1,829 research outputs found

    Generating Second Order (Co)homological Information within AT-Model Context

    Get PDF
    In this paper we design a new family of relations between (co)homology classes, working with coefficients in a field and starting from an AT-model (Algebraic Topological Model) AT(C) of a finite cell complex C These relations are induced by elementary relations of type “to be in the (co)boundary of” between cells. This high-order connectivity information is embedded into a graph-based representation model, called Second Order AT-Region-Incidence Graph (or AT-RIG) of C. This graph, having as nodes the different homology classes of C, is in turn, computed from two generalized abstract cell complexes, called primal and dual AT-segmentations of C. The respective cells of these two complexes are connected regions (set of cells) of the original cell complex C, which are specified by the integral operator of AT(C). In this work in progress, we successfully use this model (a) in experiments for discriminating topologically different 3D digital objects, having the same Euler characteristic and (b) in designing a parallel algorithm for computing potentially significant (co)homological information of 3D digital objects.Ministerio de Economía y Competitividad MTM2016-81030-PMinisterio de Economía y Competitividad TEC2012-37868-C04-0

    Non-perturbative selection rules in F-theory

    Get PDF
    We discuss the structure of charged matter couplings in 4-dimensional F-theory compactifications. Charged matter is known to arise from M2-branes wrapping fibral curves on an elliptic or genus-one fibration Y. If a set of fibral curves satisfies a homological relation in the fibre homology, a coupling involving the states can arise without exponential volume suppression due to a splitting and joining of the M2-branes. If the fibral curves only sum to zero in the integral homology of the full fibration, no such coupling is possible. In this case an M2-instanton wrapping a 3-chain bounded by the fibral matter curves can induce a D-term which is volume suppressed. We elucidate the consequences of this pattern for the appearance of massive U(1) symmetries in F-theory and analyse the structure of discrete selection rules in the coupling sector. The weakly coupled analogue of said M2-instantons is worked out to be given by D1-F1 instantons. The generation of an exponentially suppressed F-term requires the formation of half-BPS bound states of M2 and M5-instantons. This effect and its description in terms of fluxed M5-instantons is discussed in a companion paper.Comment: 49 pages, 9 figures; v2: references adde

    On exact categories and applications to triangulated adjoints and model structures

    Get PDF
    We show that Quillen's small object argument works for exact categories under very mild conditions. This has immediate applications to cotorsion pairs and their relation to the existence of certain triangulated adjoint functors and model structures. In particular, the interplay of different exact structures on the category of complexes of quasi-coherent sheaves leads to a streamlined and generalized version of recent results obtained by Estrada, Gillespie, Guil Asensio, Hovey, J{\o}rgensen, Neeman, Murfet, Prest, Trlifaj and possibly others.Comment: 38 pages; version 2: major revision, more explanation added at several places, reference list updated and extended, misprints correcte

    Deformation theory of representations of prop(erad)s

    Get PDF
    We study the deformation theory of morphisms of properads and props thereby extending to a non-linear framework Quillen's deformation theory for commutative rings. The associated chain complex is endowed with a Lie algebra up to homotopy structure. Its Maurer-Cartan elements correspond to deformed structures, which allows us to give a geometric interpretation of these results. To do so, we endow the category of prop(erad)s with a model category structure. We provide a complete study of models for prop(erad)s. A new effective method to make minimal models explicit, that extends Koszul duality theory, is introduced and the associated notion is called homotopy Koszul. As a corollary, we obtain the (co)homology theories of (al)gebras over a prop(erad) and of homotopy (al)gebras as well. Their underlying chain complex is endowed with a canonical Lie algebra up to homotopy structure in general and a Lie algebra structure only in the Koszul case. In particular, we explicit the deformation complex of morphisms from the properad of associative bialgebras. For any minimal model of this properad, the boundary map of this chain complex is shown to be the one defined by Gerstenhaber and Schack. As a corollary, this paper provides a complete proof of the existence of a Lie algebra up to homotopy structure on the Gerstenhaber-Schack bicomplex associated to the deformations of associative bialgebras.Comment: Version 4 : Statement about the properad of (non-commutative) Frobenius bialgebras fixed in Section 4. [82 pages

    Hidden Selection Rules, M5-instantons and Fluxes in F-theory

    Full text link
    We introduce a new approach to investigate the selection rules governing the contributions of fluxed M5-instantons to the F-theory four-dimensional effective action, with emphasis on the generation of charged matter F-terms. The structure of such couplings is unraveled by exploiting the perturbative and non-perturbative homological relations, introduced in our companion paper arXiv:1506.06764, which encode the interplay between the self-dual 3-form flux on the M5-brane, the background 4-form flux and certain fibral curves. The latter are wrapped by time-like M2-branes representing matter insertions in the instanton path integral. In particular, we clarify how fluxed M5-instantons detect the presence of geometrically massive U(1)U(1)s which are responsible for `hidden' selection rules. We discuss how for non-generic embeddings the M5-instanton can probe `locally massless' U(1)U(1) symmetries if the rank of its Mordell-Weil group is enhanced compared to that of the bulk. As a phenomenological off-spring we propose a new type of non-perturbative corrections to Yukawa couplings which may change the rank of the Yukawa matrix. Along the way, we also gain new insights into the structure of massive U(1)U(1) gauge fluxes in the stable degeneration limit.Comment: 42 pages; v2: references adde

    A beginner's introduction to Fukaya categories

    Full text link
    The goal of these notes is to give a short introduction to Fukaya categories and some of their applications. The first half of the text is devoted to a brief review of Lagrangian Floer (co)homology and product structures. Then we introduce the Fukaya category (informally and without a lot of the necessary technical detail), and briefly discuss algebraic concepts such as exact triangles and generators. Finally, we mention wrapped Fukaya categories and outline a few applications to symplectic topology, mirror symmetry and low-dimensional topology. This text is based on a series of lectures given at a Summer School on Contact and Symplectic Topology at Universit\'e de Nantes in June 2011.Comment: 42 pages, 13 figure
    • …
    corecore