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ABSTRACT  
 
   

With the recent expansion in the use of wearable technology, a large number 

of users access personal data with these smart devices. The consumer market of 

wearables includes smartwatches, health and fitness bands, and gesture control 

armbands. These smart devices enable users to communicate with each other, control 

other devices, relax and work out more effectively. As part of their functionality, these 

devices store, transmit, and/or process sensitive user personal data, perhaps biological 

and location data, making them an abundant source of confidential user information. 

Thus, prevention of unauthorized access to wearables is necessary. In fact, it is 

important to effectively authenticate users to prevent intentional misuse or alteration 

of individual data. Current authentication methods for the legitimate users of smart 

wearable devices utilize passcodes, and graphical pattern based locks. These methods 

have the following problems: (1) passcodes can be stolen or copied, (2) they depend 

on conscious user inputs, which can be undesirable to a user, (3) they authenticate 

the user only at the beginning of the usage session, and (4) they do not consider user 

behavior or they do not adapt to evolving user behavior.  

In this thesis, an approach is presented for developing software for continuous 

authentication of the legitimate user of a smart wearable device. With this approach, 

the legitimate user of a smart wearable device can be authenticated based on the 

user's behavioral biometrics in the form of motion gestures extracted from the 

embedded sensors of the smart wearable device. The continuous authentication of this 

approach is accomplished by adapting the authentication to user's gesture pattern 

changes. This approach is demonstrated by using two comprehensive datasets 

generated by two research groups, and it is shown that this approach achieves better 

performance than existing methods. 
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Index terms: continuous user authentication; smart wearable devices; 

behavioral biometrics; adaptive authentication. 

 



  iii 

DEDICATION  
 
   

 

This thesis is dedicated to my parents.  

It would not have been possible without you two!



  iv 

ACKNOWLEDGMENTS 

  
 First, I would like to express my sincere gratitude to my adviser Professor 

Stephen S. Yau for letting me be a part of his research laboratory. I am thankful for 

his support, patience, motivation and for the immense knowledge that he shared with 

me.  His guidance helped me a lot and I learned a lot from him. 

Besides my adviser, I would like to thank Professors Gail-Joon Ahn and Hasan 

Davulcu for their insightful comments, and suggestions on my thesis and for taking 

the time to be members of my Supervisory Committee. 

I also want to thank my laboratory mates Dr. Arun Balaji Buduru, Mr. Yaozhong 

Song, and Mr. Vineet Mishra for their valuable inputs. 

Last but not the least; I would like to thank my dear friends Himanshu Waidya, 

Aditya Bivalkar, Aditya Dabak and Kedar Pitke for their constant encouragement, and 

support.



  v 

TABLE OF CONTENTS 

          Page 

LIST OF TABLES ................................................................................................ vi  

LIST OF FIGURES ............................................................................................. vii  

CHAPTER 

1     INTRODUCTION .................  ..................................................................  1  

1.1    Overview ......................................................................... 1  

1.2    Organization of Thesis ....................................................... 6  

2     CURRENT STATE OF THE ART  ..................................................................  8 

3     THE OVERALL APPROACH TO SECURE SMART WEARABLES  .......................  18  

3.1    Threat Model of Our Approach .......................................... 18 

3.2    Assumptions .................................................................. 18  

3.3    Our Overall Approach ...................................................... 20 

4     DATA COLLECTION ..............  ...............................................................  25  

5     FEATURE EXTRACTION ...........  .............................................................  28  

6     TRAINING THE GRADIENT BOOSTED TREE MODEL OF OUR APPROACH  ......  32  

6.1    Background ................................................................... 32 

6.2    Decision Trees ................................................................ 33  

6.3    Feature Selection ............................................................ 35  

6.4    Gradient Boosting ........................................................... 39 

6.5    Regularization ................................................................ 44 

6.6    Reducing Bias ................................................................ 47 

6.7    Cross Validation .............................................................. 48 

6.8    Tree Model Evaluation ..................................................... 49 

7     AUTHENTICATION ...............  ...............................................................  53  

 



  vi 

CHAPTER             Page 

8     ADAPTATION ...................  ..................................................................  55  

9     CASE STUDY OF OUR APPROACH  ...........................................................  58  

9.1    Data Collection ............................................................... 58  

9.2    Feature Extraction .......................................................... 59  

9.3    Data Preparation for Training the Tree Model ...................... 59 

9.4    Feature Selection and Training the Tree Model .................... 61   

9.5    Tree-Model Evaluation ..................................................... 62  

9.6    Results .......................................................................... 62  

9.7    Comparison ................................................................... 64 

9.8    Adaptation ..................................................................... 66 

9.9    Running Our Approach as a Service .................................. 68 

9.10  Discussion ..................................................................... 68  

10     CONCLUSION AND FUTURE WORK  .......................................................  71  

REFERENCES.......  ..........................................................................................  73 



  vii 

LIST OF TABLES 

Table Page 

1.       Popular Smart Devices with Accelerometer and Gyroscope Sensors ........  26 

2.       Data Collection  ................................................................................  27 

3.       Extracted Features ...........................................................................  31 

4.       Evaluation Results ............................................................................  63 

5.       Comparison with Existing Methods ......................................................  65 

6.       Stratified Sampling as a means of Data Sampling .................................  67 

 



  viii 

LIST OF FIGURES 

Figure Page 

1.       Popular Smart Wearable Devices  .........................................................  2 

2.       Myo Gesture Control Armband .............................................................  4 

3.       Passcode Lock (Apple) and Graphical Pattern Based Lock (Android) ..........  9 

4.       Two-Factor Authentication ...................................................................  9 

5.       A Summary of Current User Authentication Methods for Smart Devices ...  11 

6.       Our Approach ...................................................................................  23 

7.       Embedded sensors of the Apple Watch ................................................  27 

8.       Decision Tree Structure .....................................................................  34 

9.       Training Set with Class Label Distribution ............................................  60 

10.     ROC curve for the Tree Model of Our Approach .....................................  63 

11.     ROC Curve Comparison .....................................................................  65 

 
 
 
 
 



  1 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

 

Smart wearable devices (also referred to as wearable technology or wearables) 

have been touted as one of the fastest growing applications of the Internet of Things 

(IoT) environment [1]. As per a recent report [2], the annual worldwide shipment of 

wearables is projected to reach 214 million units in 2019 – a 250% growth from 2015. 

Wearables are sensor-equipped smart devices designed to be worn external to the 

body [3] or be embedded in clothing [4]. The consumer market of wearables includes 

products like the Apple Smart Watch [3], Fitbit [5], Myo gesture control armbands [6]. 

Figure 1 shows some of the popular smart wearable devices (or device types) available 

in the market today.  

In the recent years, smart wearable devices have experienced rapid growth 

and wide scale adoption largely through affordable smart watches and fitness bands. 

Such is their popularity among users that an estimated nine out of ten smart phone 

sellers have come up with their own wearable device product or are about to launch 

one [36]. These smart devices provide novel ways to interact with users in the Internet 

of Things (IoT) environment. For instance, ubiquitous computing allows smart watch 

based wearables to enable users to avail limited features of a smart phone without the 

need to take out their phones. Users can communicate with each other, access emails, 

text messages, set reminders etc., just as they would with a smart phone. Besides, 

these smart devices very conveniently help measure user activities without requiring 

active user intervention. In the process, they motivate users to work out more 
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Fig 1: Popular Smart Wearable Devices 

 

 

effectively, sleep well, essentially helping them adopt a healthier lifestyle. Along the 

same lines, smart clothes [4] plan to help users measure intensity of work out, check 

the number of calories lost during activities like running, exercising etc. Gesture control 

armbands like Myo [6] on the other hand help control other electronic devices like a 

TV or a laptop computer with motion gestures, from a distance. The sensor readings 

from Myo determine action performed based on which another device is controlled 

from a distance. In a nutshell, wearables offer fast, convenient and affordable 

technology that you wear thus enabling users to utilize its features hands-free. 
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Wearables are slowly foot stepping in the world of healthcare. Nymi wristband 

[55] measures heartbeat of the wearer with the help of embedded ECG sensors. Such 

devices have a huge potential of turning the healthcare industry by making it possible 

to provide patients with facilities like personalized medicines and better disease 

diagnosis [7, 37], by monitoring patient activities and vital statistics.  

Although wearables offer quality services and convenience, they introduce new 

security, privacy and confidentiality preservation challenges. Wearables are generally 

used as personal electronic devices, because of which users store or access personal 

data with these devices. Consequently, as part of their functionality, wearables store, 

process and/or transmit confidential information such as personal health data, perhaps 

biometric, daily activities, location and/or communication data of a user. The nature 

and convenience of these devices make it easy to collect sensitive personal data 

unobtrusively and continuously. The need to protect such devices from unauthorized 

access is thus critical to their existence. Furthermore, wearables often operate by 

connecting to a secondary device (e.g. smart phone) via WiFi or Bluetooth, essentially 

connecting to other smart devices in the Internet of Things (IoT) environment, thus 

putting at risk other connected devices as well at the time of an attack. For example, 

research show that future wearables could be used as password managers that 

mediate access to other smart devices and online user accounts [52]. Wearables can 

also be used to access information such as personal bank account information [8], 

unlock cars, hotel or house doors, make payments etc. The association of wearables 

with such critical applications demand better security, protection and privacy 

preservation mechanisms. With a large majority of wearables entering the field of 

healthcare and personalized medicines, beyond privacy and confidentiality, 

information assurance and security must also encompass the critical aspects of safety 

and well-being of the individual. Malicious modification of user data may directly affect 
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the operation and functionality of the device. An effective user authentication scheme 

is thus necessary to prevent unauthorized access, restrict information leak and to uplift 

consumer trust which would in turn help wearables achieve their true potential. 

Current authentication techniques rely on the use of passwords, PINs or 

graphical pattern based locks. Adapting traditional authentication methods on 

wearables is especially challenging because most wearables lack an appropriate input 

interface to bolster reliable and secure entry of passwords. In fact, many wearables 

lack a UI or are too small to display a complex keypad (e.g. Myo armbands [6]). Figure 

2 shows the Myo Gesture Control armband. Furthermore, an attacker can easily forge 

passwords or PINs. Another disadvantage of using such authentication methods is that 

they do not continuously monitor the user and would only authenticate the user at the 

beginning of the usage session [9]. In addition, users often dislike such explicit means 

of authentication as they disrupt their daily activities. Reportedly, 34% of US users do 

not employ even basic lock screen patterns to secure their smart device [10]. 

 

 

 

Fig 2: Myo Gesture Control Armband 

 



  5 

Hence, an authentication mechanism that continuously and unobtrusively 

monitors and verifies the legitimate user is required. A continuous authentication 

scheme would verify the legitimate user throughout the usage session. On one hand, 

it is challenging to authenticate a wearable device user; on the other hand, these 

devices carry a multitude of cheap built-in sensors, which are capable of measuring 

user movements easily. In this thesis, we present a novel behavioral biometric based 

authentication approach utilizing user motion gesture data. Behavioral biometrics 

measure the consistency and uniqueness of behavioral characteristics of a user. 

Wearables are designed to capture biometric data continuously and uninterruptedly 

with the help of embedded sensors - we utilize this natural feature of wearables in our 

approach. Motion gesture data is collected through a wearable device via the built-in 

accelerometer and gyroscope sensors, and a user profile of the legitimate user is built. 

We use the accelerometer and the gyroscope sensors because complete motion 

information can be captured with a combination of these two sensors, which helps 

better model the user motion gesture patterns. In addition, these sensors do not 

require user permission to work. Based on the user model that is generated during the 

training phase, the legitimate user is validated during the verification phase. This 

approach is especially useful since the user wears a wearable device throughout the 

usage session facilitating continuous authentication. We implement scalable gradient 

boosting with decision trees to learn the user features. The effectiveness of our 

approach is demonstrated by using two comprehensive datasets. It is observed that 

our approach attains better performance than existing methods. An average accuracy 

of 98% and an average EER of less than 1% has been achieved. Up to perfect accuracy 

with no false positives has also been achieved by implementing our approach.  

We also present an adaptive approach to update the generated model to 

capture user gesture pattern evolution. With the presented method, the original model 
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is updated to incorporate information from the newly made available data. With ‘new 

data’ we refer to the data that is freshly generated and has not been previously used 

for training. This process of continuous learning takes up as many resources and as 

much time as it is required to just train on the ‘new’ data. It does not retrain again on 

all the available data. With ‘retraining’, we refer to training on the data on which the 

machine learning model has been trained in the past. Since, our approach trains on 

new data and does not exhibit retraining on previously trained data, it saves additional 

cost of retraining, since training models is essentially a costly event in terms of 

computational time and resources.  

Our approach thus has the following important features:  

(1) Utilizing behavioral features makes our approach more user-centric. 

(2) The user of a smart wearable is authenticated continuously throughout the 

usage session. 

(3) Conscious user inputs are not needed to carry out the authentication 

process.  

(4) The adaptive scheme in our approach improves the performance of our 

approach when the user behavior evolves, and hence makes our approach 

more user-centric. 

 

 

1.2 Organization of Thesis 

 

The organization of the thesis is as follows: After discussing the current state 

of the art in Chapter 2, our overall approach is presented in Chapter 3. This chapter 

also layouts the threat model and our assumptions. Chapters 4 – 8 discuss the steps 

of our approach in details. Our experimental results and the evaluation of our approach 
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is presented in Chapter 9. We discuss the conclusion and a probable future work for 

our current approach in Chapter 10. A list of references is provided next following 

Chapter 10. 
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CHAPTER 2 

 

CURRENT STATE OF THE ART 

 

Smart devices currently utilize authentication methods that are based on 

knowledge-factors, such as personal identification numbers (PINs), alphanumeric 

passwords, and graphical pattern based locks [9]. Figure 3 displays the passcode lock 

screen as it appears on an Apple Watch and the graphical pattern based lock screen 

as it appears on an Android Wear.  In this scheme of authentication, the user generally 

unlocks the smart device by entering a known passcode, which is based on what you 

know or are knowledge-based [9].  However, this method can be broken if passcodes 

are lost, stolen or forged [11].  Furthermore, it has been demonstrated that only half 

as many smart device users use PINs [11] and 34% of US based users do not use 

even basic lock patterns on their smart devices [10]. This is since password-based 

identification methods are distracting to a common user. In addition, users tend to 

choose simpler password combinations mainly because of the undesirable load of 

recollecting complex mix of characters. A study [22] shows that out of more than 

200,000 four-digit numeric passwords, 10 password designs made up 15% of the total, 

while two main password designs included designs as simple as `1234' and `0000'. In 

addition, 4-digit and 8-digit PINs have been shown to be broken within 40 minutes 

and 4 months respectively using existing techniques [38].  These methods are also 

vulnerable to shoulder surfing and smudge attacks [12, 13]. A smudge attack is a 

method by which oily residues or smudges from a touch pad can be used to detect 

passcodes or graphical pattern based locks. The simplicity and easy guess ability of 

passcodes or PINs, lack of wide-scale use [10], coupled with authentication only at the 

beginning of the usage session may cause bigger security breaches with such methods.  
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Fig 3: Passcode Lock (Apple) and Graphical Pattern Based Lock (Android) 

 

 

Recently, two-factor authentication frameworks have been adopted. These 

require the user to input a one-time sign-in code besides entering the original 

password in general. This is considered a more reliable method of authentication since 

it combines the two verification components: what you know (secret key) and what 

you have (an alternative smart device) [9]. Figure 4 provides a pictorial representation  

 

 

 

Fig 4: Two-Factor Authentication 
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of the method of two-factor authentication. In addition, a one-time password is 

considered a more secure alternative since it is valid for a short duration of time and 

thus has a lesser chance of being stolen or copied. However, the two-factor 

authentication scheme would fail in the event of theft attack, if the adversary assumes 

possession of the alternative smart device. 

Traditional authentication methods are difficult to implement in wearables 

because of the small size of the input interface. Many wearables (e.g., Myo armbands 

[6]) do not even have an input interface to implement password based authentication 

methods. Majority of portable personal wearable devices like the popular smart 

watches have a small input interface and it is inconvenient to type in complex PINs. In 

fact, such devices may not have as much surface area necessary for the user interface 

to incorporate a complex keypad. A way out is to employ biometric based 

authentication methods, which authenticate the user, based on who she is. Biometrics 

can be broadly categorized into two types: Physiological and behavioral based 

biometrics, which are discussed next. Figure 5 shows the classification of the different 

authentication strategies observed in the current state of the art. 

 Physiological biometric verification utilizes the uniqueness of physiological 

characteristics, for example, fingerprint, iris patterns [29], and face [30]. Recently, 

physiological biometric based access control has been incorporated via fingerprint and 

face recognition technologies respectively by Apple and Google on their smart devices 

[14]. However, fingerprint recognition technology relies heavily on state of the art 

hardware and specialized sensors [15]. Besides, attackers can capture fingerprints 

from public events [16]. Whereas facial recognition technology depends on using a 

camera to authenticate a legitimate user. The face recognition technology measures 

facial features of a legitimate user during the enrollment phase. During the verification 

phase, the face to be identified is compared with the enrolled facial image using an  
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Fig 5: A Summary of Current User Authentication Methods for Smart Devices. 

 

 

algorithm. Facial recognition has false rejection issues when individuals change 

hairstyle, shave facial hair or wear glasses or sunglasses [56].  In addition, face 

recognition fails to differentiate between identical twins [56]. A 2010 study shows that 

only 27% of the users would like to use facial recognition as a means of authentication 

owing to privacy concerns [17]. Google glass was disliked because of its facial 

recognition features. Consequently, Google dropped facial recognition from Glass [53]. 

In fact, the installation of additional hardware for physiological biometric based 

recognition systems increases cost and may not be feasible for lightweight, portable, 

low-cost wearable devices.  

A disadvantage of the aforementioned modes of authentication is that they 

depend on conscious user inputs, which are likely to cause an undesirable experience 
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for the user as they interrupt their daily activities. Furthermore, physiological biometric 

based recognition can potentially be used to authenticate an unconscious user [35].  

A way to overcome such privacy and feasibility concerns is to utilize behavioral 

biometrics for user authentication. Behavioral biometrics measure the uniqueness in 

the behavioral patterns of users. Behavioral features include voice [58], keystroke 

gestures [18], motion gestures [19], gait or walking style [20], touch-gestures on a 

touch screen device [21] etc. Research show that human beings exhibit considerably 

unique behavioral gestures [19, 31].  

 Continuous authentication has been achieved by monitoring touch dynamics in 

smart devices [21]. Touch gestures have been modelled by recording the pressure, or 

force exerted during a touch gesture or by capturing the accelerometer readings during 

the touch gesture [57] etc. However, modelling touch gestures on wearables is difficult 

due to the small area of the touch	interface. In fact, certain wearable devices like the 

Myo Armband does not have an embedded touch interface [4, 6]. Along the same 

lines, keystroke dynamics is not suitable for application to wearables, since most of 

these devices do not come pre-equipped with a complex keypad to model keystroke 

gestures well.  

Wearable devices are best known for capturing activities or motion gestures. 

This natural feature of wearables can be utilized to uniquely identify a user. This 

method also eliminates the need of additional sensors since motion gesture recognition 

sensors are pre-embedded in wearables.  

Negara et al. [31] in their paper show that motion gestures can help uniquely 

classify users even when they perform a simple basic activity like picking the phone to 

receive a call. Negara et al. [31] examined the uniqueness of arm movements for users 

with a 3-axis accelerometer. They achieved 87.8% accuracy when a user picks the 

phone from the table, and 90% accuracy when the phone is picked from the pocket. 
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A simple movement gesture would vary from person to person and is considered 

unique because of the difference in the physiological structure of the human body. The 

amount of force exerted by the different muscles to carry out a specific action may 

vary due to the variation in the muscular structure of the human body. The sensor 

readings would not be identical for the same reason [19, 31]. In the current literature, 

accelerometer [20], gyroscope [24], magnetometer [25] and GPS sensors [26] have 

been used to study user behavioral profile in this regard.  

Accelerometer and gyroscope sensors are mainly used as motion sensors. 

Accelerometers record the acceleration of the body part they are attached to. They 

also detect device orientation. Whereas, gyroscopes record the rotational velocity of 

the body part they are attached to. Depending on placement, gyroscopes can detect 

altitude of the different body parts they are attached to. These sensors are each able 

to capture acceleration and rotational velocity in three dimensions. Sensor data from 

these together provide a 6-dimensional vector, which has complete motion information 

of the body part these sensors are attached to [27]. Popular smart devices come pre-

equipped with these cheap, tiny, low-power sensors.  

A magnetometer sensor on the other hand measures the strength of the 

magnetic field in three dimensions. Though, electrical activity of the human body does 

not produce noticeable changes in the strength of the magnetic field, the 

magnetometer sensor helps infer heading of the user wearing it. Similarly, GPS sensors 

help infer the location of the user wearing it. Magnetometer and GPS sensors may 

provide valuable information at a time of a theft attack if the attacker decides to 

change the location. However, if an illegitimate user happens to use the device while 

being at a location frequented by the legitimate user then location-based sensors may 

not sense an anomaly. In order to address this issue, in the current literature, location-
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based sensors have often been used in conjunction with other sensors such as the 

accelerometer sensor. 

Gait pattern is a motion gesture based behavioral biometric. It has been 

extensively studied [20] in the current literature as a means of user identification and 

authentication and high accuracy has been achieved. Gait measures the uniqueness of 

the walk patterns as exhibited by a user. Nickel et al. [20] could achieve accuracy of 

82% with a 3-axis accelerometer by monitoring motion gestures from gait patterns 

using KNN (K-nearest neighbors) classification algorithm. However, they utilize just a 

single sensor for authentication, which largely limits their performance.  

Gadaleta et al. [32] achieved almost perfect accuracy by using both 

accelerometer and gyroscope sensors to measure gait patterns. They use convolutional 

neural networks and SVM. However, gait based authentication can authenticate users 

only when they are walking. Some physical effort is required as users need to walk for 

a few seconds to be accurately authenticated. A motion gesture based authentication 

approach, which can authenticate the user irrespective of the activity the user exhibits 

is shown in our approach. Such a system does not impose a constraint on what the 

user must do to be validated, ultimately leading to the development of a user-friendly 

system. This also does not interfere with the user’s routine activities.  

 Yang et al. [24] could identify wearable users correctly using motion gestures 

from accelerometer and gyroscope sensor data. However, they asked users to perform 

a specific set of actions to train the model. During the verification phase, the users 

were asked to repeat the same actions. Similarly, SenSec (Zhu et al.) [28] achieved 

an accuracy of 75% in identifying users with accelerometer, gyroscope and 

magnetometer sensors. However, the users performed fixed pre-determined actions. 

During validation, the user was asked to repeat the specific gestures, based on which 

she would be authenticated. These methods are a good alternative to traditional 
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authentication approaches. However, it would not authenticate the user continuously. 

These methods prompt the user to verify their legitimacy by following a script of 

actions in order to be authenticated. In addition, it requires the user to consciously 

participate in the authentication process, which might interfere with user’s regular 

activities. Performing specific or determined gestures can be cumbersome to the user 

as well and a conscious user may never exhibit natural gestures. Such an 

authentication approach may be vulnerable to mimic attacks [24].  

To overcome these issues, an authentication system should be built which 

would authenticate users unobtrusively by utilizing natural gestures, which users 

exhibit unconsciously, since natural gestures are difficult to spoof [19]. Lu et al. [32] 

present an unobtrusive method of user authentication. They used a combination of a 

supervised decision tree classifier and an unsupervised learning algorithm. It was 

demonstrated that even with 20% more data about 5% less accuracy was obtained 

when using unsupervised learning as compared to using supervised learning. Davidson 

et al. [33] in their study compared two algorithms: K-Nearest Neighbor (KNN) and 

Random Forests to authenticate smart watch users. They demonstrated that both KNN 

and random forests were robust to overfitting with KNN	being robust against noisy 

data. However, they observed that KNN algorithm provides better performance with a 

high computational cost, with a requirement to tune k in each experiment. We see that 

with our approach better performance with lower complexity is obtained. 

Lee et al. [25] achieved high accuracy of up to 95% by monitoring gestures 

using accelerometer, gyroscope and magnetometer sensors on a smartphone device. 

Chauhan et al. also presented a continuous authentication scheme for smart wearable 

devices [34]. However, they both use SVM, which provides high accuracy at the cost 

of quadratic computational complexity. Our approach yields high accuracy with 
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gradient boosting on decision trees, which has a lower time complexity, and is thus 

computationally more efficient. 

 Few works have addressed the issue of adapting to a change in user gesture 

patterns. Behavioral features of a user may evolve over time. A well-trained model 

would fail to recognize a legitimate user eventually if the user gesture pattern evolves 

causing a change in the user behavioral profile. The classification accuracy would 

drastically reduce if user gesture evolution is not captured well. This calls for frequent 

or regular training of the data to build a new model to adapt to changes in user motion 

gestures. Lee et al. [25] in their paper talk about continuous rebuilding of the machine 

learning model to adapt to changes in user behavioral patterns. It is not very clear 

using how much or on what data the model would be retrained. Chauhan et al. [34] 

presented a method in which random samples from previous days’ data are mixed with 

data from the present day daily as a method to adapt to changing user gesture 

patterns. Retraining a model regularly to capture user gesture pattern changes is 

extremely costly in terms of the acquired time and space complexity, especially when 

the size of the data is large and ever increasing. Furthermore, random sampling has 

disadvantages like over-representation or under-representation of a specific 

population of data. With random sampling, there are chances of losing important 

information from the data if resourceful samples are not picked.  

We present a novel and an efficient approach to adapt to user behavioral 

evolution in this thesis. To reduce the computational cost of rebuilding the machine 

learning model, our approach updates the model by training it on top of the existing 

model. This way we do not retrain on data on which our model has already been trained 

in the past. We update our model by training it just on newer data to include 

information from the newer data. So, essentially, each time while updating the original 

model, the training happens just on newer data. With “newer data” we refer to the 
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data, which has not been used for training in the past. This way we build an updated 

model, which has been trained on all the available data, but with lower computational 

cost. Since, we reuse the original model and then update it, we save on computational 

cost. Our approach thus yields high performance while saving time and computational 

resources.  
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CHAPTER 3 

 

THE OVERALL APPROACH TO SECURE SMART WEARABLES 

 

3.1 Threat Model of Our Approach 

 

In our approach, we consider a situation in which an attacker has access to the 

following: 

• Physical access to the smart wearable device 

• Passcodes or PINs for unlocking the smart device  

• Private data (e.g. email, text messages) available on the smart device 

• Synced data that is available on the smart device as the smart wearable 

connects to other devices in an IoT environment. 

An attacker may gain possession of private data stored on the smart device. 

Our aim is to generate a sensor data based behavioral biometric authentication system 

that would validate a user uninterruptedly. Thus, at the time of attack, the adversary 

would be forced to validate herself beyond the passcode validation step. 

 

 

3.2 Assumptions 

 

 We make few reasonable assumptions in our approach, which are described in 

this section. 

The presented approach uses accelerometer and gyroscope sensors from a 

wearable smart device to read user behavioral data. Depending on the collected data, 

a user profile is built during the training phase. The user profile in the form of the 
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machine learning model is used to predict the validity of a user accessing the device 

continuously. Throughout the process, we heavily rely on the sensor data readings. 

The user validation step is dependent on the sensor readings as well. We assume that 

the sensors are not faulty or damaged. We also assume that the sensors used in our 

approach provide us reasonably accurate readings throughout the training and the 

validation steps. In addition, we assume that the sensor readings have not been 

tampered or modified by any means possibly by an attacker.  

During an initial enrollment phase, the data is collected from the smart device 

for a period for building the machine learning model. Unless the first initial model has 

been built, the authentication process is inactive. We assume that during the initial 

training phase, the legitimate user uses the device and the data is safe from attacks. 

We also assume that an attacker does not have access to the generated model, and 

the model is secure from illegitimate modification. In summary, we assume that the 

components of the authentication software are secure from illegitimate access or 

modification. We assume that the authentication software is inaccessible to the device 

owner. Under such assumptions, an attacker as defined by our threat model would not 

have access to the authentication software, so our assumption is feasible in a real-

world scenario. 

It is worthy of mention that we primarily consider confirming a user against the 

smart device owner, since smart devices are generally personally owned devices which 

are not shared across multiple users.  

We also assume that the user of the smart wearable device wears the device 

at the same part of the body throughout the training and the validation phases. It is 

common for users to wear the same smart watch on either of their wrists. The 

dominant and the recessive side of a human body may produce different sensor 

readings for the same user. Many smart watch manufacturers ask the users to specify 
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if the user is wearing the smart watch in their dominant wrist or not for a specific 

usage session. To keep things simple, thus, for our study we assume that the user 

wears the smart device at the same body part throughout the training phase as well 

as the validation phase. 

 

 

3.3 Our Overall Approach 

 

Wearable devices come with an array of in-built sensors, the one common thing 

among these devices is their ability to monitor, and record user motion gestures with 

the help of these embedded sensors. These sensors along with their wide scale 

availability make wearables highly appropriate for implementing a motion gesture 

biometric based authentication system. An important advantage with wearables is that 

by their nature, these devices are always worn by user, thus capturing behavioral 

biometrics for authentication is easy and feasible. This in turn makes it possible to 

implement the continuous authentication scheme as well. 

We present an approach to develop an authentication software for smart 

wearable users in this thesis. Our primary goal is to develop a user-centric continuous 

authentication software to secure smart wearables in the Internet of Things (IoT) 

environment by using user motion gesture based behavioral biometrics. Our approach 

has two major components: 

1. The first component learns user behavior and generates a user profile in the 

form of a machine-learning model. This machine learning model is used to 

authenticate the user continuously throughout the usage session.  

2. The second component updates the generated model periodically as required. 
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Our approach eliminates the need of conscious user inputs. We plan to hide the 

components of the authentication software from the user as part of abstraction. In 

addition, we plan to make the authentication software inaccessible to users to prevent 

unauthorized modification. 

A smart wearable user would wear the smart device throughout the usage 

session. Thus, continuous stream of data is obtained which can be utilized for 

continuous authentication. Hence, the user can be authenticated throughout the usage 

session. This is exactly what we mean by “continuous authentication”. Furthermore, 

smart wearables are designed to recognize motion gestures. We incorporate this 

natural feature of wearables in our approach. We utilize motion sensor data for building 

the user behavioral profile (machine learning model) which is also used to verify the 

legitimacy of the user. 

As per our approach, we collect the motion gesture data of the user from the 

accelerometer and gyroscope sensors embedded in the wearable device. Additional 

features are extracted from the sensor data after which all the features are used as 

input for training the model. We implement scalable gradient boosting on decision 

trees to generate the machine learning model.  

The machine learning model validates the user after receiving fresh sensor data 

during the validation phase. Please note however that the raw data must be passed to 

the feature extraction algorithm as input, the output from which is passed to the built 

machine-learning model as an input to output a decision. The decision of the model as 

an output tells if the user is legitimate or not. If the user’s legitimacy is verified as part 

of the decision from the model output, then the validation service continues to run in 

the background. If a user is determined to be an illegitimate user, then the 

authentication service locks the device and the user is required to validate herself.  
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As part of adaptation, the previously generated model is updated in the event 

of a substantial dip in the accuracy of the decision-making process. It is responsible 

for updating the model with freshly generated data by training it on top of the existing 

model. The process of updating the model happens in the model generation (training 

the tree model) step. However, it needs to be initiated by the adaptation process.  

Popular wearable devices store user data for a period, after a decided period, 

a fresh new model can be generated by replacing the existing model. This is because 

older data may not be as useful after a certain point of time. Replacing the model after 

a substantial period (e.g. few months) is a more feasible option than replacing the 

model frequently instead of updating the model. This is because training models is an 

extremely costly event in terms of the acquired computational time and resources. 

Figure 6 shows our overall approach, which can be summarized as follows:  

 

(Step 1) Data Collection: User motion gesture data is collected in this step.   

(Step 2) Feature Extraction: The feature extraction algorithm gets the 

collected data as input and statistical features are extracted as an output 

at the end of the step.  

(Step 3) Training the Gradient Boosted Tree Model: The features are passed 

on as input to the scalable and optimized Gradient Boosted Decision 

Tree (GBDT) algorithm to train the model on the input features in this 

step. The learning model is generated and saved at the end of this step. 

(Step 4) Authentication: The user is validated in this step. The user validation 

service runs in the background for authentication purposes.  

(Step 5) Adaptation: The gradient boosted tree model that is built as part of 

step 3 is updated in this step as part of adaptation. This step is to an 

extent dependent on the feedback received from Step 4. 
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During the initial training phase, the sensor data is collected and the initial 

machine-learning model is generated. After the model is built and saved, the 

continuous authentication service is activated. The authentication service receives 

fresh data from the output of the feature extraction algorithm. The features are passed 

on as input to the saved learning model and the result determines validity of the user.  

 

 

 

Fig 6: Our Approach 
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The authentication service sends feedback to the adaptation service regarding model 

performance. The adaptation service decides to update the model if the accuracy dips 

substantially. It interacts with the model generation service to update the existing 

model. The updated model is saved in place of the original model. The steps are 

repeated henceforth.  

In the upcoming chapters, further details of the steps of our approach to 

develop the authentication software are provided. 
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CHAPTER 4 

 

DATA COLLECTION 

 

This chapter discusses the very first step of our approach. It is an important 

step because all the remaining steps or components of our approach depend on it.  

In the data collection step, readings from accelerometer and gyroscope sensors 

are collected. Accelerometer sensors are used to record the acceleration and gyroscope 

sensors are used to record the rotational velocity of the body part they are attached 

to. There are few advantages of using these sensors. Firstly, these sensors are each 

able to capture acceleration and rotation in three dimensions and together they can 

provide complete motion information of the body part they are attached to [27] in six 

dimensions. This is a major reason as to why in our study we use both the 

accelerometer and gyroscope sensors. Secondly, popular smart devices come pre-

equipped with these cheap, tiny, low-power sensors. Table 1 provides a list of smart 

devices with the accelerometer and the gyroscope sensors. Last but not the least, 

these sensors do not need user permission to work. Thus, they are able to collect user 

data without the need of active user intervention. Figure 7 shows the embedded 

sensors of the Apple Watch. 

A wearable device user wears the device during the usage session. Thus, data 

can be continuously collected during the usage session. Initially, data is collected for 

training the gradient boosted tree model. Later, data is collected primarily for the 

purpose of authentication of the legitimate user once the trained tree model has been 

generated. Collected data from this step is also used to initiate the process of 

adaptation. Data collected from this step is always passed to step 2 for feature 

extraction. 
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Table 1: Popular Smart Devices with Accelerometer and Gyroscope Sensors 

 

Smart Device Accelerometer Gyroscope Device Type 

Apple Watch Series ü ü 

Smart Watch 

Or 

Fitness Bands 

Fitbit Surge ü ü 

Alcatel One Touch 
Watch ü ü 

Motorola Moto 360 
Watch ü ü 

LG G Watch ü ü 

Asus Zen Watch ü ü 

Huawei Watch ü ü 

Samsung Gear Watch ü ü 

Samsung Gear Watch ü ü 

iPhone 6 ü ü 

Smart Phone 
Nexus 7 ü ü 

Huawei P8 ü ü 

Samsung S6 ü ü 

Myo Armband ü ü Gesture Control Arm 
Band 

Nymi ü ü Heartbeat Monitor 
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Fig 7: Embedded Sensors of the Apple Watch 

 

 

At the end of the data collection step, accelerometer and gyroscope readings 

in the three axes or the three dimensions are obtained. Table 2 shows the data that is 

obtained as part of data collection. 

 

 

Table 2: Data Collection 

 

Acceleration in x-axis 

Accelerometer sensor Acceleration in y-axis 

Acceleration in z-axis 

Rotational velocity in x-axis 

Gyroscope sensor Rotational velocity in y-axis 

Rotational velocity in z-axis 
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CHAPTER 5 

 

FEATURE EXTRACTION 

 

The collected data from step 1 of our approach is passed to the feature 

extraction algorithm as input for feature extraction. In this chapter, the feature 

extraction algorithm is discussed in detail.  

The goal of feature extraction is to derive values or features from the original 

data to discover meaningful insight from data; reduce noise, and redundancy. Feature 

extraction is a useful step that helps estimate the classification parameters of the 

supervised machine-learning model more accurately. We primarily derive statistical 

features from the raw sensor data. Table 3 provides a list of all the features extracted 

in this step. 

Firstly, we extract the magnitude of acceleration from the accelerometer 

readings in three dimensions. Similarly, we calculate the magnitude of the rotational 

velocity from the gyroscope readings in three dimensions. Next, we begin the process 

of extracting statistical features. To prepare the dataset for feature extraction, we 

divide the entire dataset into non-overlapping frames or windows. Each window consists 

of fixed sized data points. Segmentation of sensor data into uniform windows has been 

found to be effective in the current state of the art [49] as a data preparation step prior 

to feature extraction. The number of data points per window can be determined by 

considering the sampling rate of the sensors. For a sampling rate of 30-60Hz (the 

general sampling rate for accelerometer and gyroscope sensors for majority of smart 

devices), a 10s window (rounded off) would have around 300 data points. Considering 

the information, we divide the dataset in a way such that each non-overlapping window 

has 300 data points. From the data points of each bucket for both the sensors per axis, 
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and for the magnitude values per sensor, we extract statistical features. Some of the 

statistical features are the result of a mathematical aggregate function (e.g. mean, 

maximum, minimum etc.) which are computed over each data point per window. The 

result from the aggregate is replicated across all the data points of the window. 

Algorithm 1 is the feature extraction algorithm for our approach. 

 

 

Algorithm 1: Feature Extraction 

Note: All the calculated values are saved under the corresponding features.  

 

1. Calculate magnitude of accelerometer readings. 

2. Calculate magnitude of gyroscope readings. 

3. Split the data set into B frames of fixed window size k 

4. For B = 1 to n  

4.1. Calculate mean, standard deviation, variation, maximum, minimum, skewness, 

kurtosis, root mean square (RMS) for all k samples. 

4.2. Repeat 4.1 for accelerometer readings for accelerometer readings for 3 axes, 

gyroscope readings for 3 axes, and magnitude values for accelerometer and 

gyroscope. 

4.3. Replicate each calculated value across k samples 

4.4. End For. 

5. Calculate waveform length (𝑥"#$-𝑥") for accelerometer readings for 3 axes.  

6. Calculate waveform length (𝑥"#$-𝑥") for gyroscope readings for 3 axes. 

7. Calculate average absolute difference of mean for accelerometer readings for 3 

axes, gyroscope readings for 3 axes. 

8. For B = 1 to n 
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8.1. Calculate range, first quartile, second quartile, third quartile 

8.2. Repeat 10.2 for accelerometer readings for 3 axes, gyroscope readings for 3 

axes 

8.3. Replicate each calculated value across k samples 

8.4. End For. 

9. For B = 1 to n 

9.1. Calculate binned distribution values with bin size = 10. 

9.2. Store each bin result as a separate column of feature. We should have 

10 bin columns. Replicate each bin’s value across k samples. 

9.3. Repeat 9.1 and 9.2 for accelerometer readings for 3 axes, gyroscope 

readings for 3 axes. 

9.4. End For. 

10.  End. 

 

 

 

After data preparation, additional features are extracted from the data. The 

features obtained from the feature extraction algorithm as output, are passed as input 

to train the model. The features are input to the generated model after training for 

continuous authentication purposes. Data preparation and feature extraction has a key 

role in model performance and must be carefully executed. 
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Table 3: Extracted Features 

Feature Aggregate 
Function Extracted From 

Magnitude û 

3-axis accelerometer 

+ 

3-axis gyroscope 

Mean ü 

3-axis accelerometer 

+ 

3-axis gyroscope 

+ 

Magnitude from 3-axis 
accelerometer 

+ 

Magnitude 

from 3-axis gyroscope 

Standard deviation ü 

Variation ü 

Maximum ü 

Minimum ü 

Skewness ü 

Kurtosis ü 

RMS ü 

Waveform length û 

3-axis accelerometer 

 

+ 

 

3-axis gyroscope 

 

 

Absolute difference of value 
from mean û 

Average absolute difference 
from mean ü 

Binned distribution (10 bins) ü 

Range ü 

First quartile ü 

Second quartile ü 

Third quartile ü 
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CHAPTER 6 

 

TRAINING THE GRADIENT BOOSTED TREE MODEL 

 

In this chapter, we discuss in details the core of our approach: training the 

gradient boosted decision tree model. This is step 3 of our approach. We start by 

providing a brief background of the classification problem at hand. We then discuss in 

greater depth the machine learning model generation algorithm. 

Information from the data collection step is passed on as input to the feature 

extraction algorithm for processing. The features obtained as output are fed to the 

tree building algorithm for generating the tree model. The machine-learning model is 

prepared in this model generation step. The generated model learns the user behavior 

based on the data collected from the accelerometer and the gyroscope sensors, and 

the features extracted.  The model is saved and made available to the authentication 

service, about which we would discuss in the upcoming sections. The generated model 

at the end of the step is used to determine the legitimacy of the user as part of the 

process of continuous authentication. 

 

 

6.1 Background 

 

   Machine learning algorithms provide an ability to predict on new data on being 

trained upon a learning dataset. Mathematically, a machine learning model refers to a 

mathematical function, which predicts the target variable 𝑦" as the output, given the 

input 𝑥", where i refers to an instance of data. A supervised machine learning algorithm 

is one, which uses a training dataset with known or labelled target values to learn the 
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features. The target variable is the feature on which a prediction must be made. To 

generate a machine learning model, the model is trained on a training dataset and 

then it is evaluated or tested against a test dataset. A good machine learning model 

should not only predict well on training data, but also predict well on test data. The 

evaluation metrics determine the quality of the generated model.   

The goal of the machine-learning model of our approach is to predict if a user 

is the legitimate user. The target values of our learning model are “authentic” and 

“not-authentic” for the legitimate user and the illegitimate user respectively. This is a 

2-class supervised classification problem where each instance of the training dataset 

is associated with either of the two pre-determined class labels (target values). The 

pre-determined labels are used for training or learning the user features. We 

implement scalable and regularized gradient boosting on decision trees to learn the 

user features. In the later sections of the chapter, we would describe the training 

algorithm and the evaluation metrics for testing the generated machine learning 

model. 

 

 

6.2 Decision Trees 

 

Decision trees are used as the base classifier for building the model. The 

objective of a decision tree classifier is to predict the target variable by learning 

classification rules construed from the features of the input data.  

Decision tree classifiers have several advantages and the reasons as to why we 

use decision trees as the base classifier are discussed as follows: Decision trees are 

powerful classifiers who can model non-linear relationships between features and the 

target variable. The decision tree model is good at handling data with numerical 
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features and features coming from different sources without much tuning. This is very 

much applicable to our problem at hand since we get data from multiple sources - 

accelerometer and gyroscope sensors each of which records data in 3-dimensions. 

Furthermore, trees require very little data preparation or normalization because they 

can handle qualitative predictors. Last but not the least, decision trees are known for 

being simple and intuitive for analysis and explanation purposes. 

A decision tree comprises of one root node, one or more general nodes, leaf 

nodes, and edges coming out of each node. Each node branches out into several child 

nodes via edges. Each node represents an attribute or feature. The appearance of a 

feature in a tree tells us about the significance of the related attribute in forming the 

decision tree model. The leaf nodes represent class labels. The edges coming out of 

each node represent the possible values of the feature node from which they initiate. 

All the features are passed in as an input to the decision tree algorithm. The output is 

the generated decision tree model. Figure 8 represents the decision tree structure. 

 

 

 

Fig 8: Decision Tree Structure 
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6.3 Feature Selection 

 

An important characteristic of decision trees is automatic feature selection as 

part of classification. Feature selection is a process of selecting a relevant subset of 

features from the set of all the available features. Relevant features can be defined as 

features which are neither irrelevant nor redundant to predict the target variable in 

the machine learning problem at hand. An irrelevant feature on the other hand does 

not affect the prediction at all and a redundant feature does not add value to predicting 

the target. Reducing the number of features is also called dimensionality reduction. 

Moreover, effective feature selection leads to less memory utilization [39], reduced 

train and test time [40]. Feature selection also reduces chances of overfitting [41].  

Feature selection surely helps increase model performance. However, an 

additional feature selection step may be expensive to implement in terms of 

computational time and resources. Decision trees provide a natural way of optimization 

by combining the feature selection and classification steps. We utilize these 

advantages of trees in our approach, which eliminate the need of having an additional 

feature selection step. 

The standard decision tree model follows the c4.5 algorithm [54]. We 

implement this standard algorithm in our approach. Decision trees work by splitting 

on attributes or features at each node. An attribute is selected for a split based on 

some estimation criteria. The estimation criteria select the best feature to split on. 

Information gain and entropy reduction provide a measure of the estimation criteria 

[42]. The criteria try to discover the feature that best discriminates the target class 

values.  

Entropy reduction is an estimation criterion, which is used to perform feature 

selection as part of building the decision tree. Entropy measures the randomness of 
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instances of data. In other words, it measures the homogeneity of data in a sample 

space. Mathematically, entropy for a binary class can be given by equation (1), where 

P(a) stands for the probability of occurrence of class value a and P(b) stands for the 

probability of occurrence of class value b: 

 

Entropy = - P (a)*log	'(P (a)) - P (b)*log	' (P (b))  (1) 

 

 

Thus, from equation (1), entropy of the data with 50% of each class is 1 (maximum 

entropy) and for a distribution in which either of the class labels are present, the 

entropy is 0. A training set with maximum entropy is good for learning since the data 

distribution is unbiased. In the upcoming sections, we would talk more about bias and 

variance. 

 Information gain on the other hand measures the importance of a given 

attribute/feature. In other words, it measures how an attribute helps discriminate the 

training set based on the target variable. It selects the best feature to split on at a 

given time. Its value is calculated from the difference between the parent node entropy 

and the expected weighted average of the entropy of children nodes that would be 

formed if a split on the attribute occurs. Mathematically, information gain can be 

represented by equation (2), where the first term represents the entropy before a split 

occurs and the second term represents the expected entropy if a split occurs. Equation 

(2) provides the information gain (S, A) of a feature or attribute A with respect to 

sample space S [42]. In equation (2) the term values(A) represents all possible values 

of feature A with respect to S, 𝑆) is the subset of S for which v is a feature value of 

attribute A. The term Entropy	 (𝑆))	is the sum of entropies for each subset v. 
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𝑆) /|𝑆|)	€	)6789:(;) (Entropy	(𝑆)))	term thus calculates the weighted average of the entropy 

of subset v.  

 

 

Information Gain (S, A) = Entropy(S) - S= /|S|=	€	=>?@AB(C) (Entropy (S=))       (2) 

	

	

For each node of the tree, the information gain is calculated for each feature, and the 

feature with the maximum information gain is chosen for the split. An expected 

reduction in entropy is caused due to a split. 

 Decision trees thus work by splitting the sample set into subsamples based on 

the values of the attributes. The process of splitting nodes is done recursively via 

recursive partitioning. This is a greedy method of problem solving. The C4.5 algorithm 

for generating a decision tree model is provided by Algorithm 2.  

 

 

Algorithm 2: Decision Tree algorithm 

 

1. Check if all instances belong to same class. 

1.1 If yes, go to step 1.2. If no, go to step 2. 

1.2 Create a leaf node with that class. 

2. Check if none of the features provides an information gain. 

2.1 If yes, go to step 2.2. If no, go to step 3. 

2.2 Use the expected value of the class to create a decision node higher 

up the tree. 

3. Check if instance of a new class label appears. 
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3.1 If yes, go to step 2.2. If no, go to step 3. 

3.2 Use the expected value of the class to create a decision node higher 

up the tree. 

4. For each attribute 𝐴", calculate the information gain if a split of 𝐴" occurs. 

5. Let 𝐴E be the attribute, which provides maximum information gain if a split 

occurs. 

6. Create a classification node that splits the attribute 𝐴E. 

7. Repeat all steps for subsets obtained by splitting 𝐴E. Add new nodes as children 

of current node. 

8. End. 

 

 

Decision trees are simple, easy to understand, and interpret, and have several 

other advantages. But, a major limitation of decision trees is that they easily overfit. 

Because of which decision tree learning does not generally achieve high prediction 

performance, when compared to other methods. This is because a small change in the 

data may produce a very different tree leading to a large difference in prediction. Tree 

learners often create very complex trees, which lead to overfitting. Overfitting occurs 

when machine learning models do not generalize well beyond the training set. Decision 

tree models are very sensitive to small changes in data and do not perform well on 

new data. Boosting helps resolve such limitations of decision trees.  
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6.4 Gradient Boosting 

 

Boosting [44] is an ensemble method of learning which combines multiple weak 

learners to generate a strong learner. Strong learners are learning algorithms that 

produce classification results, which are close to true classification. In other words, 

strong learners yield high performance. Weak learners on the other hand do not 

provide high performance and perform little better than random guessing. Shallow 

decision trees or decision trees with little depth (levels) are generally considered as 

weak learners since they do not fit the train data very well. Boosting is a general 

technique which is known for producing high performance results by combining weak 

or moderately weak learners to develop a strong learner.  

Boosting optimizes the overall model building process by reducing bias and 

variance. Bias is caused when an algorithm underfits the data. Bias occurs due to 

wrong assumptions in the learning process, which can cause the training algorithm to 

miss important relationships between the features and the target variable. While 

variance is an error that occurs if the model is sensitive to small changes in the data. 

Variance leads to overfitting and happens when the trained model does not generalize 

well beyond the training set. 

In our approach, we use boosting with decision trees as the base learner. It 

uses multiple weak or shallow decision trees to build a model, which generalizes well. 

The boosted decision tree algorithm combines the predictions of multiple trees to 

predict a class value.  It combines the prediction from the several trees in an additive 

manner. Our approach has the advantage of the underlying tree structure, and with 

boosting we get a more effective algorithm for learning the final nonlinear resulting 

ensemble of trees. Equation (3) provides the boosted decision tree ensemble equation 

where 𝑓" 𝑥  stands for a decision tree and 𝑔 𝑥  stands for the boosted tree model.  
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g x = 	 fL x +	 f$ x + f' x + ⋯ fO x   (3) 

 

 

The gradient boosting [43] algorithm is a specific boosting technique. It 

combines base learners, which are decision trees in our case with a method called 

gradient boosting. The name gradient boosting is derived from the optimization 

function of gradient descent, since gradient boosting uses the gradient descent 

algorithm for boosting. The gradient descent method is used to minimize the loss 

function when adding trees. Conceptually, a loss function is some function of the 

difference between the estimated and the true values of the labels of the instances. 

Commonly used loss functions: mean squared error and logistic log functions are given 

by equation (4) and equation (5) respectively. The following equations are formulated 

considering that in a training data sample of known values of 𝑥"	and target class values 

of 𝑦", where i represents each data point and n is the total number of data points, the 

training set is {𝑥", 𝑦"}.  

	

L	(yS,	g	(xS))	=	
$
T
	 (yS − yS)'	     (4) 

 

 

L	(yS,	g	(xS))	=	
$

?VW '
	log	(1	+e[\](^))	 			 	(5) 
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Logistic log function being continuous helps utilize gradient descent and is a 

common classification loss function. In our approach, we use the logistic log function, 

which we call log loss. It is used to determine model accuracy and evaluate the model. 

Equation (6) shows the gradient descent optimization function where t stands 

for the number of iterations and h stands for the step size. If we want to optimize 

differentiable function f(x), the gradient descent algorithm works by iteratively finding: 

 

       𝑥_#$ = 	 𝑥_	-	h
ab
ac
	|cdce	   (6) 

 

Let g(x) be our model function. From equation (3), we can express g(x) for each 

iteration as equation (7), where symbols have their usual significance: 

 

 
𝑔_(x)	=	 𝑓"_[$

L (x)   (7) 
 
 

 

Let 𝑔_(x) be the trained classifier at iteration t, and L(𝑦",g(𝑥")) be the loss function of 

the training set {𝑥", 𝑦"}, then at each iteration (t+1), 𝑔_ leaps towards negative gradient 

descent by ab
ac

 amount with step size of h. Here, 𝑓_	is chosen to be the argument of the 

minimum, i.e. the value of x is chosen such that the minimum value of f(x) is obtained. 

Equation (8) calculates value of	𝑓_. 

 

𝑓_ = 	 𝑎𝑟𝑔	𝑚𝑖𝑛b 	
kl mn,o cn

ko cn
|od	oe − 𝑓 𝑥"

'
p
"d$    (8) 
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The gradient boosted algorithm combines base learners, which are decision trees in 

our case with a method called gradient boosting using the gradient descent 

optimization method. At iteration t+1 the gradient boosting algorithm computes 𝑔_#$ 

as provided by equation (9): 

 

																		𝑔_#$=	𝑔_+η𝑓_  (9) 

 

The greedy gradient boosted algorithm [43] as proposed by Friedman is 

implemented in our approach. It can be implemented with any differentiable loss 

function. However, since we have a classification problem, we use the logistic log loss 

function, which is common to use [43]. The algorithm aims to minimize the average 

value of the specific loss function while learning. Let 𝑦 be the optimized prediction 

value. Then the algorithm tries to predict the best value of 𝑦 for f(x). This is given by 

equation (7). We would describe the algorithm of the gradient boosted model next. 

We learn one tree at a time in the gradient boosted algorithm. Let us consider the 

training set to be {𝑥", 𝑦"}, t to be the number of iterations, 𝑓" be the tree models, 𝑦 is 

the prediction value at each iteration and k be a constant, then we get the following 

equations at each iteration: 

 

 

t = 0  𝑦L = k 

t = 1  𝑦$ = 𝑦L + f$(𝑥") 

t = 2  𝑦' = 	𝑦$ + f'(𝑥") 

… 

At 𝑡_s iteration 𝑦_ = 𝑦_[$ + ft(𝑥") = fu(𝑥")_
vd$   (10) 
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Thus, the algorithm of gradient boosting tries to fit a new decision tree to the residual 

at each iteration. At this point, let us consider g(x) is the prediction function that we 

would learn to minimize the loss function. We aim to find 𝑔(𝑥), which is the optimized 

function for our problem. We aim to find a suitable g(x) from a class of non-linear 

function G to minimize the loss function. In our case, we consider 𝑥 to be the input 

vector such that x = {x [1], x [2], … , x[d]} and a set of inputs 𝑥" = {x$, x', . . . , xO} such 

that X € S where S is the training set, and d is the total number of dimensions, and Y 

is the target vector such that 𝑦" = {y$, y'}, as we have a binary class problem. A binary 

class has two labels.  Equation (11) for our case defines 𝑔(𝑥). 𝐿 𝑦", 𝑔 𝑥" is the logistic 

log loss function. 

 

g(x) = arg minW€|	L yS, g xS 	 	 (11) 

 

From equation (10), we can say that 𝑦	 can be represented as a function, which must 

optimize the coefficients of the parameters of the input function 𝑓"(𝑥). Thus, from 

equations (11) and (10) we can say that  𝑔(𝑥) depends on two parameters: coefficients 

of t decision trees and each decision tree rule 𝑓"(𝑥). Therefore, there are 𝑐_ coefficients 

that can be optimized and each 𝑓"(𝑥) is a base learner, which can be optimized. So, our 

overall algorithm must optimize all coefficients of the base learners. Consider the base 

learners to be trees with M terminal nodes and each base learner before fitting to be 

h. This is done with an update step that is used to optimize the coefficients. Algorithm 

(3) is the gradient boosted decision tree algorithm [43]. 
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Algorithm 3: Gradient Boosted Decision Trees 

 

1. 𝑔L(x) ← arg 𝑚𝑖𝑛o	𝐿 𝑦", 𝑔 𝑥" 	 //Initialize	model	with	constant	value 

2. For t = 1 to T 

2.1.  𝑦_	←	
kl mn,o cn

ko cn
|od	oe	

2.2. 	Fit	a	tree	𝑃		with	leaf	nodes	{	ht,u}	vd$� 	

2.3. 	For	m	=	1	to	M	

2.3.1. 		𝐵_,v←	arg	𝑚𝑖𝑛�€�	L(𝑦_, 𝑔_[$ 𝑥" 	+	𝐵	.	ht,u 𝑥" , 𝑦")	

2.4. 	𝑔_(x)	←	𝑔_[$(x)	+	η 𝐵_,v�
vd$ .	ht,u 𝑥" 	

2.5. End For 

3. Return g(x) = 𝑔_(x) 

4. End. 

 

 

Our approach is based on the above algorithm. However, an explicit 

regularization scheme has not been proposed in [43]. We implement regularization to 

reduce complexity of the model. Regularization helps prevent overfitting by reducing 

the complexity and is an important optimization step, which helps in generalization 

beyond the training dataset. 

 

 

6.5 Regularization 

 

Regularization helps prevent overfitting by reducing complexity of the model. 

Pruning is a regularization technique. Pruning is a method of reducing the complexity 

of decision trees by eliminating sections of trees which do not help classify instances 
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well. Thus, pruning helps prevent overfitting. The following additional checks were 

added to the decision tree algorithm (Algorithm 2) for pruning the decision trees. 

Please note that the tree building algorithm step of Algorithm 3 also incorporates the 

pruning steps as a means of optimization as follows: 

 

 

1. Check if minimum child weight = c 

i. If min (child weight) < c: skip split; continue to next corresponding step 

of algorithm; 

ii. else: continue to next step of algorithm 

 

Explanation: In our approach, c = 5. Minimum child weight refers to the minimum 

number of observations required at a leaf node. More formally, it refers to the 

required minimum sum of instance weights at each node. Larger values of 

minimum child weight yield simpler trees, which generalize well beyond the training 

data. If the tree building step results in a leaf node with the sum of instance weights 

less than the provided minimum child weight value of 5, then the algorithm will not 

split that node. This is a pruning technique. Pruning can be defined as a method of 

reducing overfitting in decision trees.  

 

2. Check if minimum loss reduction value = L 

i. If min (loss function) < L: skip split; continue to next corresponding 

step of algorithm; 

ii. else: continue to next corresponding step of algorithm 
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Explanation: In our approach, L = 7. The minimum loss reduction value determines 

if a split of the node/farther partition of the node would be carried out. If the loss 

function is not reduced sufficiently by at least 7 units then a split is not carried out. 

This is also a pruning technique. Here the expected loss reduction is considered, 

i.e. the loss function value if the split were to occur is considered, if it is less than 

7, then the split does not occur.  

 

3. Break further partition if maximum height of tree = D. 

 

Explanation: In our approach, D = 4. The height = 4 units can be considered a 

reasonably good height (or level) for trees. This is because deeper trees increase 

complexity of trees which lead to a tighter fit increasing the chances of overfitting. 

The tree height lower than D on the other hand might not fit the data very well 

based on our approach. 

 

 We implement the following regularization measures to the gradient boosting 

algorithm (Algorithm 3): 

  

1. The maximum number of iterations (t) is restricted to 20  

2. The step size(η) is kept equals to 0.3.  

 

Explanation: At each iteration (t), a new tree is created. Usually more the number 

of iterations, better the accuracy. With fewer iterations however, model may not 

fit the data well. With too many iterations, a tighter fit to the training data is 

obtained. Such a tight fit may lead to overfitting. In addition, the training and 

prediction time scales linearly with additional trees. Thus, the number of iterations 
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is restricted to 20 based on our approach, since controlling the number of iterations 

reduces overfitting. Since, the step size or the shrinkage parameter works in 

conjunction with the number of iterations, care must be taken to fix the step size 

according to the number of iterations and vice versa. Shrinkage parameter of less 

than 1 has been found to be beneficial as an optimization step in the gradient 

descent algorithm [35]. Thus, we keep the step size to a value which is less than 

1. A smaller step size than the one we use in our approach may take forever to 

converge, or would take too many iterations to converge. Whereas, a larger step 

size may not converge or may converge at infinity. 

 

 So far, we discussed the algorithm to train the model. We would train the model 

on a training dataset to build the machine learning model. The built model is tested or 

evaluated on a testing dataset next. The built model gets deployed once the evaluation 

results are satisfactory. The deployed machine learning model drives the continuous 

authentication scheme. In the upcoming sections, we talk about the data of the 

training set and test set, and the evaluation metrics.  

 

 

6.6 Reducing Bias 

 

 Bias in statistics can be defined as the systematic preference that is present in 

the data of the sample set, which results in erroneous and misleading data analysis 

based results. A machine-learning algorithm might miss important relationships 

between the target variable and the features in the presence of high bias. As discussed 

earlier, it is thus important to reduce or eliminate bias in the training set before we 

start to train the machine-learning model. This also helps us with benchmarking 
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analysis. If we have a binary classifier, random guessing would yield 50% accuracy. 

This is because probability of correctly predicting a class label is 0.5 in case of a binary 

classifier. A machine-learning model should at least provide accuracy better than the 

benchmark value of 50%. The above statements hold true for an unbiased training 

sample set. Thus, in order for us to execute benchmarking analysis, bias needs to be 

eliminated or minimized from the training set. An inherent error of bias results if the 

sample space does not have enough representative data of population of a class label. 

To reduce bias, we take approximately equal samples of the “authentic” label and the 

“not-authentic” label for the legitimate and the illegitimate user respectively. This 

helps us prevent a problem of underfitting and helps us evaluate the model in the true 

sense. We would dive deeper into further discussion on how the data for each of the 

class labels gets selected in the upcoming chapters. 

  

 

6.7 Cross Validation 

 

We train the model on a training set and test the model performance for 

evaluating the model on a separate test set. This process is done by cross validation. 

Cross validation helps avoid overlap between training and test sets for better 

evaluation. What we have realized from the discussion so far is that the base learners 

learn from a subset of data and their predictions are combined to predict the target 

value. It is important to shuffle the data set before we begin the process of training or 

before cross validation. This is because the subset on which the base learner is being 

trained may not have sufficient information for all the class labels – with a high bias. 

Shuffling is an important model evaluation step when data is coming from multiple 
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sources [51]. We ensure that the subsets have minimum bias to avoid underfitting of 

data. 

The parametric values are determined, and tested with leave-one-out k-fold 

cross validation. We implement 10-fold cross validation (with k = 10) in our approach. 

Leave one out k-fold cross validation is a method in which the dataset is divided into 

k samples, out of which (k-1) samples are used as the training set and remaining one 

set if used as the testing set. This process is repeated k times with each of the k 

subsamples used only once as a testing set. The K results are then averaged to 

estimate the performance of the model. This method helps check for overfitting or 

allows us to estimate how the model would generalize to an independent dataset.

 During training 5% of the data is used as the validation set which is separate 

from the test set. The training and the validation sets are both used during training of 

the machine-learning model. The primary feature of a validation set is to see how well 

the model performs on the training set. In other words, the validation set helps provide 

an estimation of how well the model has been trained. In addition, separate training 

and validation sets help control overfitting. For instance, if the accuracy of the model 

increases on the training set and not on the validation set, it could be a sign of 

overfitting.  One should stop further training at that point. On the other hand, the 

performance of the model on the test set tells us about the quality of the model. It 

gives us an idea as to how the model would perform upon deployment.  

 

 

6.8 Tree Model Evaluation 

 

 To evaluate the model, several evaluation metrics were considered. The 

following metrics were used to evaluate our model: 
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• Accuracy: It provides the percentage of correct predictions for the given 

target value. 

• Confusion Matrix: It is presented in a table format, which lists the 

number of true positives, false positives, true negatives and false 

negatives. 

• EER: EER stands for equal error rate. The point of the ROC curve at which 

the false positive rate and the false negative rate are equal is given by 

the EER value. The value is commonly expressed as a percentage. 

• False Acceptance Rate: It calculates the ratio of the number of false 

positives thrown to the total number of predictions made. 

• False Rejection Rate: It calculates the ratio of the number of false 

negatives thrown to the total number of predictions made. 

• Precision: Precision is a measure of relevancy. It is calculated as the ratio 

of the number of true positives to the sum of true positives and false 

positives.  

• Recall: Recall’s value provides a measure of the number of truly relevant 

results returned. It can be defined to be as the ratio of the number of 

true positives to the sum of true positives and false negatives.  

• f-1 score: It calculates the harmonic mean of precision and recall.  

• Log loss: It computes the logarithmic loss function for the predicted 

target and the actual target values. The log loss function formula has 

been discussed in the earlier sections. 

• ROC curve: ROC curve stands for Receiver Operating characteristics 

(ROC). It is a graphical curve, which plots the true positive rate vs the 

false positive rate at various threshold settings.  
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• AUC: AUC stands for the area under curve of the ROC curve. It computes 

the probability that the binary classifier will rank a randomly chosen 

positive example higher than a randomly chosen negative example. A 

higher value of AUC indicates a good classifier. 

 

The discussed metrics help evaluate the built model on the test set. A good 

model would perform well not only during training but also during testing. A model 

with satisfactory evaluation results is selected for deployment. The deployed model 

drives the continuous authentication method.  

With our approach, overfitting can be prevented. So, the built model can 

generalize well and hence is more scalable. The gradient boosted decision tree scales 

in O(nlogn) time during training, where n represents the number of instances used for 

training. This includes the feature selection step. It takes constant testing time in 

terms of time complexity, which means that upon deployment, the model would predict 

in constant time or in O(1) time in terms of time complexity. This is reasonably better 

than existing algorithms, which are much more complex in terms of time complexity. 

Because of which, the training algorithm scales well with our approach.  Also, the time 

complexity of this algorithm can be further optimized using approximation algorithms.  

Furthermore, as per our approach, the machine-learning algorithm can also be 

trained using distributed computing frameworks [59]. A distributed computing 

framework involves a collection of independent computers (also called as nodes or 

clusters) which are interconnected via a network and can work in collaboration on a 

computational task. Each node or cluster can work on a portion of the task to achieve 

a computational result faster than with a single computer. The individual computers 

are cheaper and have lower processing power than a single powerful computer in 

general. Distributed computing especially helps when the dataset is very large and 
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training on a single machine may take too much time. In addition, distribution helps 

in fault tolerance, since the task is not dependent on a single machine and is resistant 

to single point failure.  

At the end of the step, the machine learning model is built and saved for 

deployment. The deployed model is updated as required, which is controlled by the 

adaptation service. We provide further details of our approach in the upcoming 

chapters. 
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CHAPTER 7 

 

AUTHENTICATION 

 

The authentication service receives features as input, which are output from the 

feature extraction algorithm to pass on as input to the deployed machine-learning 

model. A decision is output from the model next. The output from the model 

determines what the next piece of action would be for the authentication service. 

Depending on the output, if the user is determined to be a legitimate user, the 

authentication service continues to run in the background; otherwise, the 

authentication service locks the device and forces the user to re-authenticate herself. 

On a regular basis, all the steps of our approach from data collection (step 1) to 

authentication (step 4) work in conjunction to drive the continuous authentication 

scheme. Whereas, periodically, depending on the feedback received by the adaptation 

service from the authentication service or otherwise as required, the adaptation step 

comes into play. Though at first glance it might so appear that the step of 

authentication is the last step of our approach, it is not in actual. In fact, the feedback 

from the authentication service to an extent determines when the model gets updated. 

The performance of prediction of the deployed model is noted and shared with 

the adaptation service. If the performance of the model based on the evaluation 

metrics deteriorates by a substantial value, then the adaptation service updates the 

model. The updated model replaces the existing model and is made available to the 

authentication service as the newly deployed model.  

It is worthy of mention however, that the focus of this thesis is not on when to 

begin the process of adaptation, rather on how to adapt and update the model. We 

provide a brief idea regarding how the feedback from the authentication service leads 
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to adaptation up next, however, that may not be the sole driving factor to initiate the 

process of adaptation. In this thesis, we focus more on how efficiently adaptation can 

be carried out. A detailed research on when to adapt is left as a future work.  

The feedback from the authentication service prompts the adaptation service to 

update the model. To understand the process of generating a feedback consider a 

scenario as follows: Let a user re-authenticate herself during the current usage session 

as she is determined to be an illegitimate user. If during the present usage session, 

the user frequently needs to re-authenticate herself, and if this happens more than a 

certain number of times, then according to our approach, the user needs to re-

authenticate herself using a stronger means of authentication which can be a one-time 

password(OTP). If after this step, a user is determined to be a legitimate user, 

feedback in the form of information about the collected data and features is shared 

with the adaptation service. However, if the user is determined to be an illegitimate 

user, at this point, no further action is taken. Also, if the user is determined to be an 

illegitimate user once or twice during a usage session, feedback information is sent to 

the adaption service. The evaluation metrics for multiple instances of data is noted, 

which cumulatively provide us the value for evaluation metrics. For example, accuracy 

percentage is noted for multiple data instances and that value is considered a feedback 

parameter, which is shared with the adaptation service.  
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CHAPTER 8 

 

ADAPTATION 

 

User behavior may evolve over time. The way you handle your mobile device 

the day you start using it should be slightly different from the way you use it as a 

regular user. This is an example of user behavioral evolution. A straightforward 

solution is to capture user behavioral evolution is to retrain the model on the new data. 

There are two disadvantages of this approach. Firstly, the old model is completely 

wasted, since it is not re-utilized in the retraining process. Secondly, we miss important 

information of user characteristics that the previous dataset could have captured if we 

retrain the model just on new data. With “new data”, we refer to data that has not 

been used in the past for training purposes.  For example, the user may start following 

a new work out regime. She may revert to the old workout exercises few days later. 

Just depending on new data would not help the predictive performance in such a case. 

A solution is to retrain on all the available data collected so far. Even then, we cannot 

make use of the previously built model. We would simply waste that. In fact, building 

a new model on a larger data is an expensive choice in terms of the time complexity 

and the computational resources used.  

We present a novel approach of continuous learning in this thesis. In this 

method, the boosted decision tree model keeps the previous model and continues 

training with the new incoming training data so that you can further boost an already 

fitted model on new data. With this approach, one would spend as many resources as 

needed to spend to train just the new data. For example, consider you have a dataset 

with 200 data points. You now build a model by training with 150 data points. Now, 

with our approach you can train the remaining dataset of 50 data points on top of the 
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built model (with training data of size 150). This saves computation cost of building a 

brand-new model and can instead utilize the existing model and update the existing 

model. This is because you do not need to train a model again with 200 data points. 

Just training on the 50 data points on top of the already built model would efficiently 

serve the purpose. This is a method of continuous learning or continuous training. We 

plan to apply this method when the accuracy of the model drops substantially. 

With gradient boosting, it is possible to further boost the already trained model 

while training it on new data. In the chapter of training the tree model, we discussed 

how the gradient boosted decision tree model gets trained by fitting a new tree to the 

residue. While updating the model, the new data becomes the residue, on which a new 

tree(s) is fitted and recursively the algorithmic steps from Algorithm 3 are repeated. 

The process of updating the model utilizes just as many computational resources as it 

is required to train on the new data. Clearly, this method is computationally more 

efficient than retraining the machine-learning model from scratch, since training 

models is extremely costly in terms of the acquired computational time and resources.  

Overloading the gradient boosted decision tree model algorithm of our 

approach with too much data may increase computational cost, and may also lead to 

overfitting. It is important to update the model carefully to ensure that the built model 

does not overfit the data, which might in turn reduce the efficiency of the model. When 

to adapt, could be an area of research and we leave it more as a future work.  

Since, too much data can do our approach more harm than good, we utilize a 

method of sampling to selectively use samples of data, rather than the entire dataset 

to reduce the data load on our model. This method is presented as an alternative to 

using the entire dataset for updating the model time and again. We utilize a method 

of stratified sampling as a means of selecting samples from the dataset. Stratified 

sampling randomly selects data from strata or groups from the dataset. It is more 
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advantageous than random sampling because underrepresentation and 

overrepresentation of a group of data can be prevented, since equal number of 

samples get selected from each group of data. Furthermore, stratified sampling 

generally requires fewer samples than random sampling. We choose fixed number of 

samples from each window, which we consider as groups. The concept of “windows” 

was discussed in the chapter on feature extraction. We selected the windows as 

“groups” for stratified sampling as we found that to be the most basic element of our 

dataset which is omnipresent, especially since the data for our approach is more of a 

time-series data. The method of sampling may or may not be incorporated until a 

period as required depending on how many data samples are available in total. We 

provide further discussion on stratified sampling in the next chapter. 

We plan to do continuous training periodically. But, after a period, we propose 

to build a new model and discard the existing model. This can be executed after a few 

months or so. This is still better than regular re-building of the model at more frequent 

intervals. Rebuilding a model after a period would help us capture and consider more 

recent data since at the point of regenerating the model, older data may be discarded. 

Data from wearables get stored only for a certain period, which can be considered a 

safe estimate to work with one model. After the end of the period or when we are 

halfway through the period, we can generate a new model.  
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CHAPTER 9 

 

CASE STUDY OF OUR APPROACH 

 

9.1 Data Collection 

 

We use the Pervasive Systems Research Group’s Sensor Activity Dataset [46], 

which we refer to as the PSRG dataset and the MHealth dataset [47, 48] to train our 

model. The PSRG data has been recorded at the rate of 50 samples per second. The 

MHealth dataset on the other hand has been sampled at a sampling rate of 50 Hz. 

Data was recorded for 10 users of diverse profiles for both the datasets. The datasets 

provide the accelerometer and gyroscope readings for each of the 10 users in separate 

files.  

We executed three distinct sets of experiments. Each experiment implements 

our approach with a different data set. We use three sets of data from the MHealth 

and the PSRG dataset together, which are as follows: Mhealth data with wearable 

sensors attached to wrist; PSRG data with smart phone sensors attached to wrist and 

waist. These three sets of data are referred to as MHealth Wrist, PSRG Wrist and PSRG 

Waist data respectively in this thesis. For the three datasets, we use the following 

sensor data readings: 

• Accelerometer reading in x-axis 

• Accelerometer reading in y-axis 

• Accelerometer reading in z-axis 

• Gyroscope reading in x-axis 

• Gyroscope reading in y-axis 

• Gyroscope reading in z-axis 



  59 

9.2 Feature Extraction 

  

As described in the chapter of feature extraction, before extracting features, 

the datasets for the three sets of experiments undergo data preparation. Beyond 

which, features are extracted from the corresponding datasets for each user as per 

Algorithm 1, which is the feature extraction algorithm for our approach.  

 

 

9.3 Data Preparation for Training the Tree Model 

 

A training set with minimum bias [50] is considered best for learning and 

benchmarking. With bench marking, we mean performing better than random 

guessing. If there is equal probability of occurrence of two classes in a sample, then a 

machine learning model must perform better than random guessing performance, 

which is 50%, given there is equal chance of occurrence of each class label. A training 

set in which there is equal chance of occurrence of each label is called unbiased. To 

reduce bias thus and for better evaluation of our model, we build training datasets in 

a way as defined in the next paragraph.  

To prepare unbiased training sets for training the tree model, we take 

approximately the same number of illegitimate user samples as the legitimate user 

samples. To do so, we consider one user to be legitimate and attach the class label 

“authentic” to her data samples. We consider the other 9 users illegitimate and attach 

the label “not-authentic” to their data samples. We take approximately equal number 

of samples of “not-authentic” label, such that it is approximately equal to the number 

of samples of the “authentic” label. Figure 9 shows the distribution of the class labels  
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Fig 9: Training Set with Class Label Distribution 

 

 

in a typical training set for our approach. This is consistent with all the three sets of 

experiments we executed. 

As we have 10 distinct users for each of the three sets of experiments, we 

consider one user to be legitimate and the remaining 9 to be illegitimate and we repeat 

the process for all the 10 users. Thus, we get 10 distinct datasets with attached class 

labels for each of the three experiments. In other words, we prepare 10 sets of data 

out of each of the datasets (MHealth Wrist, PSRG Wrist and PSRG Waist data). Once 

we have all the datasets prepared in this way, we split the sets in a way such that 60-

70% of the data is kept for training and the remaining is kept for testing. 5% of the 

data from the training set is reserved for validation set testing.  

The purpose of having 50% of each of the class labels is to reduce bias in the 

training set. However, having 10 different sets of data for forming the train and test 

datasets is not required to reduce bias. In fact, running our experiments on different 

sets of training and test data helps us test our approach well. In this way, we can test 

user behavioral profile for 10 different users, in which case, each user is considered 

legitimate once. So, in a nutshell, with this approach, we are able to study the 
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behavioral profile of 10 users where activities of one user is considered to be legitimate 

and the activities of the other user is considered illegitimate.  

 

 

9.4 Feature Selection and Training the Tree Model 

 

The model learns from the training set. As discussed earlier, the feature 

selection and the model generation steps are combined in our approach for better 

optimization. This also ensures that we do not lose any important information in the 

process. This also prevents additional overhead of having a separate feature selection 

step. Decision tree algorithm splits a node based on its feature importance and thus it 

optimizes and combines the feature selection and the model training steps into one 

step saving computational time and resources. We have observed that the top features 

vary with users. In an attempt to make our approach more personalized, instead of 

selecting the same set of features for all the users, it’s a good idea to do feature 

selection as part of model generation, where the decision tree algorithm selects the 

top features for each user. 

The tree model is trained on the training sets as described by the algorithms 

described in the chapter on training the gradient boosted tree model. The training and 

the test sets are prepared as described in the earlier sections. At the end of this step, 

the tree model is built and it is evaluated on the test sets. This process is repeated for 

the three sets of experiments. 

For our experiments, the PSRG based training sets comprised of 85,000 data 

samples on an average and the test sets had approximately 38,000 samples. The 

number of samples for each train-test pair varied for the MHealth group based 

datasets. The number of samples for the train sets based on MHealth data ranged from 
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111,000 to 160,000 samples. The number of samples for the test sets ranged from 

78,000 to 103,900 samples. 

 

 

9.5 Tree-Model Evaluation 

 

To evaluate the predictive performance for each model, we consider evaluation 

metrics like accuracy, EER (Equal Error Rate), AUC (Area under curve of the ROC 

curve), precision, recall, f1 score, log loss amount etc. The evaluation results are 

provided in the next section for each of the three sets of experiments. As discussed 

earlier, for each experiment, 10 pairs of train-test datasets were prepared. For each 

pair, the machine-learning model was trained using the training set and the built model 

was evaluated on the test set. The evaluation result values for each of the evaluation 

metrics across all the test sets were averaged to provide the listed evaluation metric 

values in Table 4. Each built machine-learning model was evaluated by considering an 

average of the cross-validation based evaluation results. The values for each of the 

evaluation metrics were comparable across all the train-test pairs per experiment, and 

the cross validation based results were also consistently comparable to each other. 

 

 

9.6 Results 

 

We present the results as obtained as part of running the experiments in this 

section. Table 4 provides the evaluation results. Refer to Figure 10 for the ROC curve  
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Table 4: Evaluation Results 

 

Evaluation Criteria PSRG Wrist PSRG Waist MHealth Wrist 

Accuracy 99% 98.6% 97% 

AUC 1.0 0.9972 0.996 

EER <1% 1% 1% 

f-1 score 0.98 0.97 0.975 

Log Loss 0.10 0.13 0.1575 

Precision 0.99 0.99 0.98 

Recall 0.97 0.97 0.95 

 

  

 

 

 

 

Fig 10: ROC curve for the Tree Model of our approach 
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for the generated machine-learning model. Since, the results per user are comparable 

without significant variation, we show the ROC curve for one machine-learning model 

and consider it to be representative of all the other generated machine-learning 

models. 

 

 

9.7 Comparison 

  

The performance of our authentication method, more specifically the machine-

learning model generation algorithm is compared to the machine-learning model 

generation techniques presented in few recent papers in this section. These techniques 

are designated as follows: Logistic Regression (LR) [49], Random Forests (RF) [33], 

Support Vector Machines (SVM) [25, 34, 60], and Decision Trees (DT) [60]. It is 

important to note that according to the paper [60], which used decision trees and 

SVM, and achieved the accuracy of up to 98%, the number of test samples used was 

just 100. Whereas, in our approach, we used approximately 38,000 test samples for 

the PSRG based experiments and at least 90,000 test samples for the MHealth based 

experiments. We chose to not implement KNN due to the high query complexity of the 

KNN algorithm [13]. We observed that SVM achieves a very accuracy, but, at the cost 

of quadratic time complexity. Table 5 provides a comparison of how models built from 

different techniques perform as compared to our approach.  

Refer to Figure 11 for the comparison of the ROC curves for the three methods 

of tree-based classifiers: our approach, decision trees [60], random forests [13]. The 

ROC (Receiver Operating Characteristics) curve in statistics is a graphical plot that 

explains the performance of a binary classifier system as its prediction threshold is  
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Table 5: Comparison with Existing Methods 

 

Algorithms Reported Accuracy Mean Accuracy (Our approach) 

LR [6] 82.30% 82.88% 

RF [13] - 85.5% 

SVM [25] Average –  90%, 

Maximum – 95% 

94% 

SVM [60] * 98% 94% 

DT [60] * 98% 92% 

 

* number of test samples = 100. 

 

 

 

 

 

Fig 11: ROC Curve Comparison 

 

Our Approach 
 

Random Forest 
 

Decision Trees 
 

Random Guessing 
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modified. The ROC curve provides nuanced insights about the conduct of the classifier. 

The curve is drawn by plotting the true positive rate against the false positive rate at 

various threshold settings. In other words, it illustrates how many correct positive 

classifications can be obtained as more and more false positives appear. The area 

under the curve (AUC) computes the probability that the binary classifier will rank a 

randomly chosen positive sample higher than a randomly chosen negative sample. The 

perfect classifier would have AUC as 1. So, the more the AUC, the better the classifier 

at making reliable predictions. In our case, the “authentic” user label is considered the 

positive label. From Figure 11, we see that with our approach, the AUC is maximum 

and much more than other similar methods such as decision trees and random forests. 

The diagonal line in Figure 11 represents the ROC curve for random guessing. A 

machine-learning algorithm must perform better than at least random guessing. 

Clearly, all the three curves are above the diagonal line and have greater AUC. The 

AUC for a line, which passes through the diagonal, is 0.5. A classifier should at least 

have the AUC value of 0.5 thus. It is considered that an AUC of 1 represents the perfect 

classifier, and an AUC of 0.5 represents a worthless classifier. Thus, the AUC value 

varies from 0.5 to 1. The AUC value of our approach is 0.99 approximately, which is 

better than the existing methods of model generation. 

 

 

9.8 Adaptation 

 

In order to carry out the experimentation on adaptation, we select 60% of the 

data available. We call this the initial data. We use 70% of the initial data for training 

and 30% for testing while building the model. We call the built model the initial model. 

Next, we continue training on the remaining data to further boost the trained model.  
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Table 6: Stratified Sampling as a means of Data Sampling 

 

Criteria Without 

Sampling 

Random 

Sampling 

 Our Approach – 

Stratified 

Sampling 

Definition Does not select 

samples from data 

Randomly select 

samples from data 

Select samples 

from each group 

Data 

Dependency 

Uses 100% of data Uses 60% of data Uses 42% of data 

Training time Takes more time Takes less time Takes least time 

 

 

 

We utilize Gradient Boosted Decision Trees (GBDT) model to implement the 

continuous training approach. GBDT allows continuous training with new data to 

further boost an already fitted model.  

We observe that the updated model has comparable performance to that of a 

model built using the entire data at one go. Additionally, we see that the continuous  

training approach takes approximately as much time as it would need to train just the 

new data. This is per the characteristics of gradient boosting whose time complexity 

scales in linear time with increase in the size of data. 

Table 6 shows the how stratified sampling performs as a means of data 

sampling. Stratified sampling was discussed in the chapter on adaptation. We see that 

with around 40% of the data, it provides approximately the same accuracy on test 

data. However, it is worth pointing out that since the size of the datasets is not very 
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large, we could not perform extensive analysis on the utility of stratified sampling, 

which is left as a future work. 

 

 

9.9 Running Our Approach as a Service 

  

We put to test our approach by writing the code for a service which is essentially 

the authentication service, running on an Android smart phone. The designed service 

received data as input and invoked the machine-learning model to output a decision. 

The decision was displayed as a result.  

 

 

9.10 Discussion 

 

Traditional password based methods of authentication usually require the user 

to remember passwords or come up with a complex password for better protection. In 

this thesis, we present an approach to generate a user-centric machine-learning model 

by capturing motion gestures of the user. In our approach, the user is not required to 

follow a specific script to exhibit gestures. We validate the user again on motion 

gestures without needing user participation. Users do not need to exhibit complex 

gestures as well for the same reason. Users can exhibit gestures as they wish. We 

obtain high predictive performance by following the presented approach. 

Physiological biometric based authentication systems require additional state 

of the art sensors to authenticate the user. We utilize sensors that are pre-embedded 

in the wearable device, thus eliminating the need of additional sensors. Additionally, 

motion gestures are recorded for model generation and user validation and throughout 
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the continuous authentication process conscious user inputs are not required, making 

the authentication process unobtrusive to a legitimate user. Only at the time when a 

user is determined to be an illegitimate user, the user is forced to re-authenticate 

herself. 

We get complete motion information of the body part the wearable is attached 

to by using just the accelerometer and gyroscope sensors. It helps us better model 

the user gestures by using a combination of these two motion sensors as we can record 

complete motion data. Existing methods have also used magnetometer sensors. 

Magnetometer sensors firstly do not provide noticeable changes in the sensor readings 

if the authentic user and the attacker are in the same geographical location 

approximately. Secondly, many wearable devices do not have a magnetometer sensor 

embedded in them. Furthermore, we see that without using additional sensors we 

achieve high performance. Thus, we do not use the magnetometer sensor in our 

approach. 

Gait pattern based user identification can authenticate the users only when the 

users are walking. As discussed earlier, our method does not impose any constraint 

on part of the user regarding the kind of activities she must perform to be correctly 

authenticated. A user centric approach is presented which adapts to user choices and 

preferences and updates the model to capture user behavioral evolution. 

We do not need an additional feature selection step in our approach since 

gradient boosting on decision trees automatically does that for us. This makes our 

model more versatile and robust since we do not lose any information at any point 

before the model generation step. Since, our approach is user centric, this method of 

model generation helps the model learn the user feature better and be specific to a 

user. Thus, we build a far-reaching, user centric approach, which adapts to user 

preferences and behavior. 
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Our approach also provides higher performance by implementing a model with 

lesser time complexity. Some of the existing works have achieved high performance 

using SVM and KNN, which are inherently more complex. SVM has quadratic time 

complexity, whereas KNN depends on a complex query step. In our approach, the 

machine learning model is generated by implementing gradient boosting on decision 

trees, which scales in linearithmetic time – O (nlogn) and has lower time complexity 

than most other existing algorithms, where n stands for the number of samples, which 

are used to train the model. Experimental results show that higher accuracy and lower 

EER than existing methods can be obtained with our approach. 

Our approach also ensures that overfitting is minimized. Overfitting occurs 

when the generated machine-learning model fails to generalize beyond the training 

set. The process to update the model only requires as much resources and time as it 

is required to just train on newer data. With “new data”, we refer to the data, which 

has not been utilized for training the previously generated model. The training is done 

on top of the existing model thus requiring less time and resources than it is required 

to build a new model from scratch. Furthermore, we see that our approach can be 

extended to the smart phone use case as well, provided the smart device is attached 

to the body part of the user or is in contact with the user. 
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CHAPTER 10 

 

CONCLUSION AND FUTURE WORK 

 

In this thesis, we presented an innovative approach to develop an 

authentication software by modeling user movement gestures for continuous 

authentication of smart wearable users. Sensor data from the wearable device is 

utilized in this approach, eliminating the need for additional hardware. This approach 

incorporates continuous learning to adapt to user motion gesture evolution. Our 

approach does not need conscious inputs from the user to execute, and we do not 

impose a restriction on the kind of motion gestures the user must exhibit to be 

correctly authenticated. We see that our approach produces better results with lower 

time complexity than existing methods. We observe that using complete motion 

gesture information with data from accelerometers and gyroscopes, better 

performance is achieved. 

 As a future work, we plan to implement an application, which implements our 

approach end-to-end. For this we plan to train the model on remote cloud servers and 

deploy the model on the smart wearable device. We believe this is possible, since the 

model only takes as much space as an ordinary application running on the device 

would take.  An authentication service would invoke a feature extraction unit with live 

sensor data from the user. The feature extraction unit after computing feature values 

would invoke the machine-learning model and pass in the features as input. The 

response from the model would be sent to the authentication service. The 

authentication service depending on the response would lock the device forcing the 

user to re-authenticate herself provided the user is determined to be an illegitimate 
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user. Otherwise, it would continue to run in the background. We also plan to test our 

model on additional sets of users with diverse profiles. 

 Furthermore, as discussed earlier, we would like to research further on when 

an update to the deployed machine-learning model is suitable. Also, we would like to 

conduct extensive experiments on the suitability of stratified sampling for our 

approach. 
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