320 research outputs found

    Fractional diffusion in periodic potentials

    Full text link
    Fractional, anomalous diffusion in space-periodic potentials is investigated. The analytical solution for the effective, fractional diffusion coefficient in an arbitrary periodic potential is obtained in closed form in terms of two quadratures. This theoretical result is corroborated by numerical simulations for different shapes of the periodic potential. Normal and fractional spreading processes are contrasted via their time evolution of the corresponding probability densities in state space. While there are distinct differences occurring at small evolution times, a re-scaling of time yields a mutual matching between the long-time behaviors of normal and fractional diffusion

    Fractional Fokker-Planck Equations for Subdiffusion with Space-and-Time-Dependent Forces

    Get PDF
    We have derived a fractional Fokker-Planck equation for subdiffusion in a general space-and- time-dependent force field from power law waiting time continuous time random walks biased by Boltzmann weights. The governing equation is derived from a generalized master equation and is shown to be equivalent to a subordinated stochastic Langevin equation.Comment: 5 page

    Towards deterministic equations for Levy walks: the fractional material derivative

    Full text link
    Levy walks are random processes with an underlying spatiotemporal coupling. This coupling penalizes long jumps, and therefore Levy walks give a proper stochastic description for a particle's motion with broad jump length distribution. We derive a generalized dynamical formulation for Levy walks in which the fractional equivalent of the material derivative occurs. Our approach will be useful for the dynamical formulation of Levy walks in an external force field or in phase space for which the description in terms of the continuous time random walk or its corresponding generalized master equation are less well suited

    Pre-asymptotic corrections to fractional diffusion equations

    Full text link
    The motion of contaminant particles through complex environments such as fractured rocks or porous sediments is often characterized by anomalous diffusion: the spread of the transported quantity is found to grow sublinearly in time due to the presence of obstacles which hinder particle migration. The asymptotic behavior of these systems is usually well described by fractional diffusion, which provides an elegant and unified framework for modeling anomalous transport. We show that pre-asymptotic corrections to fractional diffusion might become relevant, depending on the microscopic dynamics of the particles. To incorporate these effects, we derive a modified transport equation and validate its effectiveness by a Monte Carlo simulation.Comment: 6 pages, 3 figure
    • …
    corecore