6 research outputs found

    Generating Big Data Sets from Knowledge-based Decision Support Systems to Pursue Value-based Healthcare

    Get PDF
    Talking about Big Data in healthcare we usually refer to how to use data collected from current electronic medical records, either structured or unstructured, to answer clinically relevant questions. This operation is typically carried out by means of analytics tools (e.g. machine learning) or by extracting relevant data from patient summaries through natural language processing techniques. From other perspective of research in medical informatics, powerful initiatives have emerged to help physicians taking decisions, in both diagnostics and therapeutics, built from the existing medical evidence (i.e. knowledge-based decision support systems). Much of the problems these tools have shown, when used in real clinical settings, are related to their implementation and deployment, more than failing in its support, but, technology is slowly overcoming interoperability and integration issues. Beyond the point-of-care decision support these tools can provide, the data generated when using them, even in controlled trials, could be used to further analyze facts that are traditionally ignored in the current clinical practice. In this paper, we reflect on the technologies available to make the leap and how they could help driving healthcare organizations shifting to a value-based healthcare philosophy

    Evaluation of a Diagnostic Decision Support System for the Triage of Patients in a Hospital Emergency Department

    Get PDF
    One of the biggest challenges for the management of the emergency department (ED) is to expedite the management of patients since their arrival for those with low priority pathologies selected by the classification systems, generating unnecessary saturation of the ED. Diagnostic decision support systems (DDSS) can be a powerful tool to guide diagnosis, facilitate correct classification and improve patient safety. Patients who attended the ED of a tertiary hospital with the preconditions of Manchester Triage system level of low priority (levels 3, 4 and 5), and with one of the five most frequent causes for consultation: dyspnea, chest pain, gastrointestinal bleeding, general discomfort and abdominal pain, were interviewed by an independent researcher with a DDSS, the Mediktor system. After the interview, we compare the Manchester triage and the final diagnoses made by the ED with the triage and diagnostic possibilities ordered by probability obtained by the Mediktor system, respectively. In a final sample of 214 patients, the urgency assignment made by both systems does not match exactly, which could indicate a different classification model, but there were no statistically significant differences between the assigned levels (S = 0.059, p = 0.442). The diagnostic accuracy between the final diagnosis and any of the first 10 Mediktor diagnoses was of 76.5%, for the first five diagnoses was 65.4%, for the first three diagnoses was 58%, and the exact match with the first diagnosis was 37.9%. The classification of Mediktor in this segment of patients shows that a higher level of severity corresponds to a greater number of hospital admissions, hospital readmissions and emergency screenings at 30 days, although without statistical significance. It is expected that this type of applications may be useful as a complement to the triage, to accelerate the diagnostic approach, to improve the request for appropriate complementary tests in a protocolized action model and to reduce waiting times in the ED

    Generating Big Data Sets from Knowledge-based Decision Support Systems to Pursue Value-based Healthcare

    No full text
    Talking about Big Data in healthcare we usually refer to how to use data collected from current electronic medical records, either structured or unstructured, to answer clinically relevant questions. This operation is typically carried out by means of analytics tools (e.g. machine learning) or by extracting relevant data from patient summaries through natural language processing techniques. From other perspective of research in medical informatics, powerful initiatives have emerged to help physicians taking decisions, in both diagnostics and therapeutics, built from the existing medical evidence (i.e. knowledge-based decision support systems). Much of the problems these tools have shown, when used in real clinical settings, are related to their implementation and deployment, more than failing in its support, but, technology is slowly overcoming interoperability and integration issues. Beyond the point-of-care decision support these tools can provide, the data generated when using them, even in controlled trials, could be used to further analyze facts that are traditionally ignored in the current clinical practice. In this paper, we reflect on the technologies available to make the leap and how they could help driving healthcare organizations shifting to a value-based healthcare philosophy

    Toward Value-Based Healthcare through Interactive Process Mining in Emergency Rooms: The Stroke Case

    Get PDF
    [EN] The application of Value-based Healthcare requires not only the identification of key processes in the clinical domain but also an adequate analysis of the value chain delivered to the patient. Data Science and Big Data approaches are technologies that enable the creation of accurate systems that model reality. However, classical Data Mining techniques are presented by professionals as black boxes. This evokes a lack of trust in those techniques in the medical domain. Process Mining technologies are human-understandable Data Science tools that can fill this gap to support the application of Value-Based Healthcare in real domains. The aim of this paper is to perform an analysis of the ways in which Process Mining techniques can support health professionals in the application of Value-Based Technologies. For this purpose, we explored these techniques by analyzing emergency processes and applying the critical timing of Stroke treatment and a Question-Driven methodology. To demonstrate the possibilities of Process Mining in the characterization of the emergency process, we used a real log with 9046 emergency episodes from 2145 stroke patients that occurred from January 2010 to June 2017. Our results demonstrate how Process Mining technology can highlight the differences between the flow of stroke patients compared with that of other patients in an emergency. Further, we show that support for health professionals can be provided by improving their understanding of these techniques and enhancing the quality of care.This research was funded by Hospital General de Valencia thanks to the LOPEZ TRIGO 2017 AWARD and by the CONICYT grant REDI 170136 Project. The APC was funded by the APE/2019/007 (D.O.G.V. 8355/06.08.2018 Annex XIII).Ibåñez SĂĄnchez, G.; FernĂĄndez Llatas, C.; Martinez-Millana, A.; Celda, A.; Mandingorra, J.; Aparici-Tortajada, L.; Valero Ramon, Z.... (2019). Toward Value-Based Healthcare through Interactive Process Mining in Emergency Rooms: The Stroke Case. International Journal of Environmental research and Public Health. 16(10):1-22. https://doi.org/10.3390/ijerph16101783S1221610Berwick, D. M., Nolan, T. W., & Whittington, J. (2008). The Triple Aim: Care, Health, And Cost. Health Affairs, 27(3), 759-769. doi:10.1377/hlthaff.27.3.759Porter, M. E. (2010). What Is Value in Health Care? New England Journal of Medicine, 363(26), 2477-2481. doi:10.1056/nejmp1011024Mamlin, B. W., & Tierney, W. M. (2016). The Promise of Information and Communication Technology in Healthcare: Extracting Value From the Chaos. The American Journal of the Medical Sciences, 351(1), 59-68. doi:10.1016/j.amjms.2015.10.015Murdoch, T. B., & Detsky, A. S. (2013). The Inevitable Application of Big Data to Health Care. JAMA, 309(13), 1351. doi:10.1001/jama.2013.393Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G. (2014). Big Data In Health Care: Using Analytics To Identify And Manage High-Risk And High-Cost Patients. Health Affairs, 33(7), 1123-1131. doi:10.1377/hlthaff.2014.0041FernĂĄndez-Llatas, C., Meneu, T., Traver, V., & Benedi, J.-M. (2013). Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation. International Journal of Environmental Research and Public Health, 10(11), 5671-5682. doi:10.3390/ijerph10115671Rojas, E., SepĂșlveda, M., Munoz-Gama, J., Capurro, D., Traver, V., & Fernandez-Llatas, C. (2017). Question-Driven Methodology for Analyzing Emergency Room Processes Using Process Mining. Applied Sciences, 7(3), 302. doi:10.3390/app7030302Sackett, D. L., Rosenberg, W. M. C., Gray, J. A. M., Haynes, R. B., & Richardson, W. S. (1996). Evidence based medicine: what it is and what it isn’t. BMJ, 312(7023), 71-72. doi:10.1136/bmj.312.7023.71Is Evidence-Based Medicine Patient-Centered and Is Patient-Centered Care Evidence-Based? (2006). Health Services Research, 41(1), 1-8. doi:10.1111/j.1475-6773.2006.00504.xGoldberger, J. J., & Buxton, A. E. (2013). Personalized Medicine vs Guideline-Based Medicine. JAMA, 309(24), 2559. doi:10.1001/jama.2013.6629Kelly, M. P., Heath, I., Howick, J., & Greenhalgh, T. (2015). The importance of values in evidence-based medicine. BMC Medical Ethics, 16(1). doi:10.1186/s12910-015-0063-3Gonzalez-Ferrer, A., Seara, G., Cháfer, J., & Mayol, J. (2018). Generating Big Data Sets from Knowledge-based Decision Support Systems to Pursue Value-based Healthcare. International Journal of Interactive Multimedia and Artificial Intelligence, 4(7), 42. doi:10.9781/ijimai.2017.03.006Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The Parable of Google Flu: Traps in Big Data Analysis. Science, 343(6176), 1203-1205. doi:10.1126/science.1248506Rojas, E., Munoz-Gama, J., SepĂșlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, 224-236. doi:10.1016/j.jbi.2016.04.007Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Baker, K., Dunwoodie, E., Jones, R. G., Newsham, A., Johnson, O., Price, C. P., 
 Hall, G. (2017). Process mining routinely collected electronic health records to define real-life clinical pathways during chemotherapy. International Journal of Medical Informatics, 103, 32-41. doi:10.1016/j.ijmedinf.2017.03.011Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Partington, A., Wynn, M., Suriadi, S., Ouyang, C., & Karnon, J. (2015). Process Mining for Clinical Processes. ACM Transactions on Management Information Systems, 5(4), 1-18. doi:10.1145/2629446Storm-Versloot, M. N., Ubbink, D. T., Kappelhof, J., & Luitse, J. S. K. (2011). Comparison of an Informally Structured Triage System, the Emergency Severity Index, and the Manchester Triage System to Distinguish Patient Priority in the Emergency Department. Academic Emergency Medicine, 18(8), 822-829. doi:10.1111/j.1553-2712.2011.01122.xFeigin, V. L., Roth, G. A., Naghavi, M., Parmar, P., Krishnamurthi, R., Chugh, S., 
 Forouzanfar, M. H. (2016). Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet Neurology, 15(9), 913-924. doi:10.1016/s1474-4422(16)30073-4Howard, G., & Goff, D. C. (2012). Population shifts and the future of stroke: forecasts of the future burden of stroke. Annals of the New York Academy of Sciences, 1268(1), 14-20. doi:10.1111/j.1749-6632.2012.06665.xGustavsson, A., Svensson, M., Jacobi, F., Allgulander, C., Alonso, J., Beghi, E., 
 Olesen, J. (2011). Cost of disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21(10), 718-779. doi:10.1016/j.euroneuro.2011.08.008Alberts, M. J. (2000). Recommendations for the Establishment of Primary Stroke Centers. JAMA, 283(23), 3102. doi:10.1001/jama.283.23.3102Conca, T., Saint-Pierre, C., Herskovic, V., SepĂșlveda, M., Capurro, D., Prieto, F., & Fernandez-Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. Journal of Medical Internet Research, 20(4), e127. doi:10.2196/jmir.8884Chavalarias, D., Wallach, J. D., Li, A. H. T., & Ioannidis, J. P. A. (2016). Evolution of ReportingPValues in the Biomedical Literature, 1990-2015. JAMA, 315(11), 1141. doi:10.1001/jama.2016.195

    Addressing data accuracy and information integrity in mHealth using ML

    Full text link
    The aim of the study was finding a way in which Machine Learning can be applied in mHealth Solutions to detect inaccurate data that can potentially harm patients. The result was an algorithm that classified accurate and inaccurate data

    DESIGN AND EXPLORATION OF NEW MODELS FOR SECURITY AND PRIVACY-SENSITIVE COLLABORATION SYSTEMS

    Get PDF
    Collaboration has been an area of interest in many domains including education, research, healthcare supply chain, Internet of things, and music etc. It enhances problem solving through expertise sharing, ideas sharing, learning and resource sharing, and improved decision making. To address the limitations in the existing literature, this dissertation presents a design science artifact and a conceptual model for collaborative environment. The first artifact is a blockchain based collaborative information exchange system that utilizes blockchain technology and semi-automated ontology mappings to enable secure and interoperable health information exchange among different health care institutions. The conceptual model proposed in this dissertation explores the factors that influences professionals continued use of video- conferencing applications. The conceptual model investigates the role the perceived risks and benefits play in influencing professionals’ attitude towards VC apps and consequently its active and automatic use
    corecore