(29) � ← � ∪ {�}

Algorithm 2: A function used by approximate OCs for handling
an individual node and making the necessary additions to the next
node layer.

and variables are with respect to it. 	e functions could,
of course, take resource type parameters and use them in
bookkeeping.

	e basic idea is to start with the ENs as the active set
(layer) � of nodes to be handled. For each node in �, the
function handle node is executed. It forms the layer� to be
handled during the next round, and the execution proceeds
this way a layer a
er another, until the values have been
solved for the whole tech tree. 	e algorithm stops, because
eventually all the nodes in a tech tree of a �nite size will
be solved, and thus � will be the empty set a
er the loop
of the lines (5) and (6) of approximate OCs. Each call to
handle node eithermarks a node solved and adds its children
to � or adds its unsolved parents to �, which prevents
looping in�nitely.

	e obtained values are only estimates, because v.opt abi
(handle node, line (15)) is not necessarily the optimal ABI
with respect to � but only V itself. However, in practice, the
estimates obtained this way for real tech trees are typically
accurate, and making the simplifying assumption of global
optimality of the determined optimal ABIs reduces the
required computing time and space usage into a sensible level.
	e optimal ABI values can be used for determining the costs

International Journal of Computer Games Technology 9

Biology

0 20000 40000 60000 80000 100000

Combust
Dynamit
Electri
Flight
Radio
Railroa
Refrige
Replace
Steam p
Telegra
Advance
Atomic
Compute
Ecology
Electro
Globali
Lasers
Mass me
Nuclear
Penicil
Plastic
Radar
Robotic
Rocketr
Satelli
Stealth
Future
Nanotec
Nuclear
Particl

Figure 7: Minimum science requirements for the technologies of
the last three eras in Civ 5, as plotted by TTT. (In order to improve
the image quality for publication, the �gure was redrawn based
on a TTT screen capture.) Distinct techs are represented on their
corresponding rows, and the horizontal locations of circles (their
midpoints) represent the OC values of the corresponding techs. OC
values increase linearly along the horizontal axis from le
 to right,
as indicated.

for individual techs, when estimating the TR value for a tech
tree.

7. Measuring a Real-World Tech Tree

To test our tool improvements, we created a TTT representa-
tion of the tech tree ofCiv 5, because it is a good representative
of technology trees used in contemporary digital games.
	e game is rather recent, but the technology tree is used
in a conventional fashion. 	e Vanilla version with science
cost estimates taken from a web source [15] was used. We
ran the algorithm of Algorithm 1 for the tech tree. Because
of the structure of it, the exact OC values were obtained.
	e operation took time of 16 milliseconds with a standard
desktop computer (Intel Core i5-3470 running at 3.20GHz,
16GB RAM, 64-bit Microso
 Windows Enterprise).

In Figure 7, the science point (or “beaker”)OC results have
been plotted for the technologies of the last three eras of the
game: Industrial Era (white), Modern Era (grey), and Future
Era (black). 	ese kinds of plots are bene�cial for checking
visually that technologies are as easy or hard to obtain as they
should be or spotting problems concerning internal balanc-
ing. As the eras in Civ 5 represent distinct intervals in the
(temporal) continuum of overall technological development,

F
u

tu
re

 T
ec

h

P
h

ys
ic

s

N
u

cl
ea

r
�

ss
io

n

C
om

pu
te

rs

C
om

bu
st

io
n

B
io

lo
gy

A
st

ro
n

om
y

Sa
il

in
g

P
h

il
os

op
h

y

A
gr

ic
u

lt
u

re

0

0.2

0.4

0.6

0.8

1

1.2

GIN

RR

Civ 5 technologies
(only some of the names are shown)

Figure 8: GIN (= GIN1 = GIN2) values and corresponding RR
values of the technologies in the Civ 5 tech tree.

it wouldmake sense for technologies categorized to belong to
the same era to have minimum science requirements of the
same magnitude.

As can be seen in Figure 7, the requirements for the
Industrial Era technologies do not di�er much from each
other. Modern Era has more variance in this sense, and the
technology Future Tech of the Future Era seems to be clearly
an outlier that should be checked carefully, if the technology
tree was under development. In this case, however, the huge
amount of science points required is due to the unique nature
of Future Tech; it can only be developed a
er developing all
the other techs.

Besides OCs, we let TTT also compute other interesting
(local and global) indicator values for the technologies of
the Civ 5 tech tree. 	ere are no surprises in the results.
GIN1 values are equal to correspondingGIN2 values, because
Civ 5 tech tree does not o�er alternative routes to achieve
technologies. In Figure 8, the technologies are ordered into an
increasing order based on their GIN1 values (= GIN2 values),
marked simply as GIN in the �gure. Also, the corresponding
RR values are shown in the same �gure.

When GIN values increase, RR values tend to decrease.
	is makes sense, because near ENs there are (typically, and
not only in this case) inexpensive technologies, via which
one has to proceed in order to access the other parts of the
tech tree. On the other hand, the �nal technologies typically
require lots of resources and they limit access to only few even
more advanced techs.

	e TR value for beakers is 100,487, the ARCFAT value is
1,357.93, and the ABF is approximately 1.49. TR and ARCFAT
do not tell very much in a case of a single tech tree without

10 International Journal of Computer Games Technology

anything to compare to, but based on the modest ABF value
and the additional fact that the tech tree is connected, one can
conclude that it is also rather deep.

It is worth highlighting that the indicator values obtained
might be rather di�erent, if measured from a patched version
of the game (possibly augmented with downloadable content
packages), as the tech tree properties have changed since the
Vanilla version. 	e fact that the tech tree has been modi�ed
several times demonstrates that it is really an important
part of the game. As mentioned, used costs are also only
approximations; the exact in-game costs depend, for instance,
on the number of cities the player has.

8. On Correcting a Tech Tree

Whenever measurements indicate problems, taking correc-
tive steps can be either easy or tedious. With TTT, adjusting
the tech tree structure and modifying local properties, like
resource requirements and dependency relations of a single
technology, are easy, since the tool has been created for
e�ortless technology tree manipulation. 	e novel features
make such manual adjustments even easier. Especially worth
mentioning is the fact that the GTLA view (see Figure 5)
allows (imposing necessary restrictions) the user to drag
technologies along their respective paths and to commit
the corresponding resource requirement changes into the
actual tech tree presentation of the program, from which
functional technology tree code is generated automatically,
when desired. 	is way the user can see the e�ects of
planned changes to other technologies visually before actually
applying them.

As far as global adjustments (a�ecting the characteristics
of a tech tree as a whole) are considered, our tool so far
supports setting the desired TR value, based on which the
system is capable of adjusting the tech tree multiplicatively.
	e modi�cation is performed simply by determining and
applying a suitable multiplier for all the technology costs in
the tech tree.

9. Conclusion

In this paper, we have introduced indicator values and
discussed algorithms and our implementation for analyzing
technology tree features for proper adjustments. 	e imple-
mentation was also tested with a real, popular computer
game, and thus its capability to produce and visualize data,
which we strongly believe to be useful, was veri�ed.

As future work, more general, important, andmeasurable
tech tree features should be pointed out, and corresponding
measuring and correcting procedures ought to be imple-
mented. Moreover, the automated analysis features currently
present in our so
ware should be improved. Also, a consider-
able number of real-world tech trees ought to be analyzed in
order to �nd good practices and typical tendencies to guide
in the further development and �ne-tuning of adjustment
automation procedures.

Conflict of Interests

	e authors declare that there is no con�ict of interests
regarding the publication of this paper.

References

[1] N. Hallford and J. Hallford, Swords & Circuitry: A Designer's
Guide to Computer Role-Playing Games, Stacy L. Hiquet, 2001.

[2] T. J. Heinimäki andT. Elomaa, “Facilitating technology forestry:
so
ware tool support for creating functional technology trees,”
in Proceedings of the 3rd International Conference on Innovative
Computing Technology (INTECH ’13), pp. 510–519, London, UK,
August 2013.

[3] T. Ghys, “Technology trees: freedom and determinism in
historical strategy games,” Game Studies, vol. 12, no. 1, 2012.

[4] P. Tozour, “Introduction to Bayesian networks and reasoning
under uncertainty,” inAIGameProgrammingWisdom, S. Rabin,
Ed., pp. 345–357, Charles River Media, 2002.

[5] E. Schaefer, “Blizzard entertainment’sDiablo II,” inPostmortems
from Game Developer, A. Grossman, Ed., pp. 79–90, CMP
Books, CMPMedia LLC, San Francisco, Calif, USA, 2003.

[6] D. Morris and L. Hartas, Strategy Games, Ilex Press Ltd, Lewes,
UK, 2004.

[7] M. Barton, Dungeons and Desktops: 	e History of Computer
Role-Playing Games, CRC Press, 2008.

[8] T. J. Heinimäki, “Technology trees in digital gaming,” in Pro-
ceedings of the 16th InternationalAcademicMindTrekConference
(AMT ’12), pp. 27–34, October 2012.

[9] T. Owens, “Modding the history of science: values at play in
modder discussions of SidMeier’s CIVILIZATION,” Simulation
& Gaming, vol. 42, no. 4, pp. 481–495, 2010.

[10] R. Rouse III, Game Design: 	eory and Practice, Wordware
Publishing, 2nd edition, 2005.

[11] A. Gazzard, “Unlocking the gameworld: the rewards of space
and time in videogames,” Game Studies, vol. 11, no. 1, 2011.

[12] J. Huizinga, Homo Ludens—A Study of the Play-Element in
Culture, Beacon Press, 1971.

[13] E. Adams, Fundamentals of Game Design, New Riders Publish-
ing, 2nd edition, 2009.

[14] T. J. Heinimäki, “Considerations on measuring technology
tree features,” in Proceedings of the 4th Computer Science and
Electronic Engineering Conference (CEEC ’12), pp. 145–148,
Colchester, UK, September 2012.

[15] List of technologies in Civ5, 2014, http://civilization.wikia
.com/wiki/Technologies%28Civ5%29.

Publication VI

VI

T. J. Heinimäki and T. Elomaa. Augmenting Technology Trees:

Automation and Tool Support. In Proceedings of the 7th International

Conference on Virtual Worlds and Games for Serious Applications

(VS-Games 2015), pages 68–75. Skövde, Sweden, September 2015.

Copyright c© 2015 IEEE.

Reprinted, with permission, from Teemu J. Heinimäki and Tapio Elomaa,

Augmenting Technology Trees: Automation and Tool Support, Proceedings

of the Seventh International Conference on Virtual Worlds and Games for

Serious Applications, September 2015.

In order to comply with the terms of IEEE concerning online use, the “ac-

cepted” version of the paper has been included – not the “published” one.

In reference to IEEE copyrighted material which is used with permission

in this thesis, the IEEE does not endorse any of Tampere University of Tech-

nology’s products or services. Internal or personal use of this material is per-

mitted. If interested in reprinting/republishing IEEE copyrighted material

for advertising or promotional purposes or for creating new collective works

for resale or redistribution, please go to http://www.ieee.org/publications_

standards/publications/rights/rights_link.html to learn how to obtain a Li-

cense from RightsLink.

Augmenting Technology Trees:

Automation and Tool Support

Teemu J. Heinimäki and Tapio Elomaa

Department of Mathematics

Tampere University of Technology

P.O. Box 553, FI-33101 Tampere, Finland

Email: {teemu.heinimaki, tapio.elomaa}@tut.fi

Abstract—In this work we tackle the rigidity of predefined
technology trees common in many digital games. Technology
trees have been a well-understood concept in the industry for
approximately two decades. Unfortunately, so far they have
mainly been considered as fixed structures. Some attempts of
adding ostensible temporal variability to them have been made
before by the means of simulating the effect. Our approach, on the
other hand, aims to create a stepping stone towards true runtime
technology generation for (both serious and leisure) games in
order to improve them. We present potentially useful ideas,
constructs, and methods to achieve this goal. Initial observations
on our test implementation are also presented.

I. INTRODUCTION

Technology trees, also known as tech trees (or skill trees,
talent trees, etc.) are the predominant way of providing de-
velopment alternatives within digital games. These structures
guide and limit possible player-made choices and the overall
flow of the game. Moreover, they provide short-term goals
for players. Choices offered to the players are known to be
essential in meaningful play [1].

In computer role-playing games, usually the protagonist
(player character) is improving its skills, piling up money,
attaining arms, gaining in knowledge, or developing in some
other way as the game progresses. In strategy games, devel-
opment typically concerns a whole tribe, a nation, a species,
or even a larger entity, like a galactic alliance. Concerning
the apparent distinction between these development graph
structure (“tree”) types in different genres, it is basically just
a question about whose operation and development does a
particular tree guide. Therefore we find it justified to use
the term technology tree for all such development-guiding
structures.

A tech tree explicates what are the requirements for ad-
vancing in technical capability, engineering abilities, scientific
knowledge, military power, financial wealth, or such. The tree
models and keeps track on the overall development status
using distinct technologies (also known as techs). Technologies
can be developed individually, and the tree dictates their rela-
tionships and requirements for starting the tech development
processes.

The downside of usual tech trees is their rigidity. They
are preprogrammed without any ability to adapt to the player
and without any variation in time or between different game
instances. This paper advances and promotes the possibilities
to rectify this issue.

We introduce our approach called CATFAT (Construct-
ing Automatically Technologies For Augmenting Technology
trees) to make tech trees more flexible and more interesting
by automated content generation. The approach consists of
specific kinds of classifications and representations of tech-
nologies and a tech tree augmentation method that actually
uses them.

The main contributions of this paper are (i) presenting
the general principles of CATFAT and (ii) demonstrating
the practical usefulness of it, when implemented in suitable
software tools. Secondary contributions are (iii) pointing out
the common rigidity problem of technology trees and the diffi-
culties related to tackling it and (iv) raising general awareness
of the importance of technology trees as a topic for further
studies.

We continue by a bit of more background and by explaining
our motivation in Section II. A short review to the related
work can be found in Section III, after which we introduce our
approach in Section IV. Section V illuminates tool support im-
plemented so far, and Section VI describes initial experiments
that have been conducted. Section VII discusses different
aspects of possibilities to generate technologies based on our
observations. Finally, conclusions are drawn in Section VIII.

II. BACKGROUND, MOTIVATION, AND

THE PROBLEM DOMAIN

Technology trees are essentially data-containing acyclic
digraphs that are used to offer players possibilities to develop
technologies.1 Tech trees are used to guide and limit possible
choices and the overall flow of the game and to offer goals for
players. (The term technology tree can also be used to mean
a representation of such a structure, e.g., in a pictorial form.)
The idea of a tech tree is demonstrated in Fig. 1. Initially,
there are two technologies, A and B, available to be developed.
Technology D can be developed after obtaining B, but prior to
developing C, both A and B are required.2

In practice, technology trees are designed manually, and
once they have been implemented for a game, they do not
change, barring possible corrections and modifications intro-
duced in patches and expansions to the game. Even if a game

1We use the word technology quite liberally here. In this paper, the word
is used synonymously with any node belonging to any technology tree.

2This paper only considers tech trees with such conjunctive prerequisites.
In general, however, obtaining all the prerequisite technologies is not always
necessary in order to develop a tech, but only some of them may suffice.

Fig. 1. An illustration of the basic idea of a tech tree.

uses a data-driven approach and defines trees in, say, text files
instead of hard-coding them – thus making it easier to alter
the game – tech trees are still essentially fixed between the
modifications. Making tech trees easy to modify is a good
practice, but does not remove the fundamental problem.

Rigidity is a problem because of its negative effects to the
replayability and interestingness of a game [2]. Moreover, a
fixed tech tree also implies having only a limited amount of
technologies to be offered during a game. At some point, there
simply may not be any technologies left to be attained.

Unfortunately, the solutions applied in practice are far from
perfect and tend to restrict games severely. For instance, the
number of turns in a game may be limited in order to force
the tree to suffice. It is also possible to offer some generic
“future tech” to be researched after all the “real technologies”
have been developed, as is done in the Civilization games
(Sid Meier’s Civilization (MicroProse 1991) and its numerous
sequels). In Fig. 1, G could be such a technology, researchable
over and over again. However, this approach may lead to un-
interesting gameplay after a critical point, because the central
element of making the player to choose the next technology to
be developed among several candidates is effectively removed.

There are, of course, lots of cases, in which there is no
need to expand the tree to make it larger at the runtime. For
instance, in strongly story-driven games the length of a game
is determined by the narration, and trees of finite – and often
quite modest – sizes can be built to fit the arc of the story.
Therefore we acknowledge that good games of certain types
can be implemented even with rigid trees.

Nevertheless, especially strategy games featuring large
traditional tech trees and so-called sandbox games with consid-
erable freedom to explore the world and proceed in the possible
story would benefit from expandability of tech trees. The
degree of actually using dynamic tech tree content generation
might naturally vary – all the technologies could be generated
during runtime, a fixed tree could be augmented only when
necessary, or anything in between. In any case, it would be
generally appealing to be able to generate techs on runtime and
keep discovering specific, meaningful technologies even after
exhausting the predefined tree. This is the motivation behind
this work.

If one desires to produce better games, also capability to
create temporal variance in tech trees is an important aspect

to consider. Even if the tree size is fixed, technologies do not
have to be. If the set of available technologies changes for each
game, one cannot keep playing the game similarly, making the
same choices time after time.3 The whole tech tree does not
necessarily have to be replaced; temporal variability in varying
degrees can be offered by changing, adding, or removing
available individual technologies in a “basic tech tree”. Such
tech tree–modifying operations can also be performed during
the actual gameplay – not only when initializing the game.
Combining the idea of temporal variability and runtime content
generation means introducing some (pseudo)randomness into
the generating process.

Often technology tree structures and technologies in them
are fully known to players so that they can easily plan their
technological advancement beforehand. If, on the other hand,
one is interested in dynamically “inventing” possible areas of
research always based on the pre-existing knowledge (the state
of technological development) during the game, real runtime
generation – instead of revealing preconstructed content – is
an intriguing way to proceed, since this way the virtual process
of development corresponds to the real one.

A central problem in automated technology generation is
natural language: it is rather simple to generate technologies
with somewhat arbitrary properties within some guidelines,
but typical use of technology trees requires the technologies
to have descriptive names (and possibly even more detailed
descriptions of some length). Another major issue is also about
representation; often technologies have corresponding visible
instances, like moving units or buildings, in the game. This
paper mainly focuses on the former problem, as it applies also
to the abstract technologies without those “physical” instance
requirements. Sometimes also graphical images are used in
visual technology representations. Images might be generated,
for instance, by combining elemental images corresponding to
“basic natures” of techs and their property bonuses etc., but
this is out of the scope of this paper.

III. RELATED WORK

Procedural content generation (PCG) for digital games
in its various forms has been recently studied rigorously.
A recent survey [3] gives a decent overview to the field.
Our approach can be seen as a PCG method specializing to
generate technology trees, and it touches upon at least two
PCG subfields identified in the survey: those concerning game
systems and game design.

The approach presented in this paper fits in the category
of domain specific language approaches to PCG, because the
content generation in this case is based on a model defined by
a language developed specifically for this purpose. Using the
taxonomy of methods in PCG [3], our approach can be seen
as one using generative grammars. The basic idea of creating
content by “expanding” smaller description is typical to PCG
algorithms [4].

3Making each game different by changing tech trees for each game instance
would add considerably on the replayability value. Naturally this would,
however, also annoy some players, so probably the feature should be optional.

Until recently, technology trees have been overlooked as
interesting subjects for academic studies. As far as we know,
this is the first paper about generating content to technology
trees. The fixed structure and the assumption of technology
trees or technological paths existing as such – without changes
due to outside influence – have been criticized (see, e.g., refer-
ence [5]). However, practical remedial suggestions are hard to
find. Typically tech trees are treated as totally deterministic
constructs. Sometimes determinism is even included in the
definition [6].

As the basis for our implementation of the approach put
forward in this paper we use a prior software tool, Tech Tree
Tool (TTT) [7], [8], created for, e.g., building, manipulating,
and analyzing tech trees. The tool facilitates the process of
defining the required constructs by offering an easy-to-use
graphical user interface (GUI) and generating code automati-
cally.

One possible way to create temporal variability to tech
trees is to leave some technologies out of a large predefined
technology tree (more or less randomly, often preserving
essential “skeleton” technologies). This approach has actually
been used in real commercial games – for instance in Sword
of the Stars (Kerberos Productions 2006). An alternative way
– the approach discussed in this paper – proceeds from the
opposite direction and tries to generate new technologies (with
some random factors involved) and thus expand a skeletal tree.

The problem of managing and directing a game based on
user-made decisions has been discussed in previous papers, and
frameworks have been presented (see, e.g., reference [9]). Our
approach does not alter the game plot as such, but belongs in
the wider scope of improving player experience by automation.
We also acknowledge the possible benefits to gaming experi-
ence obtainable by making runtime changes to the game played
based on the observations about the player (see, e.g., reference
[10]). For instance, there are numerous ways to adjust the
difficulty of a digital game dynamically [11]. At the moment,
the suggested method to generate technologies in its simplest
form does not explicitly include such functionality. However,
it is easy to add considering the modeling and algorithmic
choices made.

There have been several publications on generating game
mechanics automatically based on user-generated content. For
instance, a recent conference paper [12] discusses this topic
and introduces a game-generating system. Our approach has
a more strict focus on technology trees, but in some sense it
also generates mechanics by defining a set of technologies with
effects to be chosen at a given time via the tech generation.
Our method is also designed to operate during runtime, though
it can alternatively be used to help with planning tech trees
beforehand when designing and creating a game.

Numerous studies focusing on existing games, their effects,
and game design have been carried out during recent years.
As nontechnical by nature they are only weakly related.
In addition to (merely) entertainment applications, so-called
serious games have gained considerable attention. They have
various application areas [13], [14]; for example, games can be
used in education [15] or in rehabilitation [14]. Our examples
in this paper hint towards a leisure setting, but the CATFAT

approach can as well be applied in “serious”, non-leisure
contexts using tech trees.

IV. THE PROPOSED APPROACH

The main idea of the CATFAT approach is to generate
new technologies based on the existing ones in order to
make the game more interesting and replayable (see Subsec-
tion IV-C). Technologies can be generated either dynamically
when running the game, when initializing a game instance, or
beforehand when implementing the game.

Properties and categories are attached to technologies, since
they guide the technology generation process (see Subsec-
tion IV-A) and thus are crucial. To be able to communicate the
method clearly, the technologies are also divided into several
types (see Subsection IV-B).

A. Categories, Properties, and Non-tech Modifiers

Developing a technology usually manifests itself in a
game by enabling the corresponding player to use (or create),
e.g., physical abilities, spells, units or other such (possibly
abstract) concepts. Let us call these, in the lack of a better
term, products of their respective enabling technologies. To
clarify: technologies are goals for (technological, scientific,
equipment-related, or some other kind of) development in a
game, and products are the manifestations of the developed
technologies.4

The CATFAT method attaches properties to technologies
and their products. These properties reflect, e.g., physical
measures, abilities, roles, and effect types in the game world
to which the technologies or the products are directly related.5

The properties are basically name-value pairs having typically
numerical or Boolean values, via which they inflict functional
effects in the game. There may also be faction-wide or global
properties affecting the game more widely.

For instance, each faction in a game could have the
property loyalty featuring, say, a value between zero and
one indicating the general tendency of units to defect to a
competitive party in situations offering possibilities to do so. In
addition, each unit might have its personal loyalty modificator
property, and the actual probability for a defection of a single
unit occurring in a given game situation could be calculated
based on these two property values.

The relation between properties and technologies is simple:
developing technologies modifies property values, and property
values define and modify constraints and effects for, e.g.,
technologies. For instance, achieving some popular form of
government (a tech) in a game might boost the global loyalty
value, and developing an institute for funding research work
might increase the personal loyalties of scientist units.

In addition to using properties, another key element in our
approach is categorization of techs and products based on an

4It is not always necessary to make a distinction, and sometimes the term
technology is used to cover also products, but we find this a bit confusing
habit and use two distinct words in this paper for clarity.

5In computer role-playing games, it is typical to use numerical statistics
in order to track character development [16]. Here we are applying the idea
more widely: measurable properties can be attached to other entities also, not
only characters.

Fig. 2. Example type hierarchies of technologies and products.

analysis of their different semantic subclasses. Categories built
on is-a relationships are often sufficient, but other relations can
also be used. In any case, each product and a large portion
of technologies should be classified into – possibly several –
categories.6 The categories may form hierarchies. An example
hierarchy is shown in Fig. 2: the leaves are technologies and
products, and the intermediate nodes are categories. A leaf
belongs to all the categories along the path from the root to
it. (Separating techs from products here is not a matter of
importance, and cannot even be done without extra knowledge
of the related game.) Each leaf also forms a category consisting
only of the leaf.

When using CATFAT, the current technological state of
the gameplay is represented for each player by a set of global
properties and properties of technologies and products. It is
often convenient to divide properties into two categories: base
values (BVs) defining initial values and adjustment coefficients
(ACs) for typical value modifications.

For example, the value for a global AC called “building
cost” could be 1.0 at the beginning of the game, and by
developing, say, logistics the coefficient could be reduced
during the game. This reduction would then be reflected –
via a simple multiplication with the corresponding base value
– to the cost of a specific building operation. For a transport
unit, on the other hand, e.g., speed, weight, and cargo capacity
could be crucial features to be modeled this way, and fuel type
could serve as an example of a non-numeric property that still
could be represented with a BV property.

On the other hand, fuel is also a good example of an
external non-tech resource affecting features and usability
of some technologies. More generally, a technology may be
affected in a game by arbitrary non-tech modifiers (NTMs)
– variables able to take values in their respective value sets
that can also change during a game. For instance, the NTM
fuel could have a value from the set {gasoline, hydrogen,
gunpowder}. Commonly applicable relations between techs
and NTMs are “uses” and “has” relations, but other types are
also possible.

6Strictly speaking at least all the base techs (introduced in Section IV-B, as
are also the other technology types mentioned here) should have categories that
could be inherited by generated techs. If a modifier tech has categories, they
can be inherited too, and any technology that should be affected by property
changes for a category should be categorized into it. For simplicity, one can
categorize all of the technologies; a generic category can be used, if needed.

Fig. 3. Categories, modifier abbreviations, and NTMs of the example game.

B. Technology Types

All the technologies present in a predefined tree (core
tree) are core technologies. That tree will be augmented
procedurally with generated technologies. Core techs – and
their relationships – can be seen as a compact (compressed)
presentation of all potential larger tech trees that can be
generated – and in the optimal situation, wanted.

Base technologies are selected representants of different
fundamental categories among the core technologies. These
chosen ones have an important role in the tech generation
process: they offer initial tech names and features to be
modified in the process.

Modifier technologies are able to modify properties; de-
veloping them may affect technologies and products or the
gameplay (player-wise or globally), typically by changing
AC values. Also BVs can be manipulated. The modifications
may also introduce possible technologies to be generated into
the tree – generable techs. They can manifest themselves as
actual generated techs. Generable techs are formed using base
technologies or generated techs as the basis and modifying
their names and properties according to the rules defined by
the modifier tech. Categorizing technologies and their products
simplifies forming these rules.

The technology type groups presented here may overlap.
Core trees consist of base techs, modifier techs, and possibly
other techs not used by CATFAT (all thus being core techs).
It is also possible for a single technology to be both, a base
tech and a modifier tech simultaneously.

C. Technology Generation

To demonstrate and explain the actual technology gener-
ation process, we take an imaginary space strategy game as
an example and let building spacecrafts be an essential part
of it. Consider a tech tree used to design spaceship parts. The
technology categories used are listed in the box of the upper
left corner of Fig. 3. In this simple example, there is no need
for hierarchies. The box on the right-hand side presents the AC
and BV property abbreviations used. All the technologies and
products do not necessarily need every one of these properties.
The starting NTM sets are listed in the box of the lower left
corner of Fig. 3.

The core tree consists of the technologies depicted in
Fig. 4 using rectangles and ellipses with solid edges and

Fig. 4. Example core tree (techs with solid edges and solid arrows) and some
generable techs (technologies with dotted edges).

the solid arrows defining the prerequisite relationships. The
grey shapes represent base technologies, and the corresponding
categories are indicated in brackets. In order to develop a tech
with incoming arrows, all the corresponding techs at the start
points of the arrows (tails) must first be obtained. Modifier
technologies are drawn using rectangles with non-rounded
corners. They typically have rules to modify existing tech
names and properties category-wise. For instance, Beams has a
rule for dealing with a technology of the category SENSORS. In
the beginning there is only one such a tech available, namely
the base tech Sensor Array. Based on the rule, the generable
technology Beam Communications can be produced.

More generally, a base technology or a generable tech-
nology (modified tech) and a modifier technology with rules
compatible with the categories of the modified tech can pro-
duce a new generable tech. This is done by creating a copy of
the modified tech and then adjusting the copy according to the
rules of the modifier technology.7 In other words, the properties
of the produced generable tech are initially set similar to those
of the modified tech, and then modified by the rules. These
modifications can be, e.g., multiplications, additions, or setting
specific property values.

The name of a tech is also determined by the rules
generating it. In the case of modifier tech Beams and category
SENSORS, the name of the base tech is just replaced by a new
one. In contrast, all the other modifier techs, except Biological
Study, concatenate modifying strings with the names of the
modified techs in order to form the names for the correspond-
ing generable techs.

There may be several concatenations along the way, and
typically the order of modifying strings is important. This must
be taken into account when designing the rules. A modifying
string of a rule may have, for instance, a numerical value
attached indicating its need to occur immediate before – or
in the case of postfixes, after – the basic name. The modifier
strings can then be ordered based on these values. Other

7For simplicity, here we restrict ourselves to the cases, in which each
generable tech is based on one modified tech, but more complex schemes
can also be allowed.

arranging rules can also be applied, if necessary. In Fig. 4,
only prefix concatenation is demonstrated without any order
data.

By default, the generable techs inherit categories of their
parents and can be modified again by different modifier techs.
The categories can, however, be controlled by the rules of
generation. Either all the parents or only the ones currently not
used as modifier techs (as is the case in Fig. 4) may contribute
to the categories of their respective children.

Biological Study is here an example of a modifier tech
that adds a NTM into a NTM set. Additional sets can also be
defined, and existing NTMs and NTM sets can be removed.

Miniaturization demonstrates that a tech can consist of
several levels to be developed. This is a convention adopted to
make tech tree presentations more compact; instead of defining
three different modifier techs in the tree, only one is defined
with three levels of development with their corresponding
effects. Initially, the actual game should only generate the tech-
nology corresponding to the first level. The tech corresponding
to the second level ought to be presented only after the first-
level tech has been developed, and so forth.

Typically developing technologies in a game costs re-
sources like time, energy, or gold. Defining the prices to be
set for generated technologies is basically a challenging task,
especially, if there are several resource types in use. If there
is only one type to consider, however, the difficulty can be
overcome by combining the use of an evaluator function and
a balance corrector function. Evaluator functions have to be
implemented case-by-case. The idea is to make such functions
evaluate the values of technologies under scrutiny based on
their properties (effects in the game) and use these estimates
in order to determine the prices for developing the techs. Also,
the value estimates of, e.g., the children of the techs can be
used in the process.

The purpose of the balance corrector function is to check
through the current tree and make necessary modifications
to the costs – and possibly also to the effects – in order to
prevent generating too powerful paths and keeping the tree in
balance in the sense that basically advanced techs should be
more expensive than less advanced ones, and different techs
of, e.g., the same historical era should have total development
costs (including all the prerequisites) of the same magnitude.
In the case of several resources to consider, the same principles
apply, but additional metadata is needed to keep the assigned
costs semantically meaningful.

The basic approach can be improved by using modifier
entities that act similarly to modifier technologies, but are not
included in the tree as technologies and cannot be developed as
conventional techs. Predefined game events or random events
could lead to applying modifying rules of these entities. For
instance, a player could complete a quest on behalf of an
industrial company in a game. As a reward, limited products
of that company – specialized items with company-specific
characteristics – might be made available to the player as
technologies. Negotiating deals with, e.g., nations or species
could lead to somewhat similar results. There could also be
reverse effects limiting the availability or removing certain
techs, launched by other events. Let us call game events with
modifier tech–like capabilities modifier events.

The general procedure of applying CATFAT in a game
with dynamic tech generation based on the actual technological
situation is as follows:

initially:
C← /0

whenever tech t is developed:
if t is a modifier tech:

select the rules of the lowest level of the tech as \
the active ones and the rest as inactive ones.
if t has more than one level:

generate a next level tech, containing the rest of \
the levels, as a child of t

for each active rule r of t:
if r is a general rule not bound to categories:

apply r
else:

for each nonmodifier tech m ∈ r.category:
generate a tech candidate, c, based on m \
using rule r
C←C∪ c

else:
for each developed modifier tech m:

for each active rule r of m:
if t ∈ r.category:

generate a tech candidate, c, based on t using \
rule r
C←C∪ c

for each modifier event e with active generation rules:
for each active generation rule r of e:

if t ∈ r.category:
generate a tech candidate, c, based on t using \
rule r
C←C∪ c

Select technologies from C and add each of them as \
a child of its corresponding modified tech. (All the \
candidates can be added, or only some of them, \
based on, e.g., the currently selected focus area of \
the research work in the game.)
Remove the selected techs from C.
run evaluator function
run balance corrector function

whenever modifier event e takes place:
for each active rule r of e:

if r is a general rule not bound to categories:
apply r

else:
for each nonmodifier tech m ∈ r.category:

generate a tech candidate, c, based on m \
using rule r
C←C∪ c

Select technologies from C and add each of them as \
a child of its corresponding modified tech.
run evaluator function
run balance corrector function

This basic procedure can be modified as seen fit, but the
basic idea is to add technologies to the pool of possible
techs as the player progresses in a tree and then augment
the tree suitably from that pool. If there are effects reducing

Fig. 5. Relations of different actors and components.

possibilities to develop technologies, this must be taken into
account, and the pool must be updated correspondingly.

As a part of this method, it is futile to try to define
exactly, how the selection of technologies to be added among
the candidates should be done, because technology trees and
games differ a lot from each other. Therefore, the selection
method should be designed or chosen case-by-case.

The selection can be implemented either as an internal tech
tree functionality or by the main program using the tree. Our
suggestion is to let the trees take care of the whole generation
process including the selection, because this way trees can
be swapped with each other easily. Unnecessary dependencies
between tech trees and their users should be avoided.

V. TOOL SUPPORT

As a merely abstract approach CATFAT is useless. With
suitable software tool support, however, it can be turned to a
practical method. As prior work, we have implemented TTT
to facilitate the design process, evaluate tech trees, manipulate
their properties, and generate code automatically. In order to
experiment with CATFAT, TTT was extended to support rule-
based technology generation as described in this paper.

So far, TTT only supports disjoint categories, but it is trivial
to add support for hierarchies by, e.g., defining and storing
hierarchy graphs similarly to tech trees and then defining,
which hierarchies a technology tree should use. Categories
of technologies can be easily changed via a graphical user
interface and default properties for technologies can be set.
Naturally, properties of a particular tech can also be easily
modified. Generation rules must, for now, be expressed using
a syntax resembling the one used in Fig. 4. In the future,
graphical tools and mouse gesture shortcuts can be added for
even easier rule definition.

TTT can generate a functional technology tree implemen-
tation in Lua language based on the design defined via its
GUI. Currently, such automatically generated tech tree imple-
mentations augment themselves by all the possible additional
technologies every time a tech is developed. So far, there is
no support for modifier events, but that is a straightforward
feature to add, if desired.

Fig. 5 clarifies the role of TTT in the process; a game de-
signer uses it to define the core tree and to create the necessary
rules for modifier techs. TTT then generates a functional tech
tree implementation in Lua. It is a rather autonomous entity
having its internal data models, bookkeeping, and functions
for performing necessary operations. It also offers a simple
interface, via which the actual game can use the tree and ask

the tree to perform different operations concerning itself. Based
on input received via this interface and the internal state of the
tree, more techs are generated as necessary and the data model
is updated.

Moreover, TTT serves as a test environment for tech tree
designers; the designer can select technologies to be virtually
developed in the design view, and the tool generates techs and
adds them to the visual tech tree presentation. The properties
of the generated techs can be observed and modifications to
the rules can be made accordingly. This speeds up the initial
testing, because the tech tree can be “run” outside of the
context and constraints of the actual game. Within the tool,
there are also different tech tree analysis and measurement
functionalities available for evaluating the tree properties.

VI. EXPERIMENTS

To test the usability of our approach, we created a small
core tree – corresponding to the one illustrated in Fig. 4 –
for an imaginary game focusing on improving spacecrafts by
upgrading, modifying and inventing different components for
them. After modeling the core tree using TTT, we simulated
proceeding in the tree and let the system generate additional
content accordingly.

In Fig. 6, a partial screenshot of the tech manipulating area
of TTT user interface is shown. A user can select technologies
to be developed using a pointing device (a mouse), and the tool
generates more technologies to the tree accordingly. The prop-
erties of selected technologies can be seen and manipulated in
a separate property window.

We also let TTT to create a functional tech tree imple-
mentation in Lua based on the designed core tree, and run
several sequences of technology selections via the tech tree–
using interface (from a command line) corresponding to the
sequences simulated inside TTT. In order to compare these
results with the ones obtained by simulations within TTT,
the processes were kept deterministic. We could verify that
the Lua script generated by TTT was able to create and alter
technologies and properties similarly to TTT in its internal
simulations.8 A main game could use the technology properties
and general tech tree functionality via the Lua interface, and
the tech tree could be expanded at the runtime by the Lua
scripts generated by TTT without any effort by the main
program.

These are, of course, only initial experiments, and more
testing is needed. Because of this fact and the limited space
in the paper, explaining the experimental setup in more detail
is omitted as negligible; the proper evaluation of the approach
deserves its own paper anyway. However, based on the initial
tests, it strongly seems that the method is viable and the tool
support facilitates creating expandable tech trees considerably.
Gathering experiences of using CATFAT and TTT also in the
context of real game development is important, but at this point
we have to leave this as future work as well.

8At the moment, the internal technology development simulation functional-
ity of TTT is implemented in C++, so it made sense to compare the results with
the ones given by the Lua implementation generated by TTT. In future, it might
be reasonable to make TTT automatically generate a Lua implementation of
the core tree under scrutiny for performing any in-tool simulations instead of
using its own internal implementation of the algorithm.

Fig. 6. A partial screen capture of the TTT GUI. Development of Targeting

System was just simulated, and TTT generated Targeting Projectile Gun.

VII. DISCUSSION

The set of technologies that can be generated with the ap-
proach presented in this paper is still limited, since additional
modifier techs are not generated in the process, and using
a single modifier tech several times “in a row” is generally
a bad idea. It is also hard to generally guarantee the high
quality of each technology that is generated. The need to use
natural language restricts possibilities to generate technologies
automatically, but with languages like English the approach is
still feasible. The quality of the generated content depends on
the modeling choices made and the definitions given. Thus,
rigorous planning improves the quality.

Because the method is only capable to create content
derivable from the given technologies and rules, it may look
like only a way to represent data in a compressed form, and
in a sense, this point of view is totally valid. However, we
argue that we are dealing with automated content generation:
all the generation methods need some initialization and use
some rules to construct “new” content. A person defining the
core tree and the rules may not be able to notice all the
implications, and a computer can, based on the provided data,
form unforeseen technologies.

Basically, the approach is all about changing the focus from
first developing lots of detailed content and then pruning, mod-
ifying and unifying it, to designing a compact rule set capable
to define the possible achievements. Despite its limitations,
our approach has its benefits. In contrast to the more common
method to create tech tree variations by removing techs from
a large pre-existing technology tree structure, growing a tech
tree based on few properties, techs, and rules makes it possible
to easily adjust general mechanics and idea manifestations
globally. The process is also meant to produce a unified logic
throughout the tree, which can be a cumbersome task to carry
out with traditional means. Although the core tree has to be
built with consideration, applying CATFAT may still also result
in savings of time and work.

There are, of course, tech tree types, for which it is hard
to generate additional technologies by simply concatenating
additional strings to tech names and letting techs inherit most
of their properties. In such cases, lots of effort must be put into
defining non-generalizable rules for generating single techs.
This means returning to the traditional way to define tech trees.

Nevertheless, if the technologies are generated as the game
progresses, one cannot – at least in theory and without prior

experience or with randomization used in generation – see the
possibilities offered in the distant future. Traditionally, tech
trees allow one to “build toward a goal” [17]. However, even
if the whole tree happens to be predetermined, we consider
revealing it all at once in the beginning of the game generally
a rather poor idea. Although one can optimize better with such
prior knowledge, often this kind of foreseeing makes a game
feel unrealistic and highlights the rigidity of the tree.

One could critisize our approach, because it does not
necessarily lead to any visual or functional novelties con-
cerning user experience; this work does not try to change
technology trees as structures into anything unprecedented. A
casual gamer could try a game without even noticing if it was
using sophisticated mechanisms to create technologies or not.
This argument, however, applies to PCG quite generally and is
not specific to our approach; PCG is typically used to enhance
conventional games, not to create totally new types of them.
Even the casual gamer – not especially interested in tech trees –
might, however, notice the difference, if the game was played
again, and the tree was formed differently because of some
randomization or learning scheme used. If the user actions
were taken into account in the dynamic tech tree creation, the
overall user experience might be improved from the baseline
case of a rigid tech tree, even if the user could not appreciate
the mechanisms in work.

In this paper we have presented examples of simple multi-
plicative property modification only, and so far that is the only
modification type supported by our implementation besides
setting values explicitly. Such modifications seem to be viable
and useful, but naturally, other ways to control properties may
be added in order to further improve the approach.

In addition to generating techs during runtime, CATFAT
can be used to facilitate traditional tech tree design process:
only a small amount of work is required to generate a tech
tree suggestion within the desired thematic and modeling
constraints. The tech tree for the final product can be prepared
based on such generated suggestions. For this kind of use it
might be beneficial to produce relatively large and modifiable
“generic” core trees for different game genres and settings.
With standardized tech tree implementation formats, offering
such products might even be convertible into a business model.

VIII. CONCLUSIONS

We have presented CATFAT, a general approach for aug-
menting technology trees by creating additional technologies
on runtime. The method reverses the conventional process of
creating temporal variance by first defining a large tech tree
and then leaving technologies out. CATFAT rather starts with a
minimal skeleton tree and a set of rules, and generates techs as
they are needed. Designing rules instead of single technologies
facilitates keeping the tech tree consistent. The approach can
also be used in a more conventional tech tree building process
to generate suggestions to start the design work with.

Initial tests indicate that the method can be used in practice,
and the resulting tech trees are of adequate quality. However,
mostly the method is still on the idea level, and further
evaluation and testing is still needed to ensure its general
applicability and usefulness. The key challenges are different
natures and characteristics of technology trees used within the

wide array of digital games, the difficulties of natural language
processing, and the visualization of tech-related entities.

As future work, we intend to continue testing and improv-
ing the CATFAT method and the TTT software. Generating
complex content related to techs – such as unit types with
their graphical representations – is a challenge that remains
still to be tackled. Interesting results might be obtained, e.g.,
by using genetic methods. Adding a user behavior–observing
manager to control the generation in order to customize the
gameplay automatically for individual players might be worth
trying. Such functionality could also be incorporated, e.g., into
the evaluator and balance corrector functions used.

REFERENCES

[1] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamen-

tals. MIT Press Ltd, 2003.

[2] A. Solo, “Innovative tech trees in space strategy games,”
http://www.spacesector.com/blog/2009/07/dynamic-and-specialized-
technology-research-in-space-strategy-games/, 2009, accessed March
30, 2015.

[3] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Trans. Multimedia

Comput. Commun. Appl., vol. 9, no. 1, pp. 1:1–1:22, Feb. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2422956.2422957

[4] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE

Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[5] E. Watrall, “Chopping down the tech tree: Perspectives of technological
linearity in god games, part one,” http://www.gamasutra.com/view/
feature/131570/chopping down the tech tree .php, 2000, accessed
July 19, 2012.

[6] T. Ghys, “Technology trees: Freedom and determinism in historical
strategy games,” Game Studies, vol. 12, no. 1, Sep. 2012.

[7] T. J. Heinimäki and T. Elomaa, “Facilitating technology forestry:
Software tool support for creating functional technology trees,” in
Proceedings of the Third International Conference on Innovative Com-

puting Technology, INTECH 2013, Aug. 2013, pp. 510–519.

[8] T. J. Heinimäki and T. Elomaa, “Quality measures for improving tech-
nology trees,” International Journal of Computer Games Technology,
vol. 2015, pp. Article ID 975 371, 10 pages, 2015.

[9] D. Thue and V. Bulitko, “Procedural game adaptation: Framing ex-
perience management as changing an MDP,” in Intelligent Narrative

Technologies: Papers from the 2012 AIIDE Workshop (AAAI Technical

Report WS-12-14). AAAI Press, Oct. 2012, pp. 44–50.

[10] G. N. Yannakakis and J. Hallam, “Real-time game adaptation for
optimizing player satisfaction,” IEEE Transactions on Computational

Intelligence and AI in Games, vol. 1, no. 2, pp. 121–133, Jun. 2009.

[11] E. Adams, Fundamentals of Game Design, 2nd ed. New Riders
Publishing, 2009.

[12] A. Zook and M. O. Riedl, “Automatic game design via mechanic
generation,” in Proceedings of the 28th AAAI Conference on Artificial

Intelligence, 2014.

[13] J. Alvarez and D. Djaouti, “An introduction to serious game – Defini-
tions and concepts,” in Proceedings of the Serious Games & Simulation

Workshop, 2011, pp. 10–15.

[14] P. Rego, P. M. Moreira, and L. P. Reis, “Serious games for rehabilitation:
A survey and a classification towards a taxonomy,” in the Proceedings

of the 2010 5th Iberian Conference on Information Systems and

Technologies (CISTI). IEEE, June 2010, pp. 47:1–47:6.

[15] K. Squire and H. Jenkins, “Harnessing the power of games in educa-
tion,” InSight, vol. 3, no. 1, pp. 5–33, 2003.

[16] N. Hallford and J. Hallford, Swords & Circuitry: A Designer’s Guide

to Computer Role-Playing Games, ser. PRIMA TECH’s Game Devel-
opment Series. Prima Publishing, 2001.

[17] P. Tozour, “Introduction to Bayesian networks and reasoning under
uncertainty,” AI Game Programming Wisdom, vol. 1, pp. 345–357, 2002.

