263 research outputs found

    Generalized self-concordant Hessian-barrier algorithms

    Get PDF
    Many problems in statistical learning, imaging, and computer vision involve the optimization of a non-convex objective function with singularities at the boundary of the feasible set. For such challenging instances, we develop a new interior-point technique building on the Hessian-barrier algorithm recently introduced in Bomze, Mertikopoulos, Schachinger and Staudigl, [SIAM J. Opt. 2019 29(3), pp. 2100-2127], where the Riemannian metric is induced by a generalized selfconcordant function. This class of functions is sufficiently general to include most of the commonly used barrier functions in the literature of interior point methods. We prove global convergence to an approximate stationary point of the method, and in cases where the feasible set admits an easily computable self-concordant barrier, we verify worst-case optimal iteration complexity of the method. Applications in non-convex statistical estimation and Lp-minimization are discussed to given the efficiency of the method

    Generalized Self-concordant Hessian-barrier algorithms

    Get PDF
    Many problems in statistical learning, imaging, and computer vision involve the optimization of a non-convex objective function with singularities at the boundary of the feasible set. For such challenging instances, we develop a new interior-point technique building on the Hessian-barrier algorithm recently introduced in Bomze, Mertikopoulos, Schachinger and Staudigl, [SIAM J. Opt. 2019 29(3), pp. 2100-2127], where the Riemannian metric is induced by a generalized self-concordant function. This class of functions is sufficiently general to include most of the commonly used barrier functions in the literature of interior point methods. We prove global convergence to an approximate stationary point of the method, and in cases where the feasible set admits an easily computable self-concordant barrier, we verify worst-case optimal iteration complexity of the method. Applications in non-convex statistical estimation and LpL^{p}-minimization are discussed to given the efficiency of the method

    A Distributed Newton Method for Network Utility Maximization

    Full text link
    Most existing work uses dual decomposition and subgradient methods to solve Network Utility Maximization (NUM) problems in a distributed manner, which suffer from slow rate of convergence properties. This work develops an alternative distributed Newton-type fast converging algorithm for solving network utility maximization problems with self-concordant utility functions. By using novel matrix splitting techniques, both primal and dual updates for the Newton step can be computed using iterative schemes in a decentralized manner with limited information exchange. Similarly, the stepsize can be obtained via an iterative consensus-based averaging scheme. We show that even when the Newton direction and the stepsize in our method are computed within some error (due to finite truncation of the iterative schemes), the resulting objective function value still converges superlinearly to an explicitly characterized error neighborhood. Simulation results demonstrate significant convergence rate improvement of our algorithm relative to the existing subgradient methods based on dual decomposition.Comment: 27 pages, 4 figures, LIDS report, submitted to CDC 201

    An interior-point method for the single-facility location problem with mixed norms using a conic formulation

    Get PDF
    We consider the single-facility location problem with mixed norms, i.e. the problem of minimizing the sum of the distances from a point to a set of fixed points in R, where each distance can be measured according to a different p-norm.We show how this problem can be expressed into a structured conic format by decomposing the nonlinear components of the objective into a series of constraints involving three-dimensional cones. Using the availability of a self-concordant barrier for these cones, we present a polynomial-time algorithm (a long-step path-following interior-point scheme) to solve the problem up to a given accuracy. Finally, we report computational results for this algorithm and compare with standard nonlinear optimization solvers applied to this problem.nonsymmetric conic optimization, conic reformulation, convex optimization, sum of norm minimization, single-facility location problems, interior-point methods

    Finite-sample Analysis of M-estimators using Self-concordance

    Get PDF
    We demonstrate how self-concordance of the loss can be exploited to obtain asymptotically optimal rates for M-estimators in finite-sample regimes. We consider two classes of losses: (i) canonically self-concordant losses in the sense of Nesterov and Nemirovski (1994), i.e., with the third derivative bounded with the 3/23/2 power of the second; (ii) pseudo self-concordant losses, for which the power is removed, as introduced by Bach (2010). These classes contain some losses arising in generalized linear models, including logistic regression; in addition, the second class includes some common pseudo-Huber losses. Our results consist in establishing the critical sample size sufficient to reach the asymptotically optimal excess risk for both classes of losses. Denoting dd the parameter dimension, and deffd_{\text{eff}} the effective dimension which takes into account possible model misspecification, we find the critical sample size to be O(deffd)O(d_{\text{eff}} \cdot d) for canonically self-concordant losses, and O(ρdeffd)O(\rho \cdot d_{\text{eff}} \cdot d) for pseudo self-concordant losses, where ρ\rho is the problem-dependent local curvature parameter. In contrast to the existing results, we only impose local assumptions on the data distribution, assuming that the calibrated design, i.e., the design scaled with the square root of the second derivative of the loss, is subgaussian at the best predictor θ\theta_*. Moreover, we obtain the improved bounds on the critical sample size, scaling near-linearly in max(deff,d)\max(d_{\text{eff}},d), under the extra assumption that the calibrated design is subgaussian in the Dikin ellipsoid of θ\theta_*. Motivated by these findings, we construct canonically self-concordant analogues of the Huber and logistic losses with improved statistical properties. Finally, we extend some of these results to 1\ell_1-regularized M-estimators in high dimensions

    Faster Convex Optimization: Simulated Annealing with an Efficient Universal Barrier

    Full text link
    This paper explores a surprising equivalence between two seemingly-distinct convex optimization methods. We show that simulated annealing, a well-studied random walk algorithms, is directly equivalent, in a certain sense, to the central path interior point algorithm for the the entropic universal barrier function. This connection exhibits several benefits. First, we are able improve the state of the art time complexity for convex optimization under the membership oracle model. We improve the analysis of the randomized algorithm of Kalai and Vempala by utilizing tools developed by Nesterov and Nemirovskii that underly the central path following interior point algorithm. We are able to tighten the temperature schedule for simulated annealing which gives an improved running time, reducing by square root of the dimension in certain instances. Second, we get an efficient randomized interior point method with an efficiently computable universal barrier for any convex set described by a membership oracle. Previously, efficiently computable barriers were known only for particular convex sets

    Newton-type methods under generalized self-concordance and inexact oracles

    Get PDF
    Many modern applications in machine learning, image/signal processing, and statistics require to solve large-scale convex optimization problems. These problems share some common challenges such as high-dimensionality, nonsmoothness, and complex objectives and constraints. Due to these challenges, the theoretical assumptions for existing numerical methods are not satisfied. In numerical methods, it is also impractical to do exact computations in many cases (e.g. noisy computation, storage or time limitation). Therefore, new approaches as well as inexact computations to design new algorithms should be considered. In this thesis, we develop fundamental theories and numerical methods, especially second-order methods, to solve some classes of convex optimization problems, where first-order methods are inefficient or do not have a theoretical guarantee. We aim at exploiting the underlying smoothness structures of the problem to design novel Newton-type methods. More specifically, we generalize a powerful concept called \mbox{self-concordance} introduced by Nesterov and Nemirovski to a broader class of convex functions. We develop several basic properties of this concept and prove key estimates for function values and its derivatives. Then, we apply our theory to design different Newton-type methods such as damped-step Newton methods, full-step Newton methods, and proximal Newton methods. Our new theory allows us to establish both global and local convergence guarantees of these methods without imposing unverifiable conditions as in classical Newton-type methods. Numerical experiments show that our approach has several advantages compared to existing works. In the second part of this thesis, we introduce new global and local inexact oracle settings, and apply them to develop inexact proximal Newton-type schemes for optimizing general composite convex problems equipped with such inexact oracles. These schemes allow us to measure errors theoretically and systematically and still lead to desired convergence results. Moreover, they can be applied to solve a wider class of applications arising in statistics and machine learning.Doctor of Philosoph
    corecore