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Abstract

In this thesis, new properties of AVL trees and a new partitioning of binary search trees named

core partitioning scheme are discussed, this scheme is applied to three binary search trees namely

AVL trees, weight-balanced trees, and plain binary search trees.

We introduce the core partitioning scheme, which maintains a balanced search tree as a dynamic

collection of complete balanced binary trees called cores. Using this technique we achieve the same

theoretical efficiency of modern cache-oblivious data structures by using classic data structures

such as weight-balanced trees or height balanced trees (e.g. AVL trees). We preserve the original

topology and algorithms of the given balanced search tree using a simple post-processing with

guaranteed performance to completely rebuild the changed cores (possibly all of them) after each

update. Using our core partitioning scheme, we simultaneously achieve good memory allocation,

space-efficient representation, and cache-obliviousness. We also apply this scheme to arbitrary

binary search trees which can be unbalanced and we produce a new data structure, called Cache-

Oblivious General Balanced Tree (COG-tree).

Using our scheme, searching a key requires O(logB n) block transfers and O(log n) comparisons

in the external-memory and in the cache-oblivious model. These complexities are theoretically ef-

ficient. Interestingly, the core partition for weight-balanced trees and COG-tree can be maintained

with amortized O(logB n) block transfers per update, whereas maintaining the core partition for

AVL trees requires more than a poly-logarithmic amortized cost.

Studying the properties of these trees also lead us to some other new properties of AVL trees

and trees with bounded degree, namely, we present and study gaps in AVL trees and we prove

Tarjan et al. ’s conjecture on the number of rotations in a sequence of deletions and insertions.

Keywords: AVL trees, Weight-balanced tree, External-memory model, Cache-oblivious model,

Core partitioning scheme, COG-tree, Gap, AVL rotation.
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Chapter 1

Introduction

Trees are one of the most important basic and simple data structures for organizing informa-

tion in computer science, and have found many applications such as database [75, 57], pattern

recognition [57], decision table programming [57], analysis of algorithms [57], string matching [57],

switching theory [102], computational geometry [34], image processing [91, 99], and even in the

theoretical design of circuits required for VLSI [102]. Trees are also widely used for showing the

organization of real world data such family trees, taxonomies, and modeling of the connections

between neurons of the brain in computational neuroscience [25, 26].

Many balanced search trees have been designed for their usage in main memory, with optimal

asymptotical complexity in terms of CPU time and number of performed comparisons, such as

AVL trees [1], red-black trees [17], weight-balanced trees [73], and 2-3 trees [43], just to name the

pioneering ones. Unfortunately, they use non linear space and they perform poorly when cache

performance is taken into account or large data sets are stored in external memory.

1.1 Memory Hierarchy and Memory Models

In this thesis, we adopt external-memory model [2] and cache-oblivious model [39, 81] to evaluate

I/O complexities. The memory hierarchies of modern computers are composed of several levels of

memories, that starting from the caches, have increasing access time and capacity. The design of

data structures and algorithms must now take care of this situation and try to efficiently amortize

the cost of memory accesses by transferring blocks of contiguous data from one level to another.

The CPU have access to a relatively small but fast pool of solid-state storage space, the main

memory; it could also communicate with other, slower but potentially larger storage spaces, the
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external memory. The memory hierarchies of modern computers are composed of several levels

of memories start from the caches. Caches have very small access time and capacity comparing

to main memory and external memory. From cache to main memory, then to external memory,

access time and capacity increase significantly.

In external-memory model [2], the computer has access to a large external memory in which

all of the data resides. This memory is divided into memory blocks each containing B words, and

B is known. The computer also has limited internal memory on which it can perform computa-

tions. Transferring a block between internal memory and external memory takes constant time.

Computations performed within the internal memory are free; they take no time at all and that

is because of the fact that external memory is so much slower than random access memory [70].

We assume that each external memory access (called an I/O operation or just I/O) transmits one

page of B elements.

Traditional databases are designed to reduce the number of disk accesses, since accessing data

on the disk is orders of magnitude more expensive than accessing data in main memory. With data

sets becoming resident in main memory, the new performance bottleneck is the latency in accessing

data from the main memory [49]. Therefore, we also adopt the cache-oblivious model [39, 81] to

evaluate the I/O complexity, here called cache complexity. The cache-oblivious model is a simple

and elegant model introduced in [39, 81] which allows to consider only a two-level hierarchy, but

proves results for a hierarchy composed of an unknown number of levels. In this model, memory has

blocks of size B, where B is an unknown parameter and a cache-oblivious algorithm is completely

unaware of the value of B used by the underlying system.

1.2 Main Results

We propose a general method to store the nodes of balanced search trees and obtain provably good

space-efficient external-memory/cache-oblivious data structures. The proposed scheme hinges on

the decomposition of a balanced search tree into a set of disjoint cores: a core is a complete

balanced binary tree that appears as a portion of the balanced tree. A core of height h has 2h − 1

nodes when the height of a node is the number of nodes on the longest simple downward path from

that node to a leaf [57]. Our method is not invasive, as it does not change the original algorithms.

It just requires a post-processing procedure after each update to maintain the cores. The nodes of

a core are stored in a chunk of consecutive memory cells. Hence, the core partition adds a memory

layout for the nodes of a balanced tree but does not interfere with the original algorithms for the
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tree.

For a given binary search tree T with size n and height H, for a parameter h∗(T ) (that depends

on the type of the given balanced tree), our recursive scheme requires that the first h∗(T ) levels

of the nodes in the given balanced tree are full, thus they form a core. It conceptually removes

these nodes and applies recursively this process to the resulting bottom subtrees. The recursion

ends when the subtree size is below a threshold r∗ to be specified, we call such a (possibly empty)

terminal subtree, a terminal-core. As a result, the given balanced tree is decomposed into cores,

which are central to our findings. We call this technique, core partitioning scheme, which maintains

a balanced search tree as a dynamic collection of complete balanced binary trees (cores).

We obtain a successful core partition when the cores found along any root-to-leaf path of the

balanced tree are of doubly exponentially decreasing size, with O(1) of them being of size smaller

than r∗. We show that for any binary search tree with such a successful core partition, we obtain a

space-efficient external-memory/cache-oblivious layout to dynamically maintain the structure and

their keys. Using the external-memory/cache-oblivious models [2, 81], it takes Θ(n/B) blocks of

memory of size B to store the keys with extra O(n) bits space needed for the external pointers

to the cores and the terminal-cores, note that representing the structure of a balanced binary

tree using O(n) bits is also another efficient bound independently achieved by the core partition-

ing scheme. Searching a key requires O(logB n) block transfers and O(log n) comparisons in the

external-memory model, and the amortized cost of update varies with the specifications of the

balanced binary tree. As case studies, we apply the core partitioning scheme on weight-balanced

trees [73] and AVL trees [1]. Interestingly, the core partition for weight-balanced trees can be

maintained with amortized O(logB n) block transfers and amortized O(log n) time complexity per

update, whereas maintaining the core partition for AVL trees requires super polylogarithmic amor-

tized cost. We prove this result providing a ‘new lower bound’ on the subtree size of the rotated

nodes in AVL trees.

We present core partitioning scheme as a general approach for making different classic and well-

studied balanced binary search trees efficient and applicable in external-memory/cache-oblivious

models and compatible to the modern search data structures, thus making our method of inde-

pendent interest. More precisely, similarly to our case studies, a core partitioning scheme can be

applied to other types of balanced binary search trees. For any type of balanced binary search

trees, if one can prove that they admit a successful core partition, all of the core partition prop-

erties such as external-memory efficiency, cache-obliviousness, linear space, and O(logB n) search



4 CHAPTER 1. INTRODUCTION

cost would be instantly achieved, more importantly, the original structure of that binary search

tree will always be preserved. However, the update cost varies depending on the class of binary

search tree.

An example of the benefit of our technique is that by preserving the original structure of

the given binary search tree, we can reuse the vast knowledge on balanced search trees to pro-

vide a repertoire of space-efficient external-memory and cache-oblivious data structures which are

competitive with modern search data structures that are purposely designed for these models

(e.g. [20, 21, 23, 24, 29]). This opens a number of possibilities that are known for modern search

data structures but unknown for several previous balanced trees:

• I/O efficiency and cache-obliviousness can be achieved.

• Dynamic memory management can be handled.

• The space is linear; O(n) ‘words’ to store the keys with an extra O(n) ‘bits’ for the external

pointers to the cores and the terminal-cores (rather than Ω(n log n) bits for the external

pointers in the link based presentations).

• Search can be performed in O(logB n) I/Os and O(log n) comparisons.

We emphasize that the above features just require the original algorithms described for the

given balanced tree, thus offering simultaneously many features that have been introduced later

on different search trees. What we add is the maintenance of our structure for the nodes, and the

algorithmic challenge is how to maintain it efficiently. When performing the updates, we proceed as

usual, except that we perform a post-processing: we take the topmost core that should be changed

because of the update, and recompute the partition from it in a greedy fashion.

The notion of core partition introduced above shows how to obtain cache-efficient versions of

classical balanced binary search trees such as AVL trees and weight-balanced trees. A natural

question is whether the core partition can be applied also to arbitrary binary search trees which

can be unbalanced. We give a positive answer to this question by presenting a data structure,

called Cache-Oblivious General Balanced Tree (COG-tree).

A binary tree is typically kept balanced by storing at each node some information on the

structure of the tree and checking at each update that some constraints on the structure of the

tree are maintained. This information must be dynamically updated after insertions and deletions.

A different approach let the tree assume any shape as long as its height is logarithmic. In this way

there is no need of storing and checking the balance information, but it is sufficient to check whether
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the maximal possible height has been exceeded. Trees of this kind, called General Balanced Trees,

introduced by [8] and later rediscovered by [41] under the name of scapegoat trees, can be efficiently

maintained and require as additional space only that for the pointers. They are restructured with

an operation, called partial rebuilding that transforms a subtree of the tree in a perfectly balanced

tree. The operation is expensive having a cost proportional to the number of nodes of the subtree,

but performed rarely hence has a low amortized cost. COG-trees use such partial rebuilding

operations with some modifications.

A COG-tree of n nodes has an improved cache complexity of O(logB n) amortized block trans-

fers and O(log n) amortized time for updates, and O(logB n) block transfers and O(log n) time

for searches. Same as before, the O(logB n) amortized block transfers for update is theoretically

efficient. The space occupancy is also linear.

1.3 Other Results on Properties of AVL Trees

Studying the properties of these trees also lead us to some other new properties of AVL trees

and trees with bounded degree, namely, we define and study gaps and we prove Tarjan et al. ’s

conjecture on the number of rotations in a sequence of deletions and insertions and finally, we

generate trees with bounded degree in an specified ordering (A-order).

Gaps in AVL trees are special tree edges such that the height difference between the subtrees

rooted at their two endpoints, is equal to 2. Using gaps we prove the Basic-Theorem that allows

us to express the size of a given AVL tree in terms of the heights of the gaps. The Basic-Theorem

can represent any AVL tree (and its subtrees) with a series of powers of 2 of the heights of the

gaps. The Basic-Theorem and its corollaries are interesting to characterize the tree size of any

AVL tree with a very simple and useful formula. They describe the precise relationship between

the size of the tree and the heights of the nodes, also the subtree sizes and the heights of the gaps,

and finally they independently describe the relationship between the heights of the nodes and the

heights of the gaps. We will also investigate how gaps change (disappear or reappear) in an AVL

tree during a sequence of insertions and deletions.

As we know, an insertion in an n-node AVL tree takes at most two rotations, but a deletion in

an n-node AVL tree can require Θ(log n). A natural question is whether deletions can take many

rotations not only in the worst case but in the amortized case as well. A sequence of n successive

deletions in an n-node tree takes O(n) rotations [101], but what happens when insertions are

intermixed with deletions?
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Heaupler, Sen, and Tarjan [48] conjectured that alternating insertions and deletions in an n-

node AVL tree can cause each deletion to do Ω(log n) rotations, but they provided no construction

to justify their claim. We provide such a construction which causes each deletion to do Ω(log n)

rotations: we show that, for infinitely many n, there is a set E of expensive n-node AVL trees with

the property that, given any tree in E, deleting a certain leaf and then reinserting it produces a

tree in E, with the deletion having performed Θ(log n) rotations. One can do an arbitrary number

of such expensive deletion-insertion pairs. The difficulty in obtaining such a construction is that, in

general, the tree produced by an expensive deletion-insertion pair is not the original tree. Indeed,

if the trees in E have odd height h, 2
h−1
2 deletion-insertion pairs are required to reproduce the

original tree.

Finally the last result in this thesis is the generation of trees with bounded degree in A-

order. Exhaustive generation of certain combinatorial objects has always been of great interest for

computer scientists. Designing algorithms to generate combinatorial objects has long fascinated

mathematicians and computer scientists as well. Some of the earlier works on the interplay between

mathematics and computer science have been devoted to combinatorial algorithms. Because of its

many applications in science and engineering, the subject continues to receive much attention.

Studying combinatorial properties of restricted graphs or graphs with configurations has also

many applications in various fields such as machine learning and chemoinformatics. Studying com-

binatorial properties of restricted trees and outerplanar graphs (e.g. ordered trees with bounded

degree) can be used for many purposes including virtual exploration of chemical universe, recon-

struction of molecular structures from their signatures, and the inference of structures of chemical

compounds [117, 94, 40, 46, 44, 50, 14]. Therefore, in Chapter 6, we will study the generation

of unlabeled ordered trees whose nodes have maximum degree ∆. For the sake of simplicity, we

denote such a tree by T∆ tree, we also use T∆
n to denote the class of T∆ trees with n nodes.

Typically, trees are encoded as strings over a given alphabet and then these strings (called

codeword) are generated [80]. By choosing a suitable codeword to represent the trees, we can design

efficient generation algorithm for these codewords. Any generation algorithm is characterized by

the ordering it imposes on the set of objects being generated and by its complexity. The most well-

known orderings on trees are A-order and B-order [115] which will be defined in Chapter 2. A-order

has been referred to as the most natural ordering on the set of trees. The A-order definition uses

global information concerning the tree nodes, where as the B-order definition uses local information.

Besides the generation algorithm for trees, ranking and unranking algorithms are also important in
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the concept of tree generation [87, 111, 115]. Given a specific order on the set of trees, the rank of

a tree (or corresponding sequence) is its position in the exhaustive generated list, and the ranking

algorithm computes the rank of a given tree (or corresponding sequence) in this order. The reverse

operation of ranking is called unranking; it generates the tree (or sequence) corresponding to a

given rank. For this class of trees, besides an efficient algorithm of generation in A-order we present

an encoding over 4 letters and size n with two efficient ranking and unranking algorithms. The

generation algorithm has O(n) time complexity in the worst case and O(1) in the average case.

The ranking and unranking algorithms have O(n) and O(n log n) time complexity, respectively.

The presented ranking and unranking algorithms use a precomputed table of size O(n2) (assuming

∆ is constant).

1.4 Thesis Organization and Overview

In summary, this assertion is organized as follows. Some preliminaries on binary search trees,

external-memory model, cache-oblivious model, important search tree data structures, and the

concept of exhaustive generation of trees with bounded degree are presented in Chapter 2. In

Chapter 3, we propose a general method to store the nodes of balanced search trees (the core

partitioning scheme). Then the core partitioning scheme is applied directly to plain binary search

trees in Chapter 4. In Chapter 5, we present some new features and properties of AVL trees

including the proof of Heaupler, Sen, and Tarjan [48] conjecture that alternating insertions and

deletions in an n-node AVL tree can cause each deletion to do Ω(log n) rotations. Chapter 6 is

dedicated to generation of trees with bounded degree which is a byproduct of our research. Finally,

some concluding remarks and suggestions for further research are given in Chapter 7.
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Chapter 2

Background

In this chapter, we study some basic concepts of important binary search trees [33, 57, 107, 31,

90], external-memory model [2] and cache-oblivious model [81, 39], the most important external-

memory/cache-oblivious data structures [13, 21, 23, 24, 29, 74], and the concept of exhaustive

generation of trees with bounded degree [77, 96, 115].

2.1 Trees and Binary Search Trees

Trees are one of the most important basic and simple data structures for organizing information

in computer science. Trees have many applications including database generation, decision table

programming, analysis of algorithms, string matching [57, 90], switching theory, theoretical VLSI

circuit design [102], computational geometry [34], image processing [91, 99], HTML hierarchy

structure [16], and maintaining data [75]. Trees are also widely used for showing the organization

of real world data such family/geneaology trees [35], taxonomies, and modeling of the connections

between dendrites of the brain in computational neuroscience [26]. Also in image processing,

particular cases of t-ary trees, quadtrees and octrees, are used for the hierarchical representation

of 2 and 3 dimensional images, respectively [91].

There are many notions for trees as well as various notations concerning graphs. We suppose

the reader is familiar with basic concept of graph, trees and algorithms. In this section, some

definitions and properties of several kinds of trees are presented.

A rooted tree is a tree in which one of the nodes is distinguished from the others. The distin-

guished node is called the root of the tree. We often refer to a node of a rooted tree as a node of

the tree. In a rooted tree, degree of a node is defined as the number of its children and a leaf is a
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Figure 2.1: An example of the heights and the levels of the nodes in a given tree.

node of degree 0. An internal node is a node of degree at least 1. A labeled tree is a tree in which

each node is given a unique label. The nodes of a labeled tree on n nodes are typically given the

labels 1, 2, . . . , n.

Consider a node x in a rooted tree T with root r. Any node y on the unique path from r to x

is called an ancestor of x. If y is an ancestor of x, then x is a descendant of y. If y is an ancestor

of x and x 6= y, then y is a proper ancestor of x and x is a proper descendant of y. The subtree

rooted at x is the tree consisting of the descendants of x, rooted at x. The length of the path from

the root r to a node x plus one is the level (depth) of x in T . The height of a node in a tree is the

number of nodes on the longest simple downward path from the node to a leaf, and the height of a

tree is the height of its root [57]. The height of a tree is also equal to the largest level of nodes in

the tree. The heights and the levels of the nodes on a tree with height 4 is illustrated in Figure 2.1.

An ordered tree or plane tree is a rooted tree for which an ordering is specified for the children

of each node. This is called a “plane tree” because an ordering of the children is equivalent to

an embedding of the tree in the plane, with the root at the top and the children of each node

lower than that node. Given an embedding of a rooted tree in the plane, if one fixes a direction of

children, say left to right, then an embedding gives an ordering of the children. Conversely, given

an ordered tree, and conventionally drawing the root at the top, then the child nodes in an ordered

tree can be drawn left-to-right, yielding an essentially unique planar embedding . Figure 2.2 shows

an embedding of an ordered rooted tree in the plane with root labeled by ‘x’, in this figure, the

node with gray color are the internal ones and the rest are the leaves.

2.1.1 Isomorphism on rooted trees

Recall that two graphs are isomorphic if there exists a one-to-one correspondence between their

node sets which preserves adjacency relations in the graphs. For rooted trees, isomorphism on
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Figure 2.2: An embedding of an ordered rooted tree in the plane on a set of 11 nodes (4 internal
nodes and 7 leaves) with root labeled by ‘x’.

rooted trees preserves the roots (i.e., roots are mapped to each other) [55]. More precisely, if T

and T ′ are two rooted trees and V,E, r, V ′, E′, r′ denote the set of nodes, the set of edges, and the

root of T and T ′, receptively, isomorphism of rooted trees T and T ′ is a bijection between their

nodes f : V → V ′ such that:

f(r) = r′ and ∀u, v ∈ V, (u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′.

In simple words, two rooted trees are isomorphic if one tree can be obtained from the other

by performing any number of flips while flip means swapping left and right children of a node.

Figure 2.7 shows two isomorphic rooted trees.

2.1.2 Positional Trees

A positional tree is an ordered tree in which the children of a node are labeled with distinct positive

integers. The ith child of a node is absent if no child is labeled with integer i [33, 107].

t-ary Trees and Binary Trees:

A t-regular tree is a rooted tree in which each node has t children. To construct a t-regular tree

from a rooted tree, to every node which has q < t children, t − q special nodes are added as its

children. These special nodes are called null pointers (null nodes). Clearly, the constructed tree

is not unique. An example of a 3-regular is shown in Figure 2.3. A t-ary tree is a positional tree

in which for every node, all children with labels greater than t are missing. t-ary tree can also be

defined as an ordered t-regular tree, in which every internal node has exactly t ordered children

(including null pointers). 2-ary trees are also called binary trees, while 3-ary trees are sometimes

called ternary trees. An n-node t-ary tree T is a t-ary tree with n nodes, i.e., |T | = n. Clearly, an
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Figure 2.3: An example of a 3-regular tree.

n-node t-ary tree has (t − 1)n + 1 null pointers. The t-ary tree that contains no nodes is called

an empty tree or null tree. Also, a t-ary tree T can be defined recursively as being ‘a null pointer’

or ‘a node together with a sequence T1, T2, . . . , Tt of t-ary trees’. Ti is called a subtree of T. So

sometime a tree T is shown as T = T1, T2, . . . , Tt.

It is well known that binary trees with n internal nodes are counted by the nth Catalan

number [97]:

Cn =
1

n+ 1

(
2n

n

)
,

and it is also known that the number of t-ary trees with n internal nodes is [97, 42]:

1

tn+ 1

(
tn+ 1

n

)
.

Lemma 1 [107] The maximum number of internal nodes on level i (i ≥ 0) of a t-ary tree is ti.

A complete t-ary tree is a t-ary tree in which all leaves have the same level. For t = 2, the

t-ary trees are called binary trees, where each node has a left and a right child. Also, a binary tree

is best described recursively. A binary tree T is a structure defined on a finite set of nodes that

either:

• contains no node, or

• is composed of three disjoint sets of nodes: a root node, a set of nodes called left subtree of

T , and a set of nodes called right subtree of T , and their roots are called left child and right

child of the root, respectively. Both subtrees are themselves binary trees.

A binary tree is not simply an ordered tree in which each node has degree at most 2. For example,

in a binary tree, if a node has just one child, the position of the child, whether it is the left child
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Figure 2.4: In a BST, for every node with key x, the keys in the left (right) subtree are less
(greater) than x.

or the right child, matters. In an ordered tree, there is no distinguishing a solo child as being left

or right. Sometimes a binary tree T is shown as T = TLTR, in which TL is the left subtree and TR

is the right subtree of T . A full binary tree is a binary tree in which each node is either a leaf or

has degree exactly 2. A complete balanced binary tree is a binary tree in which all leaves have the

same level. Clearly, a complete balanced binary tree of height h has 2h − 1 nodes.

In the following we define binary search trees and we list and introduce some binary search

trees which are more important.

2.1.3 Binary Search Trees

Binary search tree (BST) is basically a data structure based on binary trees where each node

has a comparable key (and an associated value) and satisfies the restriction that the key in any

node is larger than all the keys in the left subtree and smaller than all the keys in the right subtree

(an example of a BST is given in Figure 2.4). This data structure is one of the most common data

structure who guarantees to store data in a sorted way. The size of a BST is only limited by the

amount of free memory in the operating system. The common properties of binary search trees

are as follows.

• The left subtree of a node contains only nodes with keys less than the node’s key.

• The right subtree of a node contains only nodes with keys greater than the node’s key.

• The left and right subtrees are binary search trees.

• Each node can have up to two children.

Generally, the information represented by each node is a record rather than a single data

element. However, for sequencing purposes, nodes are compared according to their keys rather
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than any part of their associated records. The advantages of binary search trees over other data

structures are:

• BST can easily be split for parallel operations.

• BST is mostly fast in search, insertion and deletion operations (depends on how much balanced

the tree is).

• BSTs are dynamic data structures by nature.

• Its implementation is easier than other data structures.

• BST can find the closest element to some arbitrary key value efficiently. It can also support

range queries1 reasonably fast since it does not search a subtree completely out of the range.

Some of their disadvantages are the followings.

• The shape of the binary search tree totally depends on the order of the insertions, and it can

be very unbalanced, so that the search operation has the worst case time complexity O(n)

(e.g. inserting a sorted sequence to an empty tree generates a BST of height n).

• After a long intermixed sequence of random insertion and deletion, the expected height of

the tree approaches the square root of the number of keys which grows much faster than

log n.

In the decades, researchers have introduced many interesting binary search trees and other

tree data structures to keep the tree as balanced as possible, so search, insertion, and deletion

operations have the worst case cost O(log n). In the following we study the most important ones.

AVL Trees

Height-balanced binary trees (hb-trees) have the property that, for every node, the heights of the

left and right subtrees differ at most by an integer value ∆ [38, 67]. AVL trees, the original type

of balanced binary search trees were introduced over 50 years ago [1] but still are remarkable for

their efficiency. AVL trees are the first family of hb-trees which appeared in the literature, for

which ∆ = 1. Since the invention of AVL trees in 1962, a wide variety of ways to balanced binary

search trees have been proposed. They are mostly based on some particular rebalancing algorithms

executed after an insertion or a deletion to maintain the tree balanced.

1A range query is an operation that retrieves all the keys between an upper bound and a lower bound.
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Figure 2.5: An example of AVL tree.

An AVL tree (“Adelson-Velskii and Landis’ tree”, named after the inventors) is a balanced

binary search tree. It was the first data structure of this kind to be invented. In an AVL tree, the

heights of the two child subtrees of any node differ by at most one; if at any time they differ by

more than one, rebalancing is done to restore this property. Search, insertion, and deletion all take

O(log n) time in both the “average” and “worst cases”, where n is the number of nodes in the tree

prior to the operation. An example of AVL tree is given in Figure 2.5. Basic operations of an AVL

tree involve carrying out the same actions as would be carried out on an unbalanced binary search

tree, but modifications (insertions and deletions) are followed by some more operations called tree

rotations, which help to restore the height balance of the subtrees. Figure 2.6 illustrates a rotation.

Figure 2.6: Right rotation at node x. Triangles denote subtrees. The inverse operation is a left
rotation at y.

The time complexity for the search operation is O(log n), and the time complexity for the

insertion operation is O(log n) for searching the place where the key must be inserted, plus a

constant number of rebalancing operations which take constant time if the tree is maintained by

pointer-based data structures. For the deletion operation, the time required is again O(log n) for

search, plus a maximum of O(log n) rotations on the way back to the root, so the operation can be

completed in O(log n) time. An insertion in an n-node AVL tree takes at most two rotations, but a

deletion in an n-node AVL tree can take Θ(log n). Heaupler, Sen, and Tarjan [48] conjectured that
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Figure 2.7: A Fibonacci tree of height 5 in the left side and one of its isomorphisms in the right
side.

alternating insertions and deletions in an n-node AVL tree can cause each deletion to do Ω(log n)

rotations, but they provided no construction to justify their claim, and this would be one of our

challenges.

Besides AVL trees, many other interesting data structures, such as B-trees [32, 18, 33], red-

black trees [17], weight-balanced trees [73], 2-3 trees [43], and (a, b)-trees [54] have been introduced,

probably none of them reaching the same appeal. If we look at “vintage” AVL trees with today’s

eyes, they are indeed pretty modern. The English translation [1] of the Russian paper by Adel′son-

Vel′skĭi and Landis is very close, except some terminology, to the way AVL trees are currently

presented in classroom. The rebalancing operations after an insertion are extremely elegant. In

the following we study other well known data structures.

Fibonacci Trees Fibonacci trees is a beautiful class of binary search trees (see [98]) which

represents fully unbalanced AVL trees that in every branch, the height of the left subtree is bigger

than the height of the right one. The Fibonacci tree of height h has Fh leaves, where Fi shows the

ith Fibonacci number (i.e., F0 = 0, F1 = 1, Fi = Fi−1 +Fi−2). Fibonacci tree is defined recursively

as follows [53]. The Fibonacci tree of height h for h = 0 is an empty tree and for h = 1 is just

a single root; If h ≥ 2, the left subtree of the Fibonacci tree of height h is the Fibonacci tree of

height h− 1 and the right subtree is the Fibonacci tree of height h− 2.

We define a Fibonacci-isomorphic tree as an ordered tree which is isomorphic to a Fibonacci

tree. Figure 2.7 shows two Fibonacci-isomorphic trees of height 5, the left one is a Fibonacci tree

of height 5 and the right one is one of its isomorphisms.

Fact 1 By definition, a Fibonacci tree of height h has Fh leaves, also its internal nodes form a
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Fibonacci tree of height h − 1. Therefore, by a simple induction, the total number of nodes in a

Fibonacci tree of height h is Fh+Fh−1+. . .+F1. On the other hand, isomorphic trees have the same

number of nodes, hence, for every Fibonacci-isomorphic tree T with height h, |T | =
∑n
i=1 Fi =

Fh+2 − 1.

Note that Fibonacci trees represent the most unbalanced AVL trees and they have Θ(log n)

height. In [57, p.460] it has been shown that the maximum height of an AVL tree with size n is

upper bounded by logΦ(
√

5(n+ 2))− 2 ≈ 1.4404× log(n+ 2)− 0.3277.

Red-Black Trees

A red-black tree is another interesting balanced binary search trees. This structure comes with

an extra bit of storage per node which is its color(red or black). Red-black tree remains balanced

during a sequence of insertions and deletions by painting each node with one of two colors (these

are typically called ’red’ and ’black’, hence the name of the trees) in such a way that the resulting

painted tree satisfies certain properties that don’t allow it to become significantly unbalanced.

When the tree is modified, the new tree is subsequently rearranged and repainted to restore the

coloring properties. The properties are designed in such a way that this rearranging and recoloring

can be performed efficiently. Formally, a red-black tree is a binary search tree in which each node

has a color (red or black) associated with it with the following properties [17, 43, 33]:

• Root property: The root of the red-black tree is black

• Red property: The children of a red node are black.

• Black property: Every path from a given node to any of its descendant leaves contains the

same number of black nodes.

These properties guarantees that the path from the root to the furthest leaf is no more than twice

as long as the path from the root to the nearest leaf. The result is that a red-black tree of n internal

nodes has height at most 2 log(n + 1) [33]. The insertion operation for a new node x containing

the key k is performed as follows.

• Use BST insertion algorithm to add x to the tree.

• Color the node x red.

• Restore red-black tree properties (if necessary).



18 CHAPTER 2. BACKGROUND

x

p

g

u x

p

g

u

Before single rotation After single rotation

x

p

g

u p

x

g

u

Before double rotation After double rotation

Single
rotation

Double
rotation

Figure 2.8: Single and double rotations in a red-black tree.

Adding red node x clearly will not violate the black property, however, it may violate the root

property or the red property. If that is the case, follow the bellow procedure.

• If adding x violate the root property, just recolor the root from red to black and terminate.

• If adding x violate the red property, let p denote the parent of x. Since the addition of x

resulted in the red property violation, p is red. Now let g denote the grand parent of x. g is

black because it has a red child (p). Now let u be p’s sibling (i.e., the uncle of x). For u, we

have the following two cases.

– If u is black or null, by performing a single or a double rotation as shown in Figure 2.8

the tree is rebalanced and the procedure terminates. Observe that after such a rotation,

red property is fixed once again.

– If u is red, we will do a recoloring of p, u, and g as shown in Figure 2.9. Recoloring

does not affect the black property of a tree, but, it may violate the red property again

(between g and g’s parent). If that is the case, then we repeat the entire procedure

(recursively handle the red property violation) starting at g and g’s parent.

Since the deletion operation is similar to the insertion operation (but with more details), we

skip that part. The insertion and deletion operations for red-black trees takes O(log n) time in
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Figure 2.9: Recoloring in a red-black tree.

the worst case [33]. Considering the fact that each black node may have 0, 1 or 2 red children, a

red-black tree can be expressed as a B-tree of order 4, where each node can contain between 1 to

3 values and (accordingly) between 2 to 4 child pointers. In such a B-tree, each node will contain

only one value matching the value in a black node of the red-black tree, with an optional value

before and/or after it in the same node, both matching an equivalent red node of the red-black

tree.

Weight-Balanced Trees

In the weight-balanced tree (WBT), the balance reflects the relation between the number of nodes

in the left and right subtrees and when the balance is disturbed by insertion or deletion operations,

rotations are performed to restore it. Specifically, each node stores the size of the subtree rooted

at the node, and the sizes of left and right subtrees are kept within some factor of each other. The

number of elements in a tree is equal to the size of its root, and the size of the information is exactly

the information needed to implement the operations of an order statistic tree. Weight-balanced

trees are also called trees of bounded balance, or BB[α]-trees [73].

For a binary tree, the weight is the number of null pointers (null nodes), which is equivalent to

the number of nodes (i.e., the size) plus one. The weight of a node u is denoted by w(u) and its

balance β(u) = w(u.l)/w(u) is the ratio between the weight of u’s left child and u’s weight (note

that w(null) = 1 by definition of weight) [73].

For a parameter α, where 0 < α ≤ 1, a weight-balanced tree (a.k.a. BB[α]-tree) is a binary

search tree where each node u satisfies α ≤ β(u) ≤ 1−α, which is equivalent to say that α ·w(u) ≤

w(u.l), w(u.l) ≤ (1− α) · w(u) for each node u and its two children u.l and u.r. Observe that the

height of a weight-balanced tree is upper bounded by log1−α n = O(log n).

For example, the tree shown in Figure 2.10 is a BB[α]-tree for α = 2/7 while it is not for
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Figure 2.10: BB[α]-tree for α = 2/7 while it is not for α = 1/3.

α = 1/3. The value of β(u) is reported inside each node u.

As observed by the inventors Nievergelt and Reingold [73], a node of weight 3 should have one

child of weight 1, so they assume that 0 < α ≤ 1/3. Moreover, Blum and Mehlhorn [28] show that

rebalancing a BB[α]-tree with rotations can be done when 2/11 < α ≤ 1 −
√

2/2 = 0.2928 . . . .

When α is strictly inside this interval, they show that there exists δ > 0 depending on α such

that an unbalanced node u has balance factor (1 + δ)α ≤ β(u) ≤ 1 − (1 + δ)α after its balance

is restored using rotations. Overmars [76, Sect.4.2] shows that rebalancing can be also done with

partial rebuilding, and this only requires 0 < α < 1/2 and obtains a value of β(u) close to 1/2

after restoring the balance of u.

Rank-Balanced Trees

Rank-balanced trees are an extension of AVL trees, where each node x has an integer rank r(x) which

is proportional to its height. If x is a node with parent p(x), the rank difference of x is r(p(x))−r(x).

A node is called an i− child if its rank difference is i, and an i, j − node if its children have rank

differences i and j. The initial rank rule is that every node is a 1, 1− node or a 1, 2− node. This

rule gives exactly the AVL trees. If no deletions occurs, a rank-balanced tree remains an AVL tree;

with deletions, 2, 2 − nodes will be allowed. The rank and hence the height of a rank-balanced

tree is at most 2 log n. Considering an initially empty tree and a sequence of m insertions and

d deletions (n = m − d), it has been shown that the height of the resulting rank-balanced tree

is at most logφm and the total number of rebalancing steps is at most 3m + 6d, which means

O(1) amortized rebalancing steps per insertion or deletion. Rank-balanced trees can be rebalanced

bottom-up after an insertion or deletion using at most two rotations worst-case [47, 48].
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Relaxed AVL Trees (ravls)

Relaxed AVL trees (ravls) are a special class of rank-balanced trees in which the rank difference

from child to parent can be non-constant [63, 93]. In this relaxation of AVL trees, rebalancing is

done after insertions but not after deletions, however the access time remains logarithmic in the

number of insertions. The structure maintains insertion and deletion operations as follows.

To insert a new item into such a tree, use BST insertion algorithm to add its key to the tree.

For deletion, first find the item to be deleted (by doing a binary search). If neither child of the item

is missing, find either the next item or the previous item, by walking down through left (right)

children of the right (left) child of the item, until reaching a node with a missing left (right) child.

Then swap the item with the item found. Now the item to be deleted is either a leaf or has one

missing child. In the former case, replace it by a missing node; in the latter case, replace it by its

non-missing child. If each node has pointers to its children, an access, insertion, or deletion takes

O(h + 1) time in the worst case, where h = logφm is the height of the tree and φ and m are the

golden ratio and the number of insertions, respectively. This structure needs O(log logm) bits of

balance information per node, or O(log log n) with periodic rebuilding, where n is the number of

nodes. An insertion takes up to two rotations and constant amortized time.

Randomized Search Trees

Randomized search tree is a data structure for a set X of pairs of key and priority. Randomized

search trees are based on a tree called treap which is a rooted binary tree of X that is arranged

in inorder with respect to the keys and in heaporder with respect to the priorities. Inorder

means that the keys are sorted with respect to inorder traversal and heaporder means that the

priorities are sorted as a heap (or for any node v the priority of v is greater than priorities of all

its ascendants) [92, 11]. In Figure 2.11 an example of treap is shown.

Randomized search trees have an expected cost of O(log n) for a rotation, when the cost of the

rotation is proportional to the subtree size of the rotated node.

Splay Trees

The splay tree presented by Sleator and Tarjan [95] does not require any balance information stored

in the nodes. However, the height of a splay tree is not guaranteed to be O(log n). The logarithmic

cost for searching in a splay tree is amortized not worst case. The splay tree is a self-adjusting

form of binary search trees. On an n-node splay tree, all the standard search tree operations have
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Figure 2.11: An example of Randomized Search Tree, in this picture the numbers are priorities
and the alphabets are the keys.

an amortized time bound of O(log n) per operation. In splay trees a simple heuristic restructuring

function called splaying is applied whenever the tree is accessed. To splay a tree at a node v, repeat

the following splaying step until v is the root of the tree.

• Case 1 (zig): If p(v) is the tree root, rotate the edge joining v with p(v) (This case terminates

splaying the tree).

• Case 2 (zig-zig): If p(v) is not the root and v and p(v) are both left or both right children,

rotate the edge joining p(v) with its grandparent p(p(v)) and then rotate the edge joining v

with p(v).

• Case 3 (zig-zag): If p(v) is not the root and v is a left child and p(v) a right child, or vice

versa, rotate the edge joining v with p(v) and then rotate the edge joining v with the new

p(v).

Splaying, is similar to move-to-root in that it does rotations bottom-up along the access path

and moves the accessed item all the way to the root. But it differs in that it does the rotations in

pairs, in an order that depends on the structure of the access path.

General Balanced Trees

Anderson’s general balanced trees [8] are maintained by partial rebuilding, this idea is similar to the

scapegoat trees that we will study next and to the technique that we will explain in Chapter 4. For

general balanced trees, in order to achieve efficient maintenance of a balanced binary search tree,
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no shape restriction other than a logarithmic height is required. The obtained class of trees, general

balanced trees, may be maintained at a logarithmic amortized cost with no balance information

stored in the nodes (e.g. ‘colors’, ‘weights’, ‘rank’, etc.). Thus, whenever amortized bounds are

sufficient, there is no need for sophisticated balance criteria. The maintenance algorithms use

partial rebuilding. The main idea in maintaining a general balanced tree is to let the tree take any

shape as long as its height does not exceed dc log |T |e for some constant c > 1. When this criterion

is violated, the height can be decreased by partial rebuilding at a low amortized cost. Anderson

in [8] proved that the amortized cost incurred by general balanced trees is lower than what has been

shown for weight-balanced trees. In general balanced trees, no rebalancing is performed. General

balanced trees kept rebalanced using the above partial rebuilding that transforms a subtree of the

tree in a perfectly balanced tree. The operation is expensive having a cost proportional to the

number of nodes of the subtree, but performed rarely hence has a low amortized cost.

Scapegoat Trees

Scapegoat trees presented by Galperin and Rivest in [41] similarly to general balanced trees use

partial rebuilding to rebalance and unlike most other balanced-trees, do not require keeping extra

data (e.g. ‘colors’, ‘weights’, ‘rank’, etc.) in the tree nodes. Each node in the tree contains only a

key value and pointers to its two children. Associated with the root of the whole tree are the only

two extra values needed by the scapegoat scheme: the number of nodes in the whole tree, and the

maximum number of nodes in the tree since the tree was last completely rebuilt. In a scapegoat

tree a typical rebalancing operation begins at a leaf, and successively examines higher ancestors

until a node (the scapegoat) is found that is so unbalanced that the entire subtree rooted at the

scapegoat can be rebuilt at zero cost, in an amortized sense. Scapegoat trees provides worst-case

O(log n) search time, and O(log n) amortized insertion and deletion time.

2.1.4 B-tree, 2-3 Tree and (a,b)-trees

B-tree can be considered as a generalization of a binary search tree in which a node can have more

than two children and the structure remains always balanced [32]. In B-trees, internal nodes can

have any number of children within some pre-defined range. For example, 2-3 trees are B-trees

which any internal node can have only 2 or 3 children [43] and (a, b)-tree is a B-tree where each node

has at least a and at most b children and a ≤ b/2 [54]. When data is inserted or removed from a

node, its number of child nodes changes. In order to maintain the pre-defined range, internal nodes



24 CHAPTER 2. BACKGROUND

may be joined or split. In B-tree nodes are not entirely full so there might be a waste of space, also

the structure will be always balanced and it guarantees logarithmic time complexity in both worst

case and average case for search, insertion and deletion operations. The range of possible number

of children will be optimized regarding to hardware specification to make it practically fast for

systems that read and write large blocks of data. This data structures is the oldest data structure

with applications external-memory model (which will be introduced later). More information can

be found in almost all text books of algorithms and data structures, for example [18, 33, 57].

2.1.5 Tree Representation

To represent a t-ary tree in a computer, the most common but non efficient way is linked repre-

sentation. In this representation, each internal node of tree will have t + 1 fields: one data and t

children fields. Data field is used for holding data (or label) of a node and ith child field points to

ith subtree of node. For binary trees, we have two pointer fields in each node, called left child and

right child fields. In this representation, no memory is needed for null pointers (null nodes) and

all pointers to empty trees are null.

The other method of tree representation is when a tree is represented by integer or alphabet

sequences. This operation is called tree encoding. Basically, the uniqueness of encoding, the length

of the encoding, and the capability of constructing the tree from its representation, which is called

decoding, are essential considerations in the design of the tree encoding schema [68].

2.1.6 Tree Traversal

There are many operations that may be performed on trees. One notion that arises frequently is

the idea of traversing a tree or visit each node in a tree exactly once. A full traversal produces a

linear order for the information in a tree. Here, first we define the traversal operations for binary

trees and then extend some of them to t-ary trees.

In a binary tree, if we assume that L, V , and R stand for moving left, visiting the node, and

moving right, respectively, and if we adopt the convention that we traverse left before right, then

the only three traversals will be: LV R, LRV , and V LR. To these traversal types we assign the

names inorder, postorder, and preorder respectively. The earliest algorithms represented for tree

traversals which mainly use stacks, can be easily written in recursive form. Recursive algorithms for

inorder, preorder, and postorder traversals are similar, only the position of visiting the nodes differ

due to the corresponding traversal. The inorder, postorder, and preorder traversal algorithms are
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Procedure InOrder(Current: TreePtr)
begin

if (Current 6= NULL) then begin
InOrder(Current.LeftChild);
V isit(Current.Data);
InOrder(Current.RightChild);

end;
end;

Figure 2.12: An inorder traversal algorithm for binary trees.

Procedure PostOrder(Current: TreePtr)
begin

if (Current 6= NULL) then begin
PostOrder(Current.LeftChild);
PostOrder(Current.RightChild);
V isit(Current.Data);

end;
end;

Figure 2.13: A postorder traversal algorithm for binary trees.

Procedure PreOrder(Current: TreePtr)
begin

if (Current 6= NULL) then begin
V isit(Current.Data);
PreOrder(Current.LeftChild);
PreOrder(Current.RightChild);

end;
end;

Figure 2.14: A preorder traversal algorithm for binary trees.

presented in Figures 2.12, 2.13 and 2.14, respectively. By using inorder traversal in binary search

trees, we are able to list the keys ordered (sorted).

The preorder and postorder traversal can be extended and used for any class of trees, e.g.,

for t-ary trees in preorder traversal, at first, we visit data field of a node and then traverse the t

subtrees of this node one by one. The same procedure can be applied to AVL trees, trees with

bounded degree, etc.

2.2 External-Memory & Cache-Oblivious Memory Models

In this thesis, we adopt both external-memory model [2] and cache-oblivious model [39, 81] to

evaluate I/O complexities. The basic computer systems use a memory hierarchy, the CPU has

access to a relatively small but fast pool of solid-state storage space, the main memory; it could

also communicate with other, slower but potentially larger storage spaces, the external memory.
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The memory hierarchies of modern computers are composed of several levels of memories starting

from the caches. Caches have very small access time and capacity comparing to main memory and

external memory. From cache to main memory, then to external memory, access time and capacity

increases significantly.

Since accessing data in main memory is expensive relative to the processor speeds, modern

processors make use of processor caches. A processor cache is a block of low-latency memory that

sits between the processor and main memory, and stores the contents of the most recently accessed

memory addresses. Latency in retrieving data from the cache is one to two orders of magnitude

smaller than the latency in retrieving data from the main memory [39, 81, 49]. In the following we

study external-memory model and cache-oblivious model which describe different layers of memory

hierarchy.

2.2.1 External-Memory Model

Accessing an item from external storage is extremely slow. In 2013, as mentioned in [70], the

average access time of hard disks was 160000 times slower than random access memories (RAMs)

and the average access time of solid state drives was 2500 times slower than random access memory

(RAM). These speeds are fairly typical; accessing a random byte from RAM is thousands of times

faster than accessing a random byte from a hard disk or solid-state drive. Access time, however,

does not tell the whole story. When we access a byte from a hard disk or solid state disk, an entire

block of the disk is read.

This is the idea behind the external-memory model of computation, illustrated schematically in

Figure 2.15. In this model, the computer has access to a large external memory in which all of the

data resides. This memory is divided into memory blocks each containing B words. The computer

also has limited internal memory on which it can perform computations. Transferring a block

between internal memory and external memory takes constant time. Computations performed

within the internal memory are free; they take no time at all. The fact that internal memory

computations are free may seem a bit strange, but it simply emphasizes the fact that external

memory is so much slower than RAM [70]. We assume that each external memory access (called

an I/O operation or just I/O) transmits one page of B elements. We measure the efficiency of an

algorithm in terms of the number of I/Os it performs and the number of disk blocks it uses.

External memory data structures have been developed for a wide range of applications, includ-

ing spatial, temporal, and object oriented databases and geographic information systems [13].
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Figure 2.15: The external-memory model.

2.2.2 Cache-Oblivious Memory Model

The memory hierarchies of modern computers are composed of several levels of memories, that

starting from the caches, have increasing access time and capacity. Most of today’s processor archi-

tectures use a hierarchical memory system: a number of caches are placed between the processor

and the main memory. Caching has become an increasingly important factor in the practical per-

formance of main-memory data structures. Processor speeds have increased faster than memory

speeds, and many applications that previously needed to read data from disk can now fit all of

the necessary data in main memory. The relative importance of caching will likely increase in the

future [49, 85, 89]. The cache-oblivious model introduced by [39, 81] allows to consider only a

two-level hierarchy, but proves results for a hierarchy composed of an unknown number of levels.

Cache-oblivious model helps to evaluate the I/O complexity, here called cache complexity and still

expressed as number of block transfers of size B. Note that B is now an unknown parameter for

the block size and a cache-oblivious algorithm is completely unaware of the value of B used by the

underlying system.

This model is composed of two parts: the ideal-cache model and cache-oblivious algorithms.

The ideal-cache model has two levels of memory: cache and main memory. The cache contains

M locations partitioned into blocks of B contiguous locations each. The main memory can be

arbitrarily large. The processing unit can address the locations of the main memory but only the

data in cache can be used. If the data needed by the computation is not in cache, a cache fault

(cache miss) is caused and the corresponding block is transferred from the main memory. The

number of processor cache faults has a critical impact on the performance of the system. The
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goal is to improve performance by reducing the number of processor cache faults that are incurred

during a search operation [49]. When the cache is full, an optimal off-line replacing strategy is

used to replace a block with the new one. The cache is fully associative: each block from main

memory can be stored anywhere in the cache. An algorithm operating in the ideal-cache model

cannot directly manage the transfers of blocks.

There are two types of cache-conscious algorithms; namely, cache-sensitive (or cache-aware)

algorithm, where the parameters of the caches are assumed to be known to the implementation

(i.e., it is another name for external-memory model algorithms) and in contrast, cache-oblivious

algorithms that attempt to optimize themselves to an unknown memory hierarchy.

In this thesis, we focus on “cache-oblivious model”, because the cache-sensitive model is covered

by our results in the external-memory model. An algorithm is cache-oblivious if it cannot explicitly

use the parameters that are specific to the given memory hierarchy. If the algorithm operates in

the ideal-cache model, it cannot be defined in terms of parameters B and M . Being cache-oblivious

is an algorithm’s strength: since the cache complexity analysis holds for any value of B and M , it

holds for any level of a more general, multi-level memory hierarchy, as shown in [39]. The cache-

oblivious model can be seen as a “successor” of the RAM model, a successor that incorporates a

lot of the new architectural aspects which characterize the real world computing systems in a more

refined way.

2.3 Data Structures for External-Memory & Cache-Oblivious

Memory Models

Here we study the most important data structures designed for external-memory model or cache-

oblivious memory model. These data structures are more complicated than the classic data struc-

tures but work more efficiently with real world computers. Recall that for data structures which

are comparison based, the optimum bound for search is O(log n) and for amortized update cost is

O(log n).

T-Trees have been proposed as a better index structure in external memory and main memory

database systems. A T-Tree is a balanced binary tree with many elements in a node. Elements in a

node contain adjacent key values and are stored in order. Its aim is to balance the space overhead

with searching time and cache behavior is not considered [64]. T-Trees put more keys in each node

and give the impression of being cache conscious. But if we think of it carefully, we can observe that
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for most of the T-Tree nodes, only the two end keys are actually used for comparison. This means

that the utilization of each node is low. Since the number of key comparisons is still the same,

T-Trees do not provide any better external memory or cache behavior than binary search [84].

Kanellakis et al. [56] developed a specific tree2 occupying optimal O(n/B) blocks in the

external-memory model. The structure supports insertions only in O(logBn + (log2
Bn)/B) I/Os

amortized. A simpler static structure with the same bounds was described by Ramaswamy in [83].

The simplest external-memory model variant of the B-tree is an ordinary B+-trees where the node

size is chosen to match the size of a block [84]. In B+-trees, in each internal node we store keys

and child pointers, but the record pointers are stored on leaf nodes only. Multiple keys are used to

search within a node. If we fit each node in a cache line, this means that a cache load can satisfy

more than one comparison. So each cache line has a better utilization ratio.

A more advanced version of B+-tree called the Cache-Sensitive B+-tree or CSB+-tree [85]

additionally removes pointers from internal nodes by storing the children of a node consecutively

in memory. The CSB+-tree has been further optimized using a variety of techniques, such as

prefetching, storing only partial keys in nodes, and choosing the node size more carefully [89].

The buffer tree presented in [12] is a well-known example of a general technique for external

memory with I/O efficiently. The main idea in the technique is to perform operations on an

external (high fanout3) tree data structure in a lazy manner using main-memory-sized buffers

associated with internal nodes of the tree. As an example, imagine we are working on a height

O(logm n) search tree structure with elements stored in the leaves, that is, a structure with fanout

Θ(m) internal nodes and N elements stored in sorted order in n leaves with Θ(B) elements each,

then assign buffers of size Θ(m) blocks to each of the O(n/m) internal nodes of the structure.

When we want to insert a new element, we do not search down the tree for the relevant leaf right

away. Instead, we wait until we have collected a block of insertions (or other operations), and

then we insert this block into the buffer of the root. When a buffer “runs full” the elements in

the buffer are “pushed” one level down to buffers on the next level (this is named buffer-emptying

process). Deletions or other and perhaps more complicated updates, as well as queries, are basically

performed in the same way. Note that as a result of the laziness, we can have several insertions and

deletions of the same element in the tree at the same time, and we therefore “time stamp” elements

when they are inserted in the root buffer. The laziness also means that queries are batched, since

2This data structure also supports diagonal corner queries in O(logBn+ k/B) I/Os (k is the number of reported
keys), a diagonal corner query is a two sided range query whose corner must lie on the line x = y and whose query
region is the quarter plane above and to the left of the corner.

3Fanout refers to the number of children for an internal node. High fanout means to have more children per
internal node.
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a query result may be generated (and reported) lazily by several buffer-emptying processes.

The Arge and Vitter weight-balanced B-tree [13] was also presented for external-memory model.

The structure uses O(N/B) disk blocks to maintain a set of N intervals such that insertions and

deletions can be performed in O(logBN) I/Os and such that stabbing queries can be answered in

O(logBN + T/B) I/Os, where T denotes the number of points reported.

For cache-oblivious data structures, typical cache optimization techniques include clustering,

compression and coloring [84]. Clustering tries to pack, in a cache block, data structure elements

that are likely to be accessed successively. Compression tries to remove irrelevant data, thus

increases cache block utilization by being able to put more useful elements in a cache block.

Coloring maps contemporaneously-accessed elements to non-conflicting regions of the cache [84].

Ladner [62, 61] considered the effects of caches on sorting algorithms and improved performance by

restructuring these algorithms to exploit caches. In addition, they constructed a cache-conscious

heap structure that clustered and aligned heap elements to cache blocks.

A cache-oblivious layout scheme for fixed-topology trees has been introduced in [22] but it is an

open problem to extend it to dynamic trees. Based on this scheme, a new indexing technique called

Cache-Sensitive Search Trees (CSS-trees) was presented in [89]. The main idea of this technique

is to store a directory structure on top of a sorted array. The directory represents a balanced

search tree stored itself as an array. Nodes in this search tree are designed to have size matching

the cache size of the machine. Therefore, it performs a top-down layout of balanced trees. The

partition described in [89] works for any dynamic tree but the pointers are used internally to fix the

so-called broken nodes. The authors of [89] report some experimental study to show improvements

over traditional trees in practice, but no analysis with provably logarithmic bounds is given for the

updates.

The van Emde Boas (vEB) layout [81, 29] has many applications in the design of cache-

oblivious algorithms including ours (in our scheme will apply vEB layout inside each core for the

unknown block size B of the cache, see Section 3.2). The vEB layout is a ‘static’ cache-oblivious

data structure that can compactly store an array of a power of two elements, without using any

pointers. Given a search tree, where each node has O(1) children, vEB layout describes a mapping

from the nodes of the tree to their positions in the memory. Assuming the search tree has height

Θ(log n), this structure performs search operation in Θ(logB+1 n) I/O transfers, which is optimal

within a constant factor. The basic idea of vEB layout is as follows. Suppose the tree has height h

which is a power of two. Conceptually split the tree at the middle level of edges, between nodes of
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height h/2 and h/2 + 1. This breaks the tree into the top recursive subtree A of height h/2, and

several bottom recursive subtrees B1, B2, . . . , Bk of height h/2. In particular for complete balanced

binary trees (all internal nodes have 2 children), the recursive subtrees have size
√

(n+ 1)−1, and

k =
√

(n+ 1). We say that these two values are roughly
√
n. The layout of the tree is obtained

by recursively laying out each subtree, and combining these layouts in the order A,B1, B2, . . . , Bk.

Binary Trees of Small Height [29] were presented by Brodal et al. , this cache-oblivious search

tree makes use of the ‘fast updating of well-balanced trees’ [9] implemented by an implicit version

of the van Emde Boas layout [29, 81]. For a tree of n nodes and block size B, this structure

requires (1 + ε)n space and performs search operation in the worst case O(logB n) block transfers

and updates in O(logB
2n/εB) amortized number of block transfers. This structure also allows

range queries in O(logB n+ k/B) block transfers in the worst case, where k is the output size.

The following papers [21, 20, 23] reached optimal bounds and introduced several new data

structures on the field.

Bender et al. in [20, 23] also presented Cache-Oblivious B-Trees in three levels. The top level is

a weight-balanced B-tree on Θ(n/ log2 n) elements stored according to a vEB layout in a packed-

memory array (a packed-memory array is an structure for maintaining an ordered collection of n

items in an array of size O(n) with the update cost of O(1 + log2
B n) amortized memory transfers).

The middle level is a collection of Θ(n/ log2 n) groups of Θ(log n) elements each implemented by

a single packed-memory structure, where the representative elements serve as markers between

groups. The bottom level is a collection of Θ(n/ log n) groups of Θ(log n) elements each imple-

mented by a packed-memory array if the range query operation is required. Otherwise, the bottom

layer is implemented by an unordered collection of groups, where the elements in each group are

stored in an arbitrary order within a contiguous region of memory. The update amortized cost of

the presented trees are Θ(1+log1+B n) when range query is not required or Θ(1+log1+B n+ log2 n
B )

when search query is required. The space is cn words for a constant c > 1.

Bender et al. in [21] presented a cache-oblivious data structure called the exponential struc-

tures for dynamic searching. An exponential tree is a tree of O(log log n) levels where the de-

grees of nodes descending from the root level decrease doubly exponentially, e.g. as in the series

n1/2, n1/4, n1/8, . . . , 2. In the exponential structure, internal nodes may have many children and

they are called fat nodes. The layer of a fat node is the number of fat nodes below (i.e., leave

fat nodes have level 0). The number of keys stored in a layer i fat node, i ≥ 1, is in the range

[22i−22i−1

, 2×22i), except for the topmost fat node, where the range is given by [2×22k−1

, 2×22k),
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and k is the layer of the tree. Each layer 0 fat node contains a single item. Loosely speaking, the

volumes of the fat nodes square at each successive layer. When updating, if a layer i fat node V

acquires 2×22i , it splits as evenly as possible into two subtrees V1 and V2 in time O(|V |). When V

splits, this adds one to the number of its parent’s children. This is accommodated by completely

rebuilding the parent. In splitting layer i fat node V into subtrees V1 and V2, besides creating

V1 and V2, all of V ’s descendant fat nodes are copied into either the portion of the array being

used for V1 and its descendants (or that being used for V2 and its descendants). Thus, exponen-

tial trees achieve search time O(logB n) I/Os but increase the space significantly (to O(n log2 n)).

Then, by using buckets of size Θ(log2 n), implemented as two layers of records of size in the range

[log n, 2 log n), the space can be reduced to O(n) words.

2.4 Exhaustive Generation of Trees with Bounded Degree

The last result in this thesis is the generation of trees with bounded degree in A-order. Therefore,

in this section, the basic consideration of the tree generation and the concept of the encoding are

discussed, then we introduce the class of trees with bounded degree.

Exhaustive generation of certain combinatorial objects has always been of great interest for

computer scientists [77, 96, 115]. In general, the generation of a combinatorial structure problem

consists in constructing all possible combinatorial structures of a particular kind in a certain

order [60]. For example, a list of all the trees with a given number of nodes n, may be used to

test, analyze the complexity, prove the correctness of an algorithm, or for data compression in data

communication.

Designing algorithms to generate combinatorial objects has long fascinated mathematicians and

computer scientists as well. Some of the earlier works on the interplay between mathematics and

computer science have been devoted to combinatorial algorithms. Because of its many applications

in science and engineering, the subject continues to receive much attention. In general term, this

branch of computer science can be defined as follows. Given a combinatorial object, design an

efficient algorithm for generating all the instances of the object. These combinatorial objects could

be anything such as graphs, trees, parentheses strings, permutations, combinations, partitions,

derangements, etc.

Because of the importance of the trees, it is natural to study their properties, and as a result

of the existence of numerous applications of trees, algorithms for the generation of the trees have

been extensively studied, and many ingenious generation algorithms, for performing this task, have
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been discovered [1, 37, 58, 60, 66, 78, 79, 105, 87, 88, 100, 103, 104, 111, 113, 116].

2.4.1 Generation Preliminaries

In most of the trees generation algorithms, a tree is represented by integer or alphabet sequences,

and then all possible sequences of this representation are generated. This operation is called tree

encoding. Basically, the uniqueness of encoding, the length of the encoding, and the capability of

constructing the tree from its representation, which is called decoding, are essential considerations

in the design of the tree encoding schema [80]. By choosing a suitable codeword to represent the

trees, we can design an efficient generation algorithm for these codewords.

It is particularly impressive to note that the variation of representations of trees that are

possible, such as the bit strings [82, 115], the weight sequences [77], the P-sequences [80], the `-

sequences [80], the Ballot sequences [86], the Z-sequences [115], etc. In all cases, a one-to-one

correspondence is established between the set of trees and the set of certain integer or alphabet

sequences; then the set of trees is generated by generating the set of the corresponding sequences.

A-order and B-order

Any generation algorithm is characterized by the ordering it imposes on the set of objects being

generated and by its complexity. The most well-known orderings on trees are A-order and B-

order [115]. The A-order definition uses global information concerning the tree nodes and appear

to be a natural ordering of trees, whereas the B-order definition uses local information. Trees are

prominently generated in local order, though natural order and other less useful orders have been

addressed to a lesser extent. Up to the present time, the well known tree generation algorithms

have utilized B-order, or some other ones, and only a few of them have used A-order. This is

perhaps not so surprising if one notes that the generation of trees in A-order is indeed a very

difficult task. Here we illustrate these orderings. Let ≺A and ≺B denote the A-order and B-order

orderings, respectively. Let Tn be an arbitrary class of trees of size n. For T, T ′ ∈ Tn, the most

commonly used linear orderings of trees may be defined as follows [104, 103, 115].

Definition 1 Let T and T ′ be two ordered trees in Tn, Ti and T ′i show the ith subtrees of T and

T ′, respectively, and k = max{deg(T ), deg(T ′)}. If T = T ′, they have the same order, otherwise,

we say that T is less than T ′ in A-order (T ≺A T ′), iff

• |T | < |T ′|, or
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• |T | = |T ′| and for some 1 ≤ i ≤ k, Tj = T ′j for all j = 1, 2, . . . , i− 1 and Ti ≺A T ′i ,

where |T | (size of T ) is usually defined as the number of nodes in the tree T and deg(T ) is defined

as the degree of the root of the tree T.

A-order is considered to be the most natural ordering on Tn. From the above definition, it is

obvious that the natural order takes into account the size of a tree and hence a global knowledge of

trees is compared. This is precisely what makes the generation of most of the trees in the natural

ordering non-trivial.

Definition 2 Let T and T ′ be two ordered trees in Tn, Ti and T ′i show the ith subtrees of T and

T ′, respectively, and k = max{deg(T ), deg(T ′)}. If T = T ′, they have the same order, otherwise,

we say that T is less than T ′ in B-order (T ≺B T ′), iff

• deg(T ) < deg(T ′), or

• deg(T ) = deg(T ′) and for some 1 ≤ i ≤ k, Tj = T ′j for all j = 1, 2, . . . , i− 1, and Ti ≺B T ′i .

B-order is referred to as local order, because in this ordering, we compare the characteristics of

the concurrent nodes (whether they are internal nodes or leaves). In other words, it takes a local

view of the trees being compared, and the task is easier. This explains why the generation of some

trees, such as binary trees or t-ary trees in a local ordering, is popular. One of the advantages for

listing trees in the natural order is that the trees of small sizes are listed before the trees of larger

sizes. However, no such an advantage is observed in the local order. Furthermore, let T, T ′ ∈ Tn;

it is possible to have T ≺A T ′ and, at the same time, T ′ ≺B T . Hence, in general, the natural

order and the local order list the trees in different orderings.

Tree Encoding

It is well understood that algorithms for generating trees directly (linked form) are complicated

and inefficient due to the need of changing the shape of tree [96]. It is indeed easier to manipulate

an alphabet sequence which represent a class of trees, and process alphabet sequences instead of

that class of trees as explained in [68]. In this way, trees are encoded as strings over a given

alphabet and then these strings (called codeword) are generated. By choosing a suitable codeword

to represent the trees, we can design an efficient generation algorithm for these codewords. Here,

we explain the primaries of tree encoding on a arbitrary class of trees of size n, named Tn.
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In general, an alphabet sequence can be defined as follows. Let S be the set of possible strings

on an alphabet set
∑

= {δ1, δ2, . . . , δr}, i.e., S = {s|s ∈
∑∗}, and Sn is the subset of S with all

strings of length n, i.e., Sn = {s|s ∈ S and |s| = n}. If string A belongs to Sn, then A is shown as

A = (a1, a2, . . . , an), such that each ai ∈
∑

.

For defining an alphabet sequence corresponding to a tree T ∈ Tn, the most common procedure

is as follows. First an alphabet set
∑

(letter or integer) is considered and each node of the tree is

labeled with an element of
∑

with regard to a specific rule (notice that we speak about labeling

only for notational convenience; it is naturally possible to distinguish internal node from external

ones without having any label), then the tree is traversed with one traversal procedure (preorder,

inorder, or postorder) and each node label is listed in this traversal. The resulting sequence is

the corresponding sequence of tree with length n. This function is called tree encoding and the

sequence generated by it is called codeword, or code sequence, or tree sequence, or simply encoding4.

Let
∑

and Sn be defined as above, then the encoding function is a bijection:

encoding : Tn → Sn.

The inverse function of encoding is called decoding, and by employing it, we can obtain a tree

T ∈ Tn corresponding to each code sequence. This function is also a bijection:

decoding : Sn → Tn.

A tree sequence A ∈ Sn will be called feasible if there is a tree T ∈ Tn such that A =

encoding(T ).

In fact, in the encoding or decoding processes, we established a one-to-one correspondence

between Tn trees and tree sequences. Once the correspondence is established, an algorithm can be

presented to generate all tree sequences. It should be noted that we can also define an ordering for

the set of code sequences Sn. Two such ordering are lexicographic ordering and minimal change

ordering [115, 87]. For two strings A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn), with A and

B ∈ Sn, the lexicographic ordering (lexicographical order) ≺lex or ≺` on Sn is defined for A and

B by the following relation:

A ≺lex B ⇔ ∃j (1 ≤ j ≤ n) such that a1 = b1, a2 = b2, . . . , aj−1 = bj−1 and aj < bj .

4Note that in general, not necessarily in all the tree encodings, all the nodes are labeled (e.g. one may omit the
root or the leaves for some trees), but there must exist a one-to-one correspondence between the codewords and the
trees, however, for sake of simplicity, we assume the length of the codeword is n.



36 CHAPTER 2. BACKGROUND

Ranking and Unranking Algorithms

Besides the generation algorithm for trees, ranking and unranking algorithms are also important

in the concept of tree generation [87, 111, 115]. Let us consider an arbitrary class of trees of size

n (n nodes) showed by Tn, the elements of this set can be listed based on any defined ordering

such as A-order or B-order. By having Tn and an ordering, the “position” of tree T in Tn is called

rank, the rank function determines the rank of T ; the inverse operation of ranking is unranking,

for a position r, the unrank function gives the tree T corresponding to this position.

Recall that, the rank function determines the rank of a given tree (i.e., the position of the tree)

with respect to the ordering ≺. In other words, the rank of a tree is the number of trees that

precede this tree in the order ≺. Therefore, the rank function will be a bijection;

rank : (Tn,≺)→ {1, 2, . . . , |Tn|},

and for a tree Ti ∈ Tn, we have:

rank(Ti) = i.

A rank function defines a total ordering on the elements of Tn, by the following relation:

∀ Ti, Tj ∈ Tn, Ti ≺ Tj ⇔ rank(Ti) < rank(Tj),

Conversely, there is a unique rank function associated with any total ordering defined on Tn.

If rank is a ranking function defined on Tn, then there is a unique unranking function associated

with the function rank. The function unrank is also a bijection:

unrank : {1, 2, . . . , |Tn|} → (Tn,≺),

and for any i ∈ {1, 2, . . . , |Tn|}, we have:

unrank(i) = Ti.

Unrank is the inverse function of the function rank, meaning that if T ∈ Tn:

rank(T ) = i ⇔ unrank(i) = T.
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Efficient ranking and unranking functions have several potential uses. We mention some of

them now. One application is the generation of a “random” tree from the set Tn. This can be

done easily by generating a random integer i ∈ {1, 2, . . . , |Tn|}, and then unranking on i. This

algorithm ensures that every element of Tn is chosen with equal probability of 1
|Tn| (assuming that

the random number generator being used is unbiased).

Another use of ranking and unranking is in storing trees in the computer. Instead of storing

a tree, which could be complicated, an alternative would be to simply store its rank, which of

course is just an integer. If the tree is needed at any time, then it can be recovered by using the

unranking algorithm. Also, for example, in traditional tree compression algorithm for encoding the

tree to code sequence and decoding the code sequence back to a tree, the ranking and unranking

algorithms can be used.

It is particularly impressive to note the variation of representations of trees that are possible,

such as the bit strings [82, 115], the weight sequences [77], the P-sequences [80], the `-sequences [80],

the Ballot sequences [86], the Z-sequences [115], and etc. In all cases, a one-to-one correspondence

is established between the set of trees and the set of certain integer or alphabet sequences; then

the set of trees is generated by generating the set of corresponding integer sequences.

Many papers have been published earlier in the literature for generating different classes of

trees. For example we can mention the generation of binary trees in [80, 104, 112], k-ary trees

in [87, 37, 59, 113, 58, 52, 69, 111], rooted trees in [71, 27, 108], trees with n nodes and m leaves

in [78], neuronal trees in [79, 103], and AVL trees in [66]. On the other hand, many papers have

thoroughly investigated basic combinatorial features of chemical trees [44, 46, 45, 36, 30, 65, 109].

2.4.2 Trees with Bounded Degree

Studying combinatorial properties of restricted graphs, or graphs with configurations, has many

applications in various fields such as machine learning and chemoinformatics. Studying combi-

natorial properties of restricted trees and outerplanar graphs (e.g. ordered trees with bounded

degree) can be used for many purposes including virtual exploration of chemical universe, recon-

struction of molecular structures from their signatures, and the inference of structures of chemical

compounds [117, 94, 40, 46, 44, 50, 14].

In Chapter 6, we study the generation, ranking and unranking of unlabeled ordered trees whose

nodes have maximum degree ∆, denoted by T∆ trees, we also use T∆
n to denote the class of T∆

trees with n nodes. Chemical trees are the most similar trees to T∆ trees. Chemical trees are the
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Figure 2.16: Left: C3H8 propane, middle and right: C4H10 butanes.

Figure 2.17: A T∆ tree with 12 nodes (for any ∆ ≥ 4).

graph representations of alkanes, or more precisely, the carbon atom skeleton of the molecules of

alkanes [44, 46, 45, 36, 30, 65].

The alkane molecular family is partitioned into classes of homologous molecules, that is molecules

with the same numbers of carbonium and hydrogen atoms; the nth class of alkane molecular family

is characterized by the formula CnH2n+2, n = 1, 2, ... [14] with the same numbers of carbonium

and hydrogen atoms. They are usually represented by indicating the carbonium atoms and their

links, omitting to represent hydrogen atoms [14], therefore, all the nodes would have the same

label; carbon (i.e., the tree is unlabeled), as shown in Figure 2.16 for n = 3 and n = 4. A chemical

tree is defined as a tree in which no node has degree greater than 4 [44, 46, 45, 36, 30, 65], chemical

trees are also considered to be unlabeled [45, 36, 30, 65]. Therefore, T∆ trees can be considered as

a generalization of chemical trees to unlabeled ordered trees whose nodes have maximum degree

∆ instead of 4.

Formally, a T∆ tree T is defined as a finite set of nodes such that T has a root r, and if T

has more than one node, r is connected to j ≤ ∆ subtrees T1, T2, . . . , Tj , each one of them is also

recursively a T∆ tree and by T∆
n we represent the class of T∆ trees with n nodes. An example of

a T∆ tree is shown in Figure 2.17.
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2.4.3 Related Works to Trees with Bounded Degree

More related to our work, in [50] a coding for chemical trees without the generation algorithm,

and in [14] the enumeration of chemical trees and in [40, 94] the enumeration of tree-like chemical

graphs have been presented. Hendrickson and Parks in [51] investigated the enumeration and the

generation of carbon skeletons which can have cycles and are not necessarily trees. The work most

related to our research is an algorithm for the generation of certain classes of trees such as chemical

trees in [15] with no ranking or unranking algorithm. In that paper, all chemical trees with n nodes

are generated from the complete set of chemical trees with n− 1 nodes, unfortunately, redundant

generations are also possible, hence the generation algorithm is not efficient.

The problem of enumeration of ordered trees (without any bounds on the degrees of the nodes)

with fixed number of leaves was studied in [114], however no generation algorithm were presented.

A generation algorithm for different ordered trees (with no bounds on the degrees of the nodes)

was presented in [115]. In [117], a generation algorithm with constant average delay time but with

no ranking or unranking algorithms was given for all unrooted trees of n nodes and a diameter at

least d such that the degree of each vertex with distance k from the center of the tree is bounded

by a given function. In [110] all unrooted unlabeled trees have been generated in constant average

time with no ranking or unranking algorithms. Nakano and Uno in [72] gave an algorithm to

generate all rooted unordered trees with exactly n nodes and diameter d in constant delay time.

Therefore, up to now, to our knowledge, neither efficient generation algorithm, nor any ranking or

unranking algorithms are known for either ‘chemical trees’ or ‘ordered trees with bounded degree’.

2.5 Summary

In this chapter, some basic concepts of binary search trees [33, 57, 107, 31, 90], external-memory

model [2] and cache-oblivious model [81, 39], external-memory/cache-oblivious data structures [13,

21, 23, 24, 29, 74], and the concept of exhaustive generation of trees and trees with bounded

degree [77, 96, 115] with previous works [50, 14, 40, 94, 114, 117, 110, 72] were presented.
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Chapter 3

Core Partitioning Scheme

We propose a general method to store the nodes of balanced search trees and to obtain provably

efficient external-memory/cache-oblivious data structures. The proposed scheme hinges on decom-

position of a balanced search tree into a set of disjoint cores: a core is a complete balanced binary

tree (of height h and with 2h − 1 nodes) that appears as a portion of the balanced tree. Our

method is not invasive, as it does not change the original algorithms. It just requires an efficient

post-processing after each update to maintain the cores. The nodes of a core are stored in a chunk

of consecutive memory cells. Hence, the core partition adds a memory layout for the nodes of

a balanced tree without interfering with the original algorithms for the tree. Simultaneously, we

achieve good memory allocation, space-efficient representation, and efficient time and I/O complex-

ities for both external-memory and cache-oblivious memory models compatible to modern search

data structures designed purposely for these models. The advantages and disadvantages of the

main result of this chapter has been presented in [3].

In this chapter, in Section 3.1, we introduce the basic idea of cores in binary search trees and its

preliminary definitions and properties, then we define the core partitioning scheme in Section 3.2.

After that, in Section 3.3 we discuss how to obtain efficient external-memory/cache-oblivious results

including linear space and O(logB n) I/Os and O(log n) comparisons for search operation. Finally,

as case studies, we show that the core partitioning scheme can be applied to weight-balanced trees

with the amortized update cost of O(logB n) I/Os in Section 3.4 and to AVL trees with more than

a polylogarithmic amortized cost of updates in Section 3.5.



42 CHAPTER 3. CORE PARTITIONING SCHEME

3.1 Core Partitioning Preliminaries

For a given binary search tree T of size n and height H, for a parameter h∗(T ) (that depends on

the type of balanced tree), our recursive scheme requires that the first h∗(T ) levels of nodes in the

given balanced tree are full, thus they form a core. It conceptually removes these nodes and applies

recursively this process to the resulting bottom subtrees. The recursion ends when the subtree

size is below a threshold r∗ to be specified, we call such a (possibly empty) terminal subtree, a

terminal-core. As a result, the given balanced tree is decomposed into cores, which are central to

our findings. We obtain a successful core partition when the cores found along any root-to-leaf

path of the balanced tree are of doubly exponentially decreasing size, with O(1) of them being of

size smaller than r∗.

For a given binary search tree T of size n, generally, h∗(T ) is a function of |T | or of h(T ) (or of

both) and r∗ is a function of n (the size of the entire tree) or of B (the block size), therefore, we

can instead denote them as h∗(|T |, h(T )) and r∗(n,B). In this thesis, for the sake of simplicity, we

denote them by h∗ and r∗, respectively.

We show that for any binary search tree with such a successful core partition, we obtain a

space-efficient external-memory/cache-oblivious layout to dynamically maintain the structure and

their keys. Using the external-memory/cache-oblivious models [2, 81], it takes Θ(n/B) blocks of

memory of size B to store the keys with extra O(n) bits space needed for the external pointers

to the cores and the terminal-cores. Note that representing the structure of a balanced binary

tree using O(n) bits is also another efficient bound independently achieved by the core partition-

ing scheme. Searching a key requires O(logB n) block transfers and O(log n) comparisons in the

external-memory and the cache-oblivious memory models, and the amortized cost of update varies

with the specifications of the balanced binary tree.

We present the core partitioning scheme as a general approach for making different classic

and well-studied balanced binary search trees efficiently applicable in external-memory/cache-

oblivious models and compatible to the modern search data structures, thus making our method

of independent interest. More precisely, similarly to our case studies, a core partitioning scheme

can be applied to other types of balanced binary search trees. For any type of balanced binary

search trees, if one can prove that they admit a successful core partition, all of the core partition

properties such as external-memory efficiency, cache-obliviousness, linear space for the keys and

O(n) bits for external pointers to the cores and the terminal-cores, and O(logB n) search cost

would be instantly achieved. More importantly, the original structure of that binary search tree
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will always be preserved. However, the update cost varies depending on the class of binary search

trees.

An example of the benefit of our technique is that, by preserving the original structure of

the given binary search tree, we can reuse the vast knowledge on balanced search trees to pro-

vide a repertoire of space-efficient external-memory and cache-oblivious data structures which are

competitive with modern search data structures that are purposely designed for these models

(e.g. [20, 21, 23, 24, 29]). This opens a number of possibilities that are known for modern search

data structures but unknown for several previous balanced trees:

• I/O efficiency and cache-obliviousness can be achieved for a tree of n nodes, as explained in

Section 3.3.

• Dynamic memory management can be easily handled by allocating a common contiguous

memory chunk for all the keys of each core, since each core contains a number of keys that

is a power of two (minus one). This alleviates memory fragmentation.

• The total space is O(n) ‘words’ to store the keys with an extra O(n) ‘bits’ for the external

pointers to the cores and the terminal-cores.

• Search can be performed in O(logB n) I/Os and O(log n) comparisons.

Thus, these ‘classic’ search data structures can be dynamized as efficiently as the ones specifically

designed for external memory and cache-oblivious memory models.

We emphasize that the above features just require the original algorithms described for the

given balanced tree and what we add is the maintenance of our structure for the nodes, and the

algorithmic challenge is how to maintain it efficiently. When performing the updates, we proceed

as usual, except that, we perform a post-processing: loosely speaking, we take the topmost core

that must ‘change’ because of the update, and we recompute the partition from it in a greedy

fashion.

When comparing our results to previous work, we observe that it is folklore to prove that cores

can be found in some data structures as mentioned in Chapter 2 but they have never been used

before in the literature to make classic data structures efficient in external-memory/cache-oblivious

models. We think that the contribution of our work is to show how to exploit the core partition

to turn some classic balanced search trees into competitive external-memory/cache-oblivious data

structures that have guaranteed bounds, using a general technique.
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We adopt the external-memory model [2] introduced in Chapter 2 to evaluate the I/O com-

plexity, where B is the block size of the data transfers between main and external memory, and

the I/O complexity accounts for the number of block transfers performed during the computation.

We also adopt the cache-oblivious model [81, 39] presented in Chapter 2 to evaluate the I/O com-

plexity, here called cache complexity. Recall that in this model, B is an unknown parameter for

the block size and a cache-oblivious algorithm is completely unaware of the value of B used by

the underlying system: this is a strength as it can thus show good performances on a multilevel

memory hierarchy without knowing the cache size or the size of the block transfer [81, 39].

3.2 Core Partitioning Scheme

For an arbitrary binary tree with n nodes, the level of a node is the number of the nodes in the

path to the root (the root is on level 1), we say that level i in T is full, if it contains all the 2i−1

nodes, we adopt the standard terminology [57], where the height of a node in a tree is the number

of nodes on the longest downward path from the node to a leaf, and the height of a tree is the

height of its root.

3.2.1 Core Partitioning

We say that a binary tree has a core of height h∗, if its topmost h∗ levels form a complete balanced

binary tree. We are interested in the families of binary search trees for which each subtree has a

core of guaranteed height. Later we will observe that for external-memory model, the nodes of a

core can be stored in blocks of size of multiples of B, and for cache-oblivious memory model they

can be stored in a chunk of consecutive memory cells (using van Emde Boas (vEB) layout [29, 81],

this structure performs search operation in Θ(logB n) I/O transfers, which is optimal within a

constant factor). The existence of such a core in balanced binary search trees is highly expected

as they are ‘balanced’, however, in Sections 3.4 and 3.5 we prove it for weight-balanced trees and

AVL trees.

Consider a binary search tree T with n nodes and any two given integer parameters h∗ ≥ 1 and

r∗ ≥ 1, such that each nonempty subtree of T of size larger than r∗ has a core of height h∗, where

as mentioned before, generally h∗ is a function of the subtree size or height and r∗ is a function

of the size of the entire tree or B (the block size). The recursive scheme consists of the following

steps.
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Figure 3.1: Decomposition of a binary search tree into its cores.

1. Conceptually remove the topmost core of height h∗ (made up of the topmost h∗ levels), which

is a complete binary tree of 2h
∗ − 1 nodes.

2. Recursively perform the core removal of the bottom subtrees thus obtained, where each of

the bottom subtrees can potentially have different height or size.

3. Stop the recursion for a possibly empty subtree (terminal-core) when its size is less than or

equal to r∗.

The case for h∗ = 1 and r∗ = 1 returns the trivial partition of the tree T into its individual

nodes and is of little interest. But other choices of h∗ and r∗ are more interesting to investigate: a

binary search tree T can be seen as conceptually decomposed into a collection of complete binary

trees, i.e., the cores, where each core is the top tree that is obtained from the recursive scheme

applied to its subtree, plus the subtrees of size less than or equal to r∗. Two cores are linked

together if and only if there is one node in one of the two cores that is linked to a node in the

other core, where one of the two nodes is the root of the core and the other is a leaf of the other

core. Figure 3.1 illustrate core partitioning on a small binary search tree.

In the following, for n > 1, when we consider any root-to-leaf path, we let C1, C2, . . . , Ct−1, Bt

be the subtrees thus traversed, here C1 is the core containing the root of the tree, Bt is the (possibly

empty) terminal-core of size less than or equal to r∗ at the end of the path, and C2, . . . , Ct−1 are

the cores traversed when going from C1 downward to Bt. We say that core Ci is at level i to

indicate that the path from the root of the tree to any descendant of Ci (nodes in Ci included)

must traverse C1, C2, . . . , Ci. We also denote by h∗i the height of Ci, namely, |Ci| = 2h
∗
i − 1.

Definition 3 (successful core partition) We say that our recursive scheme with parameters

h∗ and r∗ is a successful core partition if both conditions below are satisfied.
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1. There exists a positive constant γ < 1 such that for any sequence C1, C2, . . . , Ct−1, Bt tra-

versed by a root-to-leaf path, the cores are of doubly exponentially decreasing size in γ, namely,

there is an integer constant c ≥ 1 such that h∗i ≤ γh∗i−c (for c < i ≤ t− 1)1.

2. For any sequence C1, C2, . . . , Ct−1, Bt traversed along a root-to-leaf path, there are O(1) cores

Ci of small size |Ci| < r∗.

Our definition of cores resembles what happens in van Emde Boas trees [81, 29] and exponential

trees [10, 21] in that the cores found along a root-to-leaf path have doubly exponentially decreasing

sizes, except a constant number of them. In the rest, we will prove that for any given binary

tree who has a successful core partition (e.g. weight-balanced trees and AVL trees), the external-

memory/cache-oblivious properties and the space-efficiency hold.

Lemma 2 For any binary tree of size n, a successful core partition with parameters h∗ and r∗

correctly terminates producing terminal-cores at the bottom of the tree and O(n/r∗) cores, with

O
(

log log(n+1)
log(r∗+1)

)
= O(log log n) cores traversed in any root-to-leaf path.

Proof : Since h∗ ≥ 1, by definition of our recursive scheme, the algorithm eventually terminates

when the subtree size is ≤ r∗. Also, there are overall O(n/r∗) cores generated by the scheme

as we prove next. Note that, for any core C, its size (|C|) can be less than r∗ even though, its

subtree (the subtree rooted at the root of C) has size ≥ r∗ by our recursive scheme. We observe

that there exist at most n/r∗ + 1 cores C of size |C| ≥ r∗ since the sum of their sizes cannot

exceed n. Hence, to count the total number of the cores, let us conceptually remove every such

a core C of size |C| ≥ r∗. Now consider the topmost remaining cores (with size ≤ r∗), they are

obtained by disjoint subtrees of size ≥ r∗ + 1 (by our recursive scheme), therefore their number

can not exceed O(n/r∗) either. Now repeat the latter and conceptually remove them, again the

topmost remaining cores (with size ≤ r∗) have the same property (obtained by disjoint subtrees

of size ≥ r∗ + 1) and their number can not exceed O(n/r∗). Repeat this until all the cores are

removed. By Definition 3.2 this iteration can not be repeated more than O(1) times, otherwise, it

is equivalent to have more than O(1) cores with size ≤ r∗ in a root-to-leaf path. Therefore, the

total number of cores is O(n/r∗).

On the other hand, for t (the number of cores traversed in a root-to-leaf path), when using the

inequality of Definition 3.1, by induction, we can prove that h∗i ≤ γkh∗i−kc, where k is the largest

1We will show that γ = 2/3 and c = 2 for AVL trees, and γ = (log2/α(1−α) + 1) and c = 1 for weight-balanced

BB[α].
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integer such that i − kc ≥ 1. Also h∗i−kc ≤ log(n + 1) as |Ci−kc| = 2h
∗
i−kc − 1 ≤ n. Therefore,

h∗i ≤ γ
i−1
c log(n + 1). Let j be the largest i such that |Ci| ≥ r∗. Observe that h∗j ≥ log(r∗ + 1),

and that t = j + O(1) by Definition 3.2. Hence γ
j−1
c log(n + 1) ≥ log(r∗ + 1), which implies that

j = O(log(log(n+ 1)/ log(r∗ + 1))), and so does t. �

3.2.2 Memory Management

Given a balanced binary search tree with successful core partition, here we explain the basics of

its memory management. Let us assume r∗ = Θ(log n), store each core Ci using the implicit vEB

layout for its keys into an array without requiring internal pointers (note that, all levels are full in

a core). These elements are the keys in the nodes of C, so that it takes 1 + logB |C| block transfers

to implicitly traverse C during a search path [29]. We only keep the pointers from the nodes in

the last level of Ci to the roots of the “children” cores. We can also store the keys of each small

subtree (terminal-core) of size n0 ≤ r∗ in an array of n0 entries. The simplest way to store these

cores is as follows: the arrays for the cores and the terminal-cores are stored in two large segments

C and S of adjacent memory cells, respectively, in decreasing order of size one after the other. The

arrays for the cores are kept in C while the arrays for the terminal-cores are kept in S. Note that

the wasted space is minimal in this way, since we have to store, for each size, how many arrays are

of that size.

Fact 2 Consider a core C, the inorder traversal of all the nodes in C and traversing C during a

search path requires O(|C|/B) I/Os and 1 + logB |C| I/Os, respectively.

3.2.3 Maintaining the Core Partition

A natural question is how to handle updates, namely, insertions and deletions. Note that during

a sequence of insertions, various changes to some cores may occur; namely, a core may need to

increase its size because of the increase in its subtree size, or a core may need to change its content

because of involving in a rotation operation. Given a node z that is the root of the topmost core

that changes size or content, observe that locally rebuilding the core partition scheme on z and its

descendants does not change the global core partition obtained from the root of the whole tree.

We exploit this locality to update the core partition of a binary search tree and we define a new

reconstructing operation (called repartition on node u) by means of the following greedy algorithm

for a node u.
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Figure 3.2: Left: when w is higher than v, so u = w. Right: when w is lower than v, so u = v.

• repartition(u):

(1) rebuild the core C that contains u, and

(2) find v1, . . . , vk, the topmost descendants of u that are not in C, and locally recompute

the core partition for each node vi if it is needed (i = 1, . . . , k).

We proceed as usual by inserting a new node (typically a leaf) f and finding its ancestor v (if

it exists) that has to be restructured. We also find the topmost ancestor w (if it exists) of f such

that w is the root of a core that changes size because of the insertion of f . If neither v nor w exist,

return; otherwise, let u be the topmost between v and w (as shown in Figure 3.2), and perform

repartition(u).

As for deletions, if the physical deletion is actually made, we proceed as in the insertion,

locating the topmost node u and performing repartition(u). Another possibility is to avoid to

use repartition. We simply mark the searched key as logically deleted, and remove that mark if

the key is inserted again. We periodically rebuild the tree when the number of these marked keys

is a constant fraction of the total number of keys.

To analyze repartition(u), we need to focus on the following three main events, note that

these three events cover the definition of repartition(u), also for each event, its cost is discussed

based on the Fact 2.

• core resize: if w exists and u = w, this accounts for (1) and (2) in repartition(u), with a

cost proportional to the size of the full subtree rooted at the core’s root.

• core rescan: if v exists and u = v, this accounts for (1) in repartition(u), with a cost

proportional to the size of the core containing the critical node v.

• subtree rescan: if v exists and u = v, this accounts for (2) in repartition(u), with a cost

proportional to the size of the subtree rooted at the critical node v.
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Note that core resize only occurs when u = w (Figure 3.2: Left) while core rescan and subtree

rescan occur when u = v (Figure 3.2: Right). Also the case u = w = v is feasible and all the three

events happen in this case: however core resize is chosen as representative since its cost dominates

that of core rescan plus subtree rescan. If logical deletions are performed, there can be actually a

fourth event. It happens because of rebuilding the binary tree when the number of the deleted keys

is a constant fraction of the total number of keys, whose amortized complexity can be analyzed in

a traditional way, and thus it is not discussed here (or put into another way, the inserted keys pay

also for their possible deletion in the future).

Lemma 3 When repartition(u) is applied to a node u, let g be the size of the core containing u

(if core rescan occurs in case u = v) and s be either the size of the subtree rooted at u (if subtree

rescan occurs in case u = v) or the size of the subtree rooted at the core’s root (if core resize occurs

in case u = w). Then, the cost is O(g+ s) time and O((g+ s)/min{r∗, B}) block transfers, where

B is the block size.

Proof : Note that by definition, s equals to the number of the nodes which their entire subtrees

need to update, and g equals to the number of the nodes in the core containing u (if core rescan

occurs) which they may need to update too, besides those nodes, no other nodes of the tree changes

(because of the locality of the cores). Therefore, an O(g + s)-time algorithm can rebuild the core

partition. Moreover, the number of cores is O(s/r∗) by Lemma 2, and scanning them takes so

many block transfers plus O(g/B + s/B). �

3.3 Applications

Let T be a class of balanced binary search trees with successful core partition. Suppose that the

search time is O(log n) for T and update requires a ‘rebalancing’ operation when the balance factor

of T is violated. In this section, we analyze the core partitioning scheme for T. In particular, we

obtain space-efficient external-memory and cache-oblivious search trees.

3.3.1 External-Memory Search Trees

For the class T, set r∗ = max{log n,B} and obtain a B-tree-like data structure for external

memory [19]. More precisely, the complete balanced binary tree represented by each core Ci can

be stored in blocks of size of multiples of B, so that it takes O(1 + h∗i / logB) I/Os to traverse Ci

(e.g. see [106]). Moreover, the sibling subtrees of size at most r∗ for which the recursion stops,
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are packed together in a greedy fashion from left to right: namely, while the next subtree can be

stored in the current block, pack it in the block; otherwise, open a new block.

Theorem 1 Let T be a class of balanced binary search trees with successful core partition and

parameters h∗ = Θ(log |T |) and r∗ = B, where B is the block transfer size for the external memory,

we can store its nodes in blocks of size B, so that O(n/B) blocks are occupied and any search path

from the root to a node requires O(logB n) I/Os and O(log n) comparisons.

Proof : We observe that the number of occupied blocks is O(n/B) by Lemma 2 and since there

are O(log log n) different sizes of memory chunks, each of length a power of two, it is not difficult

to keep these n nodes in O(n) contiguous memory cells. This guarantees that O(n/B) blocks are

occupied for any given block size B. As for the search cost, O(log n) comparisons derive from the

standard analysis of T. Consider the cores C1, C2, . . . , Ct−1 traversed in a root-to-leaf path of the

tree, and let Bt be the (possibly empty) terminal-core of size at most r∗ at the end of the path. We

just need to follow external-memory references when moving from one core to another core or to

Bt. Thus the I/O complexity is O(1 +h∗i / logB) per core Ci plus one I/O to access Bt. This gives

a total I/O cost of O(t+
∑t−1
i=1 h

∗
i / logB) = O

(
log logB n+ (1/ logB)

∑t−1
i=1 h

∗
i

)
= O(logB n). �

3.3.2 Cache-Oblivious Search Trees

We fix r∗ = dlog ne and h∗ = dκ log |T |e (where κ ≤ 1 is a constant factor) and employ the following

memory layout of the nodes. However, for the sake of computation, we simply consider r∗ = log n

and h∗ = κ log |T |. We store the subtrees of size at most r∗ in a contiguous memory chunk. We

then store the complete binary tree inside each core Ci in a contiguous memory chunk using the

vEB layout [81, 29], so that it takes O(1 +h∗i / logB) block transfers to traverse Ci during a search

path. This suffices to obtain cache-oblivious bounds.

Theorem 2 Given a core partition for a tree T ∈ T of size n (big enough) and parameters h∗ =

κ log |T | and r∗ = log n, a memory layout can be used where subtrees and cores are each stored in

a contiguous memory chunk, each core using the vEB layout, so that O(n/B) blocks are occupied

and any search path from the root to a node requires O(logB n + log( log(B+1)
log(logn+1) )) block transfers

and O(log n) comparisons.

Proof : Since there are O(log log n) different sizes of memory chunks, each of length a power of

two, it is not difficult to keep these n nodes in O(n) contiguous memory cells. This guarantees

that O(n/B) blocks are occupied for any block size B. The bound of O(log n) comparisons derives
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from T’s properties. As for the cache complexity, consider the cores C1, C2, . . . , Ct−1 traversed in

a root-to-leaf path of T , and the terminal-core Bt of size at most r∗ = log n at the end of the

path. Let Ck be the smallest core among C1, C2, . . . , Ct−1 (i.e., largest k) such that |Ck| ≥ B and

1 ≤ k ≤ t− 1. Then, the cache complexity of traversing C1, C2, . . . , Ck is O(logB n) as we just saw

before. The extra cost is given by traversing Ck+1, . . . , Ct−1, Bt, namely O(t− k) block transfers.

Note that |Ck+1| < B by definition of k and, hence, |Tk+1| ≤ BO(1) by our choice of h∗. Using

Lemma 2 on Tk+1 with at most BO(1) nodes, we obtain t−k = O(log(log(|Tk+1|+1)/ log(r∗+1))) =

O(log log(B+1)
log(logn+1) ). �

The O(logB n) Block Transfer Solution for Search Operation

In Theorem 2, the log( log(B+1)
log(logn+1) ) term in the number of block transfers of search operation can be

avoided by keeping any core C and all its descendant nodes in a contiguous portion of memory2.

This may increase the space but we will see how to handle this problem.

Let ζ be a constant such that for every tree T ∈ T with size n, the number of the cores in every

root-to-leaf path is less than or equal to ζ log log n (by Lemma 2 we know that there is such a ζ).

As shown in Figure 3.3, let τ be a subtree with its core C and τ1, τ2, . . . , τk be the topmost subtrees

below C, here we define the level and the layer of a core. The level of C (denoted by lev(C)) is

the number of the cores above and the layer of C (denoted by lay(C)) is dζ log log ne − lev(C).

To ensure that C and all its descendant nodes fit in a contiguous portion of memory, we assign

sufficient space for all C’s subtrees in a recursive manner. Let us assume lay(C) = i and the total

number of the nodes in C’s subtree is m (C and all its descendants), we assign Θ(4im) space to C

and all its descendants. Therefore, since the maximum value of the layer of a core is dζ log log ne,

this will increase the total space for T to O(n4dζ log logne) = O(n log2ζ n) = O(npolylog(n)) words

(if each key occupies one word). We will later see how to decrease this space to O(n) words.

During a sequence of insertions, let C be a core who is being newly created or its memory space

needed to be reallocated (e.g. by a rebalancing operation above), let τ denote the subtree rooted at

the root of C, |τ | = m, let τ1, τ2, . . . , τk be the topmost subtrees below C (for 1 ≤ i ≤ k, |τi| = mi).

Let SP (τ) denote the space needed for τ in this memory reallocation. SP (τ) = 4lay(C)m space

to C and its descendant cores will be assigned as follows. We allocate a memory of size |C| to

the nodes inside core C, followed by the space needed for each τi (1 ≤ i ≤ k) in a recursive

manner (equals to
∑k
i=1 SP (τi)), followed by a large amount of remaining free space (equals to

2Keeping the nodes of a subtree in a contiguous portion of the memory is a general well known approach for
cache-oblivious algorithms [20, 21], however, technically, it differs from one paper to another and to ours.
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C

τ2

τk
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Figure 3.3: Subtree τ with its core C and τ1, τ2, . . . , τk the topmost subtrees below C.

4lay(C)m− |C| −
∑k
i=1 SP (τi)), we denote this free space by spare-space.

During a sequence of insertions, let space-overflow (SOF) denote the event that C and all its

descendant cores can not fit anymore in to the space allocated before, in this case we release the

whole space and reallocate a new space of size SP (τ) = 4lay(τ)|τ | from the spare-space of its parent

core3, then, if its parent core has a new SOF because its spare-space is not sufficient, we repeat

this procedure for its ancestor cores until we reach a core without SOF or we reach the root. In

general we have the following three main events resulting in a new memory allocation (memory

reallocation) of a core C and all its descendant cores (descendant nodes).

1. A rebalancing operation occurs at the root of C or above. The amortized cost of this event

depends on the properties of T (See our case studies in Sections 3.4 and 3.5 for more details).

2. A SOF happens. The total amortized cost of this event will be discussed in Theorem 4.

3. dζ log log ne increases by one. Note that the layer of every cores is defined based on dζ log log ne,

therefore, an increase in dζ log log ne requires a memory reallocation of the entire tree. This

event happens rarely during a sequence of n insertions (at most dζ log log ne times) and the

amortized cost will be computed in Theorem 5.

Fact 3 Let C be a core and τ be the subtree rooted at the root of C, in the memory allocation of τ ,

considering the extra space we allocate to guarantee the cache-obliviousness, at most 4lay(τ) words

are allocated for any ‘real’ node v ∈ V (τ) (v represents a key).

Proof : By the memory allocation explained above, when a memory reallocation is required we

assign 4lay(τ)|τ | words and |τ | is the number of the keys. Later, new keys can be also added, this

is equivalent to say that at any moment, for any key we have assigned at most 4lay(τ) words. �

3Note that |τ | has been increased since the last time we reallocated memory to τ .
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Lemma 4 Whenever a SOF occurs on τ , the size of τ is at least twice its size on the previ-

ous memory reallocation (caused by a SOF, or a rebalancing operation above, or a dζ log log ne

increase).

Proof : We use induction on the number of the nodes. Let us assume that on the tth insertion, a

new SOF occurs on the memory allocation of τ and on the tth0 insertion (t0 < t) the last memory

reallocation was performed on τ . Since τ changes by inserting new keys, we use τ(t) and τ(t0)

to denote it on the tth and tth0 insertions, respectively. Note that τ(t) and τ(t0) have the same

layer and the same core size |C|, but their overall sizes differ. Let ` = lay(τ(t)) = lay(τ(t0)),

m = |τ(t)|, and m0 = |τ(t0)|, and τ1(t), τ2(t), . . . τk(t) denote the subtrees below C on τ(t), and

τ1(t0), τ2(t0), . . . τk(t0) denote the subtrees below C on τ(t0). We will prove that m ≥ 2m0.

On the tth insertion when there is no more enough free space in τ(t)’s allocated memory, let

S be the total amount of space needed for C and τi(t)s 1 ≤ i ≤ k (since we have a SOF we know

that one τi(t) can not fit in the current spare-space). By induction hypothesis, any time a τi

has a SOF, its size at least doubles since the last time, this guarantees that its size grows faster

than an exponential function of power of 2. Therefore, S is strictly greater than half of the entire

space previously allocated to τ (because of SOF and that exponential function property). Hence,

S > 1
2SP (τ(t0)) = 1

24`m0 = 4`−12m0.

On the other hand, in τ ’s current memory allocation, for every node (representing a key) in

C we have exactly one word and for every node in τi(t)s (1 ≤ i ≤ k) we occupy no more than

4lay(τi) = 4`−1 words (by Fact 3 and the fact that τi is one level below τ so lay(τi) ≤ ` − 1).

Therefore, the total number of nodes in τ(t) is greater than S
4`−1 > 2m0. Hence, the proof is

complete. �

Theorem 3 On this memory reallocation, if C is a core and τ is a subtree rooted at the root of C

with |τ | = m, the search operation costs O(logBm) I/Os in the cache-oblivious model.

Proof : By definition, the space allocated to τ is O(m polylogm), also every core and its descendant

cores are packed in a contiguous portion of memory, therefore, the search cost in the cache-oblivious

model is:

O(logB(m polylogm)) = O(logBm+ logB(polylogm)) = O(logBm) I/Os. �

The Linear Space Solution

Here, we study the space and we prove that in this new memory allocation, the space needed to

store the keys can be reduced to Θ(n) words (if each key occupies one word), using an extra O(n)
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‘bits’ space for the external pointers to the cores and the terminal-cores.

Lemma 5 The space needed to store the keys in this scheme can be reduced to Θ(n) words.

Proof : To decrease the space to Θ(n), we use buckets of size Θ(log2ζ n) as explained by Bender

et al. in [21]. Then we store the buckets separately from the cores of the remaining tree. Each

bucket is implemented as O(1) layers of records of size Θ(log n) (e.g. in the range [log n, 2 log n) ).

These records are very small comparing to n, so we have a variety of possibilities to implement

them, we can implement them as B-trees same as [21] or we can even implement them with

sorted arrays in a contiguous portion of memory, thus each record can be sequentially scanned

in Θ(log n)/B) = Θ(logB n) I/Os, hence, O(1) × Θ(logB n) = O(logB n) I/Os to search a bucket,

therefore, it will not change the search complexity.

The space to store these buckets will be Θ( n
log2ζ n

× log2ζ n) = Θ(n). On the other hand, this

bucketing reduces the number of the nodes in the main tree to n = Θ( n
log2ζ n

) which implies that

the space needed for the core partition reduces to:

Θ(n log2ζ n) = Θ(
n

log2ζ n
× log(

n

log2ζ n
)2ζ) = Θ(n).

�

Lemma 6 The total space needed for all the pointers to the cores and the terminal-cores is O(n)

bits.

Proof : As explained in Section 3.2.2, we only keep the pointers from the nodes in the last level of

each core to the roots of its “children” cores, therefore, for every core and terminal-core we have

one pointer. On the other hand, by using the above buckets, clearly the number of terminal-cores

is O( n
log2ζ n

) and as proved in Lemma 2, the total number of the cores is O(n/r∗) = O( n
logn ), if

r∗ = Ω(log n), therefore, the total space needed for the pointers (pointing to the cores and the

terminal-cores) will be upper bounded by: O( n
log2ζ n

+ n
logn )× log n = O(n) bits. �

Theorem 4 The total amortized cost of SOF is Θ(log log n).

Proof : Since the space is now Θ(n), for any core C and subtree τ rooted at the root of C, when

a memory reallocation occurs on τ , the cost of the memory reallocation is Θ(|τ |) operations and

Θ(|τ |/B) I/Os. On the other hand, by Lemma 4, when a new SOF occurs on τ , between the last

memory allocation of τ and this SOF, we have Θ(|τ |) fresh insertions. Therefore, by assigning



3.4. CASE STUDY 1: WEIGHT-BALANCED TREES 55

Θ(log log n) credits to every newly inserted node (key), these credits can cover the total cost of

future SOF events. Hence, the total amortized cost of SOF is Θ(log log n). �

Theorem 5 As discussed before, an increase of dζ log log ne results to a memory reallocation of

the entire tree. The total amortized cost of the memory reallocations of this event is O(log log n).

Proof : dζ log log ne increases at most ζ log log n times during a sequence of n insertions, clearly the

amortized cost is upper bounded by nζ log logn
n = O(log log n). �

If one is interested to perform range queries using core partitioning scheme, the above bucketing

also allows us to apply some range query techniques inside our buckets. For example, we can apply

the technique Bender et al. used in [23, Section 3. for bottom levels of ordered B-trees] inside our

buckets and perform search queries in O(logB n+ k/B) block transfers in the worst case (k is the

number of reported keys) with O(logB n+ log2 n
B ) I/Os amortized update cost.

3.4 Case Study 1: Weight-Balanced Trees

In this section and in the next section, as case studies we apply core partitioning scheme on weight-

balanced trees and height balanced trees (AVL trees), respectively. As mentioned before, if one can

prove that a balanced binary tree has a successful core partition, then the linear space, O(n) bits

space for the pointers to the cores and the terminal-cores, efficient external-memory, and efficient

cache-obliviousness will be immediately obtained. However, since every balanced binary tree has

a different approach for rebalancing, the cost of update would differ, therefore, for both of our

case studies, not only we prove that they have a successful core partition, but also, we compute

their amortized cost of update. Here, we show that weight-balanced trees have a successful core

partition, then we show that the amortized cost of update is O(log n) and O(logB n) I/Os which

is efficient.

Recall from the definition of weight-balanced trees given in Chapter 2, for a binary tree, the

weight is the number of null nodes (null pointers), which is equivalently the number of nodes (i.e.,

the size) plus one. The weight of a node u is denoted by w(u) and its balance β(u) = w(u.l)/w(u)

is the ratio between the weight of u’s left child and u’s weight (note that w(null) = 1 by definition

of weight), u.l and u.r denote the left child and the right child of u, respectively.

For a parameter α, where 0 < α ≤ 1, a weight-balanced tree (a.k.a. BB[α]-tree) is a binary

search tree where each node u satisfies α ≤ β(u) ≤ 1−α, which is equivalent to say that α ·w(u) ≤

w(u.l), w(u.l) ≤ (1− α) · w(u) for each node u and its two children u.l and u.r.
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For example, the tree shown in Figure 2.10 is a BB[α]-tree for α = 2/7 while it is not for

α = 1/3.

As observed by the inventors Nievergelt and Reingold [73], a node of weight 3 should have one

child of weight 1, so they assume that 0 < α ≤ 1/3. Moreover, Blum and Mehlhorn [28] show that

rebalancing a BB[α]-tree with rotations can be done when 2/11 < α ≤ 1 −
√

2/2 = 0.2928 . . . .

When α is strictly inside this interval, they show that there exists δ > 0 depending on α such

that an unbalanced node u has balance factor (1 + δ)α ≤ β(u) ≤ 1 − (1 + δ)α after its balance

is restored using rotations. Overmars [76, Sect.4.2] shows that rebalancing can be also done with

partial rebuilding, and this only requires 0 < α < 1/2 and obtains a value of β(u) close to 1/2

after restoring the balance of u. In both cases, the two properties are important in the amortized

complexity for the following reason, as proved in [28, 76].

Lemma 7 For weight-balanced trees, given a node u, the number of updates between two consec-

utive rebalancing operations on u is Ω(w(u)) [28, 76].

3.4.1 Cores in Weight-Balanced Trees

The height of a BB[α]-tree of size n is H ≤ log1/(1−α)(n + 1). Indeed, its root r has weight

w(r) = n+ 1 and the deepest leaf f has weight w(f) = 2. Along the path from r to f , the weight

of each node is at most 1−α times the weight of its parent. Hence, by a simple induction, we have

that 2 = w(f) ≤ w(r) · (1 − α)H−1 = (n + 1) · (1 − α)H−1. Thus, H ≤ log1/(1−α)(n + 1)/2 + 1 <

log1/(1−α)(n + 1) as 1/(1 − α) < 2. For a simplified notation, we ignore roundings when using α

and logarithms. We use the following facts to obtain cores (Section 3.2.1).

Fact 4 For a BB[α]-tree of n nodes, the nodes on its topmost log1/α(n+1) levels form a complete

balanced binary tree.

Proof : Consider a shortest path from the root r of a BB[α]-tree of n nodes to a null (i.e., external)

node x. Let ` be the number of nodes (including x itself) along this path: since w(r) = n+ 1 and

w(x) = 1, we obtain that x should have weight at least (n + 1)α`−1 by a simple induction on `.

Hence (n+ 1)α`−1 ≤ w(x) = 1. Thus the topmost `− 1 ≥ log1/α(n+ 1) levels do not contain null

nodes, and form a complete balanced binary tree. �

Remark 1 As for the core partition and its dynamic maintenance, we set h∗ = log2/α(|T | + 1)

and observe that it forms a core by Fact 4 as h∗ ≤ log1/α(|T |+ 1) (Our choice of h∗ will be clear

when discussing the amortized analysis in Section 3.4.2). We also guarantee that h∗ ≥ 1, which
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means |T | ≥ 2/α− 1, by fixing r∗ ≥ 2/α− 1. In this way, when |T | ≥ r∗, a core of height h∗ surely

exists by Fact 4, and when |T | < r∗ we stop the recursion on the subtree T (see Section 3.2.1).

The term f(α) = 2/α − 1 is a decreasing function for increasing α, where 0 < α < 1/2, and it

tends to +∞ for α→ 0. If we restrict to the range 2/11 < α < 1/2, we cover the interesting cases

in the literature, and we have that 10 > f(α) > 3. Hence, it is always safe to choose r∗ ≥ 10 for

2/11 < α < 1/2.

We now show that we obtain a core partition (Definition 3) using the scheme described in

Section 3.2.

Lemma 8 For any BB[α]-tree of size n with 2/11 < α < 1/2, the scheme of Section 3.2 with

h∗ = log2/α(|T |+1) and r∗ ≥ 10 successfully creates a core partition with γ = (log2/α(1−α)+1) < 1

and c = 1, where a core Ci at level i has size |Ci| < (n+ 1)
γi

log 2/α .

Proof : We prove that the conditions of Definition 3 are met, using the following notation. Consider

a tree T of size n and its topmost core C of height h∗. Also, consider a node u in T \C such that

u’s parent is in C. Let Tu denote the subtree rooted at u and Cu be the topmost core of Tu, where

we denote the height of Cu by h∗u (Note that C and Cu are consecutive in any path from the root

to u or any of its descendants). We have that αh
∗
(n + 1) ≤ |Tu| + 1 ≤ (1 − α)h

∗
(n + 1) for the

balance property of BB[α]-trees.

The condition of Definition 3.1 is met as h∗u < γh∗ with γ = (log2/α(1 − α) + 1) < 1. Indeed,

since h∗u = log2/α(|Tu| + 1) ≤ log2/α((1 − α)h
∗
(n + 1)), we can rewrite the latter inequality

as h∗u ≤ h∗ log2/α(1 − α) + log2/α(n + 1). Replacing the last addend by h∗, we obtain h∗u ≤

h∗(log2/α(1− α) + 1), where γ = (log2/α(1− α) + 1) < 1 as 1− α < 1 < 2/α.

The condition of Definition 3.2 holds as, for any sequence of cores C1, C2, . . . , Ct−1, Bt traversed

by a root-to-leaf path, there are O(1) cores Ci’s of size |Ci| < r∗. To see why, we first observe that

|Ci| ≤ |Ci−1| for 2 ≤ i ≤ t−1 by construction. Thus, let us consider Ct−1. If its size is greater than

or equal to r∗, we have nothing else to prove. Otherwise, observe that the subtree Tt−1 of which

Ct−1 is the topmost core, has size |Tt−1| ≥ r∗+1 by the recursive scheme, and the height of Ct−1 is

h∗t−1 = log2/α(|Tt−1|+ 1) ≥ log2/α(r∗+ 2). Hence, (r∗+ 2)1/ log(2/α)− 1 ≤ 2h
∗
t−1 − 1 = |Ct−1| < r∗.

Since h∗t−2 > γ−1 · h∗t−1 by Definition 3.1, an immediate induction on j = 1, 2, . . . gives that

|Ct−1−j | ≥ |Ct−1|γ
−j ≥ ((r∗ + 2)1/ log(2/α) − 1)γ

−j
by transitivity.

Finding the largest j such that ((r∗+2)1/ log(2/α)−1)γ
−j
< r∗ gives an upper bound on the maxi-

mum number of cores having size < r∗ in C1, C2, . . . , Ct−1, Bt. From ((r∗+2)1/ log(2/α)−1)γ
−j
< r∗,
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we have γ−j < log((r∗+2)1/ log(2/α)−1) r
∗ = O(log(2/α)), therefore, j = O(log1/γ log(2/α)) = O(1),

thus proving the condition. Finally, the claim on the size of the core at level i easily follows from

the above discussion. �

Thereby, from Section 3.3, we have:

Corollary 1 In the external-memory model, given a core partition for a BB[α]-tree of size n with

2/11 < α < 1/2 and parameters h∗ = log2/α(|T | + 1) and r∗ = B, where B ≥ 10 is the block

transfer size for the external memory, we can store its nodes in blocks of size B using the approach

explained in Section 3.3.1, so that O(n/B) blocks are occupied and any search path from the root

to a node requires O(logB n) I/Os and O(log n) comparisons.

Corollary 2 In the cache-oblivious memory model, given a core partition for a BB[α]-tree of size

n ≥ 1024 with 2/11 < α < 1/2 and parameters h∗ = log2/α(|T | + 1) and r∗ = log n, we can use

the memory layout explained in Section 3.3.2, so that O(n/B) blocks are occupied and any search

path from the root to a node requires O(logB n) block transfers and O(log n) comparisons .

3.4.2 Amortized Analysis for Repartitioning

We show that the size of a core is smaller than the size of its bottom subtrees. This is important

to amortize the cost of core rescanevents.

Fact 5 Consider a core C in a BB[α]-tree T with 2/11 < α < 1/2 and parameters h∗ =

log2/α(|T | + 1) and r∗ ≥ 10. Let z be a node in T \ C such that z’s parent is in C, and let

Tz be the subtree rooted in z. Then, |C| ≤ |Tz|.

Proof : Let n be the size of T , which is rooted at the topmost node of the core C. Recalling

that |C| = 2h
∗ − 1, it suffices to prove that 2h

∗ ≤ |Tz| + 1. Note that z is h∗ levels below

the root of T . Hence, we have that w(z) = |Tz| + 1 ≥ αh
∗
(n + 1) by definition of balance in

BB[α] trees. We show that 2h
∗ ≤ αh

∗
(n + 1) to prove our claim. By taking the logarithms,

we obtain h∗ ≤ h∗ logα + log(n + 1), namely, h∗(1 − logα) ≤ log(n + 1). By replacing h∗ with

log2/α(n+ 1), we obtain the inequality log2/α(n+ 1) · (1− logα) ≤ log(n+ 1), which is true since

log 2/α = 1− logα. �

Now we show how to amortize the cost of repartition(u) stated in Lemma 3, and focus on

the three main events listed in Section 3.2.3. Let Tu be the subtree rooted at u, Cu be the core

containing u, and T be the subtree having Cu as topmost core (so Tu ⊆ T ).
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• core resize: Let n0 be the size of T when the last core resize occurred for Cu and n1 be the

size of T for the current core resize of Cu. Since the size changed, the height changed by 1

(for every increase or decrease of 1 in the height, we have one core resize), so | log2/α(n0 +

1)− log2/α(n1 +1)| ≥ 1. This implies that |n0−n1| = Ω(|T |), and thus so many fresh update

operations below u can cover the cost.

• core rescan: By Fact 5, the size of Cu is upper bounded by that of a subtree of Tu, and so

|Cu| ≤ |Tu|, which means that this cost is absorbed by subtree rescan.

• subtree rescan: By Lemma 7, we can charge the O(|Tu|) cost to Ω(w(u)) fresh update opera-

tions below u as w(u) = |Tu|+ 1.

From the discussion above, for each update operation, we can charge O(log n) credits for the

running time and O((log n)/min{r∗, B}) credits for the cache complexity, with O(1) credits (re-

spectively, O(1/min{r∗, B}) credits) to be used for each ancestor as illustrated above. Therefore,

we have the following result.

Theorem 6 For any BB[α]-tree of size n with 2/11 < α < 1/2, its core partition with parameters

h∗ = log2/α(|T |+1) and r∗ ≥ 10 can be dynamically maintained with an amortized cost of O(log n)

time and O((log n)/min{r∗, B}) block transfers per update operation.

3.5 Case Study 2: AVL Trees

Height-balanced binary trees have the property that, for every node, the heights of the left and

right subtrees differ at most by an integer value ∆ [38, 67]. An AVL tree is the first data structure

of this kind to be invented. In this section, as the second case study, we prove that AVL trees (as

the most well known height-balanced binary trees) have also a successful core partition, with the

same bounds in external-memory/cache-oblivious models, however, maintaining the core partition

for AVL trees is more expensive as we show at the end of this section.

3.5.1 Cores in AVL Trees

We exploit the following folklore to define the cores in AVL trees.

Fact 6 Consider an AVL tree of height H. Then, the nodes on its topmost dH/2e levels form a

complete balanced binary tree.
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Proof : By induction on H. For H = 1 and H = 2, the property trivially holds as there is a single

node in the topmost dH/2e levels. For the inductive step on H ≥ 3, we assume that the property

is true for any AVL tree of height < H, and we then use this assumption to prove the statement

for height H. We consider two cases for the given AVL tree T .

Let H be even. Consider the left and right subtrees of T . Their height is at least H − 2, thus

by the induction hypothesis, they are complete at least in the topmost d(H − 2)/2e = H/2 − 1

levels. Thus, considering the additional level of the root of T , we have that T is complete at least

in the topmost H/2 = dH/2e levels.

Let now H be odd. The height of the left and right subtrees of T is at least H − 2, and by the

induction hypothesis, they are complete at least in the topmost d(H − 2)/2e = (H − 1)/2 levels.

Thus, considering the additional level of the root of T , we have that T is complete at least in the

topmost (H − 1)/2 + 1 = (H + 1)/2 = dH/2e levels. �

We fix h∗ = dlog
√
|T |e, where as before, |T | is the size of the AVL (sub)tree, and thus the top

core has size 2h
∗ − 1 < 2

√
n. We also fix r∗ = 1 for the sake of discussion, but other choices can

be done. Note that the choice of h∗ = dlog
√
|T |e guarantees that the top tree is a core.

Fact 7 For any AVL tree of height H with n > 1 nodes, the topmost dlog
√
ne levels of nodes form

a complete balanced binary tree.

Proof : The claim immediately follows from Fact 6: we have dlog
√
ne = d 1

2 log ne ≤ d1
2 log(n+1)e ≤

dH/2e as H ≥ log(n+ 1). �

Resembling what happens in Section 3.4, we want to prove that the recursive scheme provides

a core partition as stated in Definition 3. However, here we fix c = 2, meaning that the cores are

exponentially decreasing by taking every other core in the root-to-leaf path, as shown next. (This

is not true for c = 1, as it can be checked when the left subtree of the root is a complete balanced

binary tree of height H − 1 and the right subtree is a Fibonacci tree of height H − 2.)

Lemma 9 For any AVL tree with n > 1 node, the recursive scheme of Section 3.2 with h∗ =

dlog
√
|T |e and r∗ ≥ 1 successfully creates a core partition with γ = 2/3 and c = 2, where a core

Ci at level i has size |Ci| < (2
√
n)

( 2
3 )b(i−1)/2c

.

The proof of Lemma 9 relies on the following properties of cores in the AVL tree (see Defini-

tion 3.1).
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Lemma 10 Let C1, C2, . . . , Ct−1 be the cores traversed in any root-to-leaf path for t > 1. Then,

the following properties hold:

• |C2| ≤ |C1| < 2
√
n;

• |Ci| < |Ci−2|
2
3 for |Ci−2| > 1 and 3 ≤ i ≤ t− 1.

Proof : We know that |C1| < 2
√
n by our choice of h∗, for the topmost core, h∗ = dlog

√
ne

when n > 1; if C2 exists, it cannot have more descendants than C1, so it is |C2| ≤ |C1| by

construction. In general, note that |Ci| ≤ |Ci−1| for 3 ≤ i ≤ t − 1 where 3 ≤ i ≤ t − 1:

Let Ti denote the subtree rooted at the topmost node of Ci. As |Ti| < |Ti−1|, it follows that

|Ci| = 2dlog
√
|Ti|e − 1 ≤ 2dlog

√
|Ti−1|e − 1 = |Ci−1|.

We now prove that |Ci| < |Ci−2|
2
3 for |Ci−2| > 1 and 3 ≤ i ≤ t − 1. Let h∗i = dlog

√
|Ti|e

denote the height of core Ci, and Hi denote the height of subtree Ti. First suppose that

h∗i−1 ≥ h∗i + 1 (3.1)

holds. (We will show later how to deal when (3.1) does not hold.) Also, observe that our choice of

h∗i and (the proof of) Fact 7 imply that

Hi ≥ 2h∗i − 1 (3.2)

Since Hi−2 = h∗i−2 + h∗i−1 +Hi, we can use (3.1) and (3.2) to bound the height of Ti−2 as

Hi−2 ≥ h∗i−2 + 3h∗i (3.3)

We are ready to prove that |Ci| < |Ci−2|
2
3 for |Ci−2| > 1. By contradiction, suppose |Ci| ≥ |Ci−2|

2
3 .

This is equivalent to say that 2dlog
√
|Ti|e − 1 ≥ (2dlog

√
|Ti−2|e − 1)

2
3 . Since (x − 1)

2
3 ≥ x

2
3 − 1 for

x ≥ 1, we obtain that 2dlog
√
|Ti|e ≥ (2dlog

√
|Ti−2|e)

2
3 and so dlog

√
|Ti|e ≥ 2

3 × dlog
√
|Ti−2|e. That

is,

h∗i ≥
2

3
× dlog

√
|Ti−2|e (3.4)

Recalling from [57, p.460] that Hi−2 ≤ 1.4404 × log(|Ti−2| + 2) − 0.3277, we obtain from (3.3)

and (3.4) that 1.4404× log(|Ti−2|+2)−0.3277 ≥ h∗i−2 +3h∗i ≥ dlog
√
|Ti−2|e+2×dlog

√
|Ti−2|e ≥

3×log
√
|Ti−2|. But we have a contradiction for |Ti−2| ≥ 8, since the inequality 1.4404×log(|Ti−2|+

2)−0.3277 ≥ 3
2 × log |Ti−2| does not hold in this cases. Hence, we can conclude that |Ci| < |Ci−2|

2
3
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for |Ti−2| ≥ 8. As for |Ti−2| < 8, there are a small finite number of cases to examine, so we directly

prove for them that |Ci| < |Ci−2|
2
3 when |Ci−2| > 1: we inspect them case by case as at the end

of this proof.

It remains to discuss when the inequality in (3.1) does not hold (whereas h∗i−1 ≥ h∗i is always

true). Its purpose is to guarantee that (3.3) holds. However, since Hi−2 = h∗i−2 +Hi−1, we observe

that Hi−1 ≥ 3h∗i also implies that (3.3) holds, and so we are done. Consequently, it suffices to

discuss the case when h∗i−1 = h∗i and Hi−1 ≤ 3h∗i − 1. In the following, we use h as the shorthand

for both h∗i and h∗i−1, since they are equal. Also, observe that Hi−1 = h∗i−1 +Hi = h+Hi ≥ 3h−1

by (3.2), thus implying that Hi−1 = 3h − 1. This gives a precise scenario: both Ci−1 and Ci are

of height h, the height of Ti−1 is 3h − 1, and the height of Ti is 2h − 1 (so it extends by further

h− 1 levels below Ci).

We prove that it not possible to have h > 3 in this scenario. For the given h = dlog
√
xe,

we observe by a simple induction that the feasible range of values for x are 22(h−1) < x ≤ 22h.

Hence, 22(h−1) < |Ti| < |Ti−1| ≤ 22h. Also, the latter two trees cannot have less nodes than the

Fibonacci trees of their same height, |Ti| ≥ F2h+1− 1 and |Ti−1| ≥ F3h+1− 1, formulated in terms

of Fibonacci numbers (recalling that the Fibonacci tree of height k has Fk+2−1 nodes [57, p.460]).

We are now ready to state a necessary condition that excludes the cases for h > 3. The

quantity 22h − (F3h+1 − 1) represents an upper bound on the number of nodes that can be added

to |Ti−1| without increasing its height 3h − 1. Then Ti cannot contain too many nodes, namely,

|Ti| ≤ (F2h+1 − 1) + [22h − (F3h+1 − 1)]: starting from the minimal number F2h+1 − 1 of nodes for

its height 2h− 1, we cannot add more than 22h − (F3h+1 − 1) nodes since Ti is a subtree of Ti−1.

Also, 22(h−1) < |Ti| as previously discussed. Putting all together, we obtain that 22(h−1) < |Ti| ≤

(F2h+1 − 1) + 22h − (F3h+1 − 1), producing the necessary condition 22(h−1) < (F2h+1 − 1) + 22h −

(F3h+1 − 1), which can be equivalently stated as

3

4
× 4h − F3h+1 + F2h+1 > 0 (3.5)

Note that the condition in (3.5) is satisfied only when h ≤ 3. There are just a small finite number

of cases for h ≤ 3, so we directly prove for them that |Ci| < |Ci−2|
2
3 for |Ci−2| > 1 as follows. Here

by direct case inspection that |Ci| < |Ci−2|
2
3 when |Ci−2| > 1 and |Ti−2| < 8. Note that |Ci−2|

is a power of two minus 1, so the latter conditions and the choice of h∗i−2 imply that |Ci−2| = 3.

Given this, the only feasible choices are |Ti−2| ∈ [5 . . . 7], and thus we have a very small number

of feasible situations. Indeed, |Ti−1| ≤ |Ti−2| − |Ci−2| ≤ 4. Hence, h∗i−1 = 1 and |Ci−1| = 1. This
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immediately implies that |Ci| ≤ |Ci−1| = 1 < 3
2
3 = |Ci−2|

2
3 , thus proving the first claim.

We also prove here by direct case inspection for 1 ≤ h ≤ 3 that |Ci| < |Ci−2|
2
3 for |Ci−2| > 1

when h = h∗i−1 = h∗i and Hi−1 = 3h − 1. Recall that |Ci−2| > 1 is equivalent to |Ci−2| ≥ 3 and

so h∗i−2 ≥ 2, thus proving the second claim. Case h = 1. Simply put, |Ci| = 1 < 3
2
3 ≤ |Ci−2|

2
3 .

Case h = 2. Since Hi−2 = h∗i−2 + Hi−1 = h∗i−2 + 3h − 1 ≥ 7, the subtree Ti−2 cannot have

less nodes than those (33) of the Fibonacci tree of height 7, so |Ti−2| ≥ 33. This implies that

|Ci−2| = 2dlog
√
|Ti−2|e−1 ≥ 2dlog

√
33e−1 = 7. Thus, |Ci| = 2h−1 = 3 < 7

2
3 ≤ |Ci−2|

2
3 . Case h = 3.

We first prove that h∗i−2 ≥ 4. Since h∗i−2 ≥ h∗i−1 = h, we have Hi−2 = h∗i−2 + 3h−1 ≥ 4h−1 = 11.

The subtree Ti−2 cannot have less nodes than those (232) of the Fibonacci tree of height 11, so

|Ti−2| ≥ 232 and h∗i−2 = dlog
√
|Ti−2|e ≥ dlog

√
232e = 4. Next, we give a better bound on the

height of Ti−2 as Hi−2 = h∗i−2 + 3h− 1 ≥ 12. The Fibonacci tree of height 12 has 376 nodes, and

so |Ci−2| = 2dlog
√
|Ti−2|e − 1 ≥ 2dlog

√
376e − 1 = 31. Thus, |Ci| = 2h − 1 = 7 < 31

2
3 ≤ |Ci−2|

2
3 . �

We also need to prove that there are few small cores (see Definition 3.2). This follows the same

path as we did at the end of the proof of Lemma 8, thus showing that AVL admits a core partition

with γ = 2/3 and c = 2. Thus, let us consider Ct−1 when its size is < r∗, and observe that the

subtree Tt−1 of which Ct−1 is the topmost core, has size |Tt−1| ≥ r∗ + 1, and the height of Ct−1 is

h∗t−1 = d(1/2) log2 |Tt−1|e ≥ (1/2) log2(r∗ + 1). Hence,
√
r∗ + 1− 1 ≤ |Ct−1| < r∗. An immediate

induction on j = 1, 2, . . . gives that |Ct−1−2j | ≥ |Ct−1|(3/2)j ≥ (
√
r∗ + 1− 1)(3/2)j by transitivity.

Finding the largest j such that (
√
r∗ + 1−1)(3/2)j < r∗ gives an upper bound on the maximum

number of cores having size < r∗ in C1, C2, . . . , Ct−1, Bt. From (
√
r∗ + 1 − 1)(3/2)j < r∗, we

have (3/2)j < log(
√
r∗+1−1) r

∗, therefore, j = O(log3/2 log(
√
r∗+1−1) r

∗ = O(1), thus proving the

condition in Definition 3.2. Therefore, the external-memory model and cache-oblivious memory

model of AVL trees as explained in Section 3.3 are available with the same bounds. In the following,

we study its amortized cost of update.

3.5.2 Amortized Analysis for Repartitioning

We prove that an amortized (poly)logarithmic cost cannot be achieved for maintaining a core

partition of AVL trees, contrarily to the case of weight-balanced trees as discussed in Section 3.4.2.

For any n ≥ 2, we can produce a sequence of n insertions into an initially empty AVL tree with

Ω(n) rotations. The cost of these operations is dominated by the repartition operations. In

particular, the total cost of the corresponding subtree rescans is a lower bound for the amortized

cost of the sequence of n insertions. Thus we prove that the latter cost alone prevents from
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obtaining a poly-logarithmic amortized cost.

Lemma 11 Given any AVL tree of height h, its height can be increased by one with at most Fh+2

insertions

Proof : By induction on h, the base case is a unary node of height 1, and thus its height becomes

2 by a F1 = 1 insertion that replaces one of the missing child by a leaf. For the inductive case,

suppose that the height k < h of an AVL tree can be increased with at most Fk+2 insertions. Let x

be the root of the AVL tree of height h, and observe that x’s children either have the same height

or their heights differs by one. If x has two children of same height k = h− 1, we can increase the

height of one of them by induction, and thus this increases the height of the AVL tree by one with

Fk+2 < Fh+2 insertions. If x has one child y of height h − 1 and another one z of height h − 2,

we first perform Fh insertions into the subtree rooted at z to increase its height by one and then

perform Fh+1 insertions into the subtree rooted at y to increase its height by one (using inductive

hypothesis twice with k = h− 2 and k = h− 1). These insertions are at most Fh + Fh+1 = Fh+2

in number, and increase the height of the AVL by one. �

Theorem 7 The amortization cost for subtree rescan is Ω(( 2
φ )logn), where φ = 1+

√
5

2 < 2 is the

golden ratio, and thus subtree rescans for AVL trees cannot be amortized in poly-logarithmic time.

Proof : We provide a counterexample for a tree T of height h+ 1 whose left subtree is a complete

balanced binary tree of height h, named B, and the right subtree (right sibling of B) is an arbitrary

AVL tree of height h. Let P (B) and Bsib denote the parent of B (initially the root of the tree)

and the right sibling of B. We apply Lemma 11 “twice” to Bsib to increase its height by 2: first

we increase its height from h to h+ 1 by at most Fh+2 insertions, then we increase its height from

h + 1 to h + 2 by at most another Fh+3 insertions. This makes its height h + 2, which in turn

causes a rotation on the tree to make it balanced. Because of the rotation, P (B) and Bsib change

and move one level below. By definition, now P (B) and Bsib denote to new parent and sibling of

B, thus, P (B) and Bsib will be again of height h+ 1 and h, respectively.

We repeatedly apply Lemma 11 “twice” to Bsib to increase its height by 2 (from h to h + 2).

Each time this height increases, it causes a rotation on P (B) and produces new P (B) and Bsib of

height h+ 1 and h. In each rotation, B is involved in the subtree rescan, so the cost of the rotation

is at least 2h. The number of insertions needed to generate this rotation at each iteration is at

most Fh+2 +Fh+3 = Fh+4. If we let n′ = 2h and do n′

Fh+4
iterations, the total number of insertions
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is n = O( n′

Fh+4
×Fh+4) = O(n′). But the total cost of subtree rescan is Ω(n′× n′

Fh+4
) = Ω(n( 2

φ )logn)

where φ is the golden ratio. �

3.6 Summary

In this chapter, we presented the core partitioning scheme, which maintains a balanced search tree

as a dynamic collection of complete balanced binary trees called cores, we preserve the original

topology and algorithms of the given balanced search tree using a simple post-processing with

guaranteed performance to completely rebuild the changed cores (possibly all of them) after each

update. By applying core partitioning scheme on a given balanced binary search tree, if it is

a successful core partition, simultaneously dynamic memory allocation, cache-obliviousness, and

efficient I/O complexities in external-memory and cache-oblivious models are provided occupying

O(n/B) blocks of memory. Amortized cost for update depends on the type of the given balanced

binary search tree since they differ on the rebalancing operations they use.

As case studies we applied core partitioning to weight-balanced trees and height-balanced trees

(AVL trees). We had shown that they have successful core partition, thus simultaneously achieve

good memory allocation, space-efficient representation, and cache-obliviousness. For AVL trees,

the logarithmic amortization of insertion/deletion is impossible (i.e., AVL trees require super poly-

logarithmic cost by a lower bound on the subtree size of the rotated nodes), while weight-balanced

trees can be maintained with a logarithmic cost.



66 CHAPTER 3. CORE PARTITIONING SCHEME



Chapter 4

Core Partitioning Directly on

Plain Binary Trees

We introduced the notion of core partition in Chapter 3 to show how to obtain cache-efficient

versions of classic balanced binary search trees such as AVL trees and weight-balanced trees.

Looking at weight-balanced tree in Chapter 3 that are kept balanced using local rebuilding to

“simulate” rotations (see Section 3.4), we observe that a subtree is rescanned for two reasons.

• Its root u is unbalanced and we perform local rebuilding.

• Its top core needs core resize and we have to maintain the core partition without changing

the underlying topology.

This seems an interesting challenge to investigate: what if we use the core partition on plain

binary search trees? In other words, what if we maintain the tree balanced just by using core

partitioning without extra rebalancing operations such as rotations? An objection is that they do

not have a core large enough. However, we can use an “aggressive” version of core resize, so that

when we maintain the core partition, we also transform the subtree in a perfectly balanced tree as

in Overmars’ partial rebuilding [76, Sect.4.2].

Now let us reformulate the challenge: take an empty plain binary search tree and, whenever

core resize happens, transform the subtree in a perfectly balanced tree. We only operate the above,

no rebalancing is performed.

It can be easily observed that we can get O(log2 n) height using only the aggressive version

of core resize. However, this is not so interesting, as the same bound can be obtained with the
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logarithmic rebuilding method using a logarithmic number of sorted arrays. Can we get O(log n)?

In this chapter we give a positive answer to this question.

We also adopt the external-memory model [2] and cache-oblivious model [39, 81] explained in

Chapter 2 to evaluate the I/O complexity. Note that B is an unknown parameter of the block

size for cache-oblivious model. We introduce a new data structure, called Cache-Oblivious General

Balanced Tree (COG-tree) which guarantees logarithmic search time and logarithmic amortized

insert time. We use cores as explained in Chapter 3, so we keep the first levels of each node of

the tree in the form of a complete balanced binary tree. As we will see this property can be also

maintained after an insertion operation in a very simple way and in logarithmic amortized time

for the proper values of the number of full levels. The latter property allows us to efficiently use

the new structure for cache-oblivious model.

Our proposal exhibits good performances that is a COG-tree of n nodes requires O(logB n)

I/Os amortized for updates, and O(logB n) I/Os in the worst case for searches. In addition, it

can be laid out in O(n) space, external pointers in our data structures occupies only O(n) bits

in total. These complexities are theoretically optimal, and our structure compares optimally with

respect to the previous ones. It obtains the same optimal results with respect to Bender et al. ’s

Cache-Oblivious B-Trees in [20, 23] and Bender et al. ’s exponential structures in [21].

In this chapter, we start with the preliminaries of COG-trees in Section 4.1, the definition of

COG-trees is given in Section 4.2, we describe the basics of its memory management in Section 4.3,

then we show how to maintain COG-trees in the external-memory and the cache-oblivious memory

models in Sections 4.4 and 4.5. Finally in Section 4.6 we compute the amortization cost of the

update.

4.1 Preliminaries and Notation

As mentioned in Chapter 2, most binary search trees require storing data (e.g. ‘colors’, ‘weights’,

‘rank’, etc.) on the nodes of the tree and checking at each update that some constraints on

the structure of the tree are maintained. This information must be dynamically updated after

insertions and deletions. A different approach is to let the tree have any shape as long as its height

is logarithmic. In this way, there is no need of storing and checking the balance information,

but it is sufficient to check whether the maximal possible height has been exceeded. Trees of

this kind, called General Balanced Trees, introduced by [8] and later rediscovered by [41] under

the name of scapegoat trees, can be efficiently maintained and require as additional space only
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that for the pointers. They are restructured with an operation, called partial rebuilding, that

transforms a subtree of the tree in a perfectly balanced tree. The operation is expensive having a

cost proportional to the number of the nodes of the subtree, but performs rarely hence has a low

amortized cost.

Our Cache-Oblivious General Balanced Tree (COG-tree) data structure is a smooth extension

of general balanced trees [8, 41] and guarantees the same logarithmic search time and logarithmic

amortized insertion time in the comparison model as the general balanced trees, however, our data

structures also performs efficiently in the external-memory/cache-oblivious models. Our structure,

uses cores as presented in Chapter 3 (keeps the first levels of each node of the tree in the form of a

complete balanced binary search tree) and we maintain this property after the insertion operation

in a very simple way and in logarithmic amortized time for the proper values of the number of full

levels. The latter property allows us to efficiently use the new structure for cache-oblivious model.

For a given node u, we use Tu to denote the subtree of T rooted at u, s(u) = |Tu| the subtree

size, and h(u) the height of Tu. A perfectly balanced tree of n nodes satisfies the property that its

height is the minimal possible, namely, its height is equal to dlog(n+ 1)e.

In the core partitioning scheme introduced in Chapter 3, we say that T has a core of height

h∗, if its topmost h∗ levels are full. In Chapter 3, in Figure 3.1 an example of core partition was

given. Recall from Chapter 3, if every nonempty subtree of size larger than r∗ has a core of height

h∗, where h∗ is a function of the size or the height (or both) and r∗ is a function of the size of

the entire tree or the block size, we say that T has a successful core partition if it satisfies the

conditions below.

1. Any root-to-leaf path in T traverses cores of doubly exponentially decreasing size.

2. Only a constant number of the above cores are of small size less than or equal to r∗.

In the rest of the chapter, we present an algorithm on plain binary search tree so that it

guarantees having a successful core partition in logarithmic amortized cost.

4.2 Definition of COG-Tree

In this section, we study whether also plain binary search trees can benefit of the idea of the

core partition, we explore how to employ the core partition idea to make these trees balanced and

cache-oblivious. In the following, we start with defining two simple invariants for our new structure

and we show that both of them are required to obtain efficient results. To show that, we use a
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j-1
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Figure 4.1: Qj , a tree with core-fullness invariant and height Θ(log2 |Qj |).

simple fact that the resulting tree must have logarithmic height and cores of “sufficiently large”

heights in a way that cache-obliviousness can be achieved, however, we later simplify them to a

single invariant satisfying both.

Although, the minimal height of binary search tree T rooted at u is dlog(s(u) + 1)e, we can

show that a perfectly balanced tree of s(u) nodes is full up to its first dlog(s(u) + 2)e− 1 levels (by

an induction on the size). We define hmin(u) = dlog(s(u) + 2)e as an asymptotic minimal height

of T so that we can enforce cores in T by requiring the following condition to be maintained by

partial rebuilding.

{Core-fullness invariant} If the tree is non-empty, the first hmin(u)−1 levels of T are full. Also

the same property holds for all the non-empty subtrees below the (hmin(u)− 1)th level of T , in a

recursive manner1.

Unfortunately, the condition alone does not guarantee to obtain a structure with efficient core

partition. In particular, the height of the tree can be more than logarithmic, as shown next.

For a given positive integer j, let Qj be the tree constructed as follows. Qj is built starting

from a complete balanced binary tree of height j, where we replace one of the null pointers at

the bottom of the tree with another complete balanced binary tree of height j − 1; again one null

pointer of this second tree is replaced with another complete balanced binary tree of height j − 2,

and so on till we reach a binary tree of height 2. This tree is shown in Figure 4.1.

Lemma 12 Qj satisfies the core-fullness invariant but it has a height of Θ(log2 |Qj |).
1Roughly speaking, this condition can be considered as an “aggressive” version of the core resize operation.
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Figure 4.2: An example of P2.

Proof : The overall size of this tree is given by |Qj | = (2j−1)+(2j−1−1)+(2j−2−1)+....+(22−1) =

2j+1 − 2 − (j − 1) = 2j+1 − j − 1. Therefore, hmin(u) = dlog(2j+1 − j − 1 + 2)e = j + 1, and

hmin(u) − 1 = j, and by construction, the first j levels are full, this also holds recursively for the

rest of the tree. Therefore, Qj satisfies the core-fullness invariant.

On the other hand, the overall height of Qj is given by h = j + (j − 1) + (j − 2) + . . . + 2 =

j(j + 1)/2− 1 = Θ(j2) = Θ(log2 |Qj |). �

We can enforce to have a logarithmic height in T by requiring the following condition to be

maintained by partial rebuilding.

{Height invariant} For every node u in T , h(u) ≤ c hmin(u) for some constant c ≥ 1.

Note that the above condition has been employed several times in different forms, including

for general balanced trees [8] or scapegoat trees [41]. However, it is not sufficient alone to get an

efficient core partition as shown next. Indeed, the height invariant does not necessarily imply the

presence of the cores of sufficiently large height, as the following counterexamples show. The first

counterexample is simply given by a tree composed of a root with a complete balanced binary tree

as left subtree and null as right subtree. In this case, it is easy to observe that the height invariant

is satisfied, but there is no core involving the root. As a more general counterexample, we construct

a tree with the following structure. We start from a complete balanced binary tree of height 3, and

we arbitrary remove one leaf. Let P1 denote this tree. Starting from P1, we recursively construct

a tree Pi+1 substituting each of the three leaves of P1 with one subtree Pi. Figure 4.2 illustrates

an example of P2.
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Lemma 13 Pi satisfies the height invariant for c ≥ 2, but it cannot be partitioned into sufficiently

large cores so that cache-obliviousness can be obtained.

Proof : By construction, it is obvious that, for any i, Pi does not contain cores with height greater

than three. Now, consider any node u in Pi. To show that the height invariant is satisfied, we

need to prove that the height h(u) of the subtree Tu rooted at u is less or equal to 2hmin(u).

Observe that u is either the root or one of the children of the root of a Pbh(u)/2c tree. In both

cases, |Tu| ≥ |Pbh(u)/2c−1|+ 1. Thus, hmin(u) ≥ log |Pbh(u)/2c−1|. On the other hand, it is easy to

observe that |Pi| = 3|Pi−1|+ 3, and therefore |Pi| = 3i + 3i+1−1
2 − 1.

Hence,

hmin(u) ≥ log |Pbh(u)/2c−1|

≥ log(3bh(u)/2c−1 +
3bh(u)/2c − 1

2
− 1)

≥ h(u)/2 .

Therefore, h(u) ≤ 2hmin(u) and the height invariant is satisfied. �

We conclude that both core-fullness invariant and height invariant are necessary for our data

structure to be efficient in the cache-oblivious memory model, however, to have a simpler data

structure, in the following, we present a condition called fullness invariant, then we show that it

satisfies both the core-fullness and the height invariants.

{Fullness invariant} The first hmin(u)− 1 levels of every node u in T are full.

The only difference between the fullness invariant and the core-fullness invariant is that in the

first one, the first hmin(u) − 1 levels of every node in T are full. Clearly the fullness invariant is

stronger and it satisfies the core-fullness invariant. In Lemma 16, we prove that it also satisfies

the height invariant. Therefore, it is a much simpler candidate for us to build our data structure

upon on (however, it can be shown that the same results are also achievable if one is interested to

apply the core-fullness and the height invariants, instead).

Lemma 14 For any node v in any binary search tree T ,

2hmin(v)−1 − 2 < s(v) ≤ 2hmin(v) − 2.
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Proof : Recall that by definition of hmin(v), hmin(v) = dlog(s(v) + 2)e. Therefore,

log(s(v) + 2) ≤ hmin(v) < log(s(v) + 2) + 1

hmin(v)− 1 < log(s(v) + 2) ≤ hmin(v)

2hmin(v)−1 − 2 < s(v) ≤ 2hmin(v) − 2 .

�

Corollary 3 Let v be a node in tree T with fullness invariant, the number of the nodes in the first

hmin(v)− 1 levels of Tv is greater than or equal to s(v)/2.

Proof : The number of the nodes in the first hmin(v) − 1 levels is 2hmin(v)−1 − 1. On the other

hand, by the previous lemma, 2hmin(v) − 2 ≥ s(v), therefore, 2hmin(v)−1 − 1 ≥ s(v)/2. �

Lemma 15 In a tree T with fullness invariant, if f is a leaf and (f = u0), u1, u2, . . . , (u` = root)

is the path from f to the root, for 0 ≤ i ≤ `− 4,

hmin(ui) ≤ hmin(ui+4)− 1.

Proof : Observe that hmin(ui) is a nondecreasing function (when i is increasing), since s(ui) is an

increasing function. Now consider Tui+1 , its first hmin(ui+1)− 1 levels are full. The number of the

nodes in Tui+1
’s first hmin(ui+1)− 1 levels is 2hmin(ui+1)−1− 1 which 2hmin(ui+1)−2− 1 nodes are in

Tui and 2hmin(ui+1)−2 − 1 nodes are in Tsib(ui) (where sib(v) denotes the sibling of node v), hence,

2hmin(ui+1)−2 nodes (including ui+1) are completely disjoint from the nodes in Tui . Similarly, for

j = 2, 3, and 4, for Tui+j , its first hmin(ui+j) − 1 levels are full and 2hmin(ui+j)−2 of the nodes in

those levels are completely disjoint from Tui+(j−1)
. Therefore,

s(ui+4) ≥ s(ui) + 2hmin(ui+1)−2 + 2hmin(ui+2)−2 + 2hmin(ui+3)−2 + 2hmin(ui+4)−2

≥ s(ui) + 4× 2hmin(ui)−2 (since hmin(ui) is a nondecreasing function)

≥ s(ui) + 2hmin(ui)

≥ 2s(ui) + 2 (by the definition of hmin(ui)) .
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On the other hand,

hmin(ui+4) = dlog(s(ui+4) + 2)e

≥ dlog(2s(ui) + 2 + 2)e

≥ dlog 2 + log(s(ui) + 2)e

≥ hmin(ui) + 1 .

Hence the proof is complete. �

Lemma 16 The fullness invariant satisfies the height invariant for c ≥ 4.

Proof : Let u be a node in tree T with fullness invariant, to show that its height is upper bounded

by 4hmin(u), let f be the deepest leaf of Tu and (f = u0), u1, u2, . . . , (u` = u) be the path from f

to u. By Lemma 15, hmin(ui) ≤ hmin(ui+4) − 1, for 0 ≤ i ≤ ` − 4. Therefore, since hmin(f) =

dlog(1 + 2)e = 2, ` ≤ 4(hmin(u) − 1), so h(u) = ` + 1 ≤ 4hmin(u), hence, the height invariant is

satisfied for c ≥ 4. �

Fortunately, the fullness invariant guarantees the existence of a core partition as we will observe

in the following theorem.

Theorem 8 If a binary tree T satisfies the fullness invariant, it also admits a successful core

partition with r∗ ≥ 1 and h∗ = hmin(u)− 1 for the core rooted at u.

Proof : We prove that condition 1 of the core partition in Section 4.1 holds. Consider any two

cores C and C ′ such that C ′ is a child of C. Let h and h′ denote the heights of C and C ′,

respectively. Observe that |C| ≥ |C ′| and |C ′| = 2h−1 and |C ′| = 2h
′ −1. As shown in Figure 4.3,

let u0, u1, u2, . . . , u` show the path from the root of C ′ to the root of C (u0 is the root of C ′ and

u` is the root of C). Since h ≥ h′, ` ≥ h′. On the other hand, in Lemma 15, we had shown that

hmin(ui+4) ≥ hmin(ui) + 1, for 0 ≤ i ≤ ` − 4. Therefore, hmin(u`) ≥ hmin(u0) + h′/4. By the

definition of h∗, h = hmin(u`)− 1 and h′ = hmin(u0)− 1. Hence,

h = hmin(u`)− 1

≥ hmin(u0) + h′/4− 1

≥ h′ + h′/4 ≥ 5

4
h′ .
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Figure 4.3: Two consecutive cores C and C ′ in a search path.

Therefore, |C ′|+ 1 ≤ (|C|+ 1)
4
5 , so the cores are doubly exponentially decreasing in a root-to-leaf

path.

To show that also condition 2 holds, in any root-to-leaf path, let C1, C2, . . . , Ct−1, Bt be the

traversed cores and the terminal-core at the bottom of the search. Let us consider Ct−1 when its

size is less than or equal to r∗, and observe that the subtree Tt−1 of which Ct−1 is the topmost

core, has size |Tt−1| > r∗, so |Ct−1| + 1 > 2dlog(r∗+2)e−1 > 2log(r∗)−1 > 1
2r
∗. By an immediate

induction on |C|+ 1 ≥ (|C ′|+ 1)
5
4 , we observe that |Ct−1−j |+ 1 ≥ (|Ct−1|+ 1)( 5

4 )j ≥ ( r
∗

2 )( 5
4 )j , for

j = 1, 2, . . . , t− 2.

Finding the largest j such that ( r
∗

2 )( 5
4 )j < r∗ gives an upper bound on the maximum number

of cores having size < r∗ in C1, C2, . . . , Ct−1, Bt. Observe that such a j is O(1), thus, proving the

condition 2. �

We define a Primitive General Balanced Tree (PGB-tree) as a binary search tree that satisfies

the fullness invariant. We are interested to apply the core partitioning scheme on PGB-tree in

order to obtain an efficient data structure for the external-memory/cache-oblivious models. We

start by setting parameters h∗ = hmin − 1 and r∗ = log n and we call such a data structure a

Primitive Cache-Oblivious General Balanced Tree (PCOG-tree).

The following lemma shows a very interesting fact about PCOG-trees that if the probability of

searching a key is uniformly distributed for all the keys inside the tree, in average, during a search,

just 2 cores are visited (average path length is 2 cores).

Lemma 17 In a PCOG-tree T , the average number of the cores traversed to search for a node is

less than or equal to 2 if the probability of searching for each node of T is uniformly distributed.

Proof : Let n = |T |, suppose that we perform n search operations to visit all nodes of T , let |E(T )|

denote the total number of the cores traversed during these search operations divided by n (i.e.,

the average number of the cores traversed).
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We use induction on n to prove that |E(T )| ≤ 2, for small values of n, it is immediate. Assume

that for any tree enjoying fullness invariant and size less than n, the lemma holds. Let C denote

the topmost core (topmost hmin(r) − 1 levels) of T with root r, since |C| = 2hmin(r)−1 − 1, by

Corollary 3, we have |C| ≥ n
2 .

Now let T1, T2, . . . , T2hmin(r) denote the 2hmin(r) subtrees below C and ni = |Ti| for 1 ≤ i ≤

2hmin(r) (also
∑hmin(r)
i=1 ni = n − |C|). By induction hypothesis, we have E(Ti) ≤ 2 for 1 ≤ i ≤

2hmin(r). On the other hand, for all |C| nodes in C, we traverse just one core to visit them, and

for the all the other nodes in |Ti| (1 ≤ i ≤ 2hmin(r)) in average, we traverse less than or equal to

2 + 1 cores (by induction hypothesis and also the fact that they are all below core C). Therefore,

E(T ) =
|C| × 1 + (

∑hmin(r)
i=1 ni)× (3)

n

≤ |C| × 1 + (n− |C|)× (3)

n

≤ 3− 2|C|
n

.

Finally, since |C| ≥ n
2 , − 2|C|

n ≤ −1. Thereby, E(T ) ≤ 2 and the lemma holds. �

Although in the same manner to Chapter 3, PCOG-trees can be improved to an efficient data

structure (with linear space and logarithmic search time) in the cache-oblivious memory model,

in the following, we suggest a slightly modified version of PCOG-tree so that we can achieve the

same efficient bounds with a much simpler approach.

Here, we make a small modification to the definition of terminal-cores (the subtree of size < r∗

at the bottom of the tree), we present a new parameter called r∗ = dlogα ne, for α ≥ 1, and we force

terminal-cores to have size Θ(r∗) (i.e., terminal-core sizes must be between 1
2r
∗ and 4r∗) instead

of < r∗. This changes the algorithm slightly, but it has a great impact on the simplicity and on

the efficiency, for example, it merges the two concepts of r∗ and buckets presented in Chapter 3

in the definition of r∗. Using this small modification on the core partitioning scheme, we obtain

the following data structure. We emphasize that n denotes the size of the entire given PGB-tree

while s(v) or |Tv| denote the size of a subtree rooted at node v.

A Cache-Oblivious General Balanced Tree (COG-tree) is a PGB-trees (a tree with fullness

invariant) with parameters h∗ = hmin − dlog logα ne = hmin − dα log log ne and r∗ = dlogα ne

such that every terminal-core is forced to have size of Θ(r∗) (i.e., in between 1
2r
∗ and 4r∗)2.

2We chose a smaller h∗ than in PCOG-trees so we have left some nodes for the terminal-cores to be of size Θ(r∗).
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For the sake of simplicity, we ignore roundings in the definition of h∗ and r∗ when possible. The

mentioned modification on the terminal-cores in a COG-tree, does not interfere with other concepts

or definitions in the core partitioning scheme, e.g. the definition of successful core partition will be

the same as before using r∗ instead of r∗.

Theorem 9 A COG-tree satisfies the following properties (successful core partition).

1. Any root-to-leaf path in T traverses cores of doubly exponentially decreasing size.

2. Only a constant number of the above cores are of small size less than or equal to r∗.

Proof : To show that condition 1 holds, in a similar manner to the first part of the proof of

Theorem 8, in a root-to-leaf search path, let C and C ′ be two consecutive cores with heights h, h′,

respectively. As shown in Figure 4.3, let u0, u1, u2, . . . , u` show the path from the root of C ′ to the

root of C (u0 is the root of C ′ and u` is the root of C). Since h ≥ h′, ` ≥ h′. On the other hand, from

Lemma 15, hmin(ui+4) ≥ hmin(ui) + 1, for 0 ≤ i ≤ `− 4. Therefore, hmin(u`) ≥ hmin(u0) + h′/4,

also by the definition of h∗, h = hmin(u`)− dα log logne and h′ = hmin(u0)− dα log log ne (Recall

that n is the size of the entire tree). Putting all together,

h = hmin(u`)− dα log log ne

≥ hmin(u0) + h′/4− dα log logne

≥ hmin(u0)− dα log log ne+ h′/4 ≥ 5

4
h′ .

Therefore, |C ′|+ 1 ≤ (|C|+ 1)
4
5 , hence, cores are doubly exponentially decreasing in a root-to-leaf

path. The condition 2 also holds similarly to the second part of the proof given for Theorem 8. �

Corollary 4 In a COG-tree with root r, the number of the the cores traversed in any root-to-leaf

path is upper bounded by 3.1063 log log n.

Proof : Clearly the height of the topmost core is upper bounded by log n, and the heights of the

cores are decreasing exponentially with factor 4
5 , therefore, the number of the the cores traversed

in any root-to-leaf path is upper bounded by log 5
4

log n = 1
log 5/4 log logn < 3.1063 log log n �

Finally, it should be mentioned that in general, the behavior of the PCOG-trees and the COG-

trees are similar, in the rest of the chapter, we focus only on COG-trees.
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4.3 Memory Management

Here we explain the basics of the memory management of a COG-tree. The implementation of a

COG-tree T exploits its core partition and it is an easy programming task. Same as the memory

management of the core partitioning scheme in Section 3.2.2, given a core C of COG-tree T , we

observe that it contains |C| = 2h
∗ − 1 keys for some h∗, and |C| + 1 external pointers to its

“children” cores. We can thus allocate an array of size 2|C| = 2h
∗+1 entries, and fill it with the

entries from C using the implicit vEB layout, so no internal pointers among C’s nodes are stored.

It takes 1 + logB |C| block transfers to implicitly traverse core C during a search path [29] and it

takes O(|C|/B) block transfers to visit (e.g. inorder traversal) all the nodes in core C.

Each terminal-cores of size Θ(r∗ = logα n) is implemented as dαe layers of records of size

Θ(log n). These records are very small comparing to n, so we have a variety of possibilities to

implement them, we can implement them as B-trees same as the buckets implemented in [21] or

we can even implement them with sorted arrays in a contiguous portion of memory, thus each record

can be sequentially scanned in Θ((log n)/B) = Θ(logB n) I/Os, hence, dαe×Θ(logB n) = O(logB n)

I/Os to search a terminal-core, therefore, it will not change the search complexity as later we will

see the search complexity is also O(logB n).

Fact 8 Consider a node v in a core C, and let m be the number of all the nodes descending from

v (including itself) that are inside C. Then, the inorder traversal of these nodes in C requires the

time needed to search v plus O(m/B + 1) block transfers.

Proof : To visit all the nodes descending from v that are inside C, we first need to search v, then

since C is implemented by vEB layout, the number of block transfers to read v’s descendants inside

C is O(m/B + 1)I/Os by [29]. �

4.4 Maintaining a COG-Tree

In this section, we explain how to maintain a COG-tree as a dynamic data structure. To build

a COG-tree, we can simply start from an empty tree or we can initially apply COG-tree on a

given (possibly unbalanced) binary search tree3, and then we perform a sequence of insertions

and deletions maintaining the COG-tree properties, namely, it must always maintain the fullness

invariant and the core partitioning scheme.

3In the case of applying COG-tree on a given (possibly unbalanced) binary search tree, we initially reconstruct
the entire tree to a perfectly balanced binary search tree (last level may not be full) and we build a COG-tree on
top of it.
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4.4.1 Deletions

Similar to Chapter 3, for the deletion, we simply mark the searched key as logically deleted, and

remove that mark if the key is inserted again. We periodically rebuild the entire tree when the

number of these marked keys is a constant fraction of the total number of keys. This amortized

complexity can be analyzed in a traditional way, and thus it is not discussed here.

4.4.2 Insertions

We therefore focus on the insertions. When a new key is inserted in COG-tree T , a new leaf f is

created. After that, we have to maintain the fullness invariant described in Section 4.2, as well as

the core partitioning scheme.

Recall that for any node u, hmin(u) = dlog(s(u) + 2)e. When f is inserted, for any ancestor z

of f whose value hmin(z) increases by one (we call this event minimum-height-increase of z), the

fullness invariant can be violated. Note that because of inserting f , s(z) increases by one, therefore,

hmin(u) = dlog(s(u) + 2)e either does not change or it increases by one (minimum-height-increase

of z). To preserve the fullness invariant we then proceed as follows. We take the topmost ancestor

u of f which has a minimum-height-increase (if there is any), and apply the operation called

balance(u) which

(a) replaces Tu by a perfectly balanced tree T ′u storing the same set of keys, and

(b) updates the core partition.

Task (b) is performed as follows. Let C be the core containing u: we replace the entries for C ∩Tu

in the array storing C with the topmost |C ∩ Tu| entries from T ′u; observing that the number of

these entries is a power of 2 minus 1, they correspond to the topmost full levels, let us say the first

t levels of T ′u. The remaining entries in T ′u, which are on levels greater than t, are stored in cores

using a simple greedy top-down approach.

We emphasis that a minimum-height-increase of an ancestor z of the new inserted key does not

necessarily violate the fullness invariant, however, to maintain the core partitioning scheme, we

perform balance(u). As stated in the next lemma, the rebalancing operation balance(u) preserves

the fullness invariant in the given COG-tree. The amortized cost of balance(u) will be discussed

in Section 4.6.

Lemma 18 Operation balance(u) preserves the fullness invariant.
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Proof : For a given node v, let e(v) denote the topmost null pointer (empty node) in Tv and let `v

be the length of the path between v and e(v). When operation balance(u) is performed, Tu simply

becomes balanced by filling some null pointers (empty nodes) closer to node u with other nodes

further from u. This means that in general, balance(u) does not decrease `z for any ancestor z of

node u.

Now by contradiction, suppose that after performing balance(u), there is an ancestor z of u that

violates the fullness invariant. Before performing balance(u), Tz was full up to hmin(z) − 1 level,

so `z was greater than or equal to hmin(z) − 1, also z does not have a minimum-height-increase,

because by definition u is the topmost node with minimum-height-increase. On the other hand,

the fact that after balance(u), z violates the fullness invariant, implies that `z ≤ hmin(z) − 2.

This means that balance(u) caused a decrease in `z, which is in contradiction with the previous

result. �

There is also another simple event we need to consider for the maintenance of COG-trees. We

need to reconstruct the entire COG-tree when dα log logne} or dlogα ne increases by one, because

these values are used in the definition of h∗ and r∗, hence, a change on these values results to

reconstruct the entire tree. However, this event occurs rarely and every time it occurs the size of

the entire tree increases by a constant factor, hence, amortized cost is linear.

4.5 Applications

In this section, we study COG-trees in the external-memory and the cache-oblivious memory

models.

Lemma 19 The number of the cores and the terminal-cores in a COG-tree of size n is O( n
logα n ).

Proof : We observe that there exist at most O( n
logα n ) terminal-cores since the sum of their sizes

cannot exceed n, also the number of the cores is upper bounded by the number of the terminal-cores

(they form a t-regular tree with cores as internal nodes and terminal-cores as leaves), therefore,

the number of the cores is also O( n
logα n ). �

Corollary 5 Having α ≥ 1, the total space for the external pointers (pointers to the cores and the

terminal-cores) is O( n
logα n )× O(log( n

logα n )) = O(n) bits. This is an efficient bound for the space

needed for the pointers in a COG-tree.
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4.5.1 External-Memory Search Trees

In a similar manner to Section 3.3.2, by setting r∗ = max{logα n,B}, we obtain a B-tree-like data

structure for external memory [19]. More precisely, the complete balanced binary tree represented

by each core Ci can be stored in contiguous portions of the memory of size of multiples of B, so

that it takes O(1 + h∗i / logB) I/Os to traverse Ci (e.g. see [106]).

Theorem 10 In the external-memory model with block size B, a COG-tree of size n can be stored

using O(n/r∗) cores and occupying O(n/B) blocks in total. Any search path from the root to a

node requires O(logB n) I/Os and O(log n) comparisons.

Proof : The proof is similar to the proof of Theorem 1. �

4.5.2 Cache-Oblivious Search Trees

The benefit of COG-trees is that not only we can easily apply vEB layout inside each core, but

also in the cache-oblivious memory model, to obtain the efficient search time of O(logB n) using

linear space, we do not need the buckets as we used to in Chapter 3. Note that now terminal-cores

have a guaranteed size of Θ(r∗), therefore behaving similarly to the buckets of Chapter 3.

For a COG-tree of size n, for a subtree Tv, for the sake of computations, we ignore roundings

in the formulas of r∗ and h∗; we consider r∗ = logα n and h∗ = hmin(v) − α log log n, where

hmin(v) = dlog(s(v) + 2)e.

For a COG-tree, to obtain efficient cache-oblivious search time, same as Chapter 3, we store the

complete binary tree inside each core C using the vEB layout [81, 29], we also keep any core C and

all its descendant cores in a contiguous portion of memory as we explain next. We store terminal-

cores separately in another contiguous portion of the memory using dαe layers of records of size

Θ(log n) for each terminal-core. Therefore, the remaining cores form a tree of size n = O( n
logα n ).

Let T denote the tree of these remaining core (ignoring terminal-cores) and let s′(v) denote the

number of the nodes in T v (the subtree of node v in T ).

By Corollary 4, the number of the cores traversed in any root-to-leaf path is upper bounded by

3.1063 log log n. We define the level and the layer of a core similarly as before. For a core C rooted

at v, the level of C (denoted by lev(C)) is the number of cores above and the layer of C (denoted

by lay(C)) is d3.1063 log log ne − lev(C) and we use the same recursive scheme as Section 3.3.2 to

assign Θ(4lay(C)s′(v)) space to C and all its descendant cores. Observe that in a similar manner

to Theorems 4 and 5, the total amortized cost of maintaining such a structure in the event of SOF
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or increase in d3.1063 log log ne is O(log log n).

Theorem 11 For α ≥ 2×3.1063 = 6.2126, a COG-tree of size n with parameters r∗ = logα n and

h∗ = hmin −α log log n, can be stored in the cache-oblivious memory model, so that O(n/B) blocks

are occupied and any search path from the root to a node requires O(logB n) I/Os and O(log n)

comparisons.

Proof : The search is O(logB n) similarly to the Theorem 3. Also as explained before, the total space

for the terminal-cores is O(n/B) blocks. On the other hand, the total number of blocks occupied to

store the cores is upper bounded by O( 1
Bn4d3.1063 log logne) = O( 1

Bn log2×3.1063 n) = O(n log6.2126 n
B logα n )

which for α ≥ 6.2126, it is upper bounded by O(n/B). The bound of O(log n) comparisons derives

from the height invariant which is satisfied by the fullness invariant. �

4.6 Amortized Analysis

In this section, we study the amortized cost of operation balance(u) in a sequence of insertions.

Recall from Section 4.4.2, after insertion of a new leaf f , operation balance(u) is performed on the

topmost ancestor u of f which has a minimum-height-increase (if there is any) with the following

two tasks.

(a) replaces Tu by a perfectly balanced tree T ′u storing the same set of keys, and

(b) updates the core partition.

Lemma 20 Operation balance(u) can be performed in O(s(u)) time and O(s(u)/B+ s(u)
logα n ) block

transfers in the cache-oblivious model.

Proof : Suppose that we want to perform an inorder traversal of the subtree Tu, here, we discuss

its cache complexity. Let C be the core containing u, and observe that the inorder traversal of

C∩Tu requires a linear number of blocks, O(|C∩Tu|/B+1), by Fact 8. For the rest of the cores in

Tu, we use a bottom-up induction on the cores traversed by the inorder traversal. Let C ′ be one of

the cores below C that are traversed in Tu, and let d(C ′) be the number of “children” cores of C ′.

By induction hypothesis, it takes O(|C ′|/B + 1) block transfers to read and traverse all the nodes

in C ′. We should also add d(C ′) block transfers that are needed to access its children. Hence, the

overall cache complexity of the inorder traversal is

O(|C ∩ Tu|/B +
∑
C′∈Tu

(|C ′|/B + d(C ′))) = O(s(u)/B +
∑
C′∈Tu

d(C ′)),
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where
∑
C′∈Tu d(C ′) = O( s(u)

logα n ) as there are so many cores and terminal-cores in Tu by Lemma 19.

As a result, we can produce the sorted sequence of keys in Tu with O(s(u)/B + s(u)
logα n ) block

transfers. After that, it is a standard computation to build the perfectly balanced tree T ′u with

O(s(u)/B) block transfers, thus completing task (a). As for task (b), we can observe that the

cache complexity follows the same route as that for the inorder traversal, thus giving a total cost

of O(s(u)/B + s(u)
logα n ) block transfers. �

Fact 9 After inserting a new leaf f , if node u is the topmost ancestor of f with minimum-height-

increase (if there is any), after performing operation balance(u) on u, Tu becomes a complete

balanced binary search tree with s(u) = 2k − 1 nodes, for some integer k. Also for any node v in

Tu, Tv is a complete balanced binary search tree of size s(v) = 2k
′ − 1, for some integer k′, and

hmin(v) = dlog(s(v) + 2)e = k′ + 1 = log(s(v) + 1) + 1.

Lemma 21 Consider an insertion of a new leaf f in a COG-tree T , and suppose that a minimum-

height-increase happens in an ancestor of f . Let v be the topmost such an ancestor. Let m = s(v)

be the size of the subtree Tv rooted at v and let T ′v denote the subtree rooted at v after the last

rebalancing operation on v due to a previous minimum-height-increase on v or above. Finally, let

m′ = |T ′v| and h′min(v) = dlog(m′+2)e. We have m−m′ = Ω(m). i.e., Ω(m) new keys are inserted

as descendants of v since the last minimum-height-increase on v or above.

Proof : By the definition of minimum-height-increase, hmin(v) = h′min(v)+1 implying that dlog(m+

2)e = dlog(m′ + 2)e + 1. By Fact 9, m + 1 and m′ + 1 are powers of 2. Thus, log(m + 1) + 1 =

log(m′ + 1) + 2, implying m+ 1 = 2(m′ + 1), and finally m−m′ = Ω(m). �

Theorem 12 The amortized cost of operation balance(u) in COG-trees is O(log n) time and

O(logB n) block transfers.

Proof : Lemma 21 implies that the cost of operation balance(u) in Lemma 20 can be spread out

among O(s(u)) fresh insertions. As a result, the amortized cost is O(1) time and O( 1
B + 1

logα n )

block transfers per new entry in the subtree Tu. Since each new entry is an inserted leaf f at

some time, and f is involved as a fresh entry in O(log n) ancestors, we can charge f with O(log n)

time and O( logn
B + logn

logα n ) = O(logB n) block transfers. Hence, the amortized cost of operation

balance(u) in COG-trees is O(log n) time and O(logB n) block transfers. �
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4.7 Summary

In this chapter, we applied the core partitioning scheme introduced in Chapter 3 to arbitrary

binary search trees which can be ‘unbalanced’. We then introduced a new data structure called

Cache-Oblivious General Balanced Tree (COG-tree). The COG-tree of n nodes has an improved

cache complexity of O(logB n) amortized block transfers and O(log n) amortized time for updates.

Search operation takes O(logB n) block transfers and O(log n) comparisons. The space occupancy

is O(n) extra bits besides the space needed to store the keys alone.



Chapter 5

Other Properties of AVL Trees

In this chapter, we present some new features and properties of AVL trees. In Section 5.1, we

define gaps as special edges in AVL trees, such that the height difference between the subtrees

rooted at two endpoints of a gap is equal to 2. Using this definition, we present the Basic-Theorem

which illustrates how the size of an AVL tree (and its subtrees) can be represented by a series

of powers of 2 of the heights of the gaps. Basic-Theorem characterizes the tree size of any AVL

tree with a very simple formula. We also investigate that how gaps change during a sequence of

insertions and deletions. We have presented this results at the conference Combinatorics 2014 [4].

In Section 5.2, we answer to the question whether deletions can take Ω(log n) rotations not

only in the worst case, but also in the amortized case as well, when insertions are intermixed with

deletions. Heaupler, Sen, and Tarjan [48] conjectured that alternating insertions and deletions in

an n-node AVL tree can cause each deletion to do Ω(log n) rotations. We provide a construction

which makes each deletion to do Ω(log n) rotations. Recently, this work has been published in the

Journal Information Processing Letters [5].

5.1 GAP

Recall that for a given node v in an AVL tree T , we use the following notations.

• |T | and V (T ) denote the size of tree T and its set of nodes, respectively,

• Tv denotes the subtree rooted in v and key(v) denotes its key,

• p(v) and child(v) denote parent and child of v, respectively, and vr and vl denote the right

and the left child of v, respectively,
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• h(v) denotes the height of Tv,

• lev(v) denotes the number of the nodes in the path from v to the root.

Definition 4 The balance factor of v (also denoted by b(v)) is the difference in the heights of its

two subtrees (h(vr)− h(vl)). The balance factor of the nodes of an AVL tree may take one of the

values -1, 0, +1. A node is balanced (or unbalanced) if its balance factor is 0 (or ±1).

Definition 5 For any pair of nodes v and w, which v = p(w), the edge between v and w is called

gap iff the height difference between v and w is equal to 2. If there is a gap g between v and w,

we say v has a gap child, and v and w are called parent and child of this gap.

For gap g by p(g), child(g), and h(g) we denote the parent, the child, and the height of g

respectively, where we define h(g) = h(child(g)). We also use GAP (T ) to denote the set of all the

gaps in a tree T .

Fact 10 For any given node v in an AVL tree T :

• There is at most one gap child for v between v and vl or v and vr.

• Leaves have no gap children.

According to the standard algorithms of AVL trees described in [57], two main operations which

can change AVL tree’s structure are deletion and insertion. We are going to study gap-properties

for an AVL tree, in general and during these these two operations.

5.1.1 General Properties of Gaps

The following theorem expresses the size of a given AVL tree with height H in terms of the powers

of 2 of the heights of the gaps.

Theorem 13 Basic-Theorem:

|T | = n = 2H − 1−
∑

g∈GAP (T )

2h(g).

Proof : By induction on H. For H = 0 (empty tree) and H = 1 (one-node tree), the theorem

trivially holds. For the inductive step on H ≥ 2, we assume that the theorem holds for any AVL

tree of height less than H, then we use this assumption to prove the statement for height H. Let
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Tl and Tr denote the left and right subtree of the root of the given AVL tree T , respectively. We

consider two cases for T .

First suppose that the height of Tl and Tr are equal to H − 1. Then, GAP (T ) = GAP (Tl) ∪

GAP (Tr) as the two edges between the root of T and the roots of Tl and Tr are not gaps, and the

theorem easily follows using the induction hypothesis,

|T | = |Tl|+ |Tr|+ 1 = 2H−1 − 1−
∑

g∈GAP (Tl)

2h(g) + 2H−1 − 1−
∑

g∈GAP (Tr)

2h(g) + 1

= 2H − 1−
∑

g∈GAP (T )

2h(g) .

Now suppose that two subtrees have different heights H − 1 and H − 2. Then the set of the

gaps of T contains all gaps in Tl and Tr, plus the new gap g′ given by the edge between the root

of T and the root of the subtree of height H − 2. Therefore, using the induction hypothesis and

the fact that h(g′) = H − 2, we have:

|T | = |Tl|+ |Tr|+ 1 = 2H−1 + 2H−2 − 1−
∑

g∈GAP (Tl)

2h(g) −
∑

g∈GAP (Tr)

2h(g)

= 2H − 2H−2 − 1−
∑

g∈GAP (Tl)

2h(g) −
∑

g∈GAP (Tr)

2h(g)

= 2H − 1− 2h(g′) −
∑

g∈GAP (Tl)

2h(g) −
∑

g∈GAP (Tr)

2h(g) = 2H − 1−
∑

g∈GAP (T )

2h(g) .

�

To show how powerful this theorem is, the following corollary describes the precise relationship

between the size of the entire tree (n), the heights of the nodes, the subtree sizes, and the heights

of the gaps in a given AVL tree.

Corollary 6 For a gap g let us define lev(g) as the number of the nodes above g in the path from

g to the root (i.e., the number of node-ancestors of g), note that the level of a gap is equal to the

level of its parent node, then:

∑
u∈V (T )

(2h(u) − |Tu|)−
∑

g∈GAP (T )

lev(g)2h(g) = n .

Proof : By Theorem 13 (Basic-Theorem) we know that for any node u, 2h(u)−
∑
g∈GAP (Tu) 2h(g)−
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|Tu| = 1. Therefore, by summing up of this formula over all nodes we have:

∑
u∈V (T )

1 = n =
∑

u∈V (T )

{2h(u) − |Tu| −
∑

g∈GAP (Tu)

2h(g)}.

On the other hand, for any gap g, for any ancestor u of g, g ∈ GAP (Tu) and vice versa. Therefore,

there are exactly lev(g) nodes u which g ∈ GAP (Tu). So, we claim that:

∑
u∈V (T )

∑
g∈GAP (Tu)

2h(g) =
∑

g∈GAP (T )

lev(g)2h(g),

Therefore,

n =
∑

u∈V (T )

(2h(u) − |Tu|)−
∑

u∈V (T )

∑
g∈GAP (Tu)

2h(g),

n =
∑

u∈V (T )

(2h(u) − |Tu|)−
∑

g∈GAP (T )

lev(g)2h(g).

�

Corollary 7 The powers of 2 of the heights of the nodes and the gaps are related by the following

upper bounds.

∑
u∈V (T )

(2h(u))−
∑

g∈GAP (T )

lev(g)2h(g) ≤ n+ nH = Θ(n log n).

Proof : Immediately by using Corollary 6 and the fact that
∑
u∈V (T )(|Tu|) is the same as the total

internal path length which is upper bounded by nH ≤ Θ(n log n). �

5.1.2 Gaps in Insertions and Deletions

In this section, we study how gaps change during deletion and insertion operations of AVL trees.

According to the standard insertion algorithm of AVL trees described in [57], after the insertion

of a new node, three different situations can occur, namely:

1. absorption;

2. rotation at the critical node (single or double);

3. height increase.

For the insertion of a new node v into an AVL tree T , let vk denote the root of T , vk, vk−1, . . . , v0

be the insertion path of key(v) and i be the maximum index such that b(vi) = b(vi−1) = . . . =
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b(v0) = 0, recall that b(v) is the balance factor of node v. Hence, vi+1 (if any) is called the critical

node, and vi, . . . , v0 is called the critical path. The length of the critical path is lv = i. In the case

of height increase of T , i = k and there exists no critical node.

First, we consider insertion operation, as we know there are three possibilities (absorption,

rotation, and height increase), when one of these cases occurs, gaps inside the subtree of the

critical node will change, some will disappear and some will be created as studied in the following

theorem.

Theorem 14 In an insertion of a new node v with critical path of length lv and critical node u:

• In the case of a “height increase” (increasing the height of the entire tree), a sequence of gaps

with heights from 0 to lv will be created as shown in Figure 5.1.b.

• In the case of “absorption” one gap of height lv will disappear (will be removed) and a sequence

of gaps with heights from 0 to lv − 1 will be created, see Figure 5.1.a.

• In the case of “rotation” (single or double) one gap of height lv − 1 will disappear (will be

removed) and a sequence of gaps with heights from 0 to lv − 2 will be created, see Figure 5.2,

and 5.3.

Proof : As illustrated in Figures 5.1.a, 5.2 and 5.3, in the cases of absorption and rotation, there

should be always a gap g before performing the insertion whose parent is u; obviously this gap

disappears after absorption/rotation. The only case remaining is the height increase; in this case,

as illustrated in Figure 5.1.b, there is no critical node and there is no gap to disappear. In all the

cases, the sequences of created gaps are shown in Figures 5.1, 5.2, and 5.3. �

Definition 6 For a given gap g, ‘consuming’ g means that this gap has disappeared from the

tree, either by a rotation or an absorption, and a sequence of gaps as mentioned before, has been

‘generated’.

Theorem 15 A gap g or a sequence of gaps can be generated either by a height increase or by

consuming a gap above, as shown in Figures 5.1, 5.2, and 5.3.

Proof : Notice that except the case of the height increase, to generate a gap or a sequence of gaps,

one gap above should be consumed. �

Recall that, unlike insertion, deletion of a node can violate AVL tree condition at every level

in the AVL tree. According to the standard deletion algorithm of AVL trees described in [57], after
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Figure 5.1: Gaps before and after absorption(a) and height increase(b).

Figure 5.2: Gaps before and after single rotation.
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Figure 5.3: Gaps before and after double rotation.

deletion of a node v, three different situations based on the number of children of v can occur,

namely:

1. v has 0 children: v will be deleted and nodes’ heights in the path from v to root may change

and they may need to rebalance.

2. v has 1 child: v will be deleted, its child should be connected to its parent and nodes’ heights

in the path from v to root may change and they may need to rebalance.

3. v has 2 children: we should find v’s successor and replace it with v and remove the successor,

therefore, nodes’ heights in the path from the successor to the root may change and they

may need to rebalance.

For the deletion of a node v from an AVL tree T , let v = v0, v1, . . . , vi = u be the maximum

path made of gaps starting from v = v0 going upward (this path can be empty). As it has been

shown in Figure 5.4, in both cases of “0 child” or “1 child”, after the deletion, all the gaps of this

path will be consumed (disappeared) and the edge (u, p(u)) can become a gap or not, depending on

the balance factor of p(u) before deletion (if b(p(u)) = 0 then (u, p(u)) will be a gap after deletion).

In case of “1 child”, another gap will be generated as the child of v. In the case of “2 children”

since we replace v with its successor and we remove the successor, we will have similar cases of “0

child” or “1 child” but for the successor. So there is no need to study this case separately.
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Figure 5.4: Gaps before and after deletions in case of no children of deleted node(a) or one child(b).

5.2 Amortized Rotation Cost in AVL Trees

In this section, we study Heaupler, Sen, and Tarjan’s conjecture in [48] that alternating insertions

and deletions in an n-node AVL tree can cause each deletion to do Ω(log n) rotations. We use

partially the balance framework of Haeupler, Sen, and Tarjan [48]. A node in a binary tree is

binary, unary, or a leaf if it has two, one, or no children, respectively. Recall that the height of

a node in a tree is the number of the nodes on the longest simple downward path from the node

to a leaf. By convention, a null pointer has height 0. The height of a tree is the height of its

root. Recall that we denote the parent of a node x by p(x). The height difference of a child x

is h(p(x)) − h(x). A child of height difference i is an i-child; a node whose children have height

differences i and j with i ≤ j is an i, j node1.

Recall that using the above definition, an AVL tree is a binary tree satisfying the following

height-rule: every node is 1,1 or 1,2. Since null pointers have height 0, every leaf in an AVL tree is

1,1 and has height 1, and every unary node is 1,2 and has height 2. Also, by definition, for every

2-child node, the edge to its parent is a gap.

Recall that AVL trees grow by leaf insertions and shrink by deletions of leaves and unary

1In [48], i-child and i, j node were defined based on the ranks of the nodes which are equal to the heights minus
one except possibly during rebalancing, here we used a similar but slightly different definition.
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nodes. To add a leaf to an AVL tree, replace a missing node by the new leaf of height 1. If this

violates the height-rule by having a 1,3 node, then we need to rebalance the tree by applying the

appropriate single/double rotation as shown in Figure 5.5. On the other hand, to delete a leaf in

an AVL tree, remove and replace it by a null pointer; to delete a unary node, replace it by its

only child. Similarly, such a deletion can violate the height-rule by producing a 1,3 node. In this

case, rebalance the tree by applying the appropriate case in Figure 5.6 until there is no violation.

Each application of a case in Figure 5.6 either restores the height-rule or creates a new violation

at the parent of the previously violating node. Whereas, each rotation case in insertion terminates

rebalancing, the rotation cases in deletion can be non-terminating.

(a) Single rotation to rebalance after insertion

(b) Double rotation to rebalance after insertion

Figure 5.5: Rebalancing cases after insertion. Numbers next to edges are height differences.

In order to obtain an initial tree in our expensive set E, we must build it from an empty tree.

Thus the first step in our construction is to show that any n-node AVL tree can be built from an

empty tree by doing n insertions (see Theorem 16). Although this result is easy to prove, we have

not seen it in the literature.

Theorem 16 Any n-node AVL tree can be built from an empty tree by doing T insertions, each

of these insertion does only absorption or height increase (no rotation).

Proof : Let T be a non-empty AVL tree. The truncation T of T is obtained by deleting all the

leaves of T and decreasing the height of each remaining node by 1. We prove by induction on the

height h of T that we can convert its truncation T into T by inserting the leaves deleted from T to
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(a) Single rotation to rebalance after deletion

(b) Double rotation to rebalance after deletion

Figure 5.6: Rebalancing cases after deletion. Numbers next to edges are height differences.
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form T , in an order such that no insertion needs a rotation. The theorem then follows by induction

on the height of the desired tree.

For h = 1 or h = 2, the hypothesis is trivial. Suppose h ≥ 3 and the result holds for any AVL

tree with height less than h. Let T be an AVL tree of height h. Tree T consists of a root x and

left and right subtrees Tl and Tr, both of which are AVL trees. The truncation T of T consists of

root x, now of height h − 1, and left and right subtrees Tl and Tr. Both Tl and Tr have height

h− 1 or h− 2, and at least one of them has height h− 1. Without loss of generality, suppose Tr

has height h− 1.

In the left subtree of T , do the sequence of insertions that converts Tl into Tl. Then, in the

right subtree of the resulting tree, do the sequence of insertions that converts Tr into Tr. Tl has

height either h − 1 or h − 2. If Tl has height h − 1, then the insertion into Tl that increases the

root height by 1, when done in T , also increases the root height of T by 1, from h − 1 to h, this

results in increasing the height difference of the right child of the root from 1 to 2 but having no

other effect on the right subtree of the root. Thus, after all the insertions into the left subtree, the

tree consists of root x, now of height h, left subtree Tl, and right subtree Tr of height h− 2. The

subsequent insertions into the right subtree will convert it into Tr (and changing its root’s height

difference to 1) without affecting the rest of the tree, producing T as the final tree.

On the other hand, if Tl has height h − 2, then the insertions into the left subtree of T will

convert the left subtree into Tl with increasing the height of the root of the left subtree from h− 3

to h − 2 but having no effect on the root or the right subtree. The subsequent insertions will

convert the right subtree into Tr. Among these insertions, the one that increases the height of

the root of the right subtree from h − 2 to h − 1 will also increase the height of x from h − 1 to

h, thereby, converting the root of the left subtree from a 1-child to a 2-child but having no other

effect on the left subtree. Thus the final tree is T . �

5.2.1 Expensive AVL Trees

Our expensive trees have odd height. We define the set E of expensive trees recursively. Initially,

set E contains the empty tree of height 0 and the one-node tree of height 1. Now, if A, B, and

C are AVL trees which B has height h − 1 and A and C have height h, and A ∈ E and B ∈ E,

then the two trees of height h+ 2 shown in Figure 5.7 are in E. The tree of type L in Figure 5.7

contains a root x of height h+ 2 and a left child y of the root of height h+ 1, and has A,B, and

C as the left and right subtrees of y and the right subtree of x, respectively. The tree of type R in
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Figure 5.7: Recursive definition of E. Numbers on edges are height differences. The two trees
shown are in E if A and C are in E with height h and B is an AVL tree with height h− 1.
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Figure 5.8: Deletion and insertion of the shallow leaf in a type-L tree of height 3.

Figure 5.7 is similar except that x is the right child of y and A,B, and C are the left subtree of y

and the left and right subtrees of x, respectively.

If T is a tree in E, its shallow leaf is the leaf z such that all nodes on the path from z to the

root, except the root itself, are 2-children (the edges on the path are gaps). A straightforward

proof by induction shows that the shallow leaf exists and is unique.

Theorem 17 If T is a tree in E of odd height h, deletion of its shallow leaf takes h−1
2 single

rotations and produces a tree of height h − 1. Reinsertion of the deleted leaf produces a tree of

height h that is in E.

Proof : We prove the theorem by induction on h. In the one-node tree of height 1, the shallow

leaf is the only node. Its deletion takes no rotations and produces the empty tree; its reinsertion

reproduces the original tree. For h = 3, there is exactly one tree in E of type L and one of type R.

As shown in Figure 5.8, rebalancing after deletion of the shallow leaf in the type-L tree takes one

rotation and produces a tree of height 2, and reinsertion produces the type-R tree. Symmetrically,

deletion of the shallow leaf in the type-R tree takes one rotation and produces a tree of height 2,

and reinsertion produces the type-L tree.

Suppose that the theorem is true for odd height h. Let T be a tree of height h+2 and type L in

E (the argument is symmetric for a tree of type R). Let x be the root, y the left child of x, and A,

B, and C the left and right subtrees of y and the right subtree of x, respectively (see the first tree

in Figure 5.9). The shallow leaf of C is also the shallow leaf of T . By the induction hypothesis, its
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A B!

C!
y!

x!

1! 2!

1! 2!

A B!

C'!
y!

x!

1! 2!

1! 3!Delete!
shallow leaf!

C''!B

A

y!

x!
2! 1!

2! 1!

C'!B

A
x!

1! 1!

1! 1!
y!

Rotation!
Reinsert 

shallow leaf!

Figure 5.9: Deletion and insertion of the shallow leaf in a type-L tree of height h+ 2.

deletion in C does (h− 1)/2 rotations and converts C into a tree C ′ of height h− 1. In T , deletion

of the shallow leaf converts the right subtree of x into C ′, making the root of C ′ a 3-child (see the

second tree in Figure 5.9). This causes one more single rotation, for a total of h−1
2 + 1 = (h+2)−1

2

rotations, and produces the tree T ′ (shown as the third tree in Figure 5.9), of height h + 1, with

1,1 root y whose right child x is also 1,1. By the induction hypothesis, reinsertion of the deleted

leaf into C ′ converts C ′ into a tree C ′′ in E of height h. In T ′, the same reinsertion converts the

right subtree of T ′ into C ′′ and produces the tree T ′′ in Figure 5.9, which is a tree in E of type

R. �

Corollary 8 The proof of Theorem 17 implies that if one starts with a tree T in E of odd height

h and does 2(h−1)/2 deletion-reinsertion pairs, the final tree will be T .

Corollary 9 For infinitely many n, there is a sequence of 3n intermixed insertions and deletions

on an initially empty AVL tree that takes Θ(n log n) rotations.

Proof : Let T be any tree in E. If T has n nodes, its height is Θ(log n) since it is an AVL tree

[1]. Apply Theorem 16 to build T in n insertions. Then repeat the following pair of operations

n times: delete the shallow leaf; reinsert the deleted leaf. By Theorem 17, the total number of

rotations will be Θ(n log n). �

5.3 Summary

In this chapter, we presented a new way for studying AVL trees: the gaps, then we proved a

new set of theorems and lemmas for finding the subtree size of any node of an AVL tree with
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respect to the heights and the structure of the gaps, also we proved Heaupler, Sen, and Tarjan’s

conjecture that alternating insertions and deletions in an n-node AVL tree can cause each deletion

to do Ω(log n) rotations. To do this, we provided a construction which causes each deletion to

do Ω(log n) rotations: we show that, for infinitely many n, there is a set E of expensive n-node

AVL trees with the property that, given any tree in E, deleting a certain leaf and then reinserting

it produces a tree in E, with the deletions having done Θ(log n) rotations. In general, the tree

produced by an expensive deletion-insertion pair is not the original tree. Indeed, for the trees in

E with odd height h, 2(h−1)/2 deletion-insertion pairs are required to reproduce the original tree.



Chapter 6

Generation of Trees with Bounded

Degree

Studying combinatorial properties of restricted graphs or graphs with configurations has many

applications in various fields of computer science. In this chapter, as a byproduct of our research,

we study unlabeled ordered trees whose nodes have maximum degree ∆ and we present a new

encoding with the respective generation, ranking, and unranking algorithms. This work has been

presented in DCM 2015 [6]. We also have presented another result of such ranking and unranking

algorithms in [7].

A labeled tree is a tree in where to each node is given a unique label. A rooted tree is a tree in

which one of the nodes is distinguished from the others as the root. An ordered tree or plane tree is

a rooted tree for which an ordering is specified for the children of each node. We denote unlabeled

ordered trees whose nodes have maximum degree ∆ by T∆ trees, we also use T∆
n to denote the class

of T∆ trees with n nodes. Formally, a T∆ tree T is defined as a finite set of nodes such that T has

a root r, and if T has more than one node, r is connected to j ≤ ∆ subtrees T1, T2, . . . , Tj , each

one of them is also recursively a T∆ tree, by T∆
n we represent the class of T∆ trees with n nodes.

An example of a T∆ tree is shown in Figure 2.17.

As mentioned in Chapter 2, although many papers have been published earlier in the literature

for generating different classes of trees, few of them were related to the trees with bounded degree,

and to our knowledge, no ranking or unranking are known for ordered trees with bounded degree,

while a generation algorithm for this class already exists [15] where all such trees with n nodes are

generated from the complete set of trees with n− 1 nodes. Unfortunately, redundant generations
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are also possible, hence, the generation algorithm is not efficient.

In Section 6.1, we present a new encoding for T∆
n trees. The size of our encoding is n while the

alphabet size is 4. We also present a new generation algorithm with constant average time and O(n)

worst case time in Section 6.2. In this algorithm, the trees are generated in A-order. Ranking and

unranking algorithms are also designed in Section 6.3 with O(n) and O(n log n) time complexities,

respectively. The presented ranking and unranking algorithms need a precomputation of size and

time O(n2) (assuming ∆ is constant).

6.1 The Encoding Schema

As mentioned earlier, in most of the tree generation algorithms, a tree is represented by an integer

or an alphabet sequence called codeword, hence all possible sequences of this representation are

generated. In general, on any class of trees, we can define a variety of orderings for the set of the

trees. Classical orderings on trees are A-order and B-order which are defined as follows [104, 103,

115].

Definition 7 Let T and T ′ be two ordered trees in T∆ and k = max{deg(T ), deg(T ′)}, if T = T ′,

they have the same order, otherwise, we say that T is less than T ′ in A-order (T ≺A T ′), iff

• |T | < |T ′|, or

• |T | = |T ′| and for some 1 ≤ i ≤ k, Tj = T ′j for all j = 1, 2, . . . , i− 1 and Ti ≺A T ′i ;

where |T | is the number of nodes in T and deg(T ) is the degree of the root of T .

Definition 8 Let T and T ′ be two ordered trees in T∆ and k = max{deg(T ), deg(T ′)}, if T = T ′,

they have the same order, otherwise, we say that T is less than T ′ in B-order (T ≺B T ′), iff

• deg(T ) < deg(T ′), or

• deg(T ) = deg(T ′) and for some 1 ≤ i ≤ k, Tj = T ′j for all j = 1, 2, . . . , i− 1 and Ti ≺B T ′i .

Our generation algorithm, given in the Section 6.2, produces the sequences corresponding to

T∆
n trees in A-order. For a given tree T ∈ T∆

n , the generation algorithm generates all the successor

trees of T in T∆
n , the position of tree T in T∆

n is called rank, the rank function determines the rank

of T ; the inverse operation of ranking is unranking. These functions can be easily employed in any

random generation of T∆
n trees.
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Figure 6.1: An example of a tree T ∈ T∆
n (for ∆ ≥ 4). Its codeword is “s`s`rmsr`msmr”.

Figure 6.2: a) The first T∆
n tree in A-order. b) The last T∆

n tree in A-order.

The main point in generating trees is to choose a suitable encoding to represent them, and

generate their corresponding codewords. Regarding the properties of T∆
n , we present our new

encoding. For any T∆
n tree T , the encoding over 4 letters {s, `,m, r} is defined as follows. The

root of T is labeled by s, and for any internal node, if it has only one child, that child is labeled

by s, otherwise the leftmost child is labeled by `, and the rightmost child is labeled by r, and the

children between the leftmost and the rightmost children (if exist) are all labeled by m. Nodes

are labeled in the same way for any internal node in each level recursively, and by a pre-order

traversal of T , the codeword will be obtained. This labeling is illustrated in Figure 6.1. Note

that the 4-letters alphabet codeword corresponding to the first and last T∆
n trees in A-order are

respectively “s`m∆−2r`m∆−2r . . . `m(n mod ∆)−2r” and “sn” which are shown in Figure 6.2-a and

Figure 6.2-b. In Theorem 18 we will prove the validity of this encoding for T∆
n trees, i.e., every

T∆
n tree has such a codeword and two different T∆

n trees can never have the same codewords.

Definition 9 Suppose that {s, `,m, r}∗ is the set of all sequences with alphabet of s,m, `, r and let

A be a proper subset of {s, `,m, r}∗, then we call the set A a CodeSet∆ iff A satisfies the following

properties:
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Figure 6.3: T∆ trees encoded by C = sx and C = s`x1mx2 . . .mxj−1rxj .

1. ε ∈ A (ε is a string of length 0),

2. ∀x ∈ A : sx ∈ A,

3. ∀ x1, x2, . . . , xi ∈ A, and 2 ≤ i ≤ ∆: `x1mx2mx3 . . .mxi−1rxi ∈ A.

Now we show that a valid codeword is obtained by the concatenation of the character s and each

element of CodeSet∆.

Theorem 18 Let A be the “CodeSet∆” and δ be a string such that δ ∈ A and C be a codeword

obtained by the concatenation of the character s and δ (we show it by sδ ). There is a one-to-one

correspondence between C and a unique T∆ tree.

Proof : It can be proved by induction on the length of C. Initially for a codeword of length

equal to 1, the proof is trivial. Assume that any codeword obtained in the above manner with

length less than n encodes a unique T∆ tree. For a given codeword with length n, because of that

concatenation of s and δ, we have:

1. C = sx, such that x ∈ A, or

2. C = s`x1mx2 . . .mxj−1rxj , such that xi ∈ A, ∀1 ≤ i ≤ j ≤ ∆.

For the first case by induction hypothesis, x is a valid codeword of a T∆ tree T ; therefore, sx

is another codeword corresponding to a T∆ tree by adding a new root to the top of T . This tree

is shown in Figure 6.3-a. For the second case, by induction hypothesis and that concatenation of

s and δ, each sxi for 1 ≤ i ≤ j is a valid codeword for a T∆ tree, therefore with replacement of ‘s

with ` in sx1’ and ‘s with m in sxi for 2 ≤ i ≤ j − 1’ and finally ‘s with r in sxj ’ we can produce

`x1,mx2, . . .mxj−1, rxj codewords. Now they all are subtrees of a T∆ tree whose codeword is

C = s`x1mx2 . . .mxj−1rxj (add a new root and connect it to each one of them). This tree is

shown in Figure 6.3-b. �
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For a T∆
n tree, this encoding needs only 4 alphabet letters and has length n. This encoding is

simple and powerful, so it can be used for many other applications besides the generation algorithm.

In the next section, we use it to generate T∆ trees in A-order.

6.2 The Generation Algorithm

In this section, we present an algorithm that generates the successor sequence of a given codeword

of a T∆
n tree in A-order. For generating the successor of a given codeword C corresponding to a

T∆
n tree T , the codeword C is scanned from right to left. Scanning the codeword C from right to

left, corresponds to a reverse pre-order traversal of T . First we describe how this algorithm works

directly on T , then we present the algorithm for generating the successor of C. For generating the

successor of a given T∆
n tree T we traverse the tree in reverse pre-order as follows.

1. Let v be the last node of T in the pre-order traversal.

2. If v doesn’t have any brothers, then

• repeat {v = parent of v}

until v has at least one brother or v is the root of tree T .

• If v = root, then the tree is the last tree in A-order and there is no successor.

3. If v has at least one brother (obviously it has to be a left brother), delete one node from the

subtree of v and insert this node into its left brother’s subtree, then rebuild both subtrees

(each one as a first tree with corresponding nodes in A-order).

To see that the above procedure gives the successor, it is sufficient to notice that its main

principal (in step 2) is to find the last node v (in the pre-order traversal) with a left brother,

so that in step 3, it updates the tree by moving one node from subtree of v to its brother and

rebuilding both subtrees as the first corresponding trees in A-order. This approach is based on the

definition of A-order trees and it is easy to observe that it generates the successor tree.

The pseudo-code of this algorithm for codewords corresponding to T∆
n trees is presented in

Figure 6.4. In this algorithm, C is a global array of characters holding the codeword (the algorithm

generates the successor sequence of this codeword), n shows the size of the codeword (the number

of nodes of the tree corresponded to C), STsize is a variable contains the size of the subtree rooted

by node corresponded to C[i] and SNum holds the number of consecutive visited s characters.

This algorithm also calls two functions updateChildren(i, ChNum) presented in Figure 6.5, and



104 CHAPTER 6. GENERATION OF TREES WITH BOUNDED DEGREE

Function AOrder-Next(n : integer);
var i, Current, STsize, SNum: integer; finished,RDeleted: boolean;
begin

Current := n; STSize := 0; RDeleted := false; finished := false;
while ( (C[Current] = ′s′) & (Current ≥ 1) ) do

STSize+ +; Current−−;
if (Current = 0) then return (‘no successor’);
while (not finished) do
begin

STSize+ +;
switch C[Current] of

case′r′:
i := Current− 1; SNum := 0;
while (C[i] = ′s′) do

SNum := SNum+ 1; i−−;
if (C[i] = ′r′) then begin

updateBrothers ( Current , STSize);
Current := i; STSize := SNum;

end;
if ( (C[i] = ′m′) or (C[i] = ′`′) ) then begin

if (STSize = 1) then RDeleted := true;
if (STSize > 1) then begin

STSize−−; updateBrothers(Current+ 1, STSize);
Current := i; STSize := SNum+ 1;

end;
end;

case ′m′:
if (RDeleted = true) then C[Current] := ′r′;
updateChildren( Current+ 1, STSize− 1); finished:= true;

case ′`′:
if (RDeleted = true) then C[Current] := ′s′;
updateChildren( Current+ 1, STSize− 1); finished := true;

end;
end;

Figure 6.4: Algorithm for generating the successor codeword for T∆
n trees in A-order.

updateBrothers(i, ChNum) presented in Figure 6.6. The procedure updateChildren(i, ChNum)

regenerates the codeword corresponding to the children of an updated node and the procedure

updateBrothers(i, ChNum) also regenerates the codeword corresponding to the brothers of a

node with regard to the maximum degree ∆ for each node. In these algorithms, C is a global array

of characters holding the codeword, i is the position of the current node in the array C, ChNum

is the number of children/brothers of C[i] to regenerate the corresponding codeword and NChild

is a global array which NChild[i] holds the number of left brothers of node corresponding to C[i]

plus one.

In Theorem 19, we prove that this generation algorithm has a worst case time of O(n) and a

constant average time.
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procedure updateChildren( i, ChNum: integer);
begin

while (ChNum > 0) do begin
if ChNum = 1 then begin

C[i] := ′s′; NChild[i] := 1; i+ +; ChNum−−;
end;
if ChNum > 1 then begin

C[i] := ′`′; NChild[i] := 1; i+ +; ChNum−−;
while ( (NChild[i] < (∆− 1)) & (ChNum > 1) ) do begin

C[i] := ′m′; NChild[i] := NChild[i− 1] + 1; i+ +; ChNum−−;
end;
C[i] := ′r′; NChild[i] := NChild[i− 1] + 1; i+ +; ChNum−−;

end
end;

end;

Figure 6.5: Algorithm for updating the children.

Procedure updateBrothers( i, ChNum: integer);
begin

if ChNum = 1 then begin
C[i] := ′r′; NChild[i] := NChild[i− 1]; ChNum−−;

end;
if ChNum > 1 then begin

C[i] := ′m′; ChNum−−; i+ +;
while ( (NChild[i] < (∆− 1) ) & (ChNum > 1) ) do begin

C[i] := ′m′; NChild[i] := NChild[i− 1] + 1; i+ +; ChNum−−;
end;
C[i] := ′r′; NChild[i] := NChild[i− 1] + 1;
i+ +; ChNum−−; updateChildren(i, ChNum);

end;
end;

Figure 6.6: Algorithm for updating the neighbors.

Let Sn,∆ be the number of T∆
n trees and Sn,∆,d be the number of T∆

n trees which its root has

maximum degree d ≤ ∆. Note that S0,∆ = S0,∆,d = S1,∆ = S1,∆,d = 1.

Lemma 22 There is a constant value γ > 1, such that Sn+1,∆ ≤ γSn,∆ − γ.

Proof : We use induction on n. Observe that for small values of n it is trivial. Let us assume

Sn+1,∆ ≤ γSn,∆ − γ for any n ≤ m. Let T be a T∆
m+1 tree and T1 be its first subtree. Clearly,

T\T1 (tree obtained by removing T1 entirely from T ) is a T∆
m−|T1| tree which its root has maximum

degree ∆− 1. Therefore,

Sm,∆ =

m−1∑
i=1

(Si,∆ × Sm−i,∆,∆−1) . (6.1)
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Therefore,

Sm+1,∆ =

m∑
i=1

(Si,∆Sm+1−i,∆,∆−1)

= Sm,∆,∆−1 +

m∑
i=2

(Si,∆Sm+1−i,∆,∆−1)

= Sm,∆,∆−1 +

m∑
i=2

(γSi−1,∆Sm+1−i,∆,∆−1)− γ
m∑
i=2

Sm+1−i,∆,∆−1 (induction hypothesis)

= Sm,∆,∆−1 − γ
m∑
i=2

Sm+1−i,∆,∆−1 + γ

m−1∑
j=1

(Sj+1−1,∆Sm+1−(j+1),∆,∆−1) (for j = i− 1)

≤ −γ + γ

m−1∑
j=1

(Sj,∆Sm−j,∆,∆−1)

≤ γSm,∆ − γ (by Equation 6.1) .

Hence the induction is complete. �

Theorem 19 The algorithm Next presented in Figure 6.4 has a worst case time complexity of

O(n) and an average time complexity of O(1).

Proof : The worst case time complexity of this algorithm is O(n) because the sequence is scanned

just once. For computing the average time, it should be noted that during the scanning process,

every time we visit the characters m or `, the algorithm will terminate, so we define Sn,∆i as the

number of codewords of T∆
n trees whose the last character m or ` has distance i from the end,

recall that Sn,∆ denotes the total number of T∆
n trees. Obviously we have:

Sn,∆ =

n∑
i=1

Sn,∆i . (6.2)

We define Hn as the average time of generating all codewords of T∆
n trees,

Hn ≤ (k/Sn,∆)
∑n
i=1 iS

n,∆
i ,

≤ (k/Sn,∆)
∑n
j=1

∑n
i=j S

n,∆
i .

Where k is a constant value. On the other hand, consider that for Sn+1,∆
j we have two cases, in the

first case, the last character m or ` is a leaf and in the second one, it is not. Therefore, Sn+1,∆
j is

greater than or equal to just the first case, and in that case by removing the node corresponding to

the ‘last character m or ` of the codeword’, the remaining tree will have a corresponding codeword

belongs to exactly one of Sn,∆k cases, for j ≤ k ≤ n. By substituting k and i we have:
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Sn+1,∆
j ≥

∑n
i=j S

n,∆
i .

Therefore, for Hn we have:

Hn ≤ (k/Sn,∆)
∑n
j=1 S

n+1,∆
j ,

then by using Equation 6.2,

Hn ≤ kSn+1,∆/Sn,∆.

Finally, by Lemma 22, Hn ≤ k(γSn,∆ − γ)/Sn,∆ = O(1). Hn ≤ kO(1) = O(1). �

It should be mentioned that this constant average time complexity is without considering the

input or the output time.

6.3 Ranking and Unranking Algorithms

By designing a generation algorithm in a specific order, the ranking algorithm is desired. In this

section, ranking and unranking algorithms for these trees in A-order will be given. Ranking and

unranking algorithms usually use a precomputed table of the number of a subclass of given trees

with some specified properties to achieve efficient time complexities; these precomputations will be

done only once and stored in a table for further use. Recall that Sn,∆ denotes the number of T∆
n

trees. Let Sn,∆m,d be the number of T∆
n trees whose first subtree has exactly m nodes and its root

has maximum degree d and Dn,∆
m,d be the number of T∆

n trees whose first subtree has at most m

nodes and its root has maximum degree d.

Theorem 20

• Dn,∆
m,d =

∑m
i=1 S

n,∆
i,d ,

• Sn,∆ =
∑n−1
i=1 S

n,∆
i,∆ .

Proof : The proof is trivial. �

Theorem 21

Sn,∆m,d = Sm+1,∆
m,1 ×

n−m−1∑
i=1

(Sn−m,∆i,d−1 ).

Proof : Let T be a T∆
n tree whose first subtree has exactly m nodes and its root has maximum

degree d; by the definition and as shown in Figure 6.7 the number of the possible cases for the first
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Figure 6.7: T∆
n tree whose first subtree has exactly m nodes and its root has maximum degree d.

subtree is Sm+1,∆
m,1 and the number of cases for the other parts of the tree is:

∑n−m−1
i=1 (Sn−m,∆i,d−1 ).

So:

Sn,∆m,d = Sm+1,∆
m,1 ×

n−m−1∑
i=1

(Sn−m,∆i,d−1 ).

�

Now, let T be a T∆
n tree whose subtrees are defined by T1, T2, . . . , Tk and for 1 ≤ i ≤ k ≤ ∆ :

|Ti| = ni and
∑k
i=1 ni = n − 1. For computing the rank of T , we have to enumerate the number

of trees generated before T . Let Rank(T,n) be the rank of T . The number of T∆ trees whose first

subtree is smaller than T1 is equal to:

n1−1∑
i=1

Sn,∆i,∆ + (Rank(T1, n1)− 1)×
n−n1∑
i=1

Sn−n1,∆
i,∆−1 ,

and the number of T∆ trees whose first subtree is equal to T1 but the second subtree is smaller

than T2 is equal to:

n2−1∑
i=1

Sn−n1,∆
i,∆−1 + (Rank(T2, n2)− 1)×

n−n1−n2∑
i=1

Sn−n1−n2,∆
i,∆−2 .

Similarly, the number of T∆ trees whose first (j− 1) subtrees are equal to T1, T2, . . . , Tj−1 and the

jth subtree is smaller than Tj is equal to:

nj−1∑
i=1

S
(n−

∑j−1
`=1 n`),∆

i,∆−j+1 + (Rank(Tj , nj)− 1)×
n−

∑j
`=1 n`∑

i=1

S
n−

∑j
`=1 n`,∆

i,∆−j .
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Therefore, regarding enumerations explained above, for given tree T ∈ T∆
n whose subtrees are

defined by T1, T2, . . . , Tk , we can write:

Rank(T, 1) = 1,

Rank(T, n) = 1 +

k∑
j=1

(

nj−1∑
i=1

S
(n−

∑j−1
`=1 n`),∆

i,∆−j+1 +

+ (Rank(Tj , nj)− 1)

n−
∑j
`=1 n`∑

i=1

S
(n−

∑j
`=1 n`),∆

i,∆−j ).

Hence, from Theorem 20, by using Dn,∆
m,d =

∑m
i=1 S

n,∆
i,d , we have:

Rank(T, 1) = 1,

Rank(T, n) = 1 +

k∑
j=1

(D
(n−

∑j−1
`=1 n`),∆

(nj−1),(∆−j+1) +

+ (Rank(Tj , nj)− 1)D
(n−

∑j
`=1 n`),∆

(n−
∑j
`=1 n`),(∆−j)

).

To achieve the most efficient time for ranking and unranking algorithms, we need to precompute

Dn,∆
m,d and store it for further use. Assuming ∆ is constant, to store Dn,∆

m,d values, a 3-dimensional

table denoted by D[n,m, d] is enough, this table will have a size of O(n×n×∆) = O(n2) and can

be computed using Theorems 20 and 21 with time complexity of O(n×n×∆) = O(n2). Note that

for ranking and unranking of trees without a simple structure, it is expected to have a quadratic

or even cubic precomputation [66].

To compute the rank of a codeword stored in array C, we also need an auxiliary array N [i]

which keeps the number of nodes in the subtree whose root is labeled by C[i] and corresponds to

ni in the above formula. This array can be computed by a pre-order traversal or a level first search

(DFS) algorithm just before we call the ranking algorithm.

The pseudo-code for ranking algorithm is given in Figure 6.8. In this algorithm, Beg is the

variable that shows the positions of the first character in the array C whose rank is being computed

(Beg is initially set to 1), and Fin is the variable that returns the position of the last character of

C.

Now the time complexity of this algorithm is discussed. Obviously computing the array N [i]

takes O(n). Hence we discuss the complexity of ranking algorithm which was given in Figure 6.8.

Theorem 22 The ranking algorithm has the time complexity of O(n) (with a preprocessing of time
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Function Rank( Beg : integer; var Fin: integer) ;
Var R, Point, PointF in, j, Nodes, n: integer;
begin

n := N [Beg];
if (n = 1) then begin

Fin := Beg; return(1) end;
else begin

Point := Beg + 1; R := 0; Nodes := 0; j := 1;
while ( Nodes < n ) do begin

R := R+D[n−Nodes,N [Point]− 1,∆− j + 1]+
(Rank(Point, PointF in)− 1)×
D[(n−Nodes−N [Point]), (n−Nodes−N [Point]),∆− j];

Nodes := Nodes+N [Point]; j:=j+1;
Point := PointF in+ 1;

end;
Fin := Point− 1;
return( R+ 1);

end;
end

Figure 6.8: Ranking algorithm for T∆
n trees.

and space O(n2)).

Proof : Let T be a T∆
n tree whose subtrees are defined by T1, T2, . . ., Tk and for 1 ≤ i ≤ k ≤ ∆ :

|Ti| = ni and
∑k
i=1 ni = n− 1, and let T (n) be the time complexity of ranking algorithm, then we

can write:

T (n) = T (n1) + T (n2) + . . .+ T (nk) + αk,

where α is a constant and αk is the time complexity of the non-recursive parts of the algorithm. By

using induction, we prove that if β is a value greater than α then T (n) ≤ βn. We have T (1) ≤ β.

We assume T (m) ≤ β(m− 1) for each m < n, therefore:

T (n) ≤ β(n1 − 1) + β(n2 − 1) + . . .+ β(nk − 1) + αk,

T (n) ≤ β(n1 + . . .+ nk − k) + αk,

T (n) ≤ βn− βk + αk,

T (n) ≤ βn.

So the induction is complete and we have T (n) ≤ βn = O(n). �

Before giving the description of the unranking algorithm we need to define two new operators.

• If a and b are integer numbers then a div+ b is defined as follows:

– If b - a then a div+ b is equal to (a div b).
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– If b | a then a div+ b is equal to (a div b)− 1.

• If a and b are integer numbers then a mod+ b is defined as follows:

– If b - a then a mod+ b is equal to (a mod b).

– If b | a then a mod+ b is equal to b.

For unranking algorithm, we need the values of Sn,∆, these values can be stored in an array of size

n, denoted by S[n] (we assume ∆ is constant). The unranking algorithm is the reverse approach

of the ranking algorithm, the unranking algorithm is given in Figure 6.9. In this algorithm, the

rank R is the input, Beg is a variable showing the position of the first character in the global array

C and initially is set to 1. The generated codeword will be stored in array C. The variable n is

the number of nodes and Root stores the character corresponding to the node we consider for the

unranking procedure. For the next character we have two possibilities. If the root is r or s then

the next character, if exists, will be ` or s (based on the number of root’s children). If the root

is m or `, we have again two possible cases: if all the nodes of the current tree are not produced

then the next character is m otherwise the next character will be r.

Theorem 23 The time complexity of the unranking algorithm is O(n log n) (with a preprocessing

of time and space O(n2)).

Proof : Let T be a T∆
n tree whose subtrees are defined by T1, T2, . . ., Tk and for 1 ≤ i ≤ k ≤

∆ : |Ti| = ni and
∑k
i=1 ni = n − 1, and let T (n) be the time complexity of the unranking

algorithm. With regards to the unranking algorithm, the time complexity of finding j such that

D[n, j,∆− ChildNum+ 1] ≥ R for each Ti of T is O(log ni), therefore, we have:

T (n) = O(log n1 + log n2 + . . .+ log nk) + T (n1) + T (n2) + . . .+ T (nk).

We want to prove that T (n) = O(n log n). In order to obtain an upper bound for T (n) we do

as follows. First we prove this assumption for k = 2 then we generalize it. For k = 2 we have

T (n) = O(log(n1) + log(n2)) + T (n1) + T (n2). Let n1 = x then we can write the above formula as

T (n) = T (x) + T (n− x) +O(log(x) + log(n− x)) = T (x) + T (n− x) + C ′ log(n).

For proving that T (n) = O(n log(n)) we use an induction on n. We assume T (m) ≤ Cm log(m)

for all m ≤ n, thus in T (n) we can substitute
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Function UnRank ( R,Beg, n: integer; Root: char);
var Point, i, t, ChildNum: integer;
begin

if ( (n = 0) or (R = 0) ) then return(Beg − 1)
else begin

if (n = 1) then begin
C[Beg] := Root; return(Beg);

end;
else begin

C[Beg] := Root; Point := Beg + 1;
Root := ′`′; ChildNum := 0;
while (n > 0) do begin

ChildNum+ +;
find the smallest i that D[n, i,∆− ChildNum+ 1] ≥ R;
R := R−D[n, i− 1,∆− ChildNum+ 1];
if (n− i)= 1 then

if (ChildNum = 1) then Root := ′s′;
else Root := ′r′;

t := S[n];
Point := UnRank( (div+(R, t)) + 1, Point, i, Root ) +1;
R := mod+(R, t);
n := n− i; Root := ′m′;

end;
return(Point− 1);

end;
end;

end

Figure 6.9: Unranking algorithm for T∆
n trees.

T (n) ≤ C × x log(x) + C × (n− x) log(n− x) + C ′ log(n).

Let f(x) = C ×x log(x) +C × (n−x) log(n−x), now the maximum value of f(x) with respect

to x and by considering n as a constant value can be obtained by evaluating the derivation of f(x)

which is f ′(x) = C × log(x) − C × log(n − x). Thus if f ′(x) = 0 we get x = (n − 1)/2 and by

computing f(1), f(n− 2) and f((n− 1)/2) we have:

f(1) = f(n− 2) = C × (n− 2) log(n− 2),

f((n− 1)/2) = 2C × ((n− 1)/2)× log((n− 1)/2) < C × (n− 2) log(n− 2).

so the maximum value of f(x) is equal to C × (n− 2) log(n− 2) and therefore

T (n) ≤ C × (n− 2) log(n− 2) + C ′ × log(n).

It is enough to assume C = C ′, then

T (n) ≤ C × (n− 2) log(n) + C × log(n) ≤ C × n log(n).
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Now, for generalizing the above proof and proving T (n) = O(n log n), we should find the maximum

of the function f(n1, n2, . . . , nk) =
∏k
i=1 ni. By the Lagrange method we prove that the maximum

value of f(n1, n2, . . . , nk) is equal to (nk )k. Then δf
δk = (nk )k(ln(nk )− 1) = 0, and

ln(nk )− 1 = 0,

n
k = e⇒ k = n

e ,

so the maximum value of f(n1, n2, . . . , nk) is equal to e
n
e . We know that:

T (n) = O(log n1 + log n2 + . . .+ log nk) + T (n1) + T (n2) + . . .+ T (nk),

so

T (n) = O(log(
∏k
i=1 ni) +

∑k
i=1 T (ni),

T (n) < O(log(n
n
e )) +

∑k
i=1 T (ni),

T (n) < O(ne log e) = O(n) +
∑k
i=1 T (ni).

Finally, by using induction, we assume that for any m < n we have T (m) < βm logm, therefore:

T (n) = O(n) +
∑k
i=1 T (ni),

T (n) < O(n) +
∑k
i=1 βO(ni log ni),

T (n) < O(n) + β log(
∏k
i=1(nnii )),

T (n) < O(n) +O(log(nn)),

T (n) = O(n log n).

Hence, the proof is complete. �

6.4 Summary

In this chapter, we studied the problem of generation, ranking and unranking of ordered trees of size

n and maximum degree ∆; we presented an efficient algorithm for the generation of these trees in

A-order with an encoding over 4 letters and size n. Moreover, two efficient ranking and unranking

algorithms were designed for this encoding. The generation algorithm has O(n) time complexity

in the worst case and O(1) in the average case. The ranking and unranking algorithms have O(n)

and O(n log n) time complexity, respectively. The presented ranking and unranking algorithms

use a precomputed table of size O(n2) (assuming ∆ is constant). To our best knowledge, the only

previous work on this class of trees was an inefficient generation algorithm [15].
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Chapter 7

Conclusions and Discussion

Trees are one of the most important basic and simple data structures for organizing information

in computer science. A great amount of research has been done in developing new data structures

for organizing data. The memory hierarchies of modern computers are composed of several levels

of memories, starting from the caches. Caches have very small access time and capacity comparing

to main memory and external memory. From cache to main memory, then to external memory,

access time and capacity increases significantly. Two main memory models to evaluate the I/O

complexity are external-memory model [2] and cache-oblivious model [39, 81].

In the external-memory model, accessing an item from external storage is extremely slow.

Transferring a block between the internal memory and the external memory takes constant time.

Computations performed within the internal memory are considered of taking no time at all and

this is because the external memory is so much slower than the random access memory [70]. We

assume that each external memory access transmits one page of B elements.

Cache-oblivious model [39, 81] allows to consider only a two-level hierarchy, while proving

results for a hierarchy composed of an unknown number of levels. In this model, memory has

blocks of size B words, which B is an unknown parameter and a cache-oblivious algorithm is

completely unaware of the value of B used by the underlying system.

We introduced the core partitioning scheme, which maintains a balanced search tree as a dy-

namic collection of complete balanced binary trees called cores. Using this technique we achieve the

same theoretical efficiency of modern cache-oblivious data structures by using the classic structures

such as weight-balanced trees or height balanced trees such as AVL trees. We show that these “clas-

sic data structures” can be efficiently used in external-memory/cache-oblivious models. In fact, we
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obtain the same optimal results obtained by the data structures purposely designed for external-

memory/cache-oblivious models. We preserve the original topology and algorithms of the given

balanced search tree using a simple post-processing with guaranteed performance to completely

rebuild the changed cores (possibly all of them) after each update. Using our core partitioning

scheme, we show how to store balanced trees such as weight-balanced trees and height-balanced

trees (AVL trees), so that they simultaneously achieve efficient memory allocation, space-efficient

representation, and cache-obliviousness. When performing updates, we show that weight-balanced

trees can be maintained with a logarithmic cost, while AVL trees require super poly-logarithmic

cost according to a lower bound on the subtree size of the rotated nodes.

The notion of core partition shows how to obtain cache-efficient versions of the classical balanced

binary search trees such as AVL trees and weight-balanced trees. A natural question is whether

the core partition can be also applied to arbitrary binary search trees which can be unbalanced.

We give a positive answer to this question: the resulting data structure, called Cache-Oblivious

General Balanced Tree (COG-tree), can be seen as a smooth extension of Anderson’s General

Balanced Tree to the cache-oblivious model with transfer block size B. Both the COG-trees and

the core partitioning on weight-balanced trees occupies linear space and have an improved cache

complexity of O(logB n) amortized block transfers and O(log n) amortized time for updates, and

O(logB n) block transfers and O(log n) time for the search operation.

We also introduced the gaps in AVL trees. Gaps are special tree edges such that the height

difference between the subtrees, rooted at their two endpoints, is equal to 2. We showed how to

express the size of a given AVL tree in terms of the heights of the gaps. Using that, the size of

any AVL tree can be characterized with a very simple and useful formula and we can describe the

precise relationship between ‘the size and the heights of the nodes’ and ‘the subtree sizes and the

heights of the gaps’, we can also independently describe the relationship between the heights of

the nodes and the heights of the gaps. We have also studied gaps’ behavior in an AVL tree during

a sequence of insertions and deletions. Gaps have been also exploited in some of our other results.

As known, an insertion in an n-node AVL tree takes at most two rotations, but a deletion in an

n-node AVL tree can take Θ(log n). A natural question is whether deletions can take many rotations

not only in the worst case but in the amortized case as well? Heaupler, Sen, and Tarjan’s [48]

conjectured that alternating insertions and deletions in an n-node AVL tree can cause each deletion

to do Ω(log n) rotations. We proved that conjuncture is true by providing a construction which

causes each deletion to do Ω(log n) rotations: we showed that, for infinitely many n, there is a set
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E of expensive n-node AVL trees with the property that, given any tree in E, deleting a certain leaf

and then reinserting it produces a tree in E, with the deletion having done Θ(log n) rotations. One

can do an arbitrary number of such expensive deletion-insertion pairs. The difficulty in obtaining

such a construction is that in general the tree produced by an expensive deletion-insertion pair is

not the original tree. Indeed, if the trees in E have odd height h, 2(h−1)/2 deletion-insertion pairs

are required to reproduce the original tree.

Finally as a byproduct of our research, we introduced a new encoding over an alphabet of size

4 for representing unlabeled ordered trees with maximum degree ∆. We use this encoding for

generating these trees in A-order with O(1) average time and O(n) worst case time complexity.

Due to the given encoding, both ranking and unranking algorithms are also designed taking O(n)

and O(n log n) time complexities (with a precomputation of size and time O(n2)).

For the future works, the main problem would be applying core partitioning scheme on the

remaining binary search trees such as red-black trees or 2-3 trees, investigating that if we can

obtain efficient results in cache-oblivious/external-memory model.
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