63 research outputs found

    Skeleton Based Parametric 2D Region Representation: Disk B-Spline Curves

    Get PDF
    The skeleton, or medial axis, is an important attribute of 2D shapes. The disk B-spline curve (DBSC) is a skeleton-based parametric freeform 2D region representation, which is defined in B-spline form. The DBSC describes not only a 2D region, which is suitable for describing heterogonous materials in the region, but also the center curve (skeleton) of the region explicitly, which is suitable for animation, simulation and recognition. In addition to being useful for error estimation of the B-spline curve, the DBSC can be used in designing and animating freeform 2D regions. Despite increasing DBSC applications, its theory and fundamentals have not been thoroughly investigated. In this paper, we discuss several fundamental properties and algorithms, such as the de Boor algorithm for DBSCs. We first derive the explicit evaluation and derivatives formulas at arbitrary points of a 2D region (interior and boundary) represented by a DBSC and then provide heterogeneous object representation. We also introduce modeling and interactive heterogeneous object design methods for a DBSC, which consolidates DBSC theory and supports its further applications

    Volumetric cloud generation using a Chinese brush calligraphy style

    Get PDF
    Includes bibliographical references.Clouds are an important feature of any real or simulated environment in which the sky is visible. Their amorphous, ever-changing and illuminated features make the sky vivid and beautiful. However, these features increase both the complexity of real time rendering and modelling. It is difficult to design and build volumetric clouds in an easy and intuitive way, particularly if the interface is intended for artists rather than programmers. We propose a novel modelling system motivated by an ancient painting style, Chinese Landscape Painting, to address this problem. With the use of only one brush and one colour, an artist can paint a vivid and detailed landscape efficiently. In this research, we develop three emulations of a Chinese brush: a skeleton-based brush, a 2D texture footprint and a dynamic 3D footprint, all driven by the motion and pressure of a stylus pen. We propose a hybrid mapping to generate both the body and surface of volumetric clouds from the brush footprints. Our interface integrates these components along with 3D canvas control and GPU-based volumetric rendering into an interactive cloud modelling system. Our cloud modelling system is able to create various types of clouds occurring in nature. User tests indicate that our brush calligraphy approach is preferred to conventional volumetric cloud modelling and that it produces convincing 3D cloud formations in an intuitive and interactive fashion. While traditional modelling systems focus on surface generation of 3D objects, our brush calligraphy technique constructs the interior structure. This forms the basis of a new modelling style for objects with amorphous shape

    Wholetoning: Synthesizing Abstract Black-and-White Illustrations

    Get PDF
    Black-and-white imagery is a popular and interesting depiction technique in the visual arts, in which varying tints and shades of a single colour are used. Within the realm of black-and-white images, there is a set of black-and-white illustrations that only depict salient features by ignoring details, and reduce colour to pure black and white, with no intermediate tones. These illustrations hold tremendous potential to enrich decoration, human communication and entertainment. Producing abstract black-and-white illustrations by hand relies on a time consuming and difficult process that requires both artistic talent and technical expertise. Previous work has not explored this style of illustration in much depth, and simple approaches such as thresholding are insufficient for stylization and artistic control. I use the word wholetoning to refer to illustrations that feature a high degree of shape and tone abstraction. In this thesis, I explore computer algorithms for generating wholetoned illustrations. First, I offer a general-purpose framework, “artistic thresholding”, to control the generation of wholetoned illustrations in an intuitive way. The basic artistic thresholding algorithm is an optimization framework based on simulated annealing to get the final bi-level result. I design an extensible objective function from our observations of a lot of wholetoned images. The objective function is a weighted sum over terms that encode features common to wholetoned illustrations. Based on the framework, I then explore two specific wholetoned styles: papercutting and representational calligraphy. I define a paper-cut design as a wholetoned image with connectivity constraints that ensure that it can be cut out from only one piece of paper. My computer generated papercutting technique can convert an original wholetoned image into a paper-cut design. It can also synthesize stylized and geometric patterns often found in traditional designs. Representational calligraphy is defined as a wholetoned image with the constraint that all depiction elements must be letters. The procedure of generating representational calligraphy designs is formalized as a “calligraphic packing” problem. I provide a semi-automatic technique that can warp a sequence of letters to fit a shape while preserving their readability

    Research on hybrid manufacturing using industrial robot

    Get PDF
    The applications of using industrial robots in hybrid manufacturing overcome many restrictions of the conventional manufacturing methods, such as small part building size, long building period, and limited material choices. However, some problems such as the uneven distribution of motion accuracy within robot working volume, the acceleration impact of robot under heavy external loads, few methods and facilities for increasing the efficiency of hybrid manufacturing process are still challenging. This dissertation aims to improve the applications of using industrial robot in hybrid manufacturing by addressing following three categories research issues. The first research issue proposed a novel concept view on robot accuracy and stiffness problem, for making the maximum usage of current manufacturing capability of robot system. Based on analyzing the robot forward/inverse kinematic, the angle error sensitivity of different joint and the stiffness matrix properties of robot, new evaluation formulations are established to help finding the best position and orientation to perform a specific trajectory within the robot\u27s working volume. The second research issue focus on the engineering improvements of robotic hybrid manufacturing. By adopting stereo vision, laser scanning technology and curved surface compensation algorithm, it enhances the automation level and adaptiveness of hybrid manufacturing process. The third research issue extends the robotic hybrid manufacturing process to the broader application area. A mini extruder with a variable pitch and progressive diameter screw is developed for large scale robotic deposition. The proposed robotic deposition system could increase the building efficiency and quality for large-size parts. Moreover, the research results of this dissertation can benefit a wide range of industries, such as automation manufacturing, robot design and 3D printing --Abstract, page iv

    Calligraphic Architecture: stroke to form, space and surface

    Get PDF
    This design research explores the connection between two rather diverse art forms; Architecture and Arabic Calligraphy. From the intricate art and science behind designing buildings to the decorative inscriptions of one of the most historical calligraphic mediums in the Arab World, this article uses the work of Star architect Zaha Hadid as a vehicle to help visualize this relationship of Architecture and Arabic Calligraphy. Arabic calligraphy combines a cultural language with the language of geometry. The fluidity of Arabic script offers countless possibilities for designing calligraphic expressions varying its use from ornamental design to Architecture. This research focuses on how Arabic Calligraphy may have influenced the design process of Zaha Hadid allowing her to produce her fluid architectural designs. In return, this study would unfold onto creating new valid diagrammatic forms based on calligraphy. This personal exploration will begin with a simple Arabic calligraphy form and gradually through the use of sketches, paintings and 3D graphics will develop into a conceptual architectural form that can be seen as a space to be inhabited. There may not be a clear proven process of inspiration from calligraphy, but it’s something that definitely makes an apparent connection to Hadid’s works

    Arabic Type Classification System - Qualitative Classification of Historic Arabic Writing Scripts in the Contemporary Typographic Context

    Get PDF
    The emergence of typography shifted written language into a mechanical tool of transmitting meaning, thereby further reducing the connection of representation of language with the language itself which began with the development of writing systems. Developed from various writing systems and languages, typography is the primary mode of visual communication of language. It has become even more important in the digital world we are living in today. This research examines the relationship of Arabic script conventions and classifications in the context of typographic representation, and how typographic representations of the Arabic language have been distorted due to the influence of Latin typographic guidelines in the development of Arabic typefaces. This history has failed to produce Arabic typefaces that accord with the unique cultural, linguistic and contextual character of the Arabic writing system. To address this, an investigation was carried out, through multiple design research methods and methodologies incorporating typographic studies and theories of embodiment applied to the evolution of the Arabic writing system, calligraphy and typography in the Arab region. The investigation aims to better understand, and respond to problems in the use of typefaces at the intersection of languages and cultures. Through the generation of a typeface classificatory system, linking the ground rules of calligraphic scripts, structural influences of Arabic letterforms, and adapting them into existing typefaces used today, this research proposes a tool to assist designers in the making of typographic decisions in the setting of Arabic language, and in its relationship to roman typography. Key words : Typography, classificatory attributes, Arabic language, culture, linguistics, embodimen

    Design, control and error analysis of a fast tool positioning system for ultra-precision machining of freeform surfaces

    Get PDF
    This thesis was previously held under moratorium from 03/12/19 to 03/12/21Freeform surfaces are widely found in advanced imaging and illumination systems, orthopaedic implants, high-power beam shaping applications, and other high-end scientific instruments. They give the designers greater ability to cope with the performance limitations commonly encountered in simple-shape designs. However, the stringent requirements for surface roughness and form accuracy of freeform components pose significant challenges for current machining techniques—especially in the optical and display market where large surfaces with tens of thousands of micro features are to be machined. Such highly wavy surfaces require the machine tool cutter to move rapidly while keeping following errors small. Manufacturing efficiency has been a bottleneck in these applications. The rapidly changing cutting forces and inertial forces also contribute a great deal to the machining errors. The difficulty in maintaining good surface quality under conditions of high operational frequency suggests the need for an error analysis approach that can predict the dynamic errors. The machining requirements also impose great challenges on machine tool design and the control process. There has been a knowledge gap on how the mechanical structural design affects the achievable positioning stability. The goal of this study was to develop a tool positioning system capable of delivering fast motion with the required positioning accuracy and stiffness for ultra-precision freeform manufacturing. This goal is achieved through deterministic structural design, detailed error analysis, and novel control algorithms. Firstly, a novel stiff-support design was proposed to eliminate the structural and bearing compliances in the structural loop. To implement the concept, a fast positioning device was developed based on a new-type flat voice coil motor. Flexure bearing, magnet track, and motor coil parameters were designed and calculated in detail. A high-performance digital controller and a power amplifier were also built to meet the servo rate requirement of the closed-loop system. A thorough understanding was established of how signals propagated within the control system, which is fundamentally important in determining the loop performance of high-speed control. A systematic error analysis approach based on a detailed model of the system was proposed and verified for the first time that could reveal how disturbances contribute to the tool positioning errors. Each source of disturbance was treated as a stochastic process, and these disturbances were synthesised in the frequency domain. The differences between following error and real positioning error were discussed and clarified. The predicted spectrum of following errors agreed with the measured spectrum across the frequency range. It is found that the following errors read from the control software underestimated the real positioning errors at low frequencies and overestimated them at high frequencies. The error analysis approach thus successfully revealed the real tool positioning errors that are mingled with sensor noise. Approaches to suppress disturbances were discussed from the perspectives of both system design and control. A deterministic controller design approach was developed to preclude the uncertainty associated with controller tuning, resulting in a control law that can minimize positioning errors. The influences of mechanical parameters such as mass, damping, and stiffness were investigated within the closed-loop framework. Under a given disturbance condition, the optimal bearing stiffness and optimal damping coefficients were found. Experimental positioning tests showed that a larger moving mass helped to combat all disturbances but sensor noise. Because of power limits, the inertia of the fast tool positioning system could not be high. A control algorithm with an additional acceleration-feedback loop was then studied to enhance the dynamic stiffness of the cutting system without any need for large inertia. An analytical model of the dynamic stiffness of the system with acceleration feedback was established. The dynamic stiffness was tested by frequency response tests as well as by intermittent diamond-turning experiments. The following errors and the form errors of the machined surfaces were compared with the estimates provided by the model. It is found that the dynamic stiffness within the acceleration sensor bandwidth was proportionally improved. The additional acceleration sensor brought a new error source into the loop, and its contribution of errors increased with a larger acceleration gain. At a certain point, the error caused by the increased acceleration gain surpassed other disturbances and started to dominate, representing the practical upper limit of the acceleration gain. Finally, the developed positioning system was used to cut some typical freeform surfaces. A surface roughness of 1.2 nm (Ra) was achieved on a NiP alloy substrate in flat cutting experiments. Freeform surfaces—including beam integrator surface, sinusoidal surface, and arbitrary freeform surface—were successfully machined with optical-grade quality. Ideas for future improvements were proposed in the end of this thesis.Freeform surfaces are widely found in advanced imaging and illumination systems, orthopaedic implants, high-power beam shaping applications, and other high-end scientific instruments. They give the designers greater ability to cope with the performance limitations commonly encountered in simple-shape designs. However, the stringent requirements for surface roughness and form accuracy of freeform components pose significant challenges for current machining techniques—especially in the optical and display market where large surfaces with tens of thousands of micro features are to be machined. Such highly wavy surfaces require the machine tool cutter to move rapidly while keeping following errors small. Manufacturing efficiency has been a bottleneck in these applications. The rapidly changing cutting forces and inertial forces also contribute a great deal to the machining errors. The difficulty in maintaining good surface quality under conditions of high operational frequency suggests the need for an error analysis approach that can predict the dynamic errors. The machining requirements also impose great challenges on machine tool design and the control process. There has been a knowledge gap on how the mechanical structural design affects the achievable positioning stability. The goal of this study was to develop a tool positioning system capable of delivering fast motion with the required positioning accuracy and stiffness for ultra-precision freeform manufacturing. This goal is achieved through deterministic structural design, detailed error analysis, and novel control algorithms. Firstly, a novel stiff-support design was proposed to eliminate the structural and bearing compliances in the structural loop. To implement the concept, a fast positioning device was developed based on a new-type flat voice coil motor. Flexure bearing, magnet track, and motor coil parameters were designed and calculated in detail. A high-performance digital controller and a power amplifier were also built to meet the servo rate requirement of the closed-loop system. A thorough understanding was established of how signals propagated within the control system, which is fundamentally important in determining the loop performance of high-speed control. A systematic error analysis approach based on a detailed model of the system was proposed and verified for the first time that could reveal how disturbances contribute to the tool positioning errors. Each source of disturbance was treated as a stochastic process, and these disturbances were synthesised in the frequency domain. The differences between following error and real positioning error were discussed and clarified. The predicted spectrum of following errors agreed with the measured spectrum across the frequency range. It is found that the following errors read from the control software underestimated the real positioning errors at low frequencies and overestimated them at high frequencies. The error analysis approach thus successfully revealed the real tool positioning errors that are mingled with sensor noise. Approaches to suppress disturbances were discussed from the perspectives of both system design and control. A deterministic controller design approach was developed to preclude the uncertainty associated with controller tuning, resulting in a control law that can minimize positioning errors. The influences of mechanical parameters such as mass, damping, and stiffness were investigated within the closed-loop framework. Under a given disturbance condition, the optimal bearing stiffness and optimal damping coefficients were found. Experimental positioning tests showed that a larger moving mass helped to combat all disturbances but sensor noise. Because of power limits, the inertia of the fast tool positioning system could not be high. A control algorithm with an additional acceleration-feedback loop was then studied to enhance the dynamic stiffness of the cutting system without any need for large inertia. An analytical model of the dynamic stiffness of the system with acceleration feedback was established. The dynamic stiffness was tested by frequency response tests as well as by intermittent diamond-turning experiments. The following errors and the form errors of the machined surfaces were compared with the estimates provided by the model. It is found that the dynamic stiffness within the acceleration sensor bandwidth was proportionally improved. The additional acceleration sensor brought a new error source into the loop, and its contribution of errors increased with a larger acceleration gain. At a certain point, the error caused by the increased acceleration gain surpassed other disturbances and started to dominate, representing the practical upper limit of the acceleration gain. Finally, the developed positioning system was used to cut some typical freeform surfaces. A surface roughness of 1.2 nm (Ra) was achieved on a NiP alloy substrate in flat cutting experiments. Freeform surfaces—including beam integrator surface, sinusoidal surface, and arbitrary freeform surface—were successfully machined with optical-grade quality. Ideas for future improvements were proposed in the end of this thesis

    Finding the Grammar of Generative Craft

    Full text link
    Art and craft design is challenging even with the assistance of computer-aided design tools. Despite the increasing availability and intelligence of software and hardware, artists continue to find gaps between their practices and tools when designing physical craft artifacts. In many craft domains, artists need to acquire domain knowledge and develop skills in design-aid tools separately. Despite their power and versatility, generic design tools pose various challenges, such as requiring workarounds for specific crafts and having steep learning curves. Compared to generic design-aid tools, craft-specific systems can offer reasonable solutions to specific design tasks because they can offer domain-specific support. Nevertheless, craft-specific tools often have limited flexibility. In this dissertation, I introduce Grammar-driven Craft Design Tools (GCDTs), which explicitly embed and utilize craft domain knowledge (i.e., ``grammar" of the craft) as their primary mechanisms and interfaces. Like other types of information, craft knowledge is processable and organizable data. In this dissertation, I develop and examine a framework to document, process, preserve, and utilize craft domain knowledge. GCDTs are craft-specific tools. By explicitly embedding and utilizing craft domain knowledge, GCDTs bridge the gap between design-aid tools and craft domain knowledge. GCDTs also have additional benefits such as supporting generative design, facilitating learning, and preserving domain knowledge. This dissertation gives an overview of how the next generation of design-aid tools can help artists find their creative expressions. It presents the GCDT framework and introduces three GCDTs developed for distinct domains. InfiniteLayer assists the design of multilayer sculpture, which is a form of sculpture made with layers of material. Then, MarkMakerSquare helps designers to invent unconventional and creative mark-making tools using various fabrication strategies. Lastly, ThreadPlotter supports the design and fabrication of plotter-based delicate punch needle embroidery.PHDInformationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169800/1/heslicia_1.pd

    Postgraduate study at UCA

    Get PDF
    Presentation on day two of the ISCAEE conference held at UCA, and organised by Ashley Howard. The International Society for Ceramic Art Education and Exchange (ISCAEE) is a unique consortium of undergraduate and postgraduate ceramics courses from around the world. An ISCAEE symposium comprises a catalogued exhibition, published lectures and making demonstrations. At each stage students are involved on a level playing field with their staff and form the fulcrum around which the event is run. Since last staging the event in 2007, UCA Farnham was proud once again to play host to the 2017 symposium. The exhibition was held at the James Hockey and Foyer Galleries and will feature work by over 100 practitioners from educational institutions in China, Korea, Africa, Turkey, Japan, USA and UK. Presentation day and name listed in catalogue

    A prototype for 3D electrohydrodynamic printing

    Get PDF
    Electrohydrodynamic direct writing is a flexible cost effective alternative technique that is capable of producing a very fine jet of liquid in the presence of an external electric field. This jet can then be used to pattern surfaces in an ordered and controlled fashion and offers a robust route to low cost large area micro and nano-manufacturing. Unlike other types of direct writing techniques, the liquid in electrohydrodynamic printing is subjected to both pushing and pulling forces. The pushing force is brought about by the constant flow rate that is maintained via high precision mechanical pumps while a pulling force is applied through a potential difference that is applied between the nozzle and the ground electrode and as a result a fine jet can be generated to pattern surfaces. The impracticality of use and the cost of building micrometre and sub-micrometre sized nozzles to print narrow line widths warrant an investigation into alternative means of dispensing printing inks using nozzles that are cheap to produce, easy to handle and consistent in delivery. The enormous capillary pressures that would have to be overcome in order to print highly viscous materials with micrometre and sub-micrometre sized nozzles may also limit the types of feed that could be used in printing narrow line widths. Thus, the initial work described is focused on improving print head design in an attempt to electrohydrodynamic print pattern narrow line widths using silk fibroin. This is followed by work where we attempt to design and construct of a new electrohydrodynamic printing machine with the sole purpose of expediting research in electrohydrodynamic printing in a flexible, feasible and user friendly manner. To achieve this, replicating rapid prototype technology is merged with conventional electrohydrodynamic printing phenomena to produce a EHD printing machine capable of print depositing narrow line widths. In order to validate the device the work also describes an attempt to print a fully formed human ear out of polycaprolactone. Finally, we investigate an approach to the electohydrodynamic printing of nasal septal scaffolds using the microfabrication system that was developed and optimized in our laboratory. In these initial stages we were successful in showing the degree of control and flexibility we possess when manufacturing constructs out of a biodegradable polymer ( polycaprolactone) from the micro to macro scale through manipulation of just one process parameter (concentration). This work also features characterization of scaffold mechanical properties using a recently invented Atomic force microscopy technique called PeakForce QNM (Quantitative Nanomechanical Property Mapping)
    • …
    corecore