
An Approach to Software Development for Continuous

Authentication of Smart Wearable Device Users

by

Tamalika Mukherjee

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved May 2017 by the
Graduate Supervisory Committee:

Sik-Sang Yau, Chair

Gail-Joon Ahn
Hasan Davulcu

ARIZONA STATE UNIVERSITY

August 2017

 i

ABSTRACT

With the recent expansion in the use of wearable technology, a large number

of users access personal data with these smart devices. The consumer market of

wearables includes smartwatches, health and fitness bands, and gesture control

armbands. These smart devices enable users to communicate with each other, control

other devices, relax and work out more effectively. As part of their functionality, these

devices store, transmit, and/or process sensitive user personal data, perhaps biological

and location data, making them an abundant source of confidential user information.

Thus, prevention of unauthorized access to wearables is necessary. In fact, it is

important to effectively authenticate users to prevent intentional misuse or alteration

of individual data. Current authentication methods for the legitimate users of smart

wearable devices utilize passcodes, and graphical pattern based locks. These methods

have the following problems: (1) passcodes can be stolen or copied, (2) they depend

on conscious user inputs, which can be undesirable to a user, (3) they authenticate

the user only at the beginning of the usage session, and (4) they do not consider user

behavior or they do not adapt to evolving user behavior.

In this thesis, an approach is presented for developing software for continuous

authentication of the legitimate user of a smart wearable device. With this approach,

the legitimate user of a smart wearable device can be authenticated based on the

user's behavioral biometrics in the form of motion gestures extracted from the

embedded sensors of the smart wearable device. The continuous authentication of this

approach is accomplished by adapting the authentication to user's gesture pattern

changes. This approach is demonstrated by using two comprehensive datasets

generated by two research groups, and it is shown that this approach achieves better

performance than existing methods.

 ii

Index terms: continuous user authentication; smart wearable devices;

behavioral biometrics; adaptive authentication.

 iii

DEDICATION

This thesis is dedicated to my parents.

It would not have been possible without you two!

 iv

ACKNOWLEDGMENTS

 First, I would like to express my sincere gratitude to my adviser Professor

Stephen S. Yau for letting me be a part of his research laboratory. I am thankful for

his support, patience, motivation and for the immense knowledge that he shared with

me. His guidance helped me a lot and I learned a lot from him.

Besides my adviser, I would like to thank Professors Gail-Joon Ahn and Hasan

Davulcu for their insightful comments, and suggestions on my thesis and for taking

the time to be members of my Supervisory Committee.

I also want to thank my laboratory mates Dr. Arun Balaji Buduru, Mr. Yaozhong

Song, and Mr. Vineet Mishra for their valuable inputs.

Last but not the least; I would like to thank my dear friends Himanshu Waidya,

Aditya Bivalkar, Aditya Dabak and Kedar Pitke for their constant encouragement, and

support.

 v

TABLE OF CONTENTS

 Page

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

CHAPTER

1 INTRODUCTION 1

1.1 Overview ... 1

1.2 Organization of Thesis ... 6

2 CURRENT STATE OF THE ART .. 8

3 THE OVERALL APPROACH TO SECURE SMART WEARABLES 18

3.1 Threat Model of Our Approach .. 18

3.2 Assumptions .. 18

3.3 Our Overall Approach .. 20

4 DATA COLLECTION 25

5 FEATURE EXTRACTION 28

6 TRAINING THE GRADIENT BOOSTED TREE MODEL OF OUR APPROACH 32

6.1 Background ... 32

6.2 Decision Trees .. 33

6.3 Feature Selection .. 35

6.4 Gradient Boosting ... 39

6.5 Regularization .. 44

6.6 Reducing Bias .. 47

6.7 Cross Validation .. 48

6.8 Tree Model Evaluation ... 49

7 AUTHENTICATION 53

 vi

CHAPTER Page

8 ADAPTATION 55

9 CASE STUDY OF OUR APPROACH ... 58

9.1 Data Collection ... 58

9.2 Feature Extraction .. 59

9.3 Data Preparation for Training the Tree Model 59

9.4 Feature Selection and Training the Tree Model 61

9.5 Tree-Model Evaluation ... 62

9.6 Results .. 62

9.7 Comparison ... 64

9.8 Adaptation ... 66

9.9 Running Our Approach as a Service 68

9.10 Discussion ... 68

10 CONCLUSION AND FUTURE WORK ... 71

REFERENCES....... .. 73

 vii

LIST OF TABLES

Table Page

1. Popular Smart Devices with Accelerometer and Gyroscope Sensors 26

2. Data Collection .. 27

3. Extracted Features ... 31

4. Evaluation Results .. 63

5. Comparison with Existing Methods .. 65

6. Stratified Sampling as a means of Data Sampling 67

 viii

LIST OF FIGURES

Figure Page

1. Popular Smart Wearable Devices ... 2

2. Myo Gesture Control Armband ... 4

3. Passcode Lock (Apple) and Graphical Pattern Based Lock (Android) 9

4. Two-Factor Authentication ... 9

5. A Summary of Current User Authentication Methods for Smart Devices ... 11

6. Our Approach ... 23

7. Embedded sensors of the Apple Watch .. 27

8. Decision Tree Structure ... 34

9. Training Set with Class Label Distribution .. 60

10. ROC curve for the Tree Model of Our Approach 63

11. ROC Curve Comparison ... 65

 1

CHAPTER 1

INTRODUCTION

1.1 Overview

Smart wearable devices (also referred to as wearable technology or wearables)

have been touted as one of the fastest growing applications of the Internet of Things

(IoT) environment [1]. As per a recent report [2], the annual worldwide shipment of

wearables is projected to reach 214 million units in 2019 – a 250% growth from 2015.

Wearables are sensor-equipped smart devices designed to be worn external to the

body [3] or be embedded in clothing [4]. The consumer market of wearables includes

products like the Apple Smart Watch [3], Fitbit [5], Myo gesture control armbands [6].

Figure 1 shows some of the popular smart wearable devices (or device types) available

in the market today.

In the recent years, smart wearable devices have experienced rapid growth

and wide scale adoption largely through affordable smart watches and fitness bands.

Such is their popularity among users that an estimated nine out of ten smart phone

sellers have come up with their own wearable device product or are about to launch

one [36]. These smart devices provide novel ways to interact with users in the Internet

of Things (IoT) environment. For instance, ubiquitous computing allows smart watch

based wearables to enable users to avail limited features of a smart phone without the

need to take out their phones. Users can communicate with each other, access emails,

text messages, set reminders etc., just as they would with a smart phone. Besides,

these smart devices very conveniently help measure user activities without requiring

active user intervention. In the process, they motivate users to work out more

 2

Fig 1: Popular Smart Wearable Devices

effectively, sleep well, essentially helping them adopt a healthier lifestyle. Along the

same lines, smart clothes [4] plan to help users measure intensity of work out, check

the number of calories lost during activities like running, exercising etc. Gesture control

armbands like Myo [6] on the other hand help control other electronic devices like a

TV or a laptop computer with motion gestures, from a distance. The sensor readings

from Myo determine action performed based on which another device is controlled

from a distance. In a nutshell, wearables offer fast, convenient and affordable

technology that you wear thus enabling users to utilize its features hands-free.

 3

Wearables are slowly foot stepping in the world of healthcare. Nymi wristband

[55] measures heartbeat of the wearer with the help of embedded ECG sensors. Such

devices have a huge potential of turning the healthcare industry by making it possible

to provide patients with facilities like personalized medicines and better disease

diagnosis [7, 37], by monitoring patient activities and vital statistics.

Although wearables offer quality services and convenience, they introduce new

security, privacy and confidentiality preservation challenges. Wearables are generally

used as personal electronic devices, because of which users store or access personal

data with these devices. Consequently, as part of their functionality, wearables store,

process and/or transmit confidential information such as personal health data, perhaps

biometric, daily activities, location and/or communication data of a user. The nature

and convenience of these devices make it easy to collect sensitive personal data

unobtrusively and continuously. The need to protect such devices from unauthorized

access is thus critical to their existence. Furthermore, wearables often operate by

connecting to a secondary device (e.g. smart phone) via WiFi or Bluetooth, essentially

connecting to other smart devices in the Internet of Things (IoT) environment, thus

putting at risk other connected devices as well at the time of an attack. For example,

research show that future wearables could be used as password managers that

mediate access to other smart devices and online user accounts [52]. Wearables can

also be used to access information such as personal bank account information [8],

unlock cars, hotel or house doors, make payments etc. The association of wearables

with such critical applications demand better security, protection and privacy

preservation mechanisms. With a large majority of wearables entering the field of

healthcare and personalized medicines, beyond privacy and confidentiality,

information assurance and security must also encompass the critical aspects of safety

and well-being of the individual. Malicious modification of user data may directly affect

 4

the operation and functionality of the device. An effective user authentication scheme

is thus necessary to prevent unauthorized access, restrict information leak and to uplift

consumer trust which would in turn help wearables achieve their true potential.

Current authentication techniques rely on the use of passwords, PINs or

graphical pattern based locks. Adapting traditional authentication methods on

wearables is especially challenging because most wearables lack an appropriate input

interface to bolster reliable and secure entry of passwords. In fact, many wearables

lack a UI or are too small to display a complex keypad (e.g. Myo armbands [6]). Figure

2 shows the Myo Gesture Control armband. Furthermore, an attacker can easily forge

passwords or PINs. Another disadvantage of using such authentication methods is that

they do not continuously monitor the user and would only authenticate the user at the

beginning of the usage session [9]. In addition, users often dislike such explicit means

of authentication as they disrupt their daily activities. Reportedly, 34% of US users do

not employ even basic lock screen patterns to secure their smart device [10].

Fig 2: Myo Gesture Control Armband

 5

Hence, an authentication mechanism that continuously and unobtrusively

monitors and verifies the legitimate user is required. A continuous authentication

scheme would verify the legitimate user throughout the usage session. On one hand,

it is challenging to authenticate a wearable device user; on the other hand, these

devices carry a multitude of cheap built-in sensors, which are capable of measuring

user movements easily. In this thesis, we present a novel behavioral biometric based

authentication approach utilizing user motion gesture data. Behavioral biometrics

measure the consistency and uniqueness of behavioral characteristics of a user.

Wearables are designed to capture biometric data continuously and uninterruptedly

with the help of embedded sensors - we utilize this natural feature of wearables in our

approach. Motion gesture data is collected through a wearable device via the built-in

accelerometer and gyroscope sensors, and a user profile of the legitimate user is built.

We use the accelerometer and the gyroscope sensors because complete motion

information can be captured with a combination of these two sensors, which helps

better model the user motion gesture patterns. In addition, these sensors do not

require user permission to work. Based on the user model that is generated during the

training phase, the legitimate user is validated during the verification phase. This

approach is especially useful since the user wears a wearable device throughout the

usage session facilitating continuous authentication. We implement scalable gradient

boosting with decision trees to learn the user features. The effectiveness of our

approach is demonstrated by using two comprehensive datasets. It is observed that

our approach attains better performance than existing methods. An average accuracy

of 98% and an average EER of less than 1% has been achieved. Up to perfect accuracy

with no false positives has also been achieved by implementing our approach.

We also present an adaptive approach to update the generated model to

capture user gesture pattern evolution. With the presented method, the original model

 6

is updated to incorporate information from the newly made available data. With ‘new

data’ we refer to the data that is freshly generated and has not been previously used

for training. This process of continuous learning takes up as many resources and as

much time as it is required to just train on the ‘new’ data. It does not retrain again on

all the available data. With ‘retraining’, we refer to training on the data on which the

machine learning model has been trained in the past. Since, our approach trains on

new data and does not exhibit retraining on previously trained data, it saves additional

cost of retraining, since training models is essentially a costly event in terms of

computational time and resources.

Our approach thus has the following important features:

(1) Utilizing behavioral features makes our approach more user-centric.

(2) The user of a smart wearable is authenticated continuously throughout the

usage session.

(3) Conscious user inputs are not needed to carry out the authentication

process.

(4) The adaptive scheme in our approach improves the performance of our

approach when the user behavior evolves, and hence makes our approach

more user-centric.

1.2 Organization of Thesis

The organization of the thesis is as follows: After discussing the current state

of the art in Chapter 2, our overall approach is presented in Chapter 3. This chapter

also layouts the threat model and our assumptions. Chapters 4 – 8 discuss the steps

of our approach in details. Our experimental results and the evaluation of our approach

 7

is presented in Chapter 9. We discuss the conclusion and a probable future work for

our current approach in Chapter 10. A list of references is provided next following

Chapter 10.

 8

CHAPTER 2

CURRENT STATE OF THE ART

Smart devices currently utilize authentication methods that are based on

knowledge-factors, such as personal identification numbers (PINs), alphanumeric

passwords, and graphical pattern based locks [9]. Figure 3 displays the passcode lock

screen as it appears on an Apple Watch and the graphical pattern based lock screen

as it appears on an Android Wear. In this scheme of authentication, the user generally

unlocks the smart device by entering a known passcode, which is based on what you

know or are knowledge-based [9]. However, this method can be broken if passcodes

are lost, stolen or forged [11]. Furthermore, it has been demonstrated that only half

as many smart device users use PINs [11] and 34% of US based users do not use

even basic lock patterns on their smart devices [10]. This is since password-based

identification methods are distracting to a common user. In addition, users tend to

choose simpler password combinations mainly because of the undesirable load of

recollecting complex mix of characters. A study [22] shows that out of more than

200,000 four-digit numeric passwords, 10 password designs made up 15% of the total,

while two main password designs included designs as simple as `1234' and `0000'. In

addition, 4-digit and 8-digit PINs have been shown to be broken within 40 minutes

and 4 months respectively using existing techniques [38]. These methods are also

vulnerable to shoulder surfing and smudge attacks [12, 13]. A smudge attack is a

method by which oily residues or smudges from a touch pad can be used to detect

passcodes or graphical pattern based locks. The simplicity and easy guess ability of

passcodes or PINs, lack of wide-scale use [10], coupled with authentication only at the

beginning of the usage session may cause bigger security breaches with such methods.

 9

Fig 3: Passcode Lock (Apple) and Graphical Pattern Based Lock (Android)

Recently, two-factor authentication frameworks have been adopted. These

require the user to input a one-time sign-in code besides entering the original

password in general. This is considered a more reliable method of authentication since

it combines the two verification components: what you know (secret key) and what

you have (an alternative smart device) [9]. Figure 4 provides a pictorial representation

Fig 4: Two-Factor Authentication

 10

of the method of two-factor authentication. In addition, a one-time password is

considered a more secure alternative since it is valid for a short duration of time and

thus has a lesser chance of being stolen or copied. However, the two-factor

authentication scheme would fail in the event of theft attack, if the adversary assumes

possession of the alternative smart device.

Traditional authentication methods are difficult to implement in wearables

because of the small size of the input interface. Many wearables (e.g., Myo armbands

[6]) do not even have an input interface to implement password based authentication

methods. Majority of portable personal wearable devices like the popular smart

watches have a small input interface and it is inconvenient to type in complex PINs. In

fact, such devices may not have as much surface area necessary for the user interface

to incorporate a complex keypad. A way out is to employ biometric based

authentication methods, which authenticate the user, based on who she is. Biometrics

can be broadly categorized into two types: Physiological and behavioral based

biometrics, which are discussed next. Figure 5 shows the classification of the different

authentication strategies observed in the current state of the art.

 Physiological biometric verification utilizes the uniqueness of physiological

characteristics, for example, fingerprint, iris patterns [29], and face [30]. Recently,

physiological biometric based access control has been incorporated via fingerprint and

face recognition technologies respectively by Apple and Google on their smart devices

[14]. However, fingerprint recognition technology relies heavily on state of the art

hardware and specialized sensors [15]. Besides, attackers can capture fingerprints

from public events [16]. Whereas facial recognition technology depends on using a

camera to authenticate a legitimate user. The face recognition technology measures

facial features of a legitimate user during the enrollment phase. During the verification

phase, the face to be identified is compared with the enrolled facial image using an

 11

Fig 5: A Summary of Current User Authentication Methods for Smart Devices.

algorithm. Facial recognition has false rejection issues when individuals change

hairstyle, shave facial hair or wear glasses or sunglasses [56]. In addition, face

recognition fails to differentiate between identical twins [56]. A 2010 study shows that

only 27% of the users would like to use facial recognition as a means of authentication

owing to privacy concerns [17]. Google glass was disliked because of its facial

recognition features. Consequently, Google dropped facial recognition from Glass [53].

In fact, the installation of additional hardware for physiological biometric based

recognition systems increases cost and may not be feasible for lightweight, portable,

low-cost wearable devices.

A disadvantage of the aforementioned modes of authentication is that they

depend on conscious user inputs, which are likely to cause an undesirable experience

 12

for the user as they interrupt their daily activities. Furthermore, physiological biometric

based recognition can potentially be used to authenticate an unconscious user [35].

A way to overcome such privacy and feasibility concerns is to utilize behavioral

biometrics for user authentication. Behavioral biometrics measure the uniqueness in

the behavioral patterns of users. Behavioral features include voice [58], keystroke

gestures [18], motion gestures [19], gait or walking style [20], touch-gestures on a

touch screen device [21] etc. Research show that human beings exhibit considerably

unique behavioral gestures [19, 31].

 Continuous authentication has been achieved by monitoring touch dynamics in

smart devices [21]. Touch gestures have been modelled by recording the pressure, or

force exerted during a touch gesture or by capturing the accelerometer readings during

the touch gesture [57] etc. However, modelling touch gestures on wearables is difficult

due to the small area of the touch	interface. In fact, certain wearable devices like the

Myo Armband does not have an embedded touch interface [4, 6]. Along the same

lines, keystroke dynamics is not suitable for application to wearables, since most of

these devices do not come pre-equipped with a complex keypad to model keystroke

gestures well.

Wearable devices are best known for capturing activities or motion gestures.

This natural feature of wearables can be utilized to uniquely identify a user. This

method also eliminates the need of additional sensors since motion gesture recognition

sensors are pre-embedded in wearables.

Negara et al. [31] in their paper show that motion gestures can help uniquely

classify users even when they perform a simple basic activity like picking the phone to

receive a call. Negara et al. [31] examined the uniqueness of arm movements for users

with a 3-axis accelerometer. They achieved 87.8% accuracy when a user picks the

phone from the table, and 90% accuracy when the phone is picked from the pocket.

 13

A simple movement gesture would vary from person to person and is considered

unique because of the difference in the physiological structure of the human body. The

amount of force exerted by the different muscles to carry out a specific action may

vary due to the variation in the muscular structure of the human body. The sensor

readings would not be identical for the same reason [19, 31]. In the current literature,

accelerometer [20], gyroscope [24], magnetometer [25] and GPS sensors [26] have

been used to study user behavioral profile in this regard.

Accelerometer and gyroscope sensors are mainly used as motion sensors.

Accelerometers record the acceleration of the body part they are attached to. They

also detect device orientation. Whereas, gyroscopes record the rotational velocity of

the body part they are attached to. Depending on placement, gyroscopes can detect

altitude of the different body parts they are attached to. These sensors are each able

to capture acceleration and rotational velocity in three dimensions. Sensor data from

these together provide a 6-dimensional vector, which has complete motion information

of the body part these sensors are attached to [27]. Popular smart devices come pre-

equipped with these cheap, tiny, low-power sensors.

A magnetometer sensor on the other hand measures the strength of the

magnetic field in three dimensions. Though, electrical activity of the human body does

not produce noticeable changes in the strength of the magnetic field, the

magnetometer sensor helps infer heading of the user wearing it. Similarly, GPS sensors

help infer the location of the user wearing it. Magnetometer and GPS sensors may

provide valuable information at a time of a theft attack if the attacker decides to

change the location. However, if an illegitimate user happens to use the device while

being at a location frequented by the legitimate user then location-based sensors may

not sense an anomaly. In order to address this issue, in the current literature, location-

 14

based sensors have often been used in conjunction with other sensors such as the

accelerometer sensor.

Gait pattern is a motion gesture based behavioral biometric. It has been

extensively studied [20] in the current literature as a means of user identification and

authentication and high accuracy has been achieved. Gait measures the uniqueness of

the walk patterns as exhibited by a user. Nickel et al. [20] could achieve accuracy of

82% with a 3-axis accelerometer by monitoring motion gestures from gait patterns

using KNN (K-nearest neighbors) classification algorithm. However, they utilize just a

single sensor for authentication, which largely limits their performance.

Gadaleta et al. [32] achieved almost perfect accuracy by using both

accelerometer and gyroscope sensors to measure gait patterns. They use convolutional

neural networks and SVM. However, gait based authentication can authenticate users

only when they are walking. Some physical effort is required as users need to walk for

a few seconds to be accurately authenticated. A motion gesture based authentication

approach, which can authenticate the user irrespective of the activity the user exhibits

is shown in our approach. Such a system does not impose a constraint on what the

user must do to be validated, ultimately leading to the development of a user-friendly

system. This also does not interfere with the user’s routine activities.

 Yang et al. [24] could identify wearable users correctly using motion gestures

from accelerometer and gyroscope sensor data. However, they asked users to perform

a specific set of actions to train the model. During the verification phase, the users

were asked to repeat the same actions. Similarly, SenSec (Zhu et al.) [28] achieved

an accuracy of 75% in identifying users with accelerometer, gyroscope and

magnetometer sensors. However, the users performed fixed pre-determined actions.

During validation, the user was asked to repeat the specific gestures, based on which

she would be authenticated. These methods are a good alternative to traditional

 15

authentication approaches. However, it would not authenticate the user continuously.

These methods prompt the user to verify their legitimacy by following a script of

actions in order to be authenticated. In addition, it requires the user to consciously

participate in the authentication process, which might interfere with user’s regular

activities. Performing specific or determined gestures can be cumbersome to the user

as well and a conscious user may never exhibit natural gestures. Such an

authentication approach may be vulnerable to mimic attacks [24].

To overcome these issues, an authentication system should be built which

would authenticate users unobtrusively by utilizing natural gestures, which users

exhibit unconsciously, since natural gestures are difficult to spoof [19]. Lu et al. [32]

present an unobtrusive method of user authentication. They used a combination of a

supervised decision tree classifier and an unsupervised learning algorithm. It was

demonstrated that even with 20% more data about 5% less accuracy was obtained

when using unsupervised learning as compared to using supervised learning. Davidson

et al. [33] in their study compared two algorithms: K-Nearest Neighbor (KNN) and

Random Forests to authenticate smart watch users. They demonstrated that both KNN

and random forests were robust to overfitting with KNN	being robust against noisy

data. However, they observed that KNN algorithm provides better performance with a

high computational cost, with a requirement to tune k in each experiment. We see that

with our approach better performance with lower complexity is obtained.

Lee et al. [25] achieved high accuracy of up to 95% by monitoring gestures

using accelerometer, gyroscope and magnetometer sensors on a smartphone device.

Chauhan et al. also presented a continuous authentication scheme for smart wearable

devices [34]. However, they both use SVM, which provides high accuracy at the cost

of quadratic computational complexity. Our approach yields high accuracy with

 16

gradient boosting on decision trees, which has a lower time complexity, and is thus

computationally more efficient.

 Few works have addressed the issue of adapting to a change in user gesture

patterns. Behavioral features of a user may evolve over time. A well-trained model

would fail to recognize a legitimate user eventually if the user gesture pattern evolves

causing a change in the user behavioral profile. The classification accuracy would

drastically reduce if user gesture evolution is not captured well. This calls for frequent

or regular training of the data to build a new model to adapt to changes in user motion

gestures. Lee et al. [25] in their paper talk about continuous rebuilding of the machine

learning model to adapt to changes in user behavioral patterns. It is not very clear

using how much or on what data the model would be retrained. Chauhan et al. [34]

presented a method in which random samples from previous days’ data are mixed with

data from the present day daily as a method to adapt to changing user gesture

patterns. Retraining a model regularly to capture user gesture pattern changes is

extremely costly in terms of the acquired time and space complexity, especially when

the size of the data is large and ever increasing. Furthermore, random sampling has

disadvantages like over-representation or under-representation of a specific

population of data. With random sampling, there are chances of losing important

information from the data if resourceful samples are not picked.

We present a novel and an efficient approach to adapt to user behavioral

evolution in this thesis. To reduce the computational cost of rebuilding the machine

learning model, our approach updates the model by training it on top of the existing

model. This way we do not retrain on data on which our model has already been trained

in the past. We update our model by training it just on newer data to include

information from the newer data. So, essentially, each time while updating the original

model, the training happens just on newer data. With “newer data” we refer to the

 17

data, which has not been used for training in the past. This way we build an updated

model, which has been trained on all the available data, but with lower computational

cost. Since, we reuse the original model and then update it, we save on computational

cost. Our approach thus yields high performance while saving time and computational

resources.

 18

CHAPTER 3

THE OVERALL APPROACH TO SECURE SMART WEARABLES

3.1 Threat Model of Our Approach

In our approach, we consider a situation in which an attacker has access to the

following:

• Physical access to the smart wearable device

• Passcodes or PINs for unlocking the smart device

• Private data (e.g. email, text messages) available on the smart device

• Synced data that is available on the smart device as the smart wearable

connects to other devices in an IoT environment.

An attacker may gain possession of private data stored on the smart device.

Our aim is to generate a sensor data based behavioral biometric authentication system

that would validate a user uninterruptedly. Thus, at the time of attack, the adversary

would be forced to validate herself beyond the passcode validation step.

3.2 Assumptions

 We make few reasonable assumptions in our approach, which are described in

this section.

The presented approach uses accelerometer and gyroscope sensors from a

wearable smart device to read user behavioral data. Depending on the collected data,

a user profile is built during the training phase. The user profile in the form of the

 19

machine learning model is used to predict the validity of a user accessing the device

continuously. Throughout the process, we heavily rely on the sensor data readings.

The user validation step is dependent on the sensor readings as well. We assume that

the sensors are not faulty or damaged. We also assume that the sensors used in our

approach provide us reasonably accurate readings throughout the training and the

validation steps. In addition, we assume that the sensor readings have not been

tampered or modified by any means possibly by an attacker.

During an initial enrollment phase, the data is collected from the smart device

for a period for building the machine learning model. Unless the first initial model has

been built, the authentication process is inactive. We assume that during the initial

training phase, the legitimate user uses the device and the data is safe from attacks.

We also assume that an attacker does not have access to the generated model, and

the model is secure from illegitimate modification. In summary, we assume that the

components of the authentication software are secure from illegitimate access or

modification. We assume that the authentication software is inaccessible to the device

owner. Under such assumptions, an attacker as defined by our threat model would not

have access to the authentication software, so our assumption is feasible in a real-

world scenario.

It is worthy of mention that we primarily consider confirming a user against the

smart device owner, since smart devices are generally personally owned devices which

are not shared across multiple users.

We also assume that the user of the smart wearable device wears the device

at the same part of the body throughout the training and the validation phases. It is

common for users to wear the same smart watch on either of their wrists. The

dominant and the recessive side of a human body may produce different sensor

readings for the same user. Many smart watch manufacturers ask the users to specify

 20

if the user is wearing the smart watch in their dominant wrist or not for a specific

usage session. To keep things simple, thus, for our study we assume that the user

wears the smart device at the same body part throughout the training phase as well

as the validation phase.

3.3 Our Overall Approach

Wearable devices come with an array of in-built sensors, the one common thing

among these devices is their ability to monitor, and record user motion gestures with

the help of these embedded sensors. These sensors along with their wide scale

availability make wearables highly appropriate for implementing a motion gesture

biometric based authentication system. An important advantage with wearables is that

by their nature, these devices are always worn by user, thus capturing behavioral

biometrics for authentication is easy and feasible. This in turn makes it possible to

implement the continuous authentication scheme as well.

We present an approach to develop an authentication software for smart

wearable users in this thesis. Our primary goal is to develop a user-centric continuous

authentication software to secure smart wearables in the Internet of Things (IoT)

environment by using user motion gesture based behavioral biometrics. Our approach

has two major components:

1. The first component learns user behavior and generates a user profile in the

form of a machine-learning model. This machine learning model is used to

authenticate the user continuously throughout the usage session.

2. The second component updates the generated model periodically as required.

 21

Our approach eliminates the need of conscious user inputs. We plan to hide the

components of the authentication software from the user as part of abstraction. In

addition, we plan to make the authentication software inaccessible to users to prevent

unauthorized modification.

A smart wearable user would wear the smart device throughout the usage

session. Thus, continuous stream of data is obtained which can be utilized for

continuous authentication. Hence, the user can be authenticated throughout the usage

session. This is exactly what we mean by “continuous authentication”. Furthermore,

smart wearables are designed to recognize motion gestures. We incorporate this

natural feature of wearables in our approach. We utilize motion sensor data for building

the user behavioral profile (machine learning model) which is also used to verify the

legitimacy of the user.

As per our approach, we collect the motion gesture data of the user from the

accelerometer and gyroscope sensors embedded in the wearable device. Additional

features are extracted from the sensor data after which all the features are used as

input for training the model. We implement scalable gradient boosting on decision

trees to generate the machine learning model.

The machine learning model validates the user after receiving fresh sensor data

during the validation phase. Please note however that the raw data must be passed to

the feature extraction algorithm as input, the output from which is passed to the built

machine-learning model as an input to output a decision. The decision of the model as

an output tells if the user is legitimate or not. If the user’s legitimacy is verified as part

of the decision from the model output, then the validation service continues to run in

the background. If a user is determined to be an illegitimate user, then the

authentication service locks the device and the user is required to validate herself.

 22

As part of adaptation, the previously generated model is updated in the event

of a substantial dip in the accuracy of the decision-making process. It is responsible

for updating the model with freshly generated data by training it on top of the existing

model. The process of updating the model happens in the model generation (training

the tree model) step. However, it needs to be initiated by the adaptation process.

Popular wearable devices store user data for a period, after a decided period,

a fresh new model can be generated by replacing the existing model. This is because

older data may not be as useful after a certain point of time. Replacing the model after

a substantial period (e.g. few months) is a more feasible option than replacing the

model frequently instead of updating the model. This is because training models is an

extremely costly event in terms of the acquired computational time and resources.

Figure 6 shows our overall approach, which can be summarized as follows:

(Step 1) Data Collection: User motion gesture data is collected in this step.

(Step 2) Feature Extraction: The feature extraction algorithm gets the

collected data as input and statistical features are extracted as an output

at the end of the step.

(Step 3) Training the Gradient Boosted Tree Model: The features are passed

on as input to the scalable and optimized Gradient Boosted Decision

Tree (GBDT) algorithm to train the model on the input features in this

step. The learning model is generated and saved at the end of this step.

(Step 4) Authentication: The user is validated in this step. The user validation

service runs in the background for authentication purposes.

(Step 5) Adaptation: The gradient boosted tree model that is built as part of

step 3 is updated in this step as part of adaptation. This step is to an

extent dependent on the feedback received from Step 4.

 23

During the initial training phase, the sensor data is collected and the initial

machine-learning model is generated. After the model is built and saved, the

continuous authentication service is activated. The authentication service receives

fresh data from the output of the feature extraction algorithm. The features are passed

on as input to the saved learning model and the result determines validity of the user.

Fig 6: Our Approach

 24

The authentication service sends feedback to the adaptation service regarding model

performance. The adaptation service decides to update the model if the accuracy dips

substantially. It interacts with the model generation service to update the existing

model. The updated model is saved in place of the original model. The steps are

repeated henceforth.

In the upcoming chapters, further details of the steps of our approach to

develop the authentication software are provided.

 25

CHAPTER 4

DATA COLLECTION

This chapter discusses the very first step of our approach. It is an important

step because all the remaining steps or components of our approach depend on it.

In the data collection step, readings from accelerometer and gyroscope sensors

are collected. Accelerometer sensors are used to record the acceleration and gyroscope

sensors are used to record the rotational velocity of the body part they are attached

to. There are few advantages of using these sensors. Firstly, these sensors are each

able to capture acceleration and rotation in three dimensions and together they can

provide complete motion information of the body part they are attached to [27] in six

dimensions. This is a major reason as to why in our study we use both the

accelerometer and gyroscope sensors. Secondly, popular smart devices come pre-

equipped with these cheap, tiny, low-power sensors. Table 1 provides a list of smart

devices with the accelerometer and the gyroscope sensors. Last but not the least,

these sensors do not need user permission to work. Thus, they are able to collect user

data without the need of active user intervention. Figure 7 shows the embedded

sensors of the Apple Watch.

A wearable device user wears the device during the usage session. Thus, data

can be continuously collected during the usage session. Initially, data is collected for

training the gradient boosted tree model. Later, data is collected primarily for the

purpose of authentication of the legitimate user once the trained tree model has been

generated. Collected data from this step is also used to initiate the process of

adaptation. Data collected from this step is always passed to step 2 for feature

extraction.

 26

Table 1: Popular Smart Devices with Accelerometer and Gyroscope Sensors

Smart Device Accelerometer Gyroscope Device Type

Apple Watch Series ü ü

Smart Watch

Or

Fitness Bands

Fitbit Surge ü ü

Alcatel One Touch
Watch ü ü

Motorola Moto 360
Watch ü ü

LG G Watch ü ü

Asus Zen Watch ü ü

Huawei Watch ü ü

Samsung Gear Watch ü ü

Samsung Gear Watch ü ü

iPhone 6 ü ü

Smart Phone
Nexus 7 ü ü

Huawei P8 ü ü

Samsung S6 ü ü

Myo Armband ü ü Gesture Control Arm
Band

Nymi ü ü Heartbeat Monitor

 27

Fig 7: Embedded Sensors of the Apple Watch

At the end of the data collection step, accelerometer and gyroscope readings

in the three axes or the three dimensions are obtained. Table 2 shows the data that is

obtained as part of data collection.

Table 2: Data Collection

Acceleration in x-axis

Accelerometer sensor Acceleration in y-axis

Acceleration in z-axis

Rotational velocity in x-axis

Gyroscope sensor Rotational velocity in y-axis

Rotational velocity in z-axis

 28

CHAPTER 5

FEATURE EXTRACTION

The collected data from step 1 of our approach is passed to the feature

extraction algorithm as input for feature extraction. In this chapter, the feature

extraction algorithm is discussed in detail.

The goal of feature extraction is to derive values or features from the original

data to discover meaningful insight from data; reduce noise, and redundancy. Feature

extraction is a useful step that helps estimate the classification parameters of the

supervised machine-learning model more accurately. We primarily derive statistical

features from the raw sensor data. Table 3 provides a list of all the features extracted

in this step.

Firstly, we extract the magnitude of acceleration from the accelerometer

readings in three dimensions. Similarly, we calculate the magnitude of the rotational

velocity from the gyroscope readings in three dimensions. Next, we begin the process

of extracting statistical features. To prepare the dataset for feature extraction, we

divide the entire dataset into non-overlapping frames or windows. Each window consists

of fixed sized data points. Segmentation of sensor data into uniform windows has been

found to be effective in the current state of the art [49] as a data preparation step prior

to feature extraction. The number of data points per window can be determined by

considering the sampling rate of the sensors. For a sampling rate of 30-60Hz (the

general sampling rate for accelerometer and gyroscope sensors for majority of smart

devices), a 10s window (rounded off) would have around 300 data points. Considering

the information, we divide the dataset in a way such that each non-overlapping window

has 300 data points. From the data points of each bucket for both the sensors per axis,

 29

and for the magnitude values per sensor, we extract statistical features. Some of the

statistical features are the result of a mathematical aggregate function (e.g. mean,

maximum, minimum etc.) which are computed over each data point per window. The

result from the aggregate is replicated across all the data points of the window.

Algorithm 1 is the feature extraction algorithm for our approach.

Algorithm 1: Feature Extraction

Note: All the calculated values are saved under the corresponding features.

1. Calculate magnitude of accelerometer readings.

2. Calculate magnitude of gyroscope readings.

3. Split the data set into B frames of fixed window size k

4. For B = 1 to n

4.1. Calculate mean, standard deviation, variation, maximum, minimum, skewness,

kurtosis, root mean square (RMS) for all k samples.

4.2. Repeat 4.1 for accelerometer readings for accelerometer readings for 3 axes,

gyroscope readings for 3 axes, and magnitude values for accelerometer and

gyroscope.

4.3. Replicate each calculated value across k samples

4.4. End For.

5. Calculate waveform length (𝑥"#$-𝑥") for accelerometer readings for 3 axes.

6. Calculate waveform length (𝑥"#$-𝑥") for gyroscope readings for 3 axes.

7. Calculate average absolute difference of mean for accelerometer readings for 3

axes, gyroscope readings for 3 axes.

8. For B = 1 to n

 30

8.1. Calculate range, first quartile, second quartile, third quartile

8.2. Repeat 10.2 for accelerometer readings for 3 axes, gyroscope readings for 3

axes

8.3. Replicate each calculated value across k samples

8.4. End For.

9. For B = 1 to n

9.1. Calculate binned distribution values with bin size = 10.

9.2. Store each bin result as a separate column of feature. We should have

10 bin columns. Replicate each bin’s value across k samples.

9.3. Repeat 9.1 and 9.2 for accelerometer readings for 3 axes, gyroscope

readings for 3 axes.

9.4. End For.

10. End.

After data preparation, additional features are extracted from the data. The

features obtained from the feature extraction algorithm as output, are passed as input

to train the model. The features are input to the generated model after training for

continuous authentication purposes. Data preparation and feature extraction has a key

role in model performance and must be carefully executed.

 31

Table 3: Extracted Features

Feature Aggregate
Function Extracted From

Magnitude û

3-axis accelerometer

+

3-axis gyroscope

Mean ü

3-axis accelerometer

+

3-axis gyroscope

+

Magnitude from 3-axis
accelerometer

+

Magnitude

from 3-axis gyroscope

Standard deviation ü

Variation ü

Maximum ü

Minimum ü

Skewness ü

Kurtosis ü

RMS ü

Waveform length û

3-axis accelerometer

+

3-axis gyroscope

Absolute difference of value
from mean û

Average absolute difference
from mean ü

Binned distribution (10 bins) ü

Range ü

First quartile ü

Second quartile ü

Third quartile ü

 32

CHAPTER 6

TRAINING THE GRADIENT BOOSTED TREE MODEL

In this chapter, we discuss in details the core of our approach: training the

gradient boosted decision tree model. This is step 3 of our approach. We start by

providing a brief background of the classification problem at hand. We then discuss in

greater depth the machine learning model generation algorithm.

Information from the data collection step is passed on as input to the feature

extraction algorithm for processing. The features obtained as output are fed to the

tree building algorithm for generating the tree model. The machine-learning model is

prepared in this model generation step. The generated model learns the user behavior

based on the data collected from the accelerometer and the gyroscope sensors, and

the features extracted. The model is saved and made available to the authentication

service, about which we would discuss in the upcoming sections. The generated model

at the end of the step is used to determine the legitimacy of the user as part of the

process of continuous authentication.

6.1 Background

 Machine learning algorithms provide an ability to predict on new data on being

trained upon a learning dataset. Mathematically, a machine learning model refers to a

mathematical function, which predicts the target variable 𝑦" as the output, given the

input 𝑥", where i refers to an instance of data. A supervised machine learning algorithm

is one, which uses a training dataset with known or labelled target values to learn the

 33

features. The target variable is the feature on which a prediction must be made. To

generate a machine learning model, the model is trained on a training dataset and

then it is evaluated or tested against a test dataset. A good machine learning model

should not only predict well on training data, but also predict well on test data. The

evaluation metrics determine the quality of the generated model.

The goal of the machine-learning model of our approach is to predict if a user

is the legitimate user. The target values of our learning model are “authentic” and

“not-authentic” for the legitimate user and the illegitimate user respectively. This is a

2-class supervised classification problem where each instance of the training dataset

is associated with either of the two pre-determined class labels (target values). The

pre-determined labels are used for training or learning the user features. We

implement scalable and regularized gradient boosting on decision trees to learn the

user features. In the later sections of the chapter, we would describe the training

algorithm and the evaluation metrics for testing the generated machine learning

model.

6.2 Decision Trees

Decision trees are used as the base classifier for building the model. The

objective of a decision tree classifier is to predict the target variable by learning

classification rules construed from the features of the input data.

Decision tree classifiers have several advantages and the reasons as to why we

use decision trees as the base classifier are discussed as follows: Decision trees are

powerful classifiers who can model non-linear relationships between features and the

target variable. The decision tree model is good at handling data with numerical

 34

features and features coming from different sources without much tuning. This is very

much applicable to our problem at hand since we get data from multiple sources -

accelerometer and gyroscope sensors each of which records data in 3-dimensions.

Furthermore, trees require very little data preparation or normalization because they

can handle qualitative predictors. Last but not the least, decision trees are known for

being simple and intuitive for analysis and explanation purposes.

A decision tree comprises of one root node, one or more general nodes, leaf

nodes, and edges coming out of each node. Each node branches out into several child

nodes via edges. Each node represents an attribute or feature. The appearance of a

feature in a tree tells us about the significance of the related attribute in forming the

decision tree model. The leaf nodes represent class labels. The edges coming out of

each node represent the possible values of the feature node from which they initiate.

All the features are passed in as an input to the decision tree algorithm. The output is

the generated decision tree model. Figure 8 represents the decision tree structure.

Fig 8: Decision Tree Structure

 35

6.3 Feature Selection

An important characteristic of decision trees is automatic feature selection as

part of classification. Feature selection is a process of selecting a relevant subset of

features from the set of all the available features. Relevant features can be defined as

features which are neither irrelevant nor redundant to predict the target variable in

the machine learning problem at hand. An irrelevant feature on the other hand does

not affect the prediction at all and a redundant feature does not add value to predicting

the target. Reducing the number of features is also called dimensionality reduction.

Moreover, effective feature selection leads to less memory utilization [39], reduced

train and test time [40]. Feature selection also reduces chances of overfitting [41].

Feature selection surely helps increase model performance. However, an

additional feature selection step may be expensive to implement in terms of

computational time and resources. Decision trees provide a natural way of optimization

by combining the feature selection and classification steps. We utilize these

advantages of trees in our approach, which eliminate the need of having an additional

feature selection step.

The standard decision tree model follows the c4.5 algorithm [54]. We

implement this standard algorithm in our approach. Decision trees work by splitting

on attributes or features at each node. An attribute is selected for a split based on

some estimation criteria. The estimation criteria select the best feature to split on.

Information gain and entropy reduction provide a measure of the estimation criteria

[42]. The criteria try to discover the feature that best discriminates the target class

values.

Entropy reduction is an estimation criterion, which is used to perform feature

selection as part of building the decision tree. Entropy measures the randomness of

 36

instances of data. In other words, it measures the homogeneity of data in a sample

space. Mathematically, entropy for a binary class can be given by equation (1), where

P(a) stands for the probability of occurrence of class value a and P(b) stands for the

probability of occurrence of class value b:

Entropy = - P (a)*log	'(P (a)) - P (b)*log	' (P (b)) (1)

Thus, from equation (1), entropy of the data with 50% of each class is 1 (maximum

entropy) and for a distribution in which either of the class labels are present, the

entropy is 0. A training set with maximum entropy is good for learning since the data

distribution is unbiased. In the upcoming sections, we would talk more about bias and

variance.

 Information gain on the other hand measures the importance of a given

attribute/feature. In other words, it measures how an attribute helps discriminate the

training set based on the target variable. It selects the best feature to split on at a

given time. Its value is calculated from the difference between the parent node entropy

and the expected weighted average of the entropy of children nodes that would be

formed if a split on the attribute occurs. Mathematically, information gain can be

represented by equation (2), where the first term represents the entropy before a split

occurs and the second term represents the expected entropy if a split occurs. Equation

(2) provides the information gain (S, A) of a feature or attribute A with respect to

sample space S [42]. In equation (2) the term values(A) represents all possible values

of feature A with respect to S, 𝑆) is the subset of S for which v is a feature value of

attribute A. The term Entropy	 (𝑆))	is the sum of entropies for each subset v.

 37

𝑆) /|𝑆|)	€)6789:(;) (Entropy	(𝑆)))	term thus calculates the weighted average of the entropy

of subset v.

Information Gain (S, A) = Entropy(S) - S= /|S|=	€	=>?@AB(C) (Entropy (S=)) (2)

	

	

For each node of the tree, the information gain is calculated for each feature, and the

feature with the maximum information gain is chosen for the split. An expected

reduction in entropy is caused due to a split.

 Decision trees thus work by splitting the sample set into subsamples based on

the values of the attributes. The process of splitting nodes is done recursively via

recursive partitioning. This is a greedy method of problem solving. The C4.5 algorithm

for generating a decision tree model is provided by Algorithm 2.

Algorithm 2: Decision Tree algorithm

1. Check if all instances belong to same class.

1.1 If yes, go to step 1.2. If no, go to step 2.

1.2 Create a leaf node with that class.

2. Check if none of the features provides an information gain.

2.1 If yes, go to step 2.2. If no, go to step 3.

2.2 Use the expected value of the class to create a decision node higher

up the tree.

3. Check if instance of a new class label appears.

 38

3.1 If yes, go to step 2.2. If no, go to step 3.

3.2 Use the expected value of the class to create a decision node higher

up the tree.

4. For each attribute 𝐴", calculate the information gain if a split of 𝐴" occurs.

5. Let 𝐴E be the attribute, which provides maximum information gain if a split

occurs.

6. Create a classification node that splits the attribute 𝐴E.

7. Repeat all steps for subsets obtained by splitting 𝐴E. Add new nodes as children

of current node.

8. End.

Decision trees are simple, easy to understand, and interpret, and have several

other advantages. But, a major limitation of decision trees is that they easily overfit.

Because of which decision tree learning does not generally achieve high prediction

performance, when compared to other methods. This is because a small change in the

data may produce a very different tree leading to a large difference in prediction. Tree

learners often create very complex trees, which lead to overfitting. Overfitting occurs

when machine learning models do not generalize well beyond the training set. Decision

tree models are very sensitive to small changes in data and do not perform well on

new data. Boosting helps resolve such limitations of decision trees.

 39

6.4 Gradient Boosting

Boosting [44] is an ensemble method of learning which combines multiple weak

learners to generate a strong learner. Strong learners are learning algorithms that

produce classification results, which are close to true classification. In other words,

strong learners yield high performance. Weak learners on the other hand do not

provide high performance and perform little better than random guessing. Shallow

decision trees or decision trees with little depth (levels) are generally considered as

weak learners since they do not fit the train data very well. Boosting is a general

technique which is known for producing high performance results by combining weak

or moderately weak learners to develop a strong learner.

Boosting optimizes the overall model building process by reducing bias and

variance. Bias is caused when an algorithm underfits the data. Bias occurs due to

wrong assumptions in the learning process, which can cause the training algorithm to

miss important relationships between the features and the target variable. While

variance is an error that occurs if the model is sensitive to small changes in the data.

Variance leads to overfitting and happens when the trained model does not generalize

well beyond the training set.

In our approach, we use boosting with decision trees as the base learner. It

uses multiple weak or shallow decision trees to build a model, which generalizes well.

The boosted decision tree algorithm combines the predictions of multiple trees to

predict a class value. It combines the prediction from the several trees in an additive

manner. Our approach has the advantage of the underlying tree structure, and with

boosting we get a more effective algorithm for learning the final nonlinear resulting

ensemble of trees. Equation (3) provides the boosted decision tree ensemble equation

where 𝑓" 𝑥 stands for a decision tree and 𝑔 𝑥 stands for the boosted tree model.

 40

g x = 	 fL x +	 f$ x + f' x + ⋯ fO x (3)

The gradient boosting [43] algorithm is a specific boosting technique. It

combines base learners, which are decision trees in our case with a method called

gradient boosting. The name gradient boosting is derived from the optimization

function of gradient descent, since gradient boosting uses the gradient descent

algorithm for boosting. The gradient descent method is used to minimize the loss

function when adding trees. Conceptually, a loss function is some function of the

difference between the estimated and the true values of the labels of the instances.

Commonly used loss functions: mean squared error and logistic log functions are given

by equation (4) and equation (5) respectively. The following equations are formulated

considering that in a training data sample of known values of 𝑥"	and target class values

of 𝑦", where i represents each data point and n is the total number of data points, the

training set is {𝑥", 𝑦"}.

	

L	(yS,	g	(xS))	=	
$
T
	 (yS − yS)'	 (4)

L	(yS,	g	(xS))	=	
$

?VW '
	log	(1	+e[\](^))	 			 	(5)

 41

Logistic log function being continuous helps utilize gradient descent and is a

common classification loss function. In our approach, we use the logistic log function,

which we call log loss. It is used to determine model accuracy and evaluate the model.

Equation (6) shows the gradient descent optimization function where t stands

for the number of iterations and h stands for the step size. If we want to optimize

differentiable function f(x), the gradient descent algorithm works by iteratively finding:

 𝑥_#$ = 	 𝑥_	-	h
ab
ac
	|cdce	 (6)

Let g(x) be our model function. From equation (3), we can express g(x) for each

iteration as equation (7), where symbols have their usual significance:

𝑔_(x)	=	 𝑓"_[$

L (x) (7)

Let 𝑔_(x) be the trained classifier at iteration t, and L(𝑦",g(𝑥")) be the loss function of

the training set {𝑥", 𝑦"}, then at each iteration (t+1), 𝑔_ leaps towards negative gradient

descent by ab
ac

 amount with step size of h. Here, 𝑓_	is chosen to be the argument of the

minimum, i.e. the value of x is chosen such that the minimum value of f(x) is obtained.

Equation (8) calculates value of	𝑓_.

𝑓_ = 	 𝑎𝑟𝑔	𝑚𝑖𝑛b 	
kl mn,o cn

ko cn
|od	oe − 𝑓 𝑥"

'
p
"d$ (8)

 42

The gradient boosted algorithm combines base learners, which are decision trees in

our case with a method called gradient boosting using the gradient descent

optimization method. At iteration t+1 the gradient boosting algorithm computes 𝑔_#$

as provided by equation (9):

																		𝑔_#$=	𝑔_+η𝑓_ (9)

The greedy gradient boosted algorithm [43] as proposed by Friedman is

implemented in our approach. It can be implemented with any differentiable loss

function. However, since we have a classification problem, we use the logistic log loss

function, which is common to use [43]. The algorithm aims to minimize the average

value of the specific loss function while learning. Let 𝑦 be the optimized prediction

value. Then the algorithm tries to predict the best value of 𝑦 for f(x). This is given by

equation (7). We would describe the algorithm of the gradient boosted model next.

We learn one tree at a time in the gradient boosted algorithm. Let us consider the

training set to be {𝑥", 𝑦"}, t to be the number of iterations, 𝑓" be the tree models, 𝑦 is

the prediction value at each iteration and k be a constant, then we get the following

equations at each iteration:

t = 0 𝑦L = k

t = 1 𝑦$ = 𝑦L + f$(𝑥")

t = 2 𝑦' = 	𝑦$ + f'(𝑥")

…

At 𝑡_s iteration 𝑦_ = 𝑦_[$ + ft(𝑥") = fu(𝑥")_
vd$ (10)

 43

Thus, the algorithm of gradient boosting tries to fit a new decision tree to the residual

at each iteration. At this point, let us consider g(x) is the prediction function that we

would learn to minimize the loss function. We aim to find 𝑔(𝑥), which is the optimized

function for our problem. We aim to find a suitable g(x) from a class of non-linear

function G to minimize the loss function. In our case, we consider 𝑥 to be the input

vector such that x = {x [1], x [2], … , x[d]} and a set of inputs 𝑥" = {x$, x', . . . , xO} such

that X € S where S is the training set, and d is the total number of dimensions, and Y

is the target vector such that 𝑦" = {y$, y'}, as we have a binary class problem. A binary

class has two labels. Equation (11) for our case defines 𝑔(𝑥). 𝐿 𝑦", 𝑔 𝑥" is the logistic

log loss function.

g(x) = arg minW€|	L yS, g xS 	 	 (11)

From equation (10), we can say that 𝑦	 can be represented as a function, which must

optimize the coefficients of the parameters of the input function 𝑓"(𝑥). Thus, from

equations (11) and (10) we can say that 𝑔(𝑥) depends on two parameters: coefficients

of t decision trees and each decision tree rule 𝑓"(𝑥). Therefore, there are 𝑐_ coefficients

that can be optimized and each 𝑓"(𝑥) is a base learner, which can be optimized. So, our

overall algorithm must optimize all coefficients of the base learners. Consider the base

learners to be trees with M terminal nodes and each base learner before fitting to be

h. This is done with an update step that is used to optimize the coefficients. Algorithm

(3) is the gradient boosted decision tree algorithm [43].

 44

Algorithm 3: Gradient Boosted Decision Trees

1. 𝑔L(x) ← arg 𝑚𝑖𝑛o	𝐿 𝑦", 𝑔 𝑥" 	 //Initialize	model	with	constant	value

2. For t = 1 to T

2.1. 𝑦_	←	
kl mn,o cn

ko cn
|od	oe	

2.2. 	Fit	a	tree	𝑃		with	leaf	nodes	{	ht,u}	vd$� 	

2.3. 	For	m	=	1	to	M	

2.3.1. 		𝐵_,v←	arg	𝑚𝑖𝑛�€�	L(𝑦_, 𝑔_[$ 𝑥" 	+	𝐵	.	ht,u 𝑥" , 𝑦")	

2.4. 	𝑔_(x)	←	𝑔_[$(x)	+	η 𝐵_,v�
vd$.	ht,u 𝑥" 	

2.5. End For

3. Return g(x) = 𝑔_(x)

4. End.

Our approach is based on the above algorithm. However, an explicit

regularization scheme has not been proposed in [43]. We implement regularization to

reduce complexity of the model. Regularization helps prevent overfitting by reducing

the complexity and is an important optimization step, which helps in generalization

beyond the training dataset.

6.5 Regularization

Regularization helps prevent overfitting by reducing complexity of the model.

Pruning is a regularization technique. Pruning is a method of reducing the complexity

of decision trees by eliminating sections of trees which do not help classify instances

 45

well. Thus, pruning helps prevent overfitting. The following additional checks were

added to the decision tree algorithm (Algorithm 2) for pruning the decision trees.

Please note that the tree building algorithm step of Algorithm 3 also incorporates the

pruning steps as a means of optimization as follows:

1. Check if minimum child weight = c

i. If min (child weight) < c: skip split; continue to next corresponding step

of algorithm;

ii. else: continue to next step of algorithm

Explanation: In our approach, c = 5. Minimum child weight refers to the minimum

number of observations required at a leaf node. More formally, it refers to the

required minimum sum of instance weights at each node. Larger values of

minimum child weight yield simpler trees, which generalize well beyond the training

data. If the tree building step results in a leaf node with the sum of instance weights

less than the provided minimum child weight value of 5, then the algorithm will not

split that node. This is a pruning technique. Pruning can be defined as a method of

reducing overfitting in decision trees.

2. Check if minimum loss reduction value = L

i. If min (loss function) < L: skip split; continue to next corresponding

step of algorithm;

ii. else: continue to next corresponding step of algorithm

 46

Explanation: In our approach, L = 7. The minimum loss reduction value determines

if a split of the node/farther partition of the node would be carried out. If the loss

function is not reduced sufficiently by at least 7 units then a split is not carried out.

This is also a pruning technique. Here the expected loss reduction is considered,

i.e. the loss function value if the split were to occur is considered, if it is less than

7, then the split does not occur.

3. Break further partition if maximum height of tree = D.

Explanation: In our approach, D = 4. The height = 4 units can be considered a

reasonably good height (or level) for trees. This is because deeper trees increase

complexity of trees which lead to a tighter fit increasing the chances of overfitting.

The tree height lower than D on the other hand might not fit the data very well

based on our approach.

 We implement the following regularization measures to the gradient boosting

algorithm (Algorithm 3):

1. The maximum number of iterations (t) is restricted to 20

2. The step size(η) is kept equals to 0.3.

Explanation: At each iteration (t), a new tree is created. Usually more the number

of iterations, better the accuracy. With fewer iterations however, model may not

fit the data well. With too many iterations, a tighter fit to the training data is

obtained. Such a tight fit may lead to overfitting. In addition, the training and

prediction time scales linearly with additional trees. Thus, the number of iterations

 47

is restricted to 20 based on our approach, since controlling the number of iterations

reduces overfitting. Since, the step size or the shrinkage parameter works in

conjunction with the number of iterations, care must be taken to fix the step size

according to the number of iterations and vice versa. Shrinkage parameter of less

than 1 has been found to be beneficial as an optimization step in the gradient

descent algorithm [35]. Thus, we keep the step size to a value which is less than

1. A smaller step size than the one we use in our approach may take forever to

converge, or would take too many iterations to converge. Whereas, a larger step

size may not converge or may converge at infinity.

 So far, we discussed the algorithm to train the model. We would train the model

on a training dataset to build the machine learning model. The built model is tested or

evaluated on a testing dataset next. The built model gets deployed once the evaluation

results are satisfactory. The deployed machine learning model drives the continuous

authentication scheme. In the upcoming sections, we talk about the data of the

training set and test set, and the evaluation metrics.

6.6 Reducing Bias

 Bias in statistics can be defined as the systematic preference that is present in

the data of the sample set, which results in erroneous and misleading data analysis

based results. A machine-learning algorithm might miss important relationships

between the target variable and the features in the presence of high bias. As discussed

earlier, it is thus important to reduce or eliminate bias in the training set before we

start to train the machine-learning model. This also helps us with benchmarking

 48

analysis. If we have a binary classifier, random guessing would yield 50% accuracy.

This is because probability of correctly predicting a class label is 0.5 in case of a binary

classifier. A machine-learning model should at least provide accuracy better than the

benchmark value of 50%. The above statements hold true for an unbiased training

sample set. Thus, in order for us to execute benchmarking analysis, bias needs to be

eliminated or minimized from the training set. An inherent error of bias results if the

sample space does not have enough representative data of population of a class label.

To reduce bias, we take approximately equal samples of the “authentic” label and the

“not-authentic” label for the legitimate and the illegitimate user respectively. This

helps us prevent a problem of underfitting and helps us evaluate the model in the true

sense. We would dive deeper into further discussion on how the data for each of the

class labels gets selected in the upcoming chapters.

6.7 Cross Validation

We train the model on a training set and test the model performance for

evaluating the model on a separate test set. This process is done by cross validation.

Cross validation helps avoid overlap between training and test sets for better

evaluation. What we have realized from the discussion so far is that the base learners

learn from a subset of data and their predictions are combined to predict the target

value. It is important to shuffle the data set before we begin the process of training or

before cross validation. This is because the subset on which the base learner is being

trained may not have sufficient information for all the class labels – with a high bias.

Shuffling is an important model evaluation step when data is coming from multiple

 49

sources [51]. We ensure that the subsets have minimum bias to avoid underfitting of

data.

The parametric values are determined, and tested with leave-one-out k-fold

cross validation. We implement 10-fold cross validation (with k = 10) in our approach.

Leave one out k-fold cross validation is a method in which the dataset is divided into

k samples, out of which (k-1) samples are used as the training set and remaining one

set if used as the testing set. This process is repeated k times with each of the k

subsamples used only once as a testing set. The K results are then averaged to

estimate the performance of the model. This method helps check for overfitting or

allows us to estimate how the model would generalize to an independent dataset.

 During training 5% of the data is used as the validation set which is separate

from the test set. The training and the validation sets are both used during training of

the machine-learning model. The primary feature of a validation set is to see how well

the model performs on the training set. In other words, the validation set helps provide

an estimation of how well the model has been trained. In addition, separate training

and validation sets help control overfitting. For instance, if the accuracy of the model

increases on the training set and not on the validation set, it could be a sign of

overfitting. One should stop further training at that point. On the other hand, the

performance of the model on the test set tells us about the quality of the model. It

gives us an idea as to how the model would perform upon deployment.

6.8 Tree Model Evaluation

 To evaluate the model, several evaluation metrics were considered. The

following metrics were used to evaluate our model:

 50

• Accuracy: It provides the percentage of correct predictions for the given

target value.

• Confusion Matrix: It is presented in a table format, which lists the

number of true positives, false positives, true negatives and false

negatives.

• EER: EER stands for equal error rate. The point of the ROC curve at which

the false positive rate and the false negative rate are equal is given by

the EER value. The value is commonly expressed as a percentage.

• False Acceptance Rate: It calculates the ratio of the number of false

positives thrown to the total number of predictions made.

• False Rejection Rate: It calculates the ratio of the number of false

negatives thrown to the total number of predictions made.

• Precision: Precision is a measure of relevancy. It is calculated as the ratio

of the number of true positives to the sum of true positives and false

positives.

• Recall: Recall’s value provides a measure of the number of truly relevant

results returned. It can be defined to be as the ratio of the number of

true positives to the sum of true positives and false negatives.

• f-1 score: It calculates the harmonic mean of precision and recall.

• Log loss: It computes the logarithmic loss function for the predicted

target and the actual target values. The log loss function formula has

been discussed in the earlier sections.

• ROC curve: ROC curve stands for Receiver Operating characteristics

(ROC). It is a graphical curve, which plots the true positive rate vs the

false positive rate at various threshold settings.

 51

• AUC: AUC stands for the area under curve of the ROC curve. It computes

the probability that the binary classifier will rank a randomly chosen

positive example higher than a randomly chosen negative example. A

higher value of AUC indicates a good classifier.

The discussed metrics help evaluate the built model on the test set. A good

model would perform well not only during training but also during testing. A model

with satisfactory evaluation results is selected for deployment. The deployed model

drives the continuous authentication method.

With our approach, overfitting can be prevented. So, the built model can

generalize well and hence is more scalable. The gradient boosted decision tree scales

in O(nlogn) time during training, where n represents the number of instances used for

training. This includes the feature selection step. It takes constant testing time in

terms of time complexity, which means that upon deployment, the model would predict

in constant time or in O(1) time in terms of time complexity. This is reasonably better

than existing algorithms, which are much more complex in terms of time complexity.

Because of which, the training algorithm scales well with our approach. Also, the time

complexity of this algorithm can be further optimized using approximation algorithms.

Furthermore, as per our approach, the machine-learning algorithm can also be

trained using distributed computing frameworks [59]. A distributed computing

framework involves a collection of independent computers (also called as nodes or

clusters) which are interconnected via a network and can work in collaboration on a

computational task. Each node or cluster can work on a portion of the task to achieve

a computational result faster than with a single computer. The individual computers

are cheaper and have lower processing power than a single powerful computer in

general. Distributed computing especially helps when the dataset is very large and

 52

training on a single machine may take too much time. In addition, distribution helps

in fault tolerance, since the task is not dependent on a single machine and is resistant

to single point failure.

At the end of the step, the machine learning model is built and saved for

deployment. The deployed model is updated as required, which is controlled by the

adaptation service. We provide further details of our approach in the upcoming

chapters.

 53

CHAPTER 7

AUTHENTICATION

The authentication service receives features as input, which are output from the

feature extraction algorithm to pass on as input to the deployed machine-learning

model. A decision is output from the model next. The output from the model

determines what the next piece of action would be for the authentication service.

Depending on the output, if the user is determined to be a legitimate user, the

authentication service continues to run in the background; otherwise, the

authentication service locks the device and forces the user to re-authenticate herself.

On a regular basis, all the steps of our approach from data collection (step 1) to

authentication (step 4) work in conjunction to drive the continuous authentication

scheme. Whereas, periodically, depending on the feedback received by the adaptation

service from the authentication service or otherwise as required, the adaptation step

comes into play. Though at first glance it might so appear that the step of

authentication is the last step of our approach, it is not in actual. In fact, the feedback

from the authentication service to an extent determines when the model gets updated.

The performance of prediction of the deployed model is noted and shared with

the adaptation service. If the performance of the model based on the evaluation

metrics deteriorates by a substantial value, then the adaptation service updates the

model. The updated model replaces the existing model and is made available to the

authentication service as the newly deployed model.

It is worthy of mention however, that the focus of this thesis is not on when to

begin the process of adaptation, rather on how to adapt and update the model. We

provide a brief idea regarding how the feedback from the authentication service leads

 54

to adaptation up next, however, that may not be the sole driving factor to initiate the

process of adaptation. In this thesis, we focus more on how efficiently adaptation can

be carried out. A detailed research on when to adapt is left as a future work.

The feedback from the authentication service prompts the adaptation service to

update the model. To understand the process of generating a feedback consider a

scenario as follows: Let a user re-authenticate herself during the current usage session

as she is determined to be an illegitimate user. If during the present usage session,

the user frequently needs to re-authenticate herself, and if this happens more than a

certain number of times, then according to our approach, the user needs to re-

authenticate herself using a stronger means of authentication which can be a one-time

password(OTP). If after this step, a user is determined to be a legitimate user,

feedback in the form of information about the collected data and features is shared

with the adaptation service. However, if the user is determined to be an illegitimate

user, at this point, no further action is taken. Also, if the user is determined to be an

illegitimate user once or twice during a usage session, feedback information is sent to

the adaption service. The evaluation metrics for multiple instances of data is noted,

which cumulatively provide us the value for evaluation metrics. For example, accuracy

percentage is noted for multiple data instances and that value is considered a feedback

parameter, which is shared with the adaptation service.

 55

CHAPTER 8

ADAPTATION

User behavior may evolve over time. The way you handle your mobile device

the day you start using it should be slightly different from the way you use it as a

regular user. This is an example of user behavioral evolution. A straightforward

solution is to capture user behavioral evolution is to retrain the model on the new data.

There are two disadvantages of this approach. Firstly, the old model is completely

wasted, since it is not re-utilized in the retraining process. Secondly, we miss important

information of user characteristics that the previous dataset could have captured if we

retrain the model just on new data. With “new data”, we refer to data that has not

been used in the past for training purposes. For example, the user may start following

a new work out regime. She may revert to the old workout exercises few days later.

Just depending on new data would not help the predictive performance in such a case.

A solution is to retrain on all the available data collected so far. Even then, we cannot

make use of the previously built model. We would simply waste that. In fact, building

a new model on a larger data is an expensive choice in terms of the time complexity

and the computational resources used.

We present a novel approach of continuous learning in this thesis. In this

method, the boosted decision tree model keeps the previous model and continues

training with the new incoming training data so that you can further boost an already

fitted model on new data. With this approach, one would spend as many resources as

needed to spend to train just the new data. For example, consider you have a dataset

with 200 data points. You now build a model by training with 150 data points. Now,

with our approach you can train the remaining dataset of 50 data points on top of the

 56

built model (with training data of size 150). This saves computation cost of building a

brand-new model and can instead utilize the existing model and update the existing

model. This is because you do not need to train a model again with 200 data points.

Just training on the 50 data points on top of the already built model would efficiently

serve the purpose. This is a method of continuous learning or continuous training. We

plan to apply this method when the accuracy of the model drops substantially.

With gradient boosting, it is possible to further boost the already trained model

while training it on new data. In the chapter of training the tree model, we discussed

how the gradient boosted decision tree model gets trained by fitting a new tree to the

residue. While updating the model, the new data becomes the residue, on which a new

tree(s) is fitted and recursively the algorithmic steps from Algorithm 3 are repeated.

The process of updating the model utilizes just as many computational resources as it

is required to train on the new data. Clearly, this method is computationally more

efficient than retraining the machine-learning model from scratch, since training

models is extremely costly in terms of the acquired computational time and resources.

Overloading the gradient boosted decision tree model algorithm of our

approach with too much data may increase computational cost, and may also lead to

overfitting. It is important to update the model carefully to ensure that the built model

does not overfit the data, which might in turn reduce the efficiency of the model. When

to adapt, could be an area of research and we leave it more as a future work.

Since, too much data can do our approach more harm than good, we utilize a

method of sampling to selectively use samples of data, rather than the entire dataset

to reduce the data load on our model. This method is presented as an alternative to

using the entire dataset for updating the model time and again. We utilize a method

of stratified sampling as a means of selecting samples from the dataset. Stratified

sampling randomly selects data from strata or groups from the dataset. It is more

 57

advantageous than random sampling because underrepresentation and

overrepresentation of a group of data can be prevented, since equal number of

samples get selected from each group of data. Furthermore, stratified sampling

generally requires fewer samples than random sampling. We choose fixed number of

samples from each window, which we consider as groups. The concept of “windows”

was discussed in the chapter on feature extraction. We selected the windows as

“groups” for stratified sampling as we found that to be the most basic element of our

dataset which is omnipresent, especially since the data for our approach is more of a

time-series data. The method of sampling may or may not be incorporated until a

period as required depending on how many data samples are available in total. We

provide further discussion on stratified sampling in the next chapter.

We plan to do continuous training periodically. But, after a period, we propose

to build a new model and discard the existing model. This can be executed after a few

months or so. This is still better than regular re-building of the model at more frequent

intervals. Rebuilding a model after a period would help us capture and consider more

recent data since at the point of regenerating the model, older data may be discarded.

Data from wearables get stored only for a certain period, which can be considered a

safe estimate to work with one model. After the end of the period or when we are

halfway through the period, we can generate a new model.

 58

CHAPTER 9

CASE STUDY OF OUR APPROACH

9.1 Data Collection

We use the Pervasive Systems Research Group’s Sensor Activity Dataset [46],

which we refer to as the PSRG dataset and the MHealth dataset [47, 48] to train our

model. The PSRG data has been recorded at the rate of 50 samples per second. The

MHealth dataset on the other hand has been sampled at a sampling rate of 50 Hz.

Data was recorded for 10 users of diverse profiles for both the datasets. The datasets

provide the accelerometer and gyroscope readings for each of the 10 users in separate

files.

We executed three distinct sets of experiments. Each experiment implements

our approach with a different data set. We use three sets of data from the MHealth

and the PSRG dataset together, which are as follows: Mhealth data with wearable

sensors attached to wrist; PSRG data with smart phone sensors attached to wrist and

waist. These three sets of data are referred to as MHealth Wrist, PSRG Wrist and PSRG

Waist data respectively in this thesis. For the three datasets, we use the following

sensor data readings:

• Accelerometer reading in x-axis

• Accelerometer reading in y-axis

• Accelerometer reading in z-axis

• Gyroscope reading in x-axis

• Gyroscope reading in y-axis

• Gyroscope reading in z-axis

 59

9.2 Feature Extraction

As described in the chapter of feature extraction, before extracting features,

the datasets for the three sets of experiments undergo data preparation. Beyond

which, features are extracted from the corresponding datasets for each user as per

Algorithm 1, which is the feature extraction algorithm for our approach.

9.3 Data Preparation for Training the Tree Model

A training set with minimum bias [50] is considered best for learning and

benchmarking. With bench marking, we mean performing better than random

guessing. If there is equal probability of occurrence of two classes in a sample, then a

machine learning model must perform better than random guessing performance,

which is 50%, given there is equal chance of occurrence of each class label. A training

set in which there is equal chance of occurrence of each label is called unbiased. To

reduce bias thus and for better evaluation of our model, we build training datasets in

a way as defined in the next paragraph.

To prepare unbiased training sets for training the tree model, we take

approximately the same number of illegitimate user samples as the legitimate user

samples. To do so, we consider one user to be legitimate and attach the class label

“authentic” to her data samples. We consider the other 9 users illegitimate and attach

the label “not-authentic” to their data samples. We take approximately equal number

of samples of “not-authentic” label, such that it is approximately equal to the number

of samples of the “authentic” label. Figure 9 shows the distribution of the class labels

 60

Fig 9: Training Set with Class Label Distribution

in a typical training set for our approach. This is consistent with all the three sets of

experiments we executed.

As we have 10 distinct users for each of the three sets of experiments, we

consider one user to be legitimate and the remaining 9 to be illegitimate and we repeat

the process for all the 10 users. Thus, we get 10 distinct datasets with attached class

labels for each of the three experiments. In other words, we prepare 10 sets of data

out of each of the datasets (MHealth Wrist, PSRG Wrist and PSRG Waist data). Once

we have all the datasets prepared in this way, we split the sets in a way such that 60-

70% of the data is kept for training and the remaining is kept for testing. 5% of the

data from the training set is reserved for validation set testing.

The purpose of having 50% of each of the class labels is to reduce bias in the

training set. However, having 10 different sets of data for forming the train and test

datasets is not required to reduce bias. In fact, running our experiments on different

sets of training and test data helps us test our approach well. In this way, we can test

user behavioral profile for 10 different users, in which case, each user is considered

legitimate once. So, in a nutshell, with this approach, we are able to study the

 61

behavioral profile of 10 users where activities of one user is considered to be legitimate

and the activities of the other user is considered illegitimate.

9.4 Feature Selection and Training the Tree Model

The model learns from the training set. As discussed earlier, the feature

selection and the model generation steps are combined in our approach for better

optimization. This also ensures that we do not lose any important information in the

process. This also prevents additional overhead of having a separate feature selection

step. Decision tree algorithm splits a node based on its feature importance and thus it

optimizes and combines the feature selection and the model training steps into one

step saving computational time and resources. We have observed that the top features

vary with users. In an attempt to make our approach more personalized, instead of

selecting the same set of features for all the users, it’s a good idea to do feature

selection as part of model generation, where the decision tree algorithm selects the

top features for each user.

The tree model is trained on the training sets as described by the algorithms

described in the chapter on training the gradient boosted tree model. The training and

the test sets are prepared as described in the earlier sections. At the end of this step,

the tree model is built and it is evaluated on the test sets. This process is repeated for

the three sets of experiments.

For our experiments, the PSRG based training sets comprised of 85,000 data

samples on an average and the test sets had approximately 38,000 samples. The

number of samples for each train-test pair varied for the MHealth group based

datasets. The number of samples for the train sets based on MHealth data ranged from

 62

111,000 to 160,000 samples. The number of samples for the test sets ranged from

78,000 to 103,900 samples.

9.5 Tree-Model Evaluation

To evaluate the predictive performance for each model, we consider evaluation

metrics like accuracy, EER (Equal Error Rate), AUC (Area under curve of the ROC

curve), precision, recall, f1 score, log loss amount etc. The evaluation results are

provided in the next section for each of the three sets of experiments. As discussed

earlier, for each experiment, 10 pairs of train-test datasets were prepared. For each

pair, the machine-learning model was trained using the training set and the built model

was evaluated on the test set. The evaluation result values for each of the evaluation

metrics across all the test sets were averaged to provide the listed evaluation metric

values in Table 4. Each built machine-learning model was evaluated by considering an

average of the cross-validation based evaluation results. The values for each of the

evaluation metrics were comparable across all the train-test pairs per experiment, and

the cross validation based results were also consistently comparable to each other.

9.6 Results

We present the results as obtained as part of running the experiments in this

section. Table 4 provides the evaluation results. Refer to Figure 10 for the ROC curve

 63

Table 4: Evaluation Results

Evaluation Criteria PSRG Wrist PSRG Waist MHealth Wrist

Accuracy 99% 98.6% 97%

AUC 1.0 0.9972 0.996

EER <1% 1% 1%

f-1 score 0.98 0.97 0.975

Log Loss 0.10 0.13 0.1575

Precision 0.99 0.99 0.98

Recall 0.97 0.97 0.95

Fig 10: ROC curve for the Tree Model of our approach

 64

for the generated machine-learning model. Since, the results per user are comparable

without significant variation, we show the ROC curve for one machine-learning model

and consider it to be representative of all the other generated machine-learning

models.

9.7 Comparison

The performance of our authentication method, more specifically the machine-

learning model generation algorithm is compared to the machine-learning model

generation techniques presented in few recent papers in this section. These techniques

are designated as follows: Logistic Regression (LR) [49], Random Forests (RF) [33],

Support Vector Machines (SVM) [25, 34, 60], and Decision Trees (DT) [60]. It is

important to note that according to the paper [60], which used decision trees and

SVM, and achieved the accuracy of up to 98%, the number of test samples used was

just 100. Whereas, in our approach, we used approximately 38,000 test samples for

the PSRG based experiments and at least 90,000 test samples for the MHealth based

experiments. We chose to not implement KNN due to the high query complexity of the

KNN algorithm [13]. We observed that SVM achieves a very accuracy, but, at the cost

of quadratic time complexity. Table 5 provides a comparison of how models built from

different techniques perform as compared to our approach.

Refer to Figure 11 for the comparison of the ROC curves for the three methods

of tree-based classifiers: our approach, decision trees [60], random forests [13]. The

ROC (Receiver Operating Characteristics) curve in statistics is a graphical plot that

explains the performance of a binary classifier system as its prediction threshold is

 65

Table 5: Comparison with Existing Methods

Algorithms Reported Accuracy Mean Accuracy (Our approach)

LR [6] 82.30% 82.88%

RF [13] - 85.5%

SVM [25] Average – 90%,

Maximum – 95%

94%

SVM [60] * 98% 94%

DT [60] * 98% 92%

* number of test samples = 100.

Fig 11: ROC Curve Comparison

Our Approach

Random Forest

Decision Trees

Random Guessing

 66

modified. The ROC curve provides nuanced insights about the conduct of the classifier.

The curve is drawn by plotting the true positive rate against the false positive rate at

various threshold settings. In other words, it illustrates how many correct positive

classifications can be obtained as more and more false positives appear. The area

under the curve (AUC) computes the probability that the binary classifier will rank a

randomly chosen positive sample higher than a randomly chosen negative sample. The

perfect classifier would have AUC as 1. So, the more the AUC, the better the classifier

at making reliable predictions. In our case, the “authentic” user label is considered the

positive label. From Figure 11, we see that with our approach, the AUC is maximum

and much more than other similar methods such as decision trees and random forests.

The diagonal line in Figure 11 represents the ROC curve for random guessing. A

machine-learning algorithm must perform better than at least random guessing.

Clearly, all the three curves are above the diagonal line and have greater AUC. The

AUC for a line, which passes through the diagonal, is 0.5. A classifier should at least

have the AUC value of 0.5 thus. It is considered that an AUC of 1 represents the perfect

classifier, and an AUC of 0.5 represents a worthless classifier. Thus, the AUC value

varies from 0.5 to 1. The AUC value of our approach is 0.99 approximately, which is

better than the existing methods of model generation.

9.8 Adaptation

In order to carry out the experimentation on adaptation, we select 60% of the

data available. We call this the initial data. We use 70% of the initial data for training

and 30% for testing while building the model. We call the built model the initial model.

Next, we continue training on the remaining data to further boost the trained model.

 67

Table 6: Stratified Sampling as a means of Data Sampling

Criteria Without

Sampling

Random

Sampling

 Our Approach –

Stratified

Sampling

Definition Does not select

samples from data

Randomly select

samples from data

Select samples

from each group

Data

Dependency

Uses 100% of data Uses 60% of data Uses 42% of data

Training time Takes more time Takes less time Takes least time

We utilize Gradient Boosted Decision Trees (GBDT) model to implement the

continuous training approach. GBDT allows continuous training with new data to

further boost an already fitted model.

We observe that the updated model has comparable performance to that of a

model built using the entire data at one go. Additionally, we see that the continuous

training approach takes approximately as much time as it would need to train just the

new data. This is per the characteristics of gradient boosting whose time complexity

scales in linear time with increase in the size of data.

Table 6 shows the how stratified sampling performs as a means of data

sampling. Stratified sampling was discussed in the chapter on adaptation. We see that

with around 40% of the data, it provides approximately the same accuracy on test

data. However, it is worth pointing out that since the size of the datasets is not very

 68

large, we could not perform extensive analysis on the utility of stratified sampling,

which is left as a future work.

9.9 Running Our Approach as a Service

We put to test our approach by writing the code for a service which is essentially

the authentication service, running on an Android smart phone. The designed service

received data as input and invoked the machine-learning model to output a decision.

The decision was displayed as a result.

9.10 Discussion

Traditional password based methods of authentication usually require the user

to remember passwords or come up with a complex password for better protection. In

this thesis, we present an approach to generate a user-centric machine-learning model

by capturing motion gestures of the user. In our approach, the user is not required to

follow a specific script to exhibit gestures. We validate the user again on motion

gestures without needing user participation. Users do not need to exhibit complex

gestures as well for the same reason. Users can exhibit gestures as they wish. We

obtain high predictive performance by following the presented approach.

Physiological biometric based authentication systems require additional state

of the art sensors to authenticate the user. We utilize sensors that are pre-embedded

in the wearable device, thus eliminating the need of additional sensors. Additionally,

motion gestures are recorded for model generation and user validation and throughout

 69

the continuous authentication process conscious user inputs are not required, making

the authentication process unobtrusive to a legitimate user. Only at the time when a

user is determined to be an illegitimate user, the user is forced to re-authenticate

herself.

We get complete motion information of the body part the wearable is attached

to by using just the accelerometer and gyroscope sensors. It helps us better model

the user gestures by using a combination of these two motion sensors as we can record

complete motion data. Existing methods have also used magnetometer sensors.

Magnetometer sensors firstly do not provide noticeable changes in the sensor readings

if the authentic user and the attacker are in the same geographical location

approximately. Secondly, many wearable devices do not have a magnetometer sensor

embedded in them. Furthermore, we see that without using additional sensors we

achieve high performance. Thus, we do not use the magnetometer sensor in our

approach.

Gait pattern based user identification can authenticate the users only when the

users are walking. As discussed earlier, our method does not impose any constraint

on part of the user regarding the kind of activities she must perform to be correctly

authenticated. A user centric approach is presented which adapts to user choices and

preferences and updates the model to capture user behavioral evolution.

We do not need an additional feature selection step in our approach since

gradient boosting on decision trees automatically does that for us. This makes our

model more versatile and robust since we do not lose any information at any point

before the model generation step. Since, our approach is user centric, this method of

model generation helps the model learn the user feature better and be specific to a

user. Thus, we build a far-reaching, user centric approach, which adapts to user

preferences and behavior.

 70

Our approach also provides higher performance by implementing a model with

lesser time complexity. Some of the existing works have achieved high performance

using SVM and KNN, which are inherently more complex. SVM has quadratic time

complexity, whereas KNN depends on a complex query step. In our approach, the

machine learning model is generated by implementing gradient boosting on decision

trees, which scales in linearithmetic time – O (nlogn) and has lower time complexity

than most other existing algorithms, where n stands for the number of samples, which

are used to train the model. Experimental results show that higher accuracy and lower

EER than existing methods can be obtained with our approach.

Our approach also ensures that overfitting is minimized. Overfitting occurs

when the generated machine-learning model fails to generalize beyond the training

set. The process to update the model only requires as much resources and time as it

is required to just train on newer data. With “new data”, we refer to the data, which

has not been utilized for training the previously generated model. The training is done

on top of the existing model thus requiring less time and resources than it is required

to build a new model from scratch. Furthermore, we see that our approach can be

extended to the smart phone use case as well, provided the smart device is attached

to the body part of the user or is in contact with the user.

 71

CHAPTER 10

CONCLUSION AND FUTURE WORK

In this thesis, we presented an innovative approach to develop an

authentication software by modeling user movement gestures for continuous

authentication of smart wearable users. Sensor data from the wearable device is

utilized in this approach, eliminating the need for additional hardware. This approach

incorporates continuous learning to adapt to user motion gesture evolution. Our

approach does not need conscious inputs from the user to execute, and we do not

impose a restriction on the kind of motion gestures the user must exhibit to be

correctly authenticated. We see that our approach produces better results with lower

time complexity than existing methods. We observe that using complete motion

gesture information with data from accelerometers and gyroscopes, better

performance is achieved.

 As a future work, we plan to implement an application, which implements our

approach end-to-end. For this we plan to train the model on remote cloud servers and

deploy the model on the smart wearable device. We believe this is possible, since the

model only takes as much space as an ordinary application running on the device

would take. An authentication service would invoke a feature extraction unit with live

sensor data from the user. The feature extraction unit after computing feature values

would invoke the machine-learning model and pass in the features as input. The

response from the model would be sent to the authentication service. The

authentication service depending on the response would lock the device forcing the

user to re-authenticate herself provided the user is determined to be an illegitimate

 72

user. Otherwise, it would continue to run in the background. We also plan to test our

model on additional sets of users with diverse profiles.

 Furthermore, as discussed earlier, we would like to research further on when

an update to the deployed machine-learning model is suitable. Also, we would like to

conduct extensive experiments on the suitability of stratified sampling for our

approach.

 73

REFERENCES

[1] Thierer, A. D. (2015). The internet of things and wearable technology:
Addressing privacy and security concerns without derailing innovation.

[2] IDC. (2015, December 17). IDC Forecasts Worldwide Shipments of Wearables

to Surpass 200 Million in 2019, Driven by Strong Smartwatch Growth -
prUS40846515. Retrieved March 28, 2017, from
http://idc.com/getdoc.jsp?containerId=prUS40846515

[3] Apple Watch. (2017, March 17). In Wikipedia, The Free Encyclopedia. Retrieved
01:03, March 29, 2017,
from https://en.wikipedia.org/w/index.php?title=Apple_Watch&oldid=770843
458

[4] Lumo. (2016). About Lumo Bodytech | Lumo. Retrieved March 29, 2017, from

http://www.lumobodytech.com/about/

[5] Fitbit. (2017, March 7). In Wikipedia, The Free Encyclopedia. Retrieved 01:05,
March 29, 2017,
from https://en.wikipedia.org/w/index.php?title=Fitbit&oldid=769030997

[6] Myo armband. (2017, January 21). In Wikipedia, The Free Encyclopedia.

Retrieved 04:07, March 29, 2017,
from https://en.wikipedia.org/w/index.php?title=Myo_armband&oldid=76111
3974

[7] Chiauzzi, E., Rodarte, C., & DasMahapatra, P. (2015). Patient-centered activity
monitoring in the self-management of chronic health conditions. BMC
medicine, 13(1), 77.

[8] Khan, R., Hasan, R., & Xu, J. (2015, March). SEPIA: secure-PIN-authentication-
as-a-service for ATM using mobile and wearable devices. In Mobile Cloud
Computing, Services, and Engineering (MobileCloud), 2015 3rd IEEE
International Conference on (pp. 41-50). IEEE.

[9] Multi-factor authentication. (2017, March 25). In Wikipedia, The Free

Encyclopedia. Retrieved 20:31, March 29, 2017,
from https://en.wikipedia.org/w/index.php?title=Multi-
factor_authentication&oldid=772169051

[10] Weisbaum, H. (2014, April 26). Most Americans don't secure their
smartphones. Retrieved March 29, 2017, from

 74

http://www.cnbc.com/2014/04/26/most-americans-dont-secure-their-
smartphones.html

[11] Ben-Asher, N., Kirschnick, N., Sieger, H., Meyer, J., Ben-Oved, A., & Möller, S.
(2011, August). On the need for different security methods on mobile phones.
In Proceedings of the 13th International Conference on Human Computer
Interaction with Mobile Devices and Services (pp. 465-473). ACM.

[12] Zakaria, N. H., Griffiths, D., Brostoff, S., & Yan, J. (2011, July). Shoulder surfing
defence for recall-based graphical passwords. In Proceedings of the Seventh
Symposium on Usable Privacy and Security (p. 6). ACM.

[13] Aviv, A. J., Gibson, K. L., Mossop, E., Blaze, M., & Smith, J. M. (2010). Smudge

Attacks on Smartphone Touch Screens. Woot, 10, 1-7.

[14] Devine, R. (2012). Face Unlock in Jelly Bean gets a 'Liveness check' | Android
Central. Retrieved March 29, 2017, from http://www.androidcentral.com/face-
unlock-jelly-bean-gets-liveness-check

[15] Shaji, S., Das, S., & Kizhakkethottam, J. J. (2015, February). Review of
continuous touch based user authentication. In Soft-Computing and Networks
Security (ICSNS), 2015 International Conference on (pp. 1-5). IEEE.

[16] CCC | Fingerprint Biometrics hacked again. (n.d.). Retrieved March 29, 2017,
from http://www.ccc.de/en/updates/2014/ursel

[17] Dorflinger, Tim, et al. "“My smartphone is a safe!” The user's point of view
regarding novel authentication methods and gradual security levels on
smartphones." 2010 International Conference on Security and Cryptography
(SECRYPT). 2010.

[18] Chang, T. Y., Tsai, C. J., & Lin, J. H. (2012). A graphical-based password
keystroke dynamic authentication system for touch screen handheld mobile
devices. Journal of Systems and Software, 85(5), 1157-1165.

[19] Nixon, K. W., Chen, Y., Mao, Z. H., & Li, K. (2014). User classification and
authentication for mobile device based on gesture recognition. In Network
Science and Cybersecurity (pp. 125-135). Springer New York.

[20] Hestbek, M. R., Nickel, C., & Busch, C. (2012, April). Biometric gait recognition
for mobile devices using wavelet transform and support vector machines.
In Systems, Signals and Image Processing (IWSSIP), 2012 19th International
Conference on (pp. 205-210). IEEE.

[21] Buduru, A. B., & Yau, S. S. (2015, August). An effective approach to continuous
user authentication for touch screen smart devices. In Software Quality,

 75

Reliability and Security (QRS), 2015 IEEE International Conference on (pp. 219-
226). IEEE.

[22] Amitay, D. (2011, June 14). Most Common iPhone Passcodes — Daniel Amitay.

Retrieved March 31, 2017, from
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes

[23] Starner, T., & Martin, T. (2015). Wearable computing: The new dress code
[guest editors' introduction]. Computer, 48(6), 12-15.

[24] Yang, J., Li, Y., & Xie, M. (2015, March). Motionauth: Motion-based
authentication for wrist worn smart devices. In Pervasive Computing and
Communication Workshops (PerCom Workshops), 2015 IEEE International
Conference on (pp. 550-555). IEEE.

[25] Lee, W. H., & Lee, R. B. (2015, February). Multi-sensor authentication to
improve smartphone security. In Information Systems Security and Privacy
(ICISSP), 2015 International Conference on (pp. 1-11). IEEE.

[26] Marforio, C., Karapanos, N., Soriente, C., Kostiainen, K., & Capkun, S. (2014,
February). Smartphones as Practical and Secure Location Verification Tokens
for Payments. In NDSS.

[27] Cornelius, C., & Gutierrez, C. N. (2014). A SURVEY OF BIOMETRICS FOR
WEARABLE DEVICES. Intel Technology Journal, 18(4).

[28] Zhu, J., Wu, P., Wang, X., & Zhang, J. (2013, January). Sensec: Mobile security
through passive sensing. In Computing, Networking and Communications
(ICNC), 2013 International Conference on (pp. 1128-1133). IEEE.

[29] Qi, M., Lu, Y., Li, J., Li, X., & Kong, J. (2008, December). User-specific iris
authentication based on feature selection. In Computer Science and Software
Engineering, 2008 International Conference on (Vol. 1, pp. 1040-1043). IEEE.

[30] Hong, L., & Jain, A. (1998). Integrating faces and fingerprints for personal
identification. IEEE transactions on pattern analysis and machine
intelligence, 20(12), 1295-1307.

[31] Negara, A. F. P., Kodirov, E., Abdullah, M. F. A., Choi, D. J., Lee, G. S., &

Sayeed, S. (2012). Arm’s flex when responding call for implicit user
authentication in smartphone. Int. J. Secur. Its Appl, 6(879), 83.

[32] Lu, H., Huang, J., Saha, T., & Nachman, L. (2014, September). Unobtrusive
gait verification for mobile phones. In Proceedings of the 2014 ACM
international symposium on wearable computers (pp. 91-98). ACM.

 76

[33] Davidson, S., Smith, D., Yang, C., & Cheah, S. (2016). Smartwatch User
Identification as a Means of Authentication. Department of Computer Science
and Engineering Std.

[34] Chauhan, J., Asghar, H. J., Kaafar, M. A., & Mahanti, A. (2014). Gesture-based
continuous authentication for wearable devices: the google glass case. arXiv
preprint arXiv:1412.2855.

[35] Yang, K. (2011). Eliza Yingzi Du,“Consent Biometrics”.

[36] Gartner. (2014). Gartner Says Worldwide Smartwatch and Wristband Market Is

Poised for Take Off. Retrieved April 1, 2017, from
http://www.gartner.com/newsroom/id/2848817

[37] Mariani, B., Jiménez, M. C., Vingerhoets, F. J., & Aminian, K. (2013). On-shoe
wearable sensors for gait and turning assessment of patients with Parkinson's
disease. IEEE transactions on biomedical engineering, 60(1), 155-158.

[38] Cisco. (2011). How Secure are Numeric Passwords? Retrieved April 2, 2017,
from http://blogs.cisco.com/security/how-secure-are-numeric-passwords

[39] Sra, S. (2011). Fast projections onto ℓ 1, q-norm balls for grouped feature
selection. Machine learning and knowledge discovery in databases, 305-317.

[40] Duchi, J., Shalev-Shwartz, S., Singer, Y., & Chandra, T. (2008, July). Efficient
projections onto the l 1-ball for learning in high dimensions. In Proceedings of
the 25th international conference on Machine learning (pp. 272-279). ACM.

[41] Hastie, T., Tibshirani, R., & Friedman, J. (2009). Springer series in
statistics. The elements of statistical learning: data mining, inference, and
prediction.

[42] Sugumaran, V., Muralidharan, V., & Ramachandran, K. I. (2007). Feature
selection using decision tree and classification through proximal support
vector machine for fault diagnostics of roller bearing. Mechanical systems and
signal processing, 21(2), 930-942.

[43] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting
machine. Annals of statistics, 1189-1232.

[44] Freund, Y., Schapire, R., & Abe, N. (1999). A short introduction to
boosting. Journal-Japanese Society For Artificial Intelligence, 14(771-780),
1612.

[45] Johnson, R., & Zhang, T. (2014). Learning nonlinear functions using
regularized greedy forest. IEEE transactions on pattern analysis and machine
intelligence, 36(5), 942-954.

 77

[46] Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., & Havinga, P. J. (2014).

Fusion of smartphone motion sensors for physical activity
recognition. Sensors, 14(6), 10146-10176.

[47] Banos, O., Garcia, R., Holgado-Terriza, J. A., Damas, M., Pomares, H., Rojas,
I., ... & Villalonga, C. (2014, December). mHealthDroid: a novel framework
for agile development of mobile health applications. In International
Workshop on Ambient Assisted Living (pp. 91-98). Springer International
Publishing.

[48] Banos, O., Villalonga, C., Garcia, R., Saez, A., Damas, M., Holgado-Terriza, J.
A., ... & Rojas, I. (2015). Design, implementation and validation of a novel
open framework for agile development of mobile health
applications. Biomedical engineering online, 14(2), S6.

[49] Primo, A., Phoha, V. V., Kumar, R., & Serwadda, A. (2014). Context-aware
active authentication using smartphone accelerometer measurements.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (pp. 98-105).

[50] Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias,
and statistical variance of decision tree algorithms. Technical report,
Department of Computer Science, Oregon State University.

[51] Ridgeway, G. (2007). Generalized Boosted Models: A guide to the gbm
package. Update, 1(1), 2007.

[52] Bianchi, A., & Oakley, I. (2016). Wearable authentication: Trends and
opportunities. It-Information Technology, 58(5), 255-262. 77

[53] Morphy, E. (2013, June 03). Google Glass Drops Facial Recognition (For Now).
Retrieved May 12, 2017, from
https://www.forbes.com/sites/erikamorphy/2013/06/02/google-glass-drops-
facial-recognition-for-now/#17b883fb4e38

[54] C4.5 algorithm. (2016, June 27). In Wikipedia, The Free Encyclopedia.

Retrieved 02:41, May 19, 2017,
from https://en.wikipedia.org/w/index.php?title=C4.5_algorithm&oldid=7271
81226

[55] Nymi. (2017). Product Overview | Nymi. Retrieved June 7, 2017, from
https://nymi.com/product_overview

[56] Nanavati, S., Thieme, M., & Nanavati, R. (2002). Biometrics: identity

verification in a networked world. New York: Wiley.

 78

[57] De Luca, A., Hang, A., Brudy, F., Lindner, C., & Hussmann, H. (2012, May).

Touch me once and i know it's you!: implicit authentication based on touch
screen patterns. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (pp. 987-996). ACM.

[58] Bonastre, J. F., Bimbot, F., Boë, L. J., Campbell, J. P., Reynolds, D. A., &

Magrin-Chagnolleau, I. (2003). Person authentication by voice: A need for
caution. In Eighth European Conference on Speech Communication and
Technology.

[59] Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., & Hellerstein, J. M.

(2012). Distributed GraphLab: a framework for machine learning and data
mining in the cloud. Proceedings of the VLDB Endowment, 5(8), 716-727.

[60] Sugimori, D., Iwamoto, T., & Matsumoto, M. (2011, August). A study about

identification of pedestrian by using 3-axis accelerometer. In Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2011 IEEE 17th
International Conference on (Vol. 2, pp. 134-137). IEEE.

