9,414 research outputs found

    Bounding right-arm rotation distances

    Full text link
    Rotation distance measures the difference in shape between binary trees of the same size by counting the minimum number of rotations needed to transform one tree to the other. We describe several types of rotation distance where restrictions are put on the locations where rotations are permitted, and provide upper bounds on distances between trees with a fixed number of nodes with respect to several families of these restrictions. These bounds are sharp in a certain asymptotic sense and are obtained by relating each restricted rotation distance to the word length of elements of Thompson's group F with respect to different generating sets, including both finite and infinite generating sets.Comment: 30 pages, 11 figures. This revised version corrects some typos and has some clearer proofs of the results for the lower bounds and better figure

    Balanced binary trees in the Tamari lattice

    Get PDF
    We show that the set of balanced binary trees is closed by interval in the Tamari lattice. We establish that the intervals [T0, T1] where T0 and T1 are balanced trees are isomorphic as posets to a hypercube. We introduce tree patterns and synchronous grammars to get a functional equation of the generating series enumerating balanced tree intervals

    On the rotation distance between binary trees

    Get PDF
    We develop combinatorial methods for computing the rotation distance between binary trees, i.e., equivalently, the flip distance between triangulations of a polygon. As an application, we prove that, for each n, there exist size n trees at distance 2n - O(sqrt(n))

    Permutrees

    Get PDF
    We introduce permutrees, a unified model for permutations, binary trees, Cambrian trees and binary sequences. On the combinatorial side, we study the rotation lattices on permutrees and their lattice homomorphisms, unifying the weak order, Tamari, Cambrian and boolean lattices and the classical maps between them. On the geometric side, we provide both the vertex and facet descriptions of a polytope realizing the rotation lattice, specializing to the permutahedron, the associahedra, and certain graphical zonotopes. On the algebraic side, we construct a Hopf algebra on permutrees containing the known Hopf algebraic structures on permutations, binary trees, Cambrian trees, and binary sequences.Comment: 43 pages, 25 figures; Version 2: minor correction

    Generation, Ranking and Unranking of Ordered Trees with Degree Bounds

    Full text link
    We study the problem of generating, ranking and unranking of unlabeled ordered trees whose nodes have maximum degree of Δ\Delta. This class of trees represents a generalization of chemical trees. A chemical tree is an unlabeled tree in which no node has degree greater than 4. By allowing up to Δ\Delta children for each node of chemical tree instead of 4, we will have a generalization of chemical trees. Here, we introduce a new encoding over an alphabet of size 4 for representing unlabeled ordered trees with maximum degree of Δ\Delta. We use this encoding for generating these trees in A-order with constant average time and O(n) worst case time. Due to the given encoding, with a precomputation of size and time O(n^2) (assuming Δ\Delta is constant), both ranking and unranking algorithms are also designed taking O(n) and O(nlogn) time complexities.Comment: In Proceedings DCM 2015, arXiv:1603.0053
    • …
    corecore