179,298 research outputs found

    Generalized Stability Condition for Generalized and Doubly-Generalized LDPC Codes

    Full text link
    In this paper, the stability condition for low-density parity-check (LDPC) codes on the binary erasure channel (BEC) is extended to generalized LDPC (GLDPC) codes and doublygeneralized LDPC (D-GLDPC) codes. It is proved that, in both cases, the stability condition only involves the component codes with minimum distance 2. The stability condition for GLDPC codes is always expressed as an upper bound to the decoding threshold. This is not possible for D-GLDPC codes, unless all the generalized variable nodes have minimum distance at least 3. Furthermore, a condition called derivative matching is defined in the paper. This condition is sufficient for a GLDPC or DGLDPC code to achieve the stability condition with equality. If this condition is satisfied, the threshold of D-GLDPC codes (whose generalized variable nodes have all minimum distance at least 3) and GLDPC codes can be expressed in closed form.Comment: 5 pages, 2 figures, to appear in Proc. of IEEE ISIT 200

    Capping Ligand Vortices as “Atomic Orbitals” in Nanocrystal Self-Assembly

    Get PDF
    We present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation. We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model

    Probabilistic Modeling Paradigms for Audio Source Separation

    Get PDF
    This is the author's final version of the article, first published as E. Vincent, M. G. Jafari, S. A. Abdallah, M. D. Plumbley, M. E. Davies. Probabilistic Modeling Paradigms for Audio Source Separation. In W. Wang (Ed), Machine Audition: Principles, Algorithms and Systems. Chapter 7, pp. 162-185. IGI Global, 2011. ISBN 978-1-61520-919-4. DOI: 10.4018/978-1-61520-919-4.ch007file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04Most sound scenes result from the superposition of several sources, which can be separately perceived and analyzed by human listeners. Source separation aims to provide machine listeners with similar skills by extracting the sounds of individual sources from a given scene. Existing separation systems operate either by emulating the human auditory system or by inferring the parameters of probabilistic sound models. In this chapter, the authors focus on the latter approach and provide a joint overview of established and recent models, including independent component analysis, local time-frequency models and spectral template-based models. They show that most models are instances of one of the following two general paradigms: linear modeling or variance modeling. They compare the merits of either paradigm and report objective performance figures. They also,conclude by discussing promising combinations of probabilistic priors and inference algorithms that could form the basis of future state-of-the-art systems

    Solving Einstein's Equations With Dual Coordinate Frames

    Get PDF
    A method is introduced for solving Einstein's equations using two distinct coordinate systems. The coordinate basis vectors associated with one system are used to project out components of the metric and other fields, in analogy with the way fields are projected onto an orthonormal tetrad basis. These field components are then determined as functions of a second independent coordinate system. The transformation to the second coordinate system can be thought of as a mapping from the original ``inertial'' coordinate system to the computational domain. This dual-coordinate method is used to perform stable numerical evolutions of a black-hole spacetime using the generalized harmonic form of Einstein's equations in coordinates that rotate with respect to the inertial frame at infinity; such evolutions are found to be generically unstable using a single rotating coordinate frame. The dual-coordinate method is also used here to evolve binary black-hole spacetimes for several orbits. The great flexibility of this method allows comoving coordinates to be adjusted with a feedback control system that keeps the excision boundaries of the holes within their respective apparent horizons.Comment: Updated to agree with published versio
    • …
    corecore