723 research outputs found

    PAPR Reduction via Constellation Extension in OFDM Systems Using Generalized Benders Decomposition and Branch-and-Bound Techniques

    Get PDF
    In this paper, a novel constellation extension (CE)-based approach is presented to address the high peak-to-average power ratio (PAPR) problem at the transmitter side, which is an important drawback of orthogonal frequency-division multiplexing (OFDM) systems. This new proposal is formulated as a mixed-integer nonlinear programming optimization problem, which employs generalized Benders decomposition (GBD) and branch-and-bound (BB) methods to determine the most adequate extension factor and the optimum set of input symbols to be extended within a proper quarter plane of the constellation. The optimum technique based on GBD, which is denoted as GBD for constellation extension (GBDCE), provides a bound with relevant improvement in terms of PAPR reduction compared with other CE techniques, although it may exhibit slow convergence. To avoid excessive processing time in practical systems, the suboptimum BB for constellation extension (BBCE) scheme is proposed. Simulation results show that BBCE achieves a significant PAPR reduction, providing a good tradeoff between complexity and performance. We also show that the BBCE scheme performs satisfactorily in terms of power spectral density and bit error rate in the presence of a nonlinear high-power amplifier

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Peak-to-average power ratio of good codes for Gaussian channel

    Get PDF
    Consider a problem of forward error-correction for the additive white Gaussian noise (AWGN) channel. For finite blocklength codes the backoff from the channel capacity is inversely proportional to the square root of the blocklength. In this paper it is shown that codes achieving this tradeoff must necessarily have peak-to-average power ratio (PAPR) proportional to logarithm of the blocklength. This is extended to codes approaching capacity slower, and to PAPR measured at the output of an OFDM modulator. As a by-product the convergence of (Smith's) amplitude-constrained AWGN capacity to Shannon's classical formula is characterized in the regime of large amplitudes. This converse-type result builds upon recent contributions in the study of empirical output distributions of good channel codes

    Performance of OPS-SAP technique for PAPR reduction in IEEE 802.11p scenarios

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) are wireless networks that emerged thanks to the rapid evolution of wireless technologies and the automotive industry. The IEEE 802.11p standard is part of a group of standards related to all layers of protocols for Wireless Access in Vehicular Environment (WAVE) communications, which defines Medium Access Control (MAC) and Physical (PHY) levels. The PHY layer of IEEE 802.11p is essentially based on Orthogonal Frequency Division Multiplexing (OFDM) due to its advantages. However, OFDM signal suffers from high Peak-to-Average Power Ratio (PAPR) at the transmitter side, which causes a significant power efficiency penalty. An efficient peak power reduction technique is Simple Amplitude Predistortion aided by Orthogonal Pilot Sequences (OPS-SAP), which consists in moving certain outer constellation points of the frequency-domain OFDM symbol. In this paper, we propose the application of this OPS-SAP scheme in the IEEE 802.11p scenario, and, moreover, its evaluation under a complete PHY layer.This work has been supported by the Spanish National Projects GRE3N-SYST (TEC2011-29006-C03-03) and ELISA (TEC2014-59255-C3-3-R) and also by Escuela Politécnica a Nacional (Ecuador) by PII-DETRI-01-2016 Project

    A Low-Complexity SLM PAPR Reduction Scheme for OFDMA

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, selected mapping (SLM) techniques are widely used to minimize the peak to average power ratio (PAPR). The candidate signals are generated in the time domain by linearly mixing the original time-domain transmitted signal with numerous cyclic shift equivalents to reduce the amount of Inverse Fast Fourier Transform (IFFT) operations in typical SLM systems. The weighting factors and number of cyclic shifts, on the other hand, should be carefully chosen to guarantee that the elements of the appropriate frequency domain phase rotation vectors are of equal magnitude. A low-complexity expression is chosen from among these options to create the proposed low-complexity scheme, which only requires one IFFT. In comparison to the existing SLM technique, the new SLM scheme achieves equivalent PAPR reduction performance with significantly less computing complexity. MATLAB tool is used for simulating the proposed work
    corecore