2,470 research outputs found

    ZETA - Zero-Trust Authentication: Relying on Innate Human Ability, not Technology

    Get PDF
    Reliable authentication requires the devices and channels involved in the process to be trustworthy; otherwise authentication secrets can easily be compromised. Given the unceasing efforts of attackers worldwide such trustworthiness is increasingly not a given. A variety of technical solutions, such as utilising multiple devices/channels and verification protocols, has the potential to mitigate the threat of untrusted communications to a certain extent. Yet such technical solutions make two assumptions: (1) users have access to multiple devices and (2) attackers will not resort to hacking the human, using social engineering techniques. In this paper, we propose and explore the potential of using human-based computation instead of solely technical solutions to mitigate the threat of untrusted devices and channels. ZeTA (Zero Trust Authentication on untrusted channels) has the potential to allow people to authenticate despite compromised channels or communications and easily observed usage. Our contributions are threefold: (1) We propose the ZeTA protocol with a formal definition and security analysis that utilises semantics and human-based computation to ameliorate the problem of untrusted devices and channels. (2) We outline a security analysis to assess the envisaged performance of the proposed authentication protocol. (3) We report on a usability study that explores the viability of relying on human computation in this context

    Body language, security and e-commerce

    Get PDF
    Security is becoming an increasingly more important concern both at the desktop level and at the network level. This article discusses several approaches to authenticating individuals through the use of biometric devices. While libraries might not implement such devices, they may appear in the near future of desktop computing, particularly for access to institutional computers or for access to sensitive information. Other approaches to computer security focus on protecting the contents of electronic transmissions and verification of individual users. After a brief overview of encryption technologies, the article examines public-key cryptography which is getting a lot of attention in the business world in what is called public key infrastructure. It also examines other efforts, such as IBM’s Cryptolope, the Secure Sockets Layer of Web browsers, and Digital Certificates and Signatures. Secure electronic transmissions are an important condition for conducting business on the Net. These business transactions are not limited to purchase orders, invoices, and contracts. This could become an important tool for information vendors and publishers to control access to the electronic resources they license. As license negotiators and contract administrators, librarians need to be aware of what is happening in these new technologies and the impact that will have on their operations

    Weathering the Nest: Privacy Implications of Home Monitoring for the Aging American Population

    Get PDF
    The research in this paper will seek to ascertain the extent of personal data entry and collection required to enjoy at least the minimal promised benefits of distributed intelligence and monitoring in the home. Particular attention will be given to the abilities and sensitivities of the population most likely to need these devices, notably the elderly and disabled. The paper will then evaluate whether existing legal limitations on the collection, maintenance, and use of such data are applicable to devices currently in use in the home environment and whether such regulations effectively protect privacy. Finally, given appropriate policy parameters, the paper will offer proposals to effectuate reasonable and practical privacy-protective solutions for developers and consumers

    Location Based Authentication

    Get PDF
    With the growth of wireless technologies in sectors like the military, aviation, etc, there is a need to determine the authenticity of a genuine user. Today\u27s conventional authentication mechanisms are based on three factors: knowledge, possession and biometrics. These factors are prone to theft, hardware failure, expensive, etc. Consequently, there is a need of a stronger solution. One such solution is Location Based Authentication that considers the location information of a user. The location information is time based and thus hard to steal. However, accuracy of the GPS, signal strength inside the building, etc, affects its potential. Consequently, there is a need to address alternatives. One such alternative is to implement a puzzle-based authentication scheme based on the location information. In the proposed scheme, the server asks dynamic location-based questions and the client answers them based on the proposed route of travel. This scheme strengthens the current authentication mechanisms

    Location Based Authentication

    Get PDF
    With the growth of wireless technologies in sectors like the military, aviation, etc, there is a need to determine the authenticity of a genuine user. Today\u27s conventional authentication mechanisms are based on three factors: knowledge, possession and biometrics. These factors are prone to theft, hardware failure, expensive, etc. Consequently, there is a need of a stronger solution. One such solution is Location Based Authentication that considers the location information of a user. The location information is time based and thus hard to steal. However, accuracy of the GPS, signal strength inside the building, etc, affects its potential. Consequently, there is a need to address alternatives. One such alternative is to implement a puzzle-based authentication scheme based on the location information. In the proposed scheme, the server asks dynamic location-based questions and the client answers them based on the proposed route of travel. This scheme strengthens the current authentication mechanisms

    An Approach to Software Development for Continuous Authentication of Smart Wearable Device Users

    Get PDF
    abstract: With the recent expansion in the use of wearable technology, a large number of users access personal data with these smart devices. The consumer market of wearables includes smartwatches, health and fitness bands, and gesture control armbands. These smart devices enable users to communicate with each other, control other devices, relax and work out more effectively. As part of their functionality, these devices store, transmit, and/or process sensitive user personal data, perhaps biological and location data, making them an abundant source of confidential user information. Thus, prevention of unauthorized access to wearables is necessary. In fact, it is important to effectively authenticate users to prevent intentional misuse or alteration of individual data. Current authentication methods for the legitimate users of smart wearable devices utilize passcodes, and graphical pattern based locks. These methods have the following problems: (1) passcodes can be stolen or copied, (2) they depend on conscious user inputs, which can be undesirable to a user, (3) they authenticate the user only at the beginning of the usage session, and (4) they do not consider user behavior or they do not adapt to evolving user behavior. In this thesis, an approach is presented for developing software for continuous authentication of the legitimate user of a smart wearable device. With this approach, the legitimate user of a smart wearable device can be authenticated based on the user's behavioral biometrics in the form of motion gestures extracted from the embedded sensors of the smart wearable device. The continuous authentication of this approach is accomplished by adapting the authentication to user's gesture pattern changes. This approach is demonstrated by using two comprehensive datasets generated by two research groups, and it is shown that this approach achieves better performance than existing methods.Dissertation/ThesisMasters Thesis Software Engineering 201

    Consumer-facing technology fraud : economics, attack methods and potential solutions

    Get PDF
    The emerging use of modern technologies has not only benefited society but also attracted fraudsters and criminals to misuse the technology for financial benefits. Fraud over the Internet has increased dramatically, resulting in an annual loss of billions of dollars to customers and service providers worldwide. Much of such fraud directly impacts individuals, both in the case of browser-based and mobile-based Internet services, as well as when using traditional telephony services, either through landline phones or mobiles. It is important that users of the technology should be both informed of fraud, as well as protected from frauds through fraud detection and prevention systems. In this paper, we present the anatomy of frauds for different consumer-facing technologies from three broad perspectives - we discuss Internet, mobile and traditional telecommunication, from the perspectives of losses through frauds over the technology, fraud attack mechanisms and systems used for detecting and preventing frauds. The paper also provides recommendations for securing emerging technologies from fraud and attacks
    • …
    corecore