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PAPR reduction via Constellation Extension in
OFDM systems using Generalized Benders

Decomposition and Branch and Bound techniques
Martha C. Paredes Paredes, Member, IEEE, J. Joaquı́n Escudero-Garzás, Member, IEEE,

and M. Julia Fernández-Getino Garcı́a, Member, IEEE

Abstract—In this paper, a novel Constellation Extension (CE)
based approach is presented to address the high Peak-to-Average
Power Ratio (PAPR) problem at the transmitter side, which
is an important drawback of Orthogonal Frequency Division
Multiplexing (OFDM) systems. This new proposal is formulated
as a Mixed Integer Non-Linear Programming (MINLP) optimiza-
tion problem, which employs Generalized Benders Decomposition
(GBD) and Branch-and-Bound (BB) methods to determine the
most adequate extension factor and the optimum set of input
symbols to be extended within a proper quarter-plane of the
constellation. The optimum technique based on GBD, denoted as
Generalized Benders Decomposition for Constellation Extension
(GBDCE), provides a bound with relevant improvement in terms
of PAPR reduction compared with other CE techniques, although
it may exhibit slow convergence. To avoid excessive processing
time in practical systems, the sub-optimum Branch-and-Bound
for Constellation Extension (BBCE) scheme is proposed. Sim-
ulation results show that BBCE achieves a significant PAPR
reduction, providing a good trade-off between complexity and
performance. We also show that the BBCE scheme performs
satisfactorily in terms of Power Spectral Density (PSD) and Bit
Error Rate (BER) in the presence of a non-linear High Power
Amplifier (HPA).

Index Terms—OFDM, peak power reduction, constellation
extension, generalized benders decomposition, branch-and-bound

I. INTRODUCTION

ORTHOGONAL Frequency Division Multiplexing
(OFDM) is a modulation technique widely used in

wireless communication systems due to its high data rate,
strong immunity to multipath and high spectral efficiency.
However, OFDM suffers from high Peak-to-Average Power
Ratio (PAPR) of the transmitted signal. These large peaks
introduce a serious degradation in performance when the
signal passes through the non-linear zone of the High Power
Amplifier (HPA) [7]. The non-linearity of the HPA leads to
in-band distortion, which increases Bit Error Rate (BER),
and out-of-band radiation, which causes adjacent channel
interference.
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In the literature, there are several proposals to overcome the
well-known PAPR problem, such as clipping, distortionless
schemes and constellation extension (see [9], [11], [22] and
references therein). Clipping is the simplest technique, but
this process is non-linear and deteriorates the BER [2]. As
an alternative, PAPR reduction can be achieved with dis-
tortionless schemes, such as SeLected Mapping (SLM) [5],
Partial Transmit Sequences (PTS) [15], [16], [18], [25] and
Tone Reservation (TR) [14], [26], [28]. The main disadvantage
of these distortionless algorithms is that the useful data rate
may be unfavorably decreased, and they can also require the
transmission of side information to the receiver. On the other
hand, methods based on Constellation Extension (CE) try
to alter the constellation or insert new constellation points
to suppress the peaks with multiple signal representation
strategies. Techniques of this type are Tone Injection (TI)
[6], [26], Active Constellation Extension (ACE) [13], metric-
based CE, named Simple Amplitude Predistortion (SAP) [23],
metric-based Symbol Predistortion [24], ACE based on Con-
vex Optimization [27], [31] and Constrained Constellation
Shapping (CCS) techniques [1], [17], [29], [30].

The key of CE techniques, also known as symbol predis-
tortion techniques, is to intelligently move the constellation
points, which are placed such that the PAPR is minimized
while the minimum distance of the constellation is not af-
fected, and no BER degradation is consequently experienced
by the system. Moreover, there is no user’s data rate loss
because these methods do not require side information. Nev-
ertheless, they introduce an increase in the energy per symbol.
For TI techniques the basic idea is to increase the constellation
size so that every point in the original basic constellation can
be mapped onto several equivalent points in the expanded
constellation [26]. The ACE scheme is presented in [13],
where all symbols are extended but its computational burden
is high. To alleviate this burden, in [23] and [24] a metric is
defined to measure how much each input symbol contributes
to large peaks, and the frequency-domain symbols with the
highest metric values are selected to be predistorted with a
predefined extension factor, called scaling factor in [23] and
[24]. This metric-based algorithm saves energy (since only
a subset of symbols are predistorted) and it avoids a high
computational load by using the defined metric. However,
its main drawback is that the size of the set of predistorted
frequency-domain symbols and the scaling factor are chosen
from a group of values suggested by the authors after empirical
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search, what limits performance. Recently, a metric-based
amplitude predistortion algorithm aided by orthogonal pilot
symbols has been introduced in [21]. On the other hand, in
CCS techniques the constellation points are modified to reduce
the PAPR, although the use of these techniques imply some
BER degradation. Within CCS techniques, some works formu-
late the PAPR minimization as a convex optimization problem
[1], [17], [29], [30]. For example, in [1] the authors propose a
scheme based on the Error Vector Magnitude (EVM), where
the PAPR minimization is formulated as a Second Order
Cone Program (SOCP) problem, subject to constraints on the
EVM and power on free subcarriers. They use Interior Point
Methods (IPM) to solve the SOCP. In [30], an iterative SOCP
algorithm is proposed to achieve a quasi-constant PAPR. In
[17], an EVM optimization framework is presented to deal
with the PAPR problem, and a customized IPM is developed
to solve the optimization problem. In [29] EVM minimization
is formulated as a non-convex Quadratic Program (QP) uti-
lizing SemiDefinite Relaxation (SDR), subject to constraints
on PAPR and free subcarrier power overhead. In [27] and
[31], the PAPR minimization is addressed following the SOCP
approach. The authors of [27] propose the ACE-IPM scheme,
which slightly reduces the theoretical complexity associated to
the EVM-IPM of [1]. In [31], a generalized IPM-based method
is also proposed. For the sake of clarity, in the sequel we refer
to as CE techniques only when those techniques shift the outer
constellation points toward allowed region.

In this paper, two novel CE-based algorithms for solving the
PAPR problem are proposed. These algorithms determine both
the adequate extension factor and the set of frequency-domain
input symbols to be extended, i.e., predistorted, per OFDM
symbol. In our approach the PAPR minimization is formu-
lated as a Mixed Integer Non-Linear Programming (MINLP)
optimization problem. First, we employ a Generalized Benders
Decomposition (GBD) method to find the optimum solution in
terms of PAPR reduction. This scheme is called Generalized
Benders Decomposition for Constellation Extension (GBDCE)
and yields a relevant PAPR reduction. The GDBCE solution
turns out to be a bound for CE schemes and provides a
benchmark to compare with other CE techniques. However,
GBDCE occasionally requires a large execution time mainly
due to the fact that using GBD implies a sequential process
to find the optimum solution.

In order to obtain a reduction in the execution time the
sub-optimal Branch-and-Bound for Constellation Extension
(BBCE) scheme is presented. The BBCE algorithm decreases
the execution time by restricting the value of the extension
factor to a set of discrete values. The processing time as-
sociated with both proposed schemes is analyzed in depth
to determine the reduction in terms of execution time that
BBCE provides with respect to GBDCE, what is closely
related to complexity. Simulation results show that BBCE also
achieves a significant PAPR reduction, providing a good trade-
off between complexity and performance. We also show that
the BBCE scheme performs satisfactorily in terms of Power
Spectral Density (PSD) and BER in the presence of a non-
linear HPA, for different values of Input Back-Off (IBO).

The remainder of this paper is organized as follows. Section

II introduces the OFDM signal model and the PAPR defini-
tion. In Section III, the optimization problem is formulated.
The optimum GBDCE algorithm is presented in Section IV.
The sub-optimum BBCE scheme is proposed in Section V.
The complexity analysis of both algorithms is discussed in
Section VI. In Section VII our proposals are evaluated and
compared with other CE schemes through simulations. Finally
the conclusions are drawn in Section VIII.

II. PAPR DEFINITION IN OFDM SYSTEMS

An OFDM symbol is the sum of N independent signals
modulated onto subchannels of equal bandwidth, which is effi-
ciently implemented by an Inverse Discrete Fourier Transform
(IDFT) operation. The time-domain transmitted signal for the
`th OFDM symbol is given by:

b` [n] =
1√
N

N−1∑
k=0

a` (k) ej2πkn/N , 0 ≤ n < N − 1 (1)

where k and n are the frequency and time indices respectively,
a` (k) is the complex data symbol transmitted over the kth sub-
carrier, k = {0, . . . , N − 1} and a` =

[
a`(0) . . . a`(N − 1)

]
.

The data a` (k) are assumed to be independent, identically
distributed (i.i.d.) random variables, and, based on the central
limit theorem, the time-domain output samples follow an
approximate complex Gaussian distribution with zero mean.
Thus, the most samples will have low values but a small
percentage of these samples will show very large peaks, due
to the Rayleigh distribution of the envelope. This is the well-
known PAPR problem. In general, the PAPR (denoted as χ`) of
the time-domain samples b` [n] is defined as the ratio between
the maximum instantaneous power and its average power [26]:

χ` = PAPR
{
b`
}

=
max

∣∣b` [n]
∣∣2

E
[
|b` [n]|2

] , 0 ≤ n < N − 1 (2)

where E [·] denotes the expected value and | · | means modulo
operation. A mathematically equivalent form to define the
PAPR is [26]:

χ` = PAPR
{
b`
}

=
‖ b` ‖2∞

E
[
‖ b` ‖22

]
/N

, (3)

where b` =
[
b`[0] . . . b`[N − 1]

]
is an 1 × N vector that

collects the time-domain samples and ‖ · ‖p denotes the
p−norm.

The most common way to evaluate the PAPR performance is
through the Complementary Cumulative Distribution Function
(CCDF), which determines the probability that the PAPR of
a certain OFDM symbol goes beyond a fixed threshold (χ0).
Thus, the CCDF can be written as [20]:

CCDF
(
χ`
)

= Pr
(
χ` > χ0

)
= 1−

(
1− e−χ2

0

)N
. (4)

III. CONSTELLATION EXTENSION VIA OPTIMIZATION

In this section we introduce the problem of PAPR mini-
mization via constellation extension, and we reformulate it as
an MINLP problem to exactly determine the optimal solution.
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A. Problem formulation

As stated above, the basis of CE techniques is to shift the
outer constellation points of the complex transmitted signal
to combat large signal peaks. When the outer constellation
points are moved within their external quadrant (see Fig.
1) the minimum distance between symbols is not affected.
Moreover, the error margin is increased, which guarantees a
lower BER. This idea is easily explained in the case of an
OFDM system with Quadrature Phase-shift Keying (QPSK)
modulation at each subcarrier, as shown in Fig. 1a, where
the shaded region represents the allowed extension region.
Note that, for constellation of higher order than QPSK such
as 16-QAM (Quadrature Amplitude Modulation), the inner
constellation points cannot be moved out without affecting the
minimum distance, so they are not modified. This is illustrated
in Fig 1b, where the constellation points are divided into three
groups (inner points, boundary points and corner points) and
they are only allowed to move in the directions indicated by the
arrows. The complex symbol a` (k) is expanded to any point
of the allowed region by adding an extension factor c` (k) ∈ C
and becomes the extended frequency-domain complex symbol
ā` (k) = a` (k)+c` (k). The predistorted time-domain samples
are given by:

b̄`[n] =
1√
N

N−1∑
k=0

(
a` (k) + c` (k)

)
ej2πkn/N . (5)

Mathematically, and in a very simplified formulation, the
general PAPR minimization problem via CE can be expressed
as:

min
c`∈C`

χ̄` = min
c`∈C`

max
∣∣b̄` [n]

∣∣2
E
[∣∣b̄` [n]

∣∣2] , (6)

where c` represents the 1 × N vector with extension factors
c` (k) and C` is the constrained space of allowed extension
vectors. We also define b̄` =

[
b̄`[0] . . . b̄`[N − 1]

]
as the vector

containing the predistorted time-domain samples.
We base our approach on the determination of the extension

factors and the set SL of those frequency-domain symbols to
be predistorted. Consequently, SL consists of those a` (k) such
that their associated c` (k) are not null:

SL = {a` (k) | c` (k) 6= 0}. (7)

The cardinality of this set is L (L = |SL|) and it is fulfilled
that L ≤ N . Determining SL has been indirectly addressed
in the recent CE literature. We next briefly present the most
relevant techniques in this regard.

1) Active Constellation Extension (ACE): The ACE tech-
nique proposed in [13] is formulated for the `th OFDM symbol
as the following min-max optimization problem:

min
c`∈C`

max
n
|b̄` [n] |2, (8)

For convenience, instead of the additive extension fac-
tor c` (k), where ā` (k) = a` (k) + c` (k), a multiplicative
extension factor d` (k) ∈ C is preferred, where ā` (k) =
a` (k) d` (k). This convention will be used from now on.

ℜ

ℑ

a(k)

ā(k)

c(k)

(a) Extension regions for QPSK constellation
points.

ℜ

ℑ

a(k)

ā(k)

c(k)

Inner

Boundary

Corner

(b) Extension regions for 16-QAM constellation
points

Fig. 1: These regions define the set of values that ā (k) =
a (k) + c (k) is allowed to take.

In the ACE approach all the constellation points can be
expanded by an extension factor d` (k), with |d` (k) | ≥ 1.
This technique can be characterized by the cardinality of SL
and the extension factors:

• Cardinality of SL: L ≤ N
• Extension factor: d` =

{
d` (k)

}N−1

k=0

where d` ∈ D` represents the 1 × N vector with extension
factors d` (k) and D` is the constrained space of allowed ACE
vectors.

The optimization process is highly complex, specially be-
cause it requires an important number of iterations. To avoid
this computational complexity one practical implementation of
ACE technique is Projection onto Convex Sets (POCS), which
is described in [13].

2) Simple Amplitude Predistortion (SAP): SAP is presented
in [23], where the outer constellation points are modified by
using a predefined extension factor d` (k) = α ∈ R (|α| ≥ 1)
that is independent not only of the subcarrier index k but also
of the OFDM symbol index `, i.e. the same extension factor is
applied to all subcarriers for all OFDM symbols. To determine
SL the algorithm uses a metric for each input data symbol that
measures the input symbol contribution to the IDFT output
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samples with large values, and then, the L symbols with the
largest positive metrics are predistorted. Similarly to ACE, this
technique can be described by
• Cardinality of SL: L < N
• Extension factor: d` = α11×N , where 11×N is the 1×N

all ones vector.
SAP is limited in performance since α is restricted to be

fixed ∀k, `. Moreover, α and L are determined from a few
suggested values α = {1.3, 1.55, 2} with L = {40, 26, 10}
respectively [23]. Indeed, only the elements of SL are found
out in real-time, because its cardinality L is chosen a priori.
This simple scheme ensures a low-complex implementation
but at the cost of a poor performance.

3) ACE based on IPM (ACE-IPM): In [27] the PAPR
minimization is formulated as a SOCP problem and solved
by using logarithmic-barrier IPM. In this case, the problem
formulation is:

min max
n
|b` [n] |2 (9)

s. t. b`
R = [<{b`},={b`}] = IFFT(a`

V,a
`
F)

sign(ā`
V(u)− a`

V(u))× sign(ā`
V(u)) ≥ 0, u = 1, . . . , U

where b`R ∈ R2N is the vector containing the real and
imaginary parts of b`, <{·} and ={·} represent the real and
imaginary part, a`V ∈ RU , a`F ∈ R2N−U , and U is the total
number of variables, i.e., the number of constellation points
suitable to be predistorted. In (9), the original frequency-
domain symbols are classified into two groups: a`F is the vector
representing the inner points (not allowed to be extended), and
a`V is the vector representing the constellation points allowed
to be predistorted (corner and boundary points). The resulting
expanded constellation points are denoted by ā`V. In accordance
with the above characterization, the technique is defined by:
• Cardinality of SL: L ≤ N
• Extension factor: d` = {ā`V − a`V}N−1

k=0 .

B. Mixed Integer formulation for PAPR minimization

Regarding the PAPR problem, our objective is to determine
the set of symbols SL that will be predistorted and to obtain
the numerical values corresponding to such predistortion. This
implies that we reformulate the PAPR minimization problem
in terms of binary variables as follows.

Minimizing the PAPR is equivalent to minimizing the
numerator of (3) whether predistortion of symbols b̄` is
considered [26]. Given that the square can be omitted in
the minimization operation, we define the objective function
χ̃` = ‖b̄`‖∞, and the optimization problem becomes:

min
d`∈D`

χ̃`, (10)

with

b̄`[n] = b` [n]+
1√
N

∑
k∈SL

(
d` (k)− 1

)
a` (k) ej2πkn/N , (11)

where b` [n] is the time-domain sample sequence without
predistortion. Problem (10) can be formulated in terms of

binary variables, where x` (k) is 1 or 0 depending if a` (k)
belongs or not to SL, i.e.,

x` (k) =

{
1, a` (k) ∈ SL
0, a` (k) /∈ SL (12)

Then, (11) becomes

b̄`[n] = b` [n] +
1√
N

N−1∑
k=0

x` (k)
(
d` (k)− 1

)
a` (k) ej2πkn/N .

(13)
To reduce complexity, we assumed that d` (k) are real and

do not vary as a function of k: d` (k) = α` ∈ R,∀k. Therefore,
(13) becomes:

b̄`[n] = b` [n] +
α` − 1√

N

N−1∑
k=0

x` (k) a` (k) ej2πkn/N . (14)

However, for extension of constellations with higher order
than QPSK, the indices of those symbols that are candidates
to be predistorted must be known a priori, as shown in
Fig. 1b. Accordingly, we redefine (14) to obtain (15), where
Ip, BR, BI and Cp are, respectively, the subsets of symbols
that belong to inner, boundary in real, boundary in imaginary
and the corner constellations points.

Then, the PAPR problem can be formulated as the following
minimization problem:

min
x`,α`

χ̃` (16)

being x` =
[
x`(0) . . . x`(N − 1)

]
. Consequently, in accor-

dance with the characterization given for the ACE, SAP and
ACE-IPM techniques, our formulation is defined by:
• Cardinality of SL: L ≤ N
• Extension factor: d` = α`11×N .
For the sake of clarity, we omit the use of superscript ` in

the sequel, since the optimal parameters {x, α} are obtained
per OFDM symbol.

The solution to the optimization problem given by (16) pro-
vides both the optimal value of the extension factor (α ∈ R)
and which symbols must be predistorted, i.e., when x (k) = 1,
the symbol a (k) is predistorted. This solution will be denoted
with superscript (·)∗, and it is given by (x∗, α∗). Problem (16)
is an MINLP problem as it involves integer (x) and non-integer
variables (α), and the optimization function is non-linear. This
problem is optimally solved by means of the GBD method in
the following section.

IV. OPTIMUM GBDCE ALGORITHM

In this section we propose the Generalized Benders De-
composition for Constellation Extension (GBDCE) algorithm
to solve (16). The GBDCE algorithm is derived from the
GBD algorithm, which is here shortly described and detailed
in Annex A. GBD consists of generating two sequences of
updated upper (non-increasing) and lower (non-decreasing)
bounds that converge within a given ε in a finite number
of iterations [8]. The sequence of upper bounds corresponds
to solving subproblems in the real variables by fixing the
integer variables; these subproblems are related to as primal
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b̄`[n] = b` [n] +
1√
N

∑
k∈Ip

x` (k) a` (k) ej2πkn/N +
∑
k∈Cp

α`x` (k) a` (k) ej2πkn/N +

∑
k∈BR

x` (k)
(
α`<{a` (k)}+ j={a` (k)}

)
ej2πkn/N +

∑
k∈BI

x` (k)
(
<{a` (k)}+ α`j={a` (k)}

)
ej2πkn/N

)
, 0 ≤ n < N − 1. (15)

problem. The lower bounds are similarly obtained by solving
successive subproblems in the integer variables by fixing the
real variables; these subproblems are related to as master
problem.

The details of the GBDCE algorithm are provided next and
illustrated through Fig. 2. The two following steps are executed
at ith iteration, 1 ≤ i ≤ I , where I < ∞ is the number of
iterations reached. First, an integer solution x̂i−1 is provided
and the primal problem is solved in α for this x̂i−1. This
results in an upper bound χ̃UB,i for the problem (16) as well
as the value α̂i to be used to solve the master problem. Then,
the resulting primal problem at this ith iteration is:

χ̃UB,i = min
α
‖b̄‖∞ (17)

s. t. x = x̂i−1

Note that the algorithm must be initialized with a solution x̂0.
We have empirically determined that x̂0 = 01×N is a valid
initial solution, where 01×N is the 1×N null vector.

Second, the master problem is solved in the integer variable
x with α = α̂i and we obtain x̃i. The solution to this problem
is a lower bound χ̃LB,i for the optimal solution of (16) that
can be solved in this case by standard integer optimization
algorithms such as Branch-and-Bound (BB) [4]. Notice that
although GBDCE makes use of BB to calculate the χ̃LB , this
GBDCE algorithm markedly differs from the BBCE scheme
proposed in the next section. Therefore, the master problem
to be solved is:

χ̃LB,i = min
x
‖b̄‖∞ (18)

s. t. α = α̂i

These two steps are iteratively applied until convergence is
reached, i.e., the condition (χ̃UB,i − χ̃LB,i) < ε is satisfied,
being ε the parameter that defines the convergence of the
GBDCE. As the sequence of upper bounds {χ̃UB,i}Ii=1 is non-
increasing and the sequence of lower bounds {χ̃LB,i}Ii=1 is
non-decreasing, this guarantees that the difference (χ̃UB,i −
χ̃LB,i) converges within ε and so does the algorithm, accord-
ing to Theorem 1 of Annex A.

Determining the optimal solution to the PAPR problem by
means of the GBDCE approach implies a sequential process
to compute the real-valued variable α ∈ R along with the
calculation of the integer variables x until the difference
between χ̃UB and χ̃LB is less than ε. Therefore, the GBDCE
convergence depends on an adequate value of ε, so the higher
the value of ε, the faster the convergence of the algorithm but
at the expense of less accuracy in the solution, and conversely.

min
x,α

‖b̄‖∞

Initialization:

x = x̂0

Primal problem:

χ̃UB,i =min
α

‖b̄‖∞
s. t.x = x̂i

Master problem:

χ̃LB,i =min
x

‖b̄‖∞
s. t.α = α̂i

x̂i = x̃i−1

χ̃UB,i − χ̃LB,i < ε

α̂i

no yes (x∗, α∗)

Fig. 2: Generalized Benders Decomposition for Constellation
Extension (GBDCE) algorithm

V. SUB-OPTIMUM BBCE ALGORITHM

The GBDCE scheme entails a significant computational
complexity due to its sequential process. In this section we pro-
pose a sub-optimum algorithm named Branch-and-Bound for
Constellation Extension (BBCE). This algorithm aims to alle-
viate the execution time associated with GBDCE and, at the
same time, must guarantee convergence. Both objectives can
be achieved if the value of α is restricted to a predetermined set
of values given by A = {1, 1 + δ, 1 + 2δ, . . . , 1 + (Q− 1)δ},
being δ the step among consecutive values of α that defines
the granularity in the accuracy of the solution, and Q is the
cardinality of A (Q = |A|).

The BBCE algorithm solves the PAPR problem given by
(16) making use of a BB method as follows (see the flowchart
of the algorithm in Fig. 3). BBCE finds the solution via Q-
branch parallel computation, where at qth branch the following
minimization problem is solved by means of a BB method,
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min
x,α

‖b̄‖∞

min
x

‖b̄‖∞
s. t. α0 = 1

min
x

‖b̄‖∞
s. t. α1 = 1 + δ

...

min
x

‖b̄‖∞
s. t. αq = 1 + qδ

...

min
x

‖b̄‖∞
s. t. αQ−1 = 1 + (Q− 1)δ

Select

(x∗
q, α

∗
q)

such that

χ̃q < χ̃i

∀i = 0, . . . , Q− 1,
i 6= q

x∗
0

x∗
1

x∗
q

x∗
Q−1

(x∗, α∗)

Fig. 3: Branch-and-Bound for Constellation Extension (BBCE)
algorithm

yielding the solution x∗q :

min
x
‖b̄‖∞ (19)

s. t. α = αq,

q = {0, . . . , Q− 1}
where αq = 1 + qδ. Note that the number of branches is Q,
i.e. each branch minimizes PAPR for a given value of α ∈ A.
Thus, the problem (19) is solved in parallel as many times as
determined by Q and at qth branch its associated χ̃q is given
by

χ̃q =
[
‖b̄‖∞

]
x∗
q ,αq

. (20)

Finally, the solution (x∗, α∗) corresponding to the lowest
value within the set Sχ = {χ̃q}Q−1

q=0 is selected:

(x∗, α∗) = arg min
(xq,αq)

Sχ (21)

where minSχ is the minimum value within the set Sχ, denoted
as χ̃∗, and (x∗, α∗) is the argument corresponding to χ̃∗.

In terms of complexity, the key point is to define a set
A as small as possible, which means a high granularity. As
we decrease the value of delta (δ → 0) we have a better
approximation to the continuous case A = [1, Q] ∈ R, while
for δ = 1 the set reduces to Q points: A = {1, . . . , Q}.
Then the higher the value of δ, the lower the processing time
associated with the BBCE execution. With this in mind, we
show through simulations in Section VII that the effect of
increasing the granularity (δ) only has a slight impact on the
PAPR performance. Hence x are the critical values of the
BBCE scheme.

VI. COMPLEXITY ANALYSIS

In this section we present the complexity analysis of our
algorithms. First, we analyze our two algorithms (GBDCE
and BBCE) in terms of execution time, and we show that
the BBCE scheme is less complex than GBDCE. Second,
we investigate the theoretical computational complexity and
provide a comparison with other CE techniques.

A. Analysis of Execution time

The GBDCE algorithm provides the optimal solution to the
PAPR problem. However, the execution time of this algorithm
may be very large due to its sequential process. To effectively
assess the difference in terms of execution time between
GBDCE and BBCE, we characterize the execution time for
both algorithms from a probabilistic point of view, as it is
detailed next.

Let us denote the execution time per OFDM symbol with
the random variable T , which accounts for the execution time
due to processing the PAPR reduction technique via Matlab
simulations. We have empirically observed that the histogram
of the random variable T has a Rayleigh distribution (see Fig.
4). Consequently, the Probability Density Function (PDF) of
T can be expressed as [19]:

fT (t) =
t

σ2
e−t

2/2σ2

, 0 < t ≤ ∞ (22)

where σ is the parameter of the distribution. The value of σ
can be estimated from M trials of the random variable as [19]:

σ̂ ≈

√√√√ 1

2M

M∑
m=1

(tm)
2
, (23)

and the mean and variance of the Rayleigh distribution are
respectively given by [19]:

E [T ] =
(√

π/2
)
σ (24)

V ar [T ] = (2− π/2)σ2. (25)

The histograms in Fig. 4 represent the execution time for
N = 16 and N = 32 subcarriers. In the x-axis of these
figures we plot the execution time per OFDM symbol in
[s], while y-axis provides the frequency. We represent in
different scales the x-axis of the two algorithms in order to
appreciate the Rayleigh envelope. Figs. 4a and 4c show the
GBDCE execution time and Figs. 4b and 4d present the BBCE
execution time for δ = 0.25. These figures illustrate that the
execution time of the GBDCE algorithm is higher than in the
BBCE scheme.

The parameters of the Rayleigh distribution of each scheme
are compared to confirm that BBCE algorithm requires less
processing time. These parameters are summarized in Table I,
in which we note that the mean and the variance of GBDCE for
an OFDM system with N = 32 subcarriers are significantly
larger than the values of BBCE. More specifically, the mean is
almost triple and the variance is much higher, which implies
that the Rayleigh distribution of the execution time of GBDCE
scheme is more spread out, so we confirm again that GBDCE
scheme is more expensive than BBCE in terms of processing
time.

B. Computational Complexity

In the literature, we found some approaches that follow the
idea of minimizing the PAPR through integer programming.
For instance, ACE-POCS [13] shows that the complexity
associated to the POCS method is O(N logN), where N
is number of subcarriers. The complexity of a conventional
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(a) Execution time of GBDCE technique for N = 16
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(b) Execution time of BBCE technique for N = 16
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(c) Execution time of GBDCE technique for N = 32
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(d) Execution time of BBCE technique for N = 32

Fig. 4: Rayleigh distribution of the GBDCE and BBCE execution time per OFDM symbol with N = {16, 32} subcarriers and
QPSK modulations (Matlab simulation).

TABLE I: Summary of Rayleigh distribution parameters for
an OFDM system with N = {16, 32} subcarriers

Parameters
N = 16 N = 32

GBDCE BBCE GBDCE BBCE

σ̂ 9.6 6.7 73.3 27.5

E [T ] 12.1 8.3 91.9 34.5

V ar [T ] 39.9 19.2 2308.2 325.9

GBDCE algorithm is O(IN logN), where I is the number of
iterations until the algorithm converges. Regarding the branch-
and-bound algorithm that supports the BBCE algorithm, the
associated complexity is O(N logN). It must be noted that the
BBCE algorithm is parallely computed, so the Q branches are
simultaneously solved. However, in our algorithms, we limit
the extension to outer constellation points, which considerably
reduces the complexity. We define Θ = Mouter

M , where Θ
represents the percentage of complex data symbols a` (k)
susceptible to be expanded, and Mouter is the number of

outer constellation points. For instance, if 16-QAM mod-
ulation is used, the four inner points cannot be extended,
and the problem is solved in the twelve outer points of the
constellation, i.e., Θ = 12/16 = 0.75. As the complex data
symbols are independent, identically distributed (i.i.d.) random
variables, Θ provides the percentage of assignment variables
x(k) that directly equal 0; for 16-QAM, this percentage is
(1 − Θ) × 100 = 25%. Hence, we have that the complexity
for the GBDCE algorithm is O(IΘN log ΘN), and the com-
plexity associated to the BBCE algorithm is O(ΘN log ΘN).
Clearly, Θ 6 1. Therefore, the BBCE algorithm exhibits lower
complexity than the ACE-POCS.

With respect to CCS techniques proposed as convex min-
imization, the EVM-IPM algorithm [1] formulates the PAPR
minimization as a SOCP, subject to constrained on EVM and
power on free subcarriers. This problem entails O(N3) com-
plexity. In [27], the authors present the ACE-IMP algorithm
that slightly improves the theoretical complexity associated
with the EVM-IPM algorithm, achieving a theoretical com-
plexity of O(I(2N + N2)), where I represents the number
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of iterations used by the conjugate gradient algorithm. In the
generalized IPM-based method [31], a specific constellation
extension type is incorporated into the problem formulation
as a set of convex functions. The proposed IPM algorithm is
essentially the same that the ACE-IPM algorithm, with the
difference that the optimal step size α must be calculated by
solving an optimization problem (in ACE-IPM, α is given
in closed form). Consequently, the complexity is larger than
O(I(2N +N2)), with an increase in the complexity given di-
rectly by that associated to the step size optimization problem.
All these approaches have in common that a stopping criteria
is required to terminate the algorithm, either in the form of
maximum number of iterations or convergence of the solutions
within a parameter ε.

Regarding the complexity of SAP [24], strictly speaking, it
is a technique rather than an algorithm. This technique is use-
ful to determine the predistortion level and the number of base-
band symbols to be predistorted. As these two parameters are
calculated offline through exhaustive simulations, no further
modification can be done to these prefixed values and, conse-
quently, the same values are applied to any transmitted OFDM
symbol. Moreover, the calculated parameters are specific for a
given number of subcarriers (FFT size) and modulation size.
Said this, we consider that the complexity associated with the
SAP technique should not be taken into consideration with
respect to the algorithms proposed in our paper, as it is not an
adaptive algorithm.

VII. SIMULATION RESULTS

In this section, we provide the performance results for our
GBDCE and BBCE algorithms, and they are compared with
other CE schemes; more specifically, ACE-POCS [13], SAP
algorithms [23] and ACE-IPM [27]. The performance of the
PAPR reduction schemes is presented in terms of CCDF,
Power Spectral Density (PSD) at the HPA, and BER at the
receiver. Moreover, the convergence of the GBDCE algorithm
is presented.

The results are obtained through Matlab simulations by
averaging over 104 randomly generated OFDM symbols, for
QPSK, 16-QAM and 64-QAM modulations, and different
number of subcarriers N = {16, 32, 64, 128, 256} are con-
sidered.

Fig. 5 shows the evolution of the difference between the
upper and lower bounds at each iteration for N = {16, 32, 64}
subcarriers. We provide the initial points of χ̃UB = 106 and
χ̃LB = 0, and the convergence parameter ε = 10−6. Noticed
that the GBDCE algorithm terminates when (χ̃UB−χ̃LB) < ε
is reached. From this figure, the fact that χ̃UB − χ̃LB is close
to 0 means that the GBDCE algorithm has converged in a
finite number of iterations.

PAPR reduction techniques are applied whenever the PAPR
of the OFDM symbol is greater than 6 dB, as it is usually
specified [13]. In the figures, the solid marked green curves
depict the GBDCE approach, the solid marked red lines show
the BBCE technique. The solid line curves represent the
performance for conventional OFDM signal without any PAPR
reduction scheme; these curves are labelled as “Original” in all
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Fig. 5: Convergence of GBDCE algorithm: difference between
the upper and lower bounds at each iteration for N =
{16, 32, 64} subcarriers and QPSK modulation.
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(a) OFDM system with N = 16 and QPSK modulation. BBCE with δ =
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Fig. 6: CCDF of PAPR for an OFDM system with N =
{16, 32}. SAP with parameters set {L = 10, α = 2} and
{L = 26, α = 1.55}.



9

the subsequent figures. The dashed line curves correspond to
ACE-POCS with iterations. Solid marked blue lines represent
the ACE-IPM iterations, and the solid marked black lines show
the SAP scheme.

The performance of GBDCE provides a lower bound for
other PAPR reduction techniques in terms of CCDF. Figs. 6-8
show this fact for N = {16, 32, 64, 128, 256} subcarriers, with
QPSK, 16-QAM, and 64-QAM modulations. For instance, it
is observed in Fig. 8 that the improvement of GBDCE at
a probability of 10−2 is close to 4 dB with respect to the
conventional OFDM signal without PAPR reduction. With
respect to the above mentioned CE techniques, the minimum
improvement of GBDCE is 1.4 dB.
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(a) OFDM system with N = 64 subcarriers
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(b) OFDM system with N = 128 subcarriers

Fig. 7: CCDF of PAPR for an OFDM system with
N = {64, 128} and 16-QAM modulation. SAP with
parameters set {L = 10, α = 2}, {L = 26, α = 1.55} and
{L = 40, α = 1.3} and BBCE with δ = 0.25.

Regarding the BBCE algorithm, we first assess the impact
of the granularity of the extension factor α given that the
larger the value of δ, the lower the accuracy in α. Note that
we impose the restriction 1 ≤ α ≤ 2 to avoid an excessive
energy increase. Fig. 6a shows the performance of BBCE for

an OFDM system with N = 16 subcarriers and QPSK mod-
ulation. We consider the set of values δ = {0.05, 0.1, 0.25}.
A small degradation in performance is observed when δ is
increased, with a loss of 0.7 dB at a probability of 10−2

for the most unfavorable case of δ = 0.25 with respect to
GBDCE. At the same time, BBCE outperforms the other
CE schemes. Therefore, we utilize the BBCE algorithm with
δ = 0.25 for the next simulation scenarios, given that the trade-
off between execution time and performance is satisfactory.
Figs. 6-8 confirm that BBCE performs better than the other
CE-based techniques for larger number of subcarriers. For
instance, for N = 128 subcarriers and 16-QAM modulation
(see Fig. 7b), BBCE presents a reduction of approximately 2.8
dB at a probability of 10−2 with respect to the conventional
OFDM signal. To evaluate the performance of the BBCE
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Fig. 8: CCDF of PAPR for an OFDM system with
N = 256 and QPSK modulation. SAP with pa-
rameters set {L = 10, α = 2}, {L = 26, α = 1.55} and
{L = 40, α = 1.3} and BBCE with δ = 0.25.

algorithm under complete transmitter operation, we verify
the Power Spectral Density (PSD) observed at the input and
output of a non-linear HPA. A common configuration is to
use a Solid State Power Amplifier (SSPA), which can be
modelled according to the modified Rapp’s SSPA model [10],
where the amplitude/phase (AM/PM) and amplitude/amplitude
(AM/AM) characteristics are expressed as:

G (|b[n]|) =
|b[n]|

(1 + (|b[n]|/Asat)2p)
1
2p

(26)

Φ (|b[n]|) ≈ 0 (27)

being G(·) and Φ(·) the AM/AM and AM/PM conversion
functions respectively, |b[n]| is the amplitude of the input HPA
signal, p is a parameter that controls the smoothness of the
characteristic (the smaller p, the smoother the characteristic)
and Asat is the saturation level of SSPA. Note that the AM/PM
of SSPA is zero.1 In this case, the Rapp’s SSPA model
introduces only AM/AM distortion, and the output signal of

1The effect of the AM/PM conversion is not exactly zero, but it is very
small and thus it is not considered in the SSPA model.
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the SSPA can be expressed as:

y[n] = G (|b[n]|) e{jθ([n])+Φ(|b[n]|)}, (28)

where θ ([n]) is the phase of the input SSPA signal.
Figure 9 shows the PSD at the output of the SSPA for

an OFDM system with N = 64, 16-QAM modulation and
oversampling factor J = 4. The SSPA operates at different
values of Input Back-off (IBO) {5, 8, 15} dB. We choose
p = 2, an adequate value in practice [12]. PSD is estimated
by using the Welch’s averaged periodogram method with Han-
ning window. The observed out-of-band radiation is primarily
caused by the SSPA non-linearity, in particular for small IBO
values. The BBCE scheme achieves a reduction of this out-of-
band radiation with respect to the conventional OFDM signal
without PAPR reduction technique (labelled as “Original”) for
the same value of IBO. For instance, the reduction of the out-
of-band radiation when using BBCE is about 2 dB for IBO = 8
dB and, for larger values of IBO (i.e. 15 dB), the out-of-band
radiation is just slightly reduced when BBCE is applied, as it
is shown in Fig. 9.

We also evaluate our PAPR reduction technique (BBCE)
to confirm that no significant BER degradation occurs when
we transmit using a non-linear SSPA. The simulations setup
contemplates the use of an OFDM system with N = 64
subcarriers over an Additive White Gaussian Noise (AWGN)
channel and 16-QAM modulation without oversampling. The
Signal-to-Noise Ratio (SNR) is defined as the ratio between
the average signal power and the average noise power.

The SSPA with IBO = {5, 8, 15} dB and p = 2 is
considered for both conventional OFDM signal without PAPR
reduction technique (labelled in the figure as “Original”) and
the BBCE scheme. Additionally, as a baseline, the BER
curves corresponding to “Original” OFDM signal and BBCE
using a linear amplifier, which does not cause any signal
distortion, are also depicted. From Fig. 10 we observe a
better performance of our BBCE scheme with respect to the
“Original” signal in terms of BER. This is due to two factors:
i) the constellation expansion performed by BBCE does not
affect the minimum distance of the constellation (as it is
shown in Fig. 1b); ii) the constellation expansion increases
the energy of some constellations points, which leads to a
lower BER. For instance, for IBO = 5 dB, the gain in SNR
of the BBCE scheme is approximately 3 dB with respect to
the “Original” to meet BER = 10−3. We also see in Fig. 10
that the use of a non-linear SSPA inherently introduces some
degradation in BER with respect to the linear amplifier, for
both the BBCE scheme and the “Original” signal. As expected,
the degradation decreases as the value of IBO increases; for
BBCE, this degradation is about 2 dB for BER = 10−3 when
IBO = 5 dB and becomes almost negligible for IBO = 15
dB.

Additionally, we have compared our algorithms with CSS
techniques, more specifically, EVM-IPM [1] and EVM-SDR
[29], whose main characteristic is that they degrade the BER.
In these simulations, shown in Fig. 11 for J = 1 (i.e., no
oversampling is used), we analyze the representative case of
N = 64 subcarriers, with 52 subcarriers for user data and
12 subcarriers set to zero as in the simulation scenario used
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Fig. 9: PSD at the output of the SSPA without PAPR reduction
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modulation, J = 4 and δ = 0.25.
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64, 16-QAM modulation, J = 1 and δ = 0.25 over AWGN
channel in the presence of a SSPA with IBO={5, 8, 15} dB.

in [1], [29]. Figure 11a shows that the BER performance is
worse with CSS techniques. Figure 11b displays the CCDF
performance, showing that the EVM-SDR scheme gains about
1 dB at a probability of 10−3 respect to GBDCE but at
the expense of a degradation of more than 3dB in BER
performance.

VIII. CONCLUSIONS

In this work, two novel CE-based algorithms are proposed
to address the PAPR problem in OFDM systems. The GBDCE
algorithm determines both the optimum extension factor and
which complex symbols will be predistorted. Compared with
other CE techniques, GBDCE provides a lower bound for the
performance of CE techniques. For instance, for an OFDM
system with N = 256 and using QPSK modulation, GBDCE
provides an improvement close to 4 dB with respect to conven-
tional OFDM signal without PAPR reduction, and a minimum
improvement of 1.4 dB with respect to the considered CE
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Fig. 11: Comparison with CSS techniques. BBCE with δ =
0.25, J = 1, EVM-IPM and EVM-SDR algorithms with
−25dB of EVM tolerance and free subcarrier power overhead
is 0.15 [29].

techniques at a probability CCDF = 10−2. However, GBDCE
may incur in slow convergence due to its sequential nature.

As a practical alternative, we propose the BBCE algorithm
to reduce the excessive processing time that GBDCE may
entail. The BBCE algorithm is based on restricting the ex-
tension factor to values within a discrete set at the expense
of decreasing the accuracy of the extension factor. The sub-
optimal BBCE scheme provides a good trade-off between
complexity and performance. Besides, the BBCE scheme
achieves a reduction of the out-of-band radiation caused by
the HPA non-linearity and a better performance in BER with
respect to the conventional OFDM signal.

A deep analysis of processing time for both algorithms
reveals the reduction in terms of execution time of BBCE
compared with GBDCE. We stress the relevance of this
time analysis given that it is closely related to computational
complexity.

APPENDIX A
GENERAL BENDERS DECOMPOSITION ALGORITHM

In his 1962 paper [3], Benders proposed an approach for
exploiting the structure of optimization problems with com-
plicating variables, i.e., variables that make the optimization
problem substantially more tractable once they have been
fixed. This approach was generalized to non-linear problems
by Geoffrion [8], who developed the Generalized Benders
Decomposition (GBD) technique for problems of the form

max
x,y

f(x,y)

s.t. g(x,y) > 0, (29)

x ∈ X ⊂ RN ,y ∈ Y ⊂ RM ,

where y is a vector of complicating variables in the sense that
(29) is much easier to solve in x when y is temporarily held
fixed, N and M are positive integer values, and g(x,y) is a
vector of constrained non-linear functions. Therefore, GBD is
suitable to solve situations in which, for fixed y, problem (29)
either separates into independent subproblems in x or assumes
a well-known special structure.

The general ideas of the GBD can be summarized in the
following steps:

1) (29) is projected onto y:

max
y

v(y) (30)

s.t. y ∈ Y ∩ V,

where

v(y) = max
x

f(x,y), s.t. g (x,y) > 0,x ∈ X (31)

V , {y : g (x,y) > 0, for some x ∈ X}, (32)

with Y ∩ V representing the projection of the feasible
region of (29) onto y-space. Problem (30) is known as
the master problem, and it is equivalent to the original
problem (29) according to Theorem 2.1 of [8], with the
advantage that evaluating v(y) is considerably easier
than solving (29). Problem (31) is denoted as the primal
problem and it corresponds to solving (29) with fixed y.

2) By invoking duality, the master problem can be formu-
lated as

max
y∈Y,y0

y0

s.t. y0 6 sup
x∈X
{f(x,y) + µg(x,y)},∀µ > 0 (33)

sup
x∈X
{λg(x,y)} > 0,∀λ > 0

3) Solving the relaxed master problem, i.e., the master
problem particularized in x∗ which optimizes the primal
problem, the optimal solution y∗ provides the optimal
value y∗0 , which is an upper bound (UBD) of the optimal
solution of the original problem (29).

4) Solving the primal problem for y∗, the optimal solution
x∗ is updated and the optimal value v(y∗) is used to
update the lower bound of the optimal value of (29) as
LBD = min{LBD, v (y∗)}.
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The successive application of steps 3 and 4 gives a sequence
of upper and lower bounds. The sequence of upper bounds
y∗0 is monotone and non-increasing. On the other hand,
non-decreasing monotonicity is achieved for the sequence of
lower bounds by constructing the lower bound as LBD =
min{LBD, v (y∗)}, given that the sequence of optimal values
v (y∗) needs not to be monotone decreasing. The optimal
solution would be reached when UBD = LBD, although
in practice an error parameter ε = UBD − LBD is used.
The above procedure or algorithm converges within a given ε,
according to the following theorem [8].

Theorem 1: The Generalized Benders Decomposition algo-
rithm terminates in a finite number of iterations for any given
ε > 0 and even for ε = 0, if the following conditions hold:
• X is non-empty and convex, and f(x,y), g (x,y) are

convex for each fixed y ∈ Y = {0, 1}.
• The set Z = {z : g (x,y) 6 z} is closed for each fixed

y.
• For each fixed y ∈ Y ∩ V , one of the following two

conditions hold:
1) the original problem (29) has a finite solution.
2) the original problem (29) is unbounded.
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José Joaquı́n Escudero Garzás (S’06–M’10) re-
ceived his Ph.D. degree in Electrical Engineering
from the University Carlos III de Madrid (UC3M)
in 2010. From 1997 to 2002, he worked for different
Spanish telcos as a provisioning engineer and as
head of the telecommunication network maintenance
department. In 2002, he joined UC3M as an As-
sistant Lecturer. From October 2010 to September
2012, he was a postdoctoral fellow at the Dept. of
Telecommunication and Systems Engineering of the
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