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ABSTRACT

TIANXIAO SUN: Newton-type methods under generalized self-concordance and inexact oracles
(Under the direction of Quoc Tran-Dinh and Shu Lu)

Many modern applications in machine learning, image/signal processing, and statistics require

to solve large-scale convex optimization problems. These problems share some common challenges

such as high-dimensionality, nonsmoothness, and complex objectives and constraints. Due to these

challenges, the theoretical assumptions for existing numerical methods are not satisfied. In numeri-

cal methods, it is also impractical to do exact computations in many cases (e.g. noisy computation,

storage or time limitation). Therefore, new approaches as well as inexact computations to design

new algorithms should be considered.

In this thesis, we develop fundamental theories and numerical methods, especially second-order

methods, to solve some classes of convex optimization problems, where first-order methods are

inefficient or do not have a theoretical guarantee. We aim at exploiting the underlying smoothness

structures of the problem to design novel Newton-type methods. More specifically, we generalize a

powerful concept called self-concordance introduced by Nesterov and Nemirovski to a broader class

of convex functions. We develop several basic properties of this concept and prove key estimates

for function values and its derivatives. Then, we apply our theory to design different Newton-type

methods such as damped-step Newton methods, full-step Newton methods, and proximal Newton

methods. Our new theory allows us to establish both global and local convergence guarantees

of these methods without imposing unverifiable conditions as in classical Newton-type methods.

Numerical experiments show that our approach has several advantages compared to existing works.

In the second part of this thesis, we introduce new global and local inexact oracle settings, and

apply them to develop inexact proximal Newton-type schemes for optimizing general composite

convex problems equipped with such inexact oracles. These schemes allow us to measure errors

theoretically and systematically and still lead to desired convergence results. Moreover, they can

be applied to solve a wider class of applications arising in statistics and machine learning.
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CHAPTER 1

Introduction

1.1 Introduction

This thesis is about the theory and foundation of Newton-type methods, under the gener-

alized self-concordant structure and inexact global and local oracles. The Newton method is

an important computational tool for solving smooth minimization problems as well as smooth

equations. Its variant including proximal Newton methods, primal-dual methods, stochastic

Newton-type methods, and quasi-Newton methods, can be viewed as an advanced tool for non-

smooth, constrained, large-scale, or distributed settings of these problems. In the first part

of this thesis, we study a smooth structure called generalized self-concordance. Like the self-

concordance concept introduced by Nesterov and Nemirovski in the early 1990s, generalized

self-concordance serves as a powerful but more general analogous structure that allows ones to

develop Newton-type methods with rigorous theoretical convergence guarantees, while treating

a broader class of convex and smooth functions than the former one. In the second part of

this thesis, we introduce new global and local inexact oracle concepts for a wide class of convex

functions in composite convex minimizations, and use them to develop inexact Newton-type

methods. This topic is motivated by the fact that many numerical methods, especially second-

order methods, naturally use inexact computations as well as oracles due to limited memory,

noisy data or limited computational time. Unfortunately, this inexact computational issue has

not been theoretically characterized in a full setting. We cover this topic in the second part of

this thesis.

Our work in this thesis provides an alternative view of using smoothness structures of

convex functions, as well as a control of bounds of function values, derivatives and subproblem

inexactness derived from our oracle settings, to develop Newton-type methods. Both theories in

this thesis lead to the best convergence rates compared with existing methods. We will also see

1



that the theory and algorithms developed using generalized self-concordance and our inexact

oracles have many important and interesting applications. Moreover, our numerical experiments

show that the new theories provide competitive or better results compared to state-of-the-art

algorithms.

In the rest of this chapter, we first present our motivation and describe our research goals.

Next, we clarify our contribution and review current research state. Finally, we give a short

outline of each chapter coved in this thesis.

1.1.1 Motivation

In recent years, there has been a huge interest in Newton-type methods for solving convex

optimization problems and monotone equations due to the development of new techniques

and mathematical tools in optimization, machine learning, and randomized algorithms [6, 14,

27, 29, 34, 60, 72, 76, 87, 89, 93, 94]. Several combinations of Newton-type methods and other

techniques such as proximal operators [10], cubic regularization [76], gradient regularization [89],

randomized algorithms such as sketching [87], subsampling [34], and fast eigen-decomposition

[46] create a new research direction and have attracted a great attention in solving nonsmooth

and large-scale optimization problems.

A wide range of problems especially in signal and image processing can be expressed in a

particular composite [primal] form, where the dual may be much easier to solve than the primal

one, due to the splitting structure of the dual settings. Correspondingly, one often study

methods which have ability to split the problem by activating each of the functions through

elementary processing steps which can be computed in parallel [56]. The primal-dual methods

make this possible, by exploiting the structure of the problem in a flexible manner, especially

when combined with the Lipschitz property of objective gradient or/and Hessian mappings.

While standard assumptions often required in both primal and dual methods, such as non-

singularity, Lipschitz gradient and Hessian conditions do not hold for many examples, Nesterov

and Nemirovskii [75] introduced a powerful concept called self-concordance to overcome this

drawback and developed new Newton scheme to achieve global and local convergence without

requiring any additional assumption, or a globalization strategy. The self-concordance notion
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was initially invented to study interior-point methods, but it is less well-known in other com-

munities. Recent works [1, 68, 102, 104, 109] have greatly popularized this concept to solve

other problems arising from machine learning, statistics, image processing, and variational in-

equalities.

Unfortunately, although the above self-concordant extension is improtant, it still cannot

cover some other basic or important convex functions, such as power function, entropy, arcsine

distribution, just to name a few. Motivated by this fact, we extend it to a more general smooth

structure, develop the corresponding Newton-type schemes and customize it to the dual settings,

which covers the standard self-concordant optimization as a special case.

All the schemes above are mainly dealing with exact Newton methods. However, from

computational viewpoint, error measurement during evaluation, storage and transfer of data

happens frequently in sequential methods or distributed and parallel computation. Besides, due

to technical or complexity limitation, we often need inexact evaluations of function values and

derivatives. While existing inexact methods mostly focus on the inexactness of subproblem [63]

or first-order oracles [28], there is no intensive work on inexact second-order oracles to the best

of our knowledge. Motivative by this, we introduce new global and local inexact second-order

oracle concepts, which allow one to develop novel inexact Newton-type variants that have the

desired convergence guarantees by direct control of function value and derivative tolerances,

and include the subproblem inexactness routines as special cases.

1.1.2 The goals of this research

Motivated by [1, 103, 109], our first goal is to generalize the self-concordance concept

in [75] to a broader class of smooth and convex functions. To develop the corresponding

methods, we require the generalization from univariate to multivariate case to preserve some

key properties. Unfortunately, the preliminary attempt shows that the natural generalization

has several drawbacks when developing the theory. Besides, similar extensions in [1, 103] for

a class of logistic-type functions are still limited and creates certain difficulty for developing

further theories. Therefore, we first introduce a new definition of generalized self-concordance

that fixed all these drawbacks.
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Our second goal is to develop a unified mechanism to analyze the convergence (including

global and local convergence) of the following Newton-type scheme:

xk+1 := xk − skF ′(xk)−1F (xk), (1.1)

where F ′ is the Jacobian of F , sk ∈ (0, 1] is a given step-size, and F can be presented as

the right-hand-side of a monotone equation F (x) = 0 or the optimality condition of a convex

optimization or a convex-concave saddle-point problem. Despite the Newton scheme (1.1) is

invariant to a change of variables [27], its convergence property relies on the growth of the

Hessian along the Newton iterative process. In classical settings, the Lipschitz continuity of

the Hessian and the nondegeneracy of the Hessian in a neighborhood of the solution set are

key assumptions to achieve local quadratic convergence rate [27]. These assumptions have been

considered to be standard, but they are often very difficult to check in practice, especially the

second one. A natural idea is to classify the functionals of the underlying problem into a known

class of functions to choose a suitable method for solving it. While first-order methods for convex

optimization essentially rely on the Lipschitz gradient function assumption, Newton methods

usually use the Lipschitz continuity of the Hessian and its nondegeneracy property to obtain a

well-defined Newton direction as we have mentioned. For self-concordant functions, the second

condition automatically holds, while the first does not. However, both full-step and damped-

step Newton methods still work in this case by appropriately choosing a suitable metric. This

situation has been observed and standard assumptions have been modified in different directions

to still guarantee the convergence of Newton methods, see [27] for an intensive study of generic

Newton methods, and [74, 75] for the self-concordant function class.

Thirdly, we want to combine our theory and methods with other broader settings in order

to make our scheme stabler and more efficient. For example, in the field of machine learning

, one has to deal with truly massive datasets and to train very large models, which naturally

leads to high-dimensional optimization problems. Hence, computational accuracy and efficiency

constitute two major issues that need to be thoroughly addressed. We wish to develop inexact

oracle theory that can lower the computational accuracy of function value, derivative(s), solution

of subproblem, or/and (proximal) Newton decrement, while still guarantee desired solution
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accuracy and convergence rates both globally and locally. As a special case, we customize our

theory to handle the primal-dual setting. As its name implied, this approach acts by solving the

primal problem as well as dual formulation simultaneously, or even merely in the dual space.

By doing so, we are able to exploit the structure of the underlying model more efficiently.

1.1.3 Literature review and the state of current research

The Newton-type method in convex optimization is often referred to as a second-order

method. It is widely used to solve both unconstrained and constrained optimization problems

[45, 65]. It is popular among past several decades, mainly because of its fast local convergence

rate given the method is convergent. However, due to the unclearness of the global convergence

and the high per-iteration computational cost, it has been dominated by first-order methods

for solving modern large-scale optimization problems. For example, (a) the alternating direc-

tion method of multipliers (ADMM) which is closely related to [33], is a simple but powerful

algorithm that is well adapted to parallel and distributed optimization algorithms [18, 25], and

in particular to problems arising in image processing, applied statistics and machine learning,

where the objectives can be even nondifferentiable. (b) The Frank-Wolfe method, also known

as the conditional gradient method, was originally developed for smooth convex optimization

on a polytope, dated back from Frank and Wolfe [37]. It is still popular among many ap-

plication such as sparse convex optimization [54], particle filtering [58], and support vector

machine [82], due to its low per-iteraion cost and good practical performance. (c) The methods

that use Nesterov’s acceleration and smoothness techniques [73] such as fast iterative shrinkage

thresholding algorithm (FISTA) [4] and Nesterov’s algorithm (NESTA) [5] are even used as a

criterion to test the performance of new methods. However, those kind of methods often require

strong smoothness structure assumptions such as the most commonly used Lipschitz gradient

and strongly convexity, which do not hold in many important applications. This brings the

Newton-type method back to its life. To overcome the difficulty of strong impractical assump-

tions in first-order methods, the self-concordance concept was introduced in 1990s by Nestorov

and Nemirovski [75], as an innovative way of exploiting smoothness structures of convex opti-

mization problems. Since the self-concordance theory was introduced lately, its first extension
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was proposed by [1] for a class of logistic regression. In [103], the authors extended [1] to study

proximal Newton method for logistic, multinomial logistic, and exponential loss functions. By

augmenting a strongly convex regularizer, Zhang and Lin [109] showed that the regularized lo-

gistic regression is indeed standard self-concordant. In [2] Bach continued exploiting his results

in [1] to show that the averaging stochastic gradient method can achieve the same best known

convergence rate as in strongly convex case without adding a regularizer. In our recent work

[104], we developed a new generalized Newton-type framework to solve a large class of self-

concordant inclusion problem, and can achieve the same worst-case complexity as in standard

path-following method for smooth convex programming [75].

To overcome the difficulties of high per-iteration complexity of traditional Newton methods

and further accelerate the algorithm, both decentralized storage of big data as well as accompa-

nying distributed computation are necessary or at least highly desirable. In [102], the authors

exploited standard self-concordance theory in [75] to develop several classes of optimization

algorithms including proximal Newton, proximal-quasi Newton and proximal gradient methods

to solve composite convex minimization problems. In a recent paper [40], Gao and Goldfarb

studied quasi-Newton methods for self-concordant minimization problems. In our recent work

[97], we made a broader generalization of the self-concordant concept, and developed the corre-

sponding Newton and quasi-Newton-type methods, which covers [1, 29, 109] as special cases. In

addition to deterministic approaches, randomized algorithms and stochastic methods have been

also well developed. Along with stochastic gradient descents and coordinate descent schemes,

subsampled and sketching Newton-type methods have recently gained a great attention. Lu

[66] extended [102] to study randomized block coordinate descent methods. In addition, we

refer to [55, 87, 93] for further related works.

To accommodate with data-related errors and reduce the computational complexity, inexact

methods have been widely studied recently. Among the first-order frameworks, [28] provides

a general inexact first-order oracle that covers a wide class of objective functions, including

nonsmooth functions, and covering many other existing inexact first-order oracles as special

cases. However, [28] only studied a global first-order inexact oracle to analyze the behavior for

first-order methods of smooth convex optimization. Such an oracle cannot be used to study the

local behavior of second-order methods, in particular, for self-concordant functions. In quasi-
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Newton algorithms, secant equations are usually used to approximate the Hessian mapping

[77]. We show in Chapter 5 that this setup can also be cast into our Newton-type methods

with inexact oracles. Alternative to deterministic inexact oracles, stochastic gradient type

schemes can be viewed as optimization methods with inexact oracles [96]. Function values and

gradients are approximated by a stochastic sampling scheme to obtain inexact oracles. Finally,

derivative-free optimization can be considered as optimization methods with inexact oracles as

well [23].

With the rapid development of computational power, the big advance in acceleration tech-

niques, and the considerable progress in algorithms, we believe that Newton-type methods will

eventually play a major role in the future.

1.2 Contribution

Our contribution of this thesis is twofolds: theory and numerical algorithms, which can

be summarized as follows.

Theoretical contribution:

(a) We generalize the self-concordant notion in [74] to a more broader class of smooth convex

functions, which we call generalized self-concordance. We identify several link functions

that can be cast into our generalized self-concordant class. We also prove several funda-

mental properties and show that the generalized self-concordant class is closed with respect

to the basic affine transformation, for a given range of parameters or under suitable as-

sumptions. In addition, we develop lower and upper bounds on the Hessian, gradient,

and function values for generalized self-concordant functions. These estimates are key

to develop and analyze several numerical optimization methods including Newton-type

methods.

(b) We introduce new global and local inexact second-order oracles for a large class of convex

functions. Such a global inexact oracle covers a wide range of convex functions including

smooth convex functions with Lipschitz gradient continuity, nonsmooth Lipschitz contin-

uous convex functions with bounded domain, and self-concordant convex functions. For
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the local inexact oracle, we limit our consideration to the class of self-concordant func-

tions. Relying on these global and local inexact oracles, we develop several key properties

that are useful for algorithm development.

Algorithmic contribution:

(a) We propose a class of (proximal) Newton methods including damped-step and full-step

schemes to minimize a (composite) generalized self-concordant function. We show explic-

itly how to choose a suitable step-size to guarantee a descent direction in the damped-

step scheme, and prove a local quadratic convergence for both damped-step and full-step

schemes using a suitable metric.

(b) We develop a proximal-Newton algorithm based on inexact oracles and approximate com-

putations of the proximal-Newton directions to solve composite minimization (5.1). Our

global inexact oracle allows us to prove a general convergence result for the proposed

proximal-Newton method. When limited to self-concordant class for f , by using the new

local inexact oracle, we show how to adapt the inner accuracy parameters of the oracles

so that our algorithm still enjoys a global convergence guarantee, while having either

R-linear, R-superlinear, or R-quadratic local convergence rate.

(c) Finally, we customize our inexact method to handle a class of convex programs in the

primal-dual setting, where our method is applied to solve the dual problem. This partic-

ular application provides a new primal-dual method for handling some classes of convex

optimization problems including constrained formulations.

Let us emphasize the following of our contribution. First, we observe that the

self-concordance notion is a powerful concept and has been widely used in interior-point methods

as well as in other optimization schemes [49, 66, 102, 109]. Therefore, generalizing it to a broader

class of smooth convex functions can substantially cover a number of new applications, and is

helpful to develop new methods for solving classical problems including logistic and multimono-

mial logistic regression, optimization involving exponential objectives, and distance-weighted

discrimination problems in classification (see Table 3.1 below). Second, verifying theoretical

assumptions for convergence guarantees of a Newton method is not trivial, our theory allows
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one to classify the underlying functions into different subclasses by using different parameters

ν and Mϕ and to choose suitable algorithms to solve the corresponding optimization problem.

Third, the theory developed in this chapter can potentially apply to other optimization meth-

ods such as gradient-type, sketching and sub-sampling Newton, and Frank-Wolfe algorithms as

done in the literature [80, 87, 93, 102]. Fourth, our generalization also shows that it is pos-

sible to impose additional structure such as self-concordant barrier to develop path-following

scheme for solving a subclass of the composite convex minimization problems of the form (2.7).

Fifth, our global inexact second-order oracle is defined via a weighted local norm and via a

non-quadratic term and thus very different from the inexact first-order oracle from [28]. The

global convergence result is independent of the self-concordance of f , and holds for a large class

of functions, including Lipschitz gradient convex functions analyzed in [28]. Our inexact algo-

rithm covers the inexact methods and quasi-Newton methods developed in [31, 40, 66, 104, 109]

as special cases. Finally, we believe that our generalized self-concordant theory is not limited to

convex optimization, but can be extended to solve convex-concave saddle-point problems, and

monotone equations/inclusions involving generalized self-concordant functions, and our inexact

oracle theory can be used to further develop other methods such as sub-sampled Newton-type

methods rather than just the inexact proximal-Newton method in this thesis.

1.3 Outline of the thesis

The rest chapters are organized as follows.

• In Chapter 2, we provide some preliminary results and mathematical tools used in the

entire thesis, including a brief overview of Newton method and its variant, the concept of

standard self-concordance, [scaled] proximal operator, Fenchel conjugate, and Nesterov’s

smoothing technique.

• In Chapter 3, we introduce the class of generalized self-concordant functions, which covers

standard self-concordant functions as special cases. Then, we establish several properties

and key estimates of this function class, which can be used to design new numerical

methods.
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• In Chapter 4, we apply the theory introduced in Chapter 3 to develop several Newton-type

methods for solving a class of smooth convex optimization problems involving the gen-

eralized self-concordant functions. We provide an explicit step-size for damped-step

Newton-type scheme which can guarantee a global convergence without performing any

globalization strategy. We also prove a local quadratic convergence of this method and

its full-step variant without requiring the Lipschitz continuity of the objective Hessian.

Then, we extend our result to develop proximal Newton-type methods for a class of com-

posite convex minimization problems involving generalized self-concordant functions. We

also achieve both local and global convergence without additional assumptions. Finally,

we verify our theoretical results via several numerical examples, and compare them with

existing methods.

• In Chapter 5, we introduce new global and local inexact second-order oracle concepts for

a wide class of convex functions in composite convex optimization. We also provide exam-

ples to show that the class of convex functions equipped with the newly introduced inexact

second-order oracles is larger than the standard self-concordant function class. Further-

more, we investigate several properties of convex and/or self-concordant functions under

the inexact second-order oracles which are useful for algorithm development. Next, we

apply our theory to develop inexact proximal Newton-type schemes for minimizing general

composite convex problems equipped with such inexact oracles, with global convergence

guarantees. When the first objective term is self-concordant, we establish different lo-

cal convergence results for our method. We also apply our framework to derive a new

primal-dual method for composite convex minimization problems. Finally, we provide

some numerical examples to illustrate the benefit of our new algorithms based on this

concept of inexact second-order oracles.

• In Chapter 6, we summarize the main conclusions of this thesis, and list several related

research directions which remain on-going.
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CHAPTER 2

Mathematical Tools and Preliminary Results

In this chapter, we briefly present necessary mathematical concepts and preliminary results

which will be used in this thesis.

2.1 The Newton method

The Newton method is a fundamental scheme in optimization, which can be found in many

numerical analysis textbooks such as [75]. For the following unconstrained minimization prob-

lem

f? := min
x∈Rp

f(x), (2.1)

where f ∈ C2 (Rp), the Newton scheme refers to the following iteration step:

xk+1 := xk −∇2f(xk)−1∇f(xk). (2.2)

Since the Hessian matrix may not always be positive definite, the global convergence behavior

for the Newton iteration step (2.2) is not clear. To guarantee the global convergence, there

are two common strategies: linesearch and trust-region. One can see [77, Chapter 3 and 4]

for further references. In addition, the traditional Newton method has some drawbacks. For

example, Assumption (a) is hard to verify in practice, since we have limited information about

the optimal solution. Besides, Assumption (b) is strong in many applications. As mentioned

in Section 1.1.3, the Newton method has many variant versions and is extremely important for

modern applications in scientific computing. We briefly recall two variants in Section 2.4.

Let x? be the local minimum of the above optimization problem. Given the following

assumptions

(a) ∇2f(x?) � lIp with some constant l > 0;
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(b) ‖∇2f(x)−∇2f(y)‖2 ≤M‖x− y‖2 for all x and y ∈ Rp;

(c) The initial point x0 is close enough to the optimal solution x?, i.e.:

‖x0 − x?‖2 ≤ r̄ :=
2l

3M
.

Then we conclude that

(a) The iterative scheme (2.2) is well-defined;

(b) ‖xk − x?‖2 ≤ r̄ for all k ≥ 0;

(c) The sequence {xk} converges quadratically to x?, and the following relation holds:

‖xk+1 − x?‖2 ≤
M‖xk − x?‖22

2(l −M‖xk − x?‖2)
.

2.2 Local norm and self-concordance

Let f be a C3 (Rp) function. By the definition of third directional derivative, we have

∇3f(x)[u] := lim
t→0

1

t
[∇2f(x + tu)−∇2f(x)].

In this case, Assumption (b) of the Newton method in Subsection 2.1 becomes

|
〈
∇3f(x)[u]v,v

〉
| ≤M‖u‖2‖v‖22. (2.3)

We note that, the Newton scheme is affine invariant w.r.t affine transformation of variables,

while (2.3) is not. To maintain the affine invariant property, the following local norm and

self-concordant concept are naturally introduced.

Local norm: Given a matrix H ∈ S++, we define the weighted norm of u ∈ Rp w.r.t H as

‖u‖H := 〈Hu,u〉1/2. Its dual norm is ‖v‖∗H =
〈
H−1v,v

〉1/2
, which can be easily computed

through definition. Especially, when H = I, the identity matrix, we have ‖u‖H = ‖u‖∗H = ‖u‖2,

the standard Euclidean norm. Let f : Rp → R be a three times continuously differentiable
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function, i.e., f(x) ∈ C3(dom(f)). If ∇2f(x) � 0 at a given x ∈ dom(f), then we define the

local norm of u as ‖u‖∇2f(x), the weighted norm of u w.r.t ∇2f(x), shortly written as ‖u‖x if

the context is clear. The corresponding dual norm of v ∈ Rp, denoted by ‖v‖∗x, is defined as

‖v‖∗x := max{〈v,u〉 | ‖u‖x ≤ 1} =
〈
∇2f(x)−1v,v

〉1/2
.

Self-concordant function: Following the standard definition of self-concordance [74], we call

a function f self-concordant if the inequality

|
〈
∇3f(x)[u]u,u

〉
| ≤Mf‖u‖3x

holds for any x ∈ dom(f) and u ∈ Rp with some constant Mf ≥ 0. If Mf = 2, the function f

is called standard self-concordant. One simple example of standard self-concordant function is

f(x) = − ln(x), where x ∈ R+.

To apply the Newton-type method, sometimes we need to transfer the constrained problem

into unconstrained problem. Then we need to add a barrier function on the objective to prevent

the variable running close to the boundary in the iterative scheme. If the barrier shares some

properties related to self-concordance, then we call it self-concordant barrier. The standard

definition is given as follows.

Self-concordant barrier: Let B(x) be a standard self-concordant function. We call it a

ν-self-concordant barrier for the set Dom(B) := cl (dom(B)), if

max
u∈Rp
{2 〈∇B(x),u〉 −

〈
∇2B(x)u,u

〉
} ≤ ν

for all x ∈ dom(B). The value ν is called the parameter of the barrier.

We will use the properties of self-concordant function when developing the inexact oracle

theory in Chapter 5, and also generalize the self-concordance concepts together with corre-

sponding properties, convergence theory, and algorithms in Chapters 3 and 4.
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2.3 Proximal operator

Proximal operator: The proximal operator was first introduced in the early 1960s work by

Moreau [69]. It is frequently used in optimization algorithms associated with nonsmooth opti-

mization problems. It shows its popularity along with many well-known optimization methods

such as proximal Newton methods (which will be discussed in Subsection 2.4) and proximal

gradient methods. The proximal operator proxf : Rp → Rp of f is defined by

proxf (v) := arg min
x

{
f(x) +

1

2
‖x− v‖22

}
. (2.4)

Two commonly used examples are as follows:

(a) Indicator function: If f is the indicator function of a closed convex set C, then proxf is

the projection onto C:

proxf (v) = arg min
x∈C
‖x− v‖22 = PC(v).

(b) The `1-norm: If f(x) := ‖x‖1, then proxf is the soft-thresholding operator:

proxf (v)i = sign(vi) max{|vi| − 1, 0}.

Because of (a), the proximal operator can be viewed as an extension of the projection onto

convex sets.

The proximity operator enjoys many properties of the projection, in particular it is firmly

nonexpansive:

‖proxf (x)− proxf (y)‖22 ≤
〈
x− y, proxf (x)− proxf (y)

〉
, for all x,y ∈ Rp, (2.5)

which will be used to prove the convergence results in Chapters 4 and 5.

Scaled proximal operator: Since we use local norms in the definition of self-concordance

and generalized self-concordance in the next chapters, we also introduce the scaled proximal

operator together as follows. Given a matrix H ∈ Sp++, we define a scaled proximal operator of

14



g in (2.7) as

proxH−1g(x) := arg min
z

{
g(z) + 1

2‖z− x‖2H
}
. (2.6)

If H := H(y) ∈ Sp++, then we denote the above operator proxH−1g(x) as Py(x). We will use

this notation in Chapter 5. Using the optimality condition of the minimization problem in

(2.6), we can show that

y = proxH−1g(x) ⇐⇒ 0 ∈ H(y − x) + ∂g(y) ⇐⇒ x ∈ y + H−1∂g(y) ≡ (I + H−1∂g)(y).

Since g is proper, closed, and convex, proxH−1g is well-defined and single-valued. In partic-

ular, if we take H = I, the identity matrix, then proxH−1g(·) = proxg(·), the standard proximal

operator of g. If we can efficiently compute proxH−1g(·) by a closed form or by polynomial time

algorithms, then we say that g is proximally tractable. There exist several convex functions

whose proximal operator is tractable. Examples such as `1-norm, coordinate-wise separable

convex functions, and the indicator of simple convex sets can be found in the literature includ-

ing [3, 38, 84].

2.4 Two variants of the Newton method

Proximal Newton method: The proximal Newton method was developed in early 1990s, see,

e.g, [10, 91], which is known as the generalized Newton method. But this method is recently

popularized in [52, 60, 102]. Proximal algorithms can be viewed as an analogous tool for

nonsmooth, constrained, large-scale, or distributed versions of the unconstrained optimization

described in Section 2.1, and have plenty of interesting interpretations and are connected to

many different topics in optimization and applied mathematics. Many surveys written on

various aspects of this topic over the years can be found easily, such as [22, 62, 84], and even for

nonconvex optimization [78]. However, in this section we just recall the basic algorithm scheme

and convergence results as follows.

We consider the composite minimization problem

min
x∈Rp
{F (x) := f(x) + g(x)}, (2.7)
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where f is a convex, continuously differentiable loss function, and g is a convex and proximal

tractable, but not necessarily differentiable penalty function or regularizer. Such problems

include the LASSO [98], the graphical LASSO [39], and trace-norm matrix completion [15].

The proximal Newton scheme refers to the following iterative scheme:


zk := arg min

x∈dom(g)

{〈
∇f(xk),x− xk

〉
+

1

2

〈
∇2f(xk)(x− xk),x− xk

〉
+ g(x)

}
= prox∇2f(xk)−1g

(
xk −∇2f(xk)−1∇f(xk)

)
.

xk+1 := xk + τk(z
k − xk),

(2.8)

where τk is the step-size determined by the backtracking linesearch in this section.

Given the following assumptions

(a) mI � ∇2f � LI;

(b) ‖∇2f(x)−∇2f(y)‖2 ≤M‖x− y‖2 for all x and y ∈ Rp.

Then we have the conclusion that

(a) The proximal Newton method (2.8) converges globally.

(b) Further more, it achieves local quadratic convergence rate:

‖xk+1 − x?‖2 ≤
M

2m
‖xk − x?‖22.

Similar to the Newton method, the assumptions required here are too strong in practice.

Therefore, we will continue studying this formulation in detail in Chapters 4 and 5, by reducing

the above assumptions and giving an explicit step-size using [generalized] self-concordant theory.

Quasi-Newton method: The first quasi-Newton algorithm (DFP formula) was proposed by

William C. Davidon, but it was soon superseded by its dual - the BFGS formula. Currently

the most common quasi-Newton algorithms are the SR1 formula (for symmetric rank-one),

the widespread BFGS method (suggested independently by Broyden, Fletcher, Goldfarb, and

Shanno, in 1970), and its low-memory extension L-BFGS. The Broyden’s class is a linear

combination of the DFP and BFGS methods. We refer the reader to [77, Chapter 6] for a

systematic review.
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In quasi-Newton methods, like steepest descent, only the gradient of the objective function

is required at each iteration. By measuring the Hessian mapping via secant equations in a

proper way, it can achieve a local superlinear convergence, while avoiding the computation of

the inverse Hessian matrix. In particular, we recall two important results as below.

Consider again the unconstrained convex minimization problem (2.1), the quasi-Newton

scheme refers to the following iterative scheme:

xk+1 := xk − αkB−1
k ∇f(xk), (2.9)

where Bk is a sequence of nonsingular matrices constructed in a certain way.

Theorem 2.4.1. [26, Dennis-Moré] Let x? be an optimal solution for (2.1), and ∇2f(x?) � 0.

Let Ek := Bk −∇2f(x?). Assume that the sequence {xk} generated by (2.9) converges to x?.

Then, {xk} converges to x? superlinearly if and only if

lim
k→∞

‖Ek(x
k+1 − xk)‖

‖xk+1 − xk‖
= 0,

where ‖ · ‖ represents an arbitrary vector norm in Rp.

The above theorem characterizes the conditions for quasi-Newton method to achieve a

superlinear convergence rate. While the next theorem provides a more general rule for its

inexact updating version.

Given a starting point x0 and a sequence of positive scalars {ηk}, we update xk+1 following

the condition

‖∇f(xk) +∇2f(xk)(xk+1 − xk)‖ ≤ ηk‖∇f(xk)‖, (2.10)

where ‖ · ‖ represents an arbitrary vector norm in Rp.

Theorem 2.4.2. [24, Theorem 3.4, Corollary 3.5] Let x? be an optimal solution of (2.1), and

∇2f(x?) � 0. Let ηk → 0. If the sequence {xk} generated from (2.10) converges to x?, Then it

converges to x? superlinearly.

Remark 2.4.1. The proximal Newton-type methods are developed recently to solve the convex

composite problem (2.7), which combined both methods above together. One can see [20,
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40, 60] for further references. In this thesis, we will consider the inexact scheme (2.10) as a

subproblem by (1) specifying a certain [local] norm and different sequences of ηk; (2) replacing

the derivatives with approximations in the inexact oracle; and (3) in the composite setting

(2.7). Both convergence analysis and algorithm schemes can be found in Chapter 5.

2.5 Fenchel conjugates

Sometimes solving an optimization problem in its dual space is more convenient than its

primal setting. When forming the dual problem, the Fenchel conjugate is frequently used as

an expression of a maximization problem related to the original objective or constraint (when

forming the Lagrangian function, see Chapter 5). The Fenchel conjugate, also known as convex

conjugate was first introduced by Fenchel [35]. The conjugate function f∗ of f in X, is defined

in its dual space X∗, as follows

f∗(y) := sup{〈y,x〉 − f(x) | x ∈ X}. (2.11)

By definition, the conjugate function f∗ is always convex, and shares an important inequality

that links the conjugate and original functions together:

〈x,y〉 ≤ f(x) + f∗(y), for all x ∈ X, and y ∈ X∗.

Here are some commonly used examples:

(a) Affine functions: The conjugate of an affine function f(x) := 〈a,x〉 − b is

f∗(y) :=


b if y = a

+∞ otherwise.

(b) Absolute value: The conjugate of the absolute value f(x) := |x| is the indicator of the

closed interval [−1, 1]:

f∗(y) :=


0 if |y| ≤ 1

+∞ otherwise.
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(c) Exponential function: The conjugate of the exponential function f(x) := ex is

f∗(y) :=


y ln(y)− y, x > 0

0, x = 0

+∞ x < 0.

2.6 Nesterov’s smoothing techniques

Nonsmooth convex functions or models appear frequently in practice. However, the opti-

mization methods for smooth functions are more efficient and well-developed than the methods

of nonsmooth ones. Therefore there is a need of good smoothing techniques that help us deal

with nonsmooth functions.

Nesterov’s smoothing techniques refer to an efficient approach for constructing efficient

schemes for nonsmooth convex optimization, introduced by Nesterov [71]. Historically, the first

numerical schemes for nonsmooth convex minimization were subgradient methods [88], with

time complexity O(ε−2), where ε is the desired absolute accuracy of the approximate solution

measured by the function value. For the black-box model of the objective function, it was

shown that this efficiency of the simplest subgradient method cannot be improved uniformly

in dimension of variables [53]. However, we never meet a pure black box model in practice.

Motivated by this, Nesterov introduced this smoothing technique which makes a proper use of

the structure of the problem, with time complexity improved to O(ε−1).

In detail, given a proper, closed, possibly nonsmooth, and convex function f : Rp →

R ∪ {+∞}, one can smooth f using the following Nesterov’s smoothing technique

fγ(x) := max
u∈dom(f∗)

{〈Ax,u〉 − f∗(u)− γω(u)}, (2.12)

where f∗ is the Fenchel conjugate of f , ω : dom(ω) ⊆ Rp → R is a continuous and σ-strongly

convex function (prox-function) such that dom(f∗) ⊆ dom(ω), A is a linear operator, and γ > 0

is called the smoothness parameter. Without loss of generality, we assume that ω(u0) = 0, where

u0 := arg min{ω(u) : u ∈ dom(f∗)} (prox-center). Then we have the following theorem:
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Theorem 2.6.1. The function fγ is well-defined and continuously differentiable at any x ∈

dom(f). Moreover, this function is convex and its gradient ∇fγ(x) = A>u?γ is Lipschitz

continuous with constant Lγ = 1
γσ‖A‖

2
1,2, where uγ is the optimal solution of (2.12), and

‖A‖1,2 := max
x,u
{〈Ax,u〉 : ‖x‖1 = 1, ‖u‖2 = 1}.

For examples and the optimal scheme for smooth optimization, we refer the reader to

[71, Section 3,4]. In this thesis, we combine this smoothing technique by choosing a proper

smoothing function ω to build a new approximation of nonsmooth convex functions, which

enjoys the generalized self-concordant properties. Details and examples are provided in Section

3.6.
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CHAPTER 3

Theory of generalized self-concordant functions

3.1 Introduction

In this chapter we develop our generalized self-concordance theory. On the one hand, it is a

generalization of the well-known self-concordance notion developed in [75]. On the other hand,

it also covers the work in [1, 29, 109] as specific examples. Several specific applications and

extensions of self-concordance notion can also be found in the literature including [49, 57, 80, 86].

The rest of this chapter is organized as follows. Section 3.2 develops fundamental concepts

and examples of generalized self-concordant functions. Section 3.3 gives the foundation theory

including some basic properties. Section 3.4 shows the relationship between generalized self-

concordant and special function structures. Section 3.5 highlights the property of generalized

self-concordance in conjugate form. Section 3.6 introduces generalized self-concordant approxi-

mation of nonsmooth functions. Section 3.7 provides the key bounds for Hessian, gradient and

function values of generalized self-concordant functions, which will be used to develop our main

theory in next chapter.

3.2 Fundamental concepts and examples

We introduce the fundamental concepts and motivating examples of generalized self-

concordant functions in this section.

3.2.1 Univariate generalized self-concordant functions

Let ϕ : R → R be a three times continuously differentiable function on the open domain

dom(ϕ). Then, we write ϕ ∈ C3 (dom(ϕ)). In this case, ϕ is convex if and only if ϕ′′(t) ≥ 0 for

all t ∈ dom(ϕ). We introduce the following definition.
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Definition 3.2.1. Let ϕ : R→ R be a C3 (dom(ϕ)) and univariate function with open domain

dom(ϕ), and ν > 0 and Mϕ ≥ 0 be two constants. We say that ϕ is (Mϕ, ν)-generalized

self-concordant if

|ϕ′′′(t)| ≤Mϕϕ
′′(t)

ν
2 , ∀t ∈ dom(ϕ). (3.1)

We denote this class of functions by F̃Mϕ,ν(dom(ϕ)) (shortly, F̃Mϕ,ν when dom(ϕ) is ex-

plicitly defined).

The inequality (3.1) also indicates that ϕ′′(t) ≥ 0 for all t ∈ dom(f). Hence, ϕ is convex.

Clearly, if ϕ(t) = a
2 t

2 + bt for any constants a ≥ 0 and b ∈ R, we have ϕ′′(t) = a and ϕ′′′(t) = 0.

The inequality (3.1) is automatically satisfied for any ν > 0 and Mϕ ≥ 0. The smallest value

of Mϕ is zero. Hence, any convex quadratic function belongs to F̃0,ν for any ν > 0. While

(3.1) holds for any other constant M̂ϕ ≥Mϕ, we often require that Mϕ is the smallest constant

satisfying (3.1).

Example 3.1. Let us now provide some common examples satisfying Definition 3.2.1.

(a) Standard self-concordant functions: If we choose ν = 3, then (3.1) becomes |ϕ′′′(t)| ≤

Mϕϕ
′′(t)3/2, which is the standard self-concordant functions in R introduced in [75].

(b) Logistic functions: In [1], Bach modified the standard self-concordant inequality in [75] to

obtain |ϕ′′′(t)| ≤Mϕϕ
′′(t), and showed that the well-known logistic loss ϕ(t) := ln(1+e−t)

satisfies this definition. In [103] the authors also exploited this definition, and developed

a class of first-order and second-order methods to solve composite convex minimization

problems. Hence, ϕ(t) := ln(1 + e−t) ∈ F̃1,2.

(c) Exponential functions: The exponential function ϕ(t) := e−t ∈ F̃1,2. This function is

often used, e.g., in Ada-boost [59], or in matrix scaling [21].

(d) Distance-weighted discrimination (DWD): We consider a more general function ϕ(t) := 1
tq

on R++ and q ≥ 1 studied in [67] for DWD using in support vector machine. As shown

in Table 3.1, ϕ ∈ F̃Mϕ,ν with Mϕ = q+2
(q+2)
√
q(q+1)

and ν = 2(q+3)
q+2 ∈ (2, 3).

(e) Entropy function: We consider the well-known entropy function ϕ(t) := t ln(t) for t > 0.

We can easily show that |ϕ′′′(t)| = 1
t2

= ϕ′′(t)2. Hence ϕ ∈ F̃1,4.
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(f) Arcsine distribution: Consider the function ϕ(t) := 1√
1−t2 for t ∈ (−1, 1). This function

is convex and smooth. Moreover, we verify that ϕ ∈ F̃Mϕ,ν with ν = 14
5 ∈ (2, 3) and

Mϕ = 3
√

495−105
√

21

(7−
√

21)7/5 < 3.25. We can generalize this function to ϕ(t) := [(t− a)(b− t)]−q

for t ∈ (a, b), where a < b and q > 0. Then, we can show that ν = 2(q+3)
q+2 ∈ (2, 3).

(g) Robust Regression: Consider a monomial function ϕ(t) := tq for q ∈ (1, 2) studied in [107]

for robust regression using in statistics. Then ϕ ∈ F̃Mϕ,ν with Mϕ = 2−q
(2−q)
√
q(q−1)

and

ν = 2(3−q)
2−q ∈ (4,+∞).

3

As concrete examples, the following table, Table 3.1, provides a non-exhaustive list of

generalized self-concordant (gsc) functions used in the literature.

Table 3.1: Examples of univariate gsc functions (F1
L means that ∇ϕ is Lipschitz continuous).

Function Form of ϕ(t) ν M dom(ϕ) Application F1
L References

Log-barrier − ln(t) 3 2 R++ Poisson no [13, 74, 75]

Entropy-barrier t ln(t)− ln(t) 3 2 R++ Interior-point no [74]

Logistic ln(1 + et) 2 1 R Classification yes [50]

Exponential e−t 2 1 R AdaBoost no [21, 59]

Negative power t−q , (q > 0)
2(q+3)
q+2

q+2
(q+2)
√
q(q+1)

R++ DWD no [67]

Arcsine distribution 1√
1−t2

14
5

< 3.25 (−1, 1) Random walks no [42]

Positive power tq , (q ∈ (1, 2))
2(3−q)

2−q
2−q

(2−q)√q(q−1)
R+ Regression no [107]

Entropy t ln(t) 4 1 R+ KL divergence no [1]

Remark 3.2.1. All examples given in Table 3.1 fall into the case ν ≥ 2. However, we note that

Definition 3.2.1 also covers [109, Lemma 1] as a special case when ν ∈ (0, 2). Unfortunately,

as we will see in what follows, it is unclear how to generalize several properties of generalized

self-concordance from univariate to multivariable functions for ν ∈ (0, 2), except for strongly

convex functions.

Table 3.1 only provides common generalized self-concordant functions using in practice.

However, it is possible to combine these functions to obtain mixture functions that preserve

the generalized self-concordant inequality given in Definition 3.2.1. For instance, the barrier

entropy t ln(t) − ln(t) is a standard self-concordant function, and it is the sum of the entropy
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t ln(t) and the negative logarithmic function − ln(t), which are generalized self-concordant with

ν = 4 and ν = 3, respectively.

3.2.2 Multivariate generalized self-concordant functions

Let f : Rp → R be a C3(dom(f)) smooth and convex function with open domain dom(f).

Given ∇2f the Hessian of f , x ∈ dom(f), and u,v ∈ Rp, we consider the function ψ(t) :=〈
∇2f(x + tv)u,u

〉
. Then, it is obvious to show that

ψ′(t) :=
〈
∇3f(x + tv)[v]u,u

〉
.

for t ∈ R such that x + tv ∈ dom(f), where ∇3f is the third-order derivative of f . It is clear

that ψ(0) =
〈
∇2f(x)u,u

〉
= ‖u‖2x. By using the local norm, we generalize Definition 3.2.1 to

multivariate functions f : Rp → R as follows.

Definition 3.1. A C3-convex function f : Rp → R is said to be an (Mf , ν)-generalized self-

concordant function of the order ν > 0 and the constant Mf ≥ 0 if, for any x ∈ dom(f) and

u,v ∈ Rp, it holds

|
〈
∇3f(x)[v]u,u

〉
| ≤Mf‖u‖2x‖v‖ν−2

x ‖v‖3−ν2 . (3.2)

Here, we use a convention that 0
0 = 0 for the case ν < 2 or ν > 3. We also adopt the previous

univariate generalized self-concordant notation F̃Mf ,ν(dom(f)) (shortly, F̃pMf ,ν
or F̃Mf ,ν when

dom(f) is explicitly defined) to denote this class of functions.

Let us consider the following two extreme cases:

1. If ν = 2, (3.2) leads to |
〈
∇3f(x)[v]u,u

〉
| ≤Mf‖u‖2x‖v‖2, which collapses to the definition

introduced in [1] by letting u = v.

2. If ν = 3 and u = v, (3.2) reduces to |
〈
∇3f(x)[u]u,u

〉
| ≤Mf‖u‖3x, Definition 3.1 becomes

the standard self-concordant definition introduced in [74, 75].

We emphasize that Definition 3.1 is not symmetric, but can avoid the use of multilinear map-

pings as required in [1, 75]. However, by [75, Proposition 9.1.1] or [74, Lemma 4.1.2], Defini-

tion 3.1 with ν = 3 is equivalent to [74, Definition 4.1.1] for standard self-concordant functions.
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3.3 Basic properties of generalized self-concordant functions

We first show that if f1 and f2 are two generalized self-concordant functions, then β1f1+β2f2

is also generalized self-concordant for any β1, β2 > 0 according to Definition 3.1.

Proposition 3.3.1 (Sum of generalized self-concordant functions). Let fi ∈ F̃Mfi
,ν satisfying

(3.2), where Mfi ≥ 0 and ν ≥ 2 for i = 1, . . . ,m. Then, for βi > 0, i = 1, 2, . . . ,m, the function

f(x) :=
∑m

i=1 βifi(x) is well-defined on dom(f) =
⋂m
i=1 dom(fi), and f ∈ F̃Mf ,ν with the same

order ν ≥ 2 and the constant

Mf := max{β1− ν
2

i Mfi | 1 ≤ i ≤ m} ≥ 0.

Proof. It is sufficient to prove for m = 2. For m > 2, it follows from m = 2 by induction. By [74,

Theorem 3.1.5], f is a closed and convex function. In addition, dom(f) = dom(f1) ∩ dom(f2).

Let us fix some x ∈ dom(f) and u,v ∈ Rp. Then, by Definition 3.1, we have

|
〈
∇3fi(x)[v]u,u

〉
| ≤Mfi

〈
∇2fi(x)u,u

〉 〈
∇2fi(x)v,v

〉 ν−2
2 ‖v‖3−ν2 , i = 1, 2.

Denote wi :=
〈
∇2fi(x)u,u

〉
≥ 0 and si :=

〈
∇2fi(x)v,v

〉
≥ 0 for i = 1, 2. We can derive

|
〈
∇3f(x)[v]u,u

〉
|

〈∇2f(x)u,u〉 〈∇2f(x)v,v〉
ν−2

2

≤
β1|
〈
∇3f1(x)[v]u,u

〉
|+ β2|

〈
∇3f2(x)[v]u,u

〉
|

〈∇2f(x)u,u〉 〈∇2f(x)v,v〉
ν−2

2

≤

 Mf1β1w1s
ν−2

2
1 +Mf2β2w2s

ν−2
2

2

(β1w1 + β2w2)(β1s1 + β2s2)
ν−2

2


[T ]

‖v‖3−ν2 . (3.3)

Let ξ := β1w1

β1w1+β2w2
∈ [0, 1] and η := β1s1

β1s1+β2s2
∈ [0, 1]. Then, β2w2

β1w1+β2w2
= 1 − ξ ≥ 0 and

β2s2
β1s1+β2s2

= 1− η ≥ 0. Hence, the term [T ] in the square brackets of (3.3) becomes

h(ξ, η) := β
1− ν

2
1 Mf1ξη

ν−2
2 + β

1− ν
2

2 Mf2(1− ξ)(1− η)
ν−2

2 , ξ, η ∈ [0, 1].

Since ν ≥ 2 and ξ, η ∈ [0, 1], we can upper bound h(ξ, η) as

h(ξ, η) ≤ β1− ν
2

1 Mf1ξ + β
1− ν

2
2 Mf2(1− ξ), ∀ξ ∈ [0, 1].
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The right-hand side function is linear in ξ on [0, 1]. It achieves the maximum at its boundary.

Hence, we have

max
ξ∈[0,1],η∈[0,1]

h(ξ, η) ≤ max{β1− ν
2

1 Mf1 , β
1− ν

2
2 Mf2}.

Using this estimate into (3.3), we can show that f(·) := β1f1(·) + β2f2(·) is (Mf , ν)-generalized

self-concordant with Mf := max{β1− ν
2

1 Mf1 , β
1− ν

2
2 Mf2}.

Using Proposition 3.3.1, we can also see that if f ∈ F̃Mf ,ν and β > 0, then g(x) :=

βf(x) ∈ F̃Mg ,ν with the constant Mg := β1− ν
2Mf . The convex quadratic function q(x) :=

1
2 〈Qx,x〉 + c>x with Q ∈ Sp+ belongs to F̃0,ν for any ν > 0. Hence, by Proposition 3.3.1, if

f ∈ F̃Mf ,ν , then f(x) + 1
2 〈Qx,x〉+ c>x ∈ F̃Mf ,ν .

Next, we consider an affine transformation of a generalized self-concordant function.

Proposition 3.3.2 (Affine transformation). Let A(x) := Ax + b be an affine transformation

from Rp to Rq, and f ∈ F̃Mf ,ν with ν > 0. Then, the following statements hold:

(a) If ν ∈ (0, 3], then g(x) := f(A(x)) ∈ F̃Mg ,ν with Mg := Mf‖A‖3−ν .

(b) If ν > 3 and λmin(A>A) > 0, then g(x) := f(A(x)) ∈ F̃Mg ,ν with Mg :=

Mfλmin(A>A)
3−ν

2 , where λmin(A>A) is the smallest eigenvalue of A>A.

Proof. Since g(x) = f(A(x)) = f(Ax + b), it is easy to show that ∇2g(x) = A>∇2f(A(x))A

and ∇3g(x)[v] = A>(∇3f(A(x)[Av])A. Let us denote by x̃ := Ax+b, ũ := Au, and ṽ := Av.

Then, using Definition 3.1, we have

|
〈
∇3g(x)[v]u,u

〉
| = |

〈
A>(∇3f(x̃)[ṽ])Au,u

〉
| = |

〈
∇3f(x̃)[ṽ]ũ, ũ

〉
|

(3.2)

≤ Mf

〈
∇2f(x̃)ũ, ũ

〉 〈
∇2f(x̃)ṽ, ṽ

〉ν
2−1 ‖ṽ‖3−ν2

= Mf

〈
A>∇2f(A(x))Au,u

〉 〈
A>∇2f(A(x))Av,v

〉ν
2−1 ‖Av‖3−ν2

= Mf

〈
∇2g(x)u,u

〉 〈
∇2g(x)v,v

〉 ν
2
−1 ‖Av‖3−ν2 .

(3.4)

(a) If ν ∈ (0, 3], then we have ‖Av‖3−ν2 ≤ ‖A‖3−ν‖v‖3−ν2 . Hence (3.4) implies

|
〈
∇3g(x)[v]u,u

〉
| ≤Mf‖A‖3−ν

〈
∇2g(x)u,u

〉 〈
∇2g(x)v,v

〉 ν
2
−1 ‖v‖3−ν2 ,
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which shows that g ∈ F̃Mg ,ν with Mg := Mf‖A‖3−ν .

(b) Note that ‖Av‖22 = v>A>Av ≥ λmin(A>A)‖v‖22 ≥ 0, where λmin(A>A) is the

smallest eigenvalue of A>A. If λmin(A>A) > 0 and ν > 3, then we have ‖Av‖3−ν2 ≤

λmin(A>A)
3−ν

2 ‖v‖3−ν2 . Combining this estimate and (3.4), we can show that g ∈ F̃Mg ,ν with

Mg := Mfλmin(A>A)
3−ν

2 .

Remark 3.3.1. Proposition 3.3.2 shows that generalized self-concordance is preserved via an

affine transformations if ν ∈ (0, 3]. If ν > 3, then it requires A to be over-completed, i.e.,

λmin(A>A) > 0. Hence, the theory developed in the sequel remains applicable for ν > 3 if A

is over-completed.

Combining Proposition 3.3.1 and 3.3.2(a), we have a corollary of F̃Mf ,ν class for the sum

of functions from different dimensional spaces.

Corollary 3.3.3. Let fi ∈ F̃diMi,ν
for i = 1, . . . ,m. If ν ∈ [2, 3], then f(x) :=

∑m
i=1 fi(xi) also

belongs to F̃pM,ν with p =
∑m

i=1 di, and the same parameters as in Proposition 3.3.1.

Proof. Similar as the proof of Proposition 3.3.1, it is sufficient to prove for the case m =

2. Define f̃1(x) := f1([Id1 , 0]x) = f1(x1) and f̃2(x) := f2([0, Id2 ]x) = f2(x2). Since

‖[Id1 , 0]‖ = ‖[0, Id2 ]‖ = 1, by Proposition 3.3.2(a), f̃i ∈ F̃d1+d2
Mi,ν

, i = 1, 2. By Proposition 3.3.1,

f also belongs to Gd1+d2(M,ν) with the same parameters as in Proposition 3.3.1.

The following result is an extension of standard self-concordant functions (ν = 3), whose

proof is very similar to [74, Theorems 4.1.3, 4.1.4] by replacing the parameters Mf = 2 and

ν = 3 with the general parameters Mf ≥ 0 and ν > 0 (or ν ≥ 2), respectively. We omit the

detailed proof.

Proposition 3.3.4. Let f ∈ F̃Mf ,ν with ν > 0. Then:

(a) If ν ≥ 2 and dom(f) contains no straight line, then ∇2f(x) � 0 for any x ∈ dom(f).

(b) If there exists x̄ ∈ bd(dom(f)), the boundary of dom(f), then, for any x̄ ∈ bd(dom(f)),

and any sequence {xk} ⊂ dom(f) such that limk→∞ xk = x̄, we have limk→∞ f(xk) =

+∞.
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Note that Proposition 3.3.4(a) only holds for ν ≥ 2. If we consider g(x) := f(A(x)) for a

given affine operator A(x) = Ax + b, then the non-degenerateness of ∇2g is only guaranteed

if A is full-rank. Otherwise, it is non-degenerated in a given subspace of A.

3.4 Generalized self-concordant functions with special structures

We first show that if a generalized self-concordant function is strongly convex or Lipschitz

gradient, then we can increase or decrease the parameter ν if necessary. Particularly, the original

F̃Mf ,ν class can be cast into the special case ν = 2 or ν = 3.

Proposition 3.4.1. Let f ∈ F̃M,ν with ν ≥ 2. Then:

(a) If f is µ-strongly convex w.r.t `2-norm for some µ > 0, then f also belongs to F̃M̃,ν̃ class

with M̃ := M/(
√
µ)ν̃−ν , given that ν ≤ ν̃.

(b) If f has L-Lipschitz gradient w.r.t `2-norm, then f also belongs to F̃M̃,ν̃ class with M̃ :=

M(
√
L)ν−ν̃ , given that ν̃ ≤ ν.

Proof. If f is µ-strongly convex, then µ‖v‖22 ≤
〈
∇2f(x)v,v

〉
, hence ‖v‖2 ≤ ‖v‖x/

√
µ.

|∇3f(x)[v]u,u| ≤ M‖u‖2x‖v‖ν−2
x ‖v‖3−ν2

= M

(
‖v‖2
‖v‖x

)ν̃−ν
‖u‖2x‖v‖ν̃−2

x ‖v‖3−ν̃2

≤ M/(
√
µ)ν̃−ν‖u‖2x‖v‖ν̃−2

x ‖v‖3−ν̃2 ,

where the first inequality is by definition, and the second is from the strongly convexity.

If f has L-Lipschitz gradient, then
〈
∇2f(x)v,v

〉
≤ L‖v‖22, hence ‖v‖x ≤

√
L‖v‖2. Then

|∇3f(x)[v]u,u| ≤ M‖u‖2x‖v‖ν−2
x ‖v‖3−ν2

= M

(
‖v‖x
‖v‖2

)ν−ν̃
‖u‖2x‖v‖ν̃−2

x ‖v‖3−ν̃2

≤ M(
√
L)ν−ν̃‖u‖2x‖v‖ν̃−2

x ‖v‖3−ν̃2 ,

where the first inequality is by definition, and the second is from the Lipschitz property.
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Remark 3.4.1. If we take ν̃ = 3 and ν ≤ 3 in case (a), or ν̃ = 2 in case (b), then we get back

to the special case shown in [97, Proposition 4].

Proposition 3.4.1 provides two important properties jointly linked with special function

structures. If a generalized self-concordant function f is Lipschitz gradient, we can always

classify it into the special case ν = 2. Therefore, we can exploit both structures: generalized

self-concordance and Lipschitz gradient to develop better algorithms. Combining Proposition

3.3.1 and 3.4.1, we have the following corollary:

Corollary 3.4.2. Let g ∈ F̃pMg ,νg
and h ∈ F̃pMh,νh

, and f := αg+βh be their sum, for α, β > 0.

Assume that 2 ≤ νg ≤ νh, then

(a) If g is µ-strongly convex, then f also belongs to F̃pMf ,νh
with

Mf := max{α1− νh
2 Mg/(

√
µ)νh−νg , β1− νh

2 Mh}.

(b) If h has L-Lipschitz gradient, then f also belongs to F̃pMf ,νg
with

Mf := max{α1− νg
2 Mg, β

1− νg
2 Mh(

√
L)νh−νg}.

Combining Corollary 3.3.3 and Proposition 3.4.1, we have the following corollary:

Corollary 3.4.3. Let g ∈ F̃d1
Mg ,νg

and h ∈ F̃d2
Mh,νh

, and f(x) := αg(x1) + βh(x2) be their sum,

for α, β > 0 and x := (xT1 ,x
T
2 )T ∈ Rd1+d2 . Assume that 2 ≤ νg ≤ νh ≤ 3, then we have the

same conclusion as Corollary 3.4.2.

Given n smooth convex univariate functions ϕi : R → R satisfying (3.1) for i = 1, . . . , n

with the same order ν > 0, we consider the function f : Rp → R defined by the following:

f(x) :=
1

n

n∑
i=1

ϕi(a
>
i x + bi), (3.5)

where ai ∈ Rp and bi ∈ R are given vectors and scalars, respectively for i = 1, · · · , n. This

convex function is called a finite sum and widely used in machine learning and statistics. The

decomposable structure in (3.5) often appears in generalized linear models [9, 14], and empirical
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risk minimization [109], where ϕi is referred to as a loss function as can be found, e.g., in Table

3.1.

Next, we show that if ϕi is generalized self-concordant with ν ∈ [2, 3], then f is also

generalized self-concordant. This result is a direct consequence of Proposition 3.3.1 and Propo-

sition 3.3.2.

Corollary 3.4.4. If ϕi in (3.5) satisfies (3.1) for i = 1, . . . , n with the same order ν ∈ [2, 3]

and Mϕi ≥ 0, then f defined by (3.5) also belongs to F̃Mf ,ν in the sense of Definition 3.1 with

the same order ν and the constant Mf := n
ν
2
−1 max{Mϕi‖ai‖3−ν2 | 1 ≤ i ≤ n}.

Finally, we show that if we regularize f in (3.5) by a strongly convex quadratic term, then

the resulting function becomes self-concordant. The proof can follow the same path as [109,

Lemma 2].

Proposition 3.4.5. Let f(x) := 1
n

∑n
i=1 ϕi(a

>
i x + bi) + ψ(x), where ψ(x) := 1

2 〈Qx,x〉+ c>x

is strongly convex quadratic function with Q ∈ Sp++. If ϕi satisfies (3.1) for i = 1, · · · , n with

the same order ν ∈ (0, 3] and a constant Mϕi > 0, then f ∈ F̃M̂f ,3
in the sense of Definition 3.1

with M̂f := λmin(Q)
ν−3

2 max{Mϕi‖ai‖3−ν2 | 1 ≤ i ≤ n}.

3.5 Fenchel’s conjugate of generalized self-concordant functions

Primal-dual theory is fundamental in convex optimization. Hence, it is important to study

the Fenchel conjugate of generalized self-concordant functions.

Let f : Rp → R be an (Mf , ν)-generalized self-concordant function. We consider Fenchel’s

conjugate f∗ of f as

f∗(x) = sup
u
{〈x,u〉 − f(u) | u ∈ dom(f)}. (3.6)

Since f is proper, closed, and convex, f∗ is well-defined and also proper, closed, and convex.

Moreover, since f is smooth and convex, by Fermat’s rule, if u∗(x) satisfies ∇f(u∗(x)) = x,

then f∗ is well-defined at x. This shows that dom(f∗) = {x ∈ Rp | ∇f(u∗(x)) = x is solvable}.

Example 3.2. Let us look at some univariate functions. By using (3.6), we can directly show

that:
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1. If ϕ(s) = ln(1 + es), then ϕ∗(t) = t ln(t) + (1− t) ln(1− t).

2. If ϕ(s) = s ln(s), then ϕ∗(t) = et−1.

3. If ϕ(s) = es, then ϕ∗(t) = t ln(t)− t.

3

Intuitively, these examples show that if ϕ is generalized self-concordant , then its conjugate

ϕ∗ is also generalized self-concordant . For more examples, see [3, Chapter 13]. Let us generalize

this result in the following proposition, whose proof is given in Appendix A.1.1.

Proposition 3.5.1. If f is F̃Mf ,ν in dom(f) ⊆ Rp such that ∇2f(x) � 0 for x ∈ dom(f), then

the conjugate function f∗ of f given by (3.6) is well-defined, and belongs to F̃Mf∗ ,ν∗ on

dom(f∗) := {x ∈ Rp | f(u)− 〈x,u〉 is bounded from below on dom(f)},

where Mf∗ = Mf and ν∗ = 6− ν provided that ν ∈ [3, 6) if p > 1 and ν ∈ (0, 6) if p = 1.

Moreover, we have ∇f∗(x) = u∗(x) and ∇2f∗(x) = ∇2f(u∗(x))−1, where u∗(x) is a unique

solution of the maximization problem maxu{〈x,u〉 − f(u) | u ∈ dom(f)} in (3.6) for any

x ∈ dom(f∗).

Proposition 3.5.1 allows us to apply our generalized self-concordance theory in this paper to

the dual problem of a convex problem involving generalized self-concordant functions, especially,

when the objective function of the primal problem is generalized self-concordant with ν ∈

(3, 4]. The Fenchel conjugates are certainly useful when we develop optimization algorithms to

solve constrained convex optimization involving generalized self-concordant functions, see, e.g.,

[30, 31].

3.6 Generalized self-concordant approximation of nonsmooth convex functions

Several well-known convex functions are nonsmooth. However, they can be approximated

(up to an arbitrary accuracy) by a generalized self-concordant function via smoothing. Smooth-

ing techniques clearly allow us to enrich the applicability of our theory to nonsmooth convex

problems.
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Inspired by Nesterov’s smoothing techniques (introduced in Section 2.6), our goal is to

choose an appropriate smoothing function ω such that the smoothed function fγ is well-defined

and generalized self-concordant for any fixed smoothness parameter γ > 0.

Example 3.3. Let us provide a few examples with well-known nonsmooth convex functions:

(a) Consider the `1-norm function f(x) := ‖x‖1 in Rp. Then, it can be rewritten as

‖x‖1 = max
u
{〈x,u〉 | ‖u‖∞ ≤ 1} = max

u,v

{
〈x,u− v〉 |

p∑
i=1

(ui + vi) = 1, u,v ∈ Rp+
}
.

We can smooth this function by fγ by choosing ω(u,v) := ln(2p) +
∑p

i=1(ui ln(ui) +

vi ln(vi)). In this case, we obtain fγ(x) = γ ln
(∑p

i=1

(
exi/γ + e−xi/γ

))
− γ ln(2p). This

function is clearly generalized self-concordant with ν = 2, see [103, Lemma 4].

However, if we choose ω(u) := p−
∑p

i=1

√
1− u2

i , then we get fγ(x) =
∑p

i=1

√
x2
i + γ2−

γp. In this case, fγ ∈ F̃Mfγ ,ν
with ν = 8

3 and Mfγ = 3γ−
2
3 .

(b) The hinge loss function ϕ(t) := max{0, 1− t} can be written as ϕ(t) = 1
2 |1− t|+

1
2(1− t).

Hence, we can smooth this function by ϕγ(t) := γ ln

(
e

(1−t)
γ +e

− (1−t)
γ

2

)
+ 1

2(1 − t) with a

smoothness parameter γ > 0. Clearly, ϕγ is generalized self-concordant with ν = 2.

3

In many practical problems, the conjugate f∗ of f can be written as the sum f∗ = ϕ+ δU ,

where ϕ is a generalized self-concordant function, and δU is the indicator function of a given

nonempty, closed, and convex set U . In this case, fγ in (2.12) becomes

fγ(x) := sup
u
{〈x,u〉 − ϕ(u)− γω(u) | u ∈ U}. (3.7)

If ω is generalized self-concordant such that νϕ = νω, and U = dom(ω) ∩ dom(ϕ), then fγ is

also generalized self-concordant with νfγ = 6− νϕ as shown in Proposition 3.5.1.

3.7 Key bounds on Hessian, gradient and function values

Now, we develop some key bounds on the local norms, Hessian, gradient and function values

of generalized self-concordant functions.
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For this purpose, given ν ≥ 2, we define the following quantity for any x,y ∈ dom(f):

dν(x,y) := M‖y − x‖3−ν2 ‖y − x‖ν−2
x . (3.8)

Here, if ν > 3, then we require x 6= y. Otherwise, we set dν(x,y) := 0 if x = y. In addition,

we also define the function ¯̄ων : R→ R+ as

¯̄ων(τ) :=


(

1
1− ν−2

2
τ

) 2
ν−2

if ν > 2

eτ if ν = 2.

(3.9)

with dom(¯̄ων) =
(
−∞, 2

ν−2

)
if ν > 2, and dom(¯̄ων) = R if ν = 2. We also adopt the Dikin

ellipsoidal notion from [75] as W 0(x; r) := {y ∈ Rp | ν−2
2 dν(x,y) < r}.

The next proposition provides some bounds on the local norm defined by generalized self-

concordant function f . These bounds are given for the local distance ‖y − x‖x and ‖y − x‖y

between two points x and y in dom(f).

Proposition 3.7.1 (Bounds of local norms). If ν > 2, then, for any x ∈ dom(f), we have

W 0(x; 1) ⊆ dom(f). For any x,y ∈ dom(f), let dν(x,y) be defined by (3.8), and ¯̄ων(·) be

defined by (3.9). Then, we have

¯̄ων (−dν(x,y))
1
2 ‖y − x‖x ≤ ‖y − x‖y ≤ ¯̄ων (dν(x,y))

1
2 ‖y − x‖x. (3.10)

If ν > 2, then the right-hand side inequality of (3.10) holds if dν(x,y) < 2
ν−2 .

Proof. We first consider the case ν > 2. Let u ∈ Rp and u 6= 0. Consider the following

univariate function

φ(t) :=
〈
∇2f(x + tu)u,u

〉1−ν2 = ‖u‖2−νx+tu.

It is easy to compute the derivative of this function, and obtain

φ′(t) =

(
2− ν

2

) 〈∇3f(x + tu)[u]u,u
〉

〈∇2f(x + tu)u,u〉
ν
2

=

(
2− ν

2

) 〈∇3f(x + tu)[u]u,u
〉

‖u‖νx+tu

.
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Using Definition 3.1 with u = v and x + tu instead of x, we have |φ′(t)| ≤ ν−2
2 Mf‖u‖3−ν2 . This

implies that φ(t) ≥ φ(0) − ν−2
2 Mf‖u‖3−ν2 |t|. On the other hand, we can see that dom(φ) =

{t ∈ R | φ(t) > 0}. Hence, we have dom(φ) contains
(
− 2φ(0)

(ν−2)Mf‖u‖3−ν2

, 2φ(0)

(ν−2)Mf‖u‖3−ν2

)
. Using

this fact and the definition of φ, we can show that dom(f) contains {y := x + tu | |t| <
2‖u‖2−νx

(ν−2)Mf‖u‖3−ν2

}. However, since |t| = ‖y−x‖ν−2
x

‖u‖ν−2
x

‖y−x‖3−ν2

‖u‖3−ν2

, the condition |t| < 2‖u‖2−νx

(ν−2)Mf‖u‖3−ν2

is

equivalent to dν(x,y) < 2
ν−2 . This shows that W 0(x; 1) ⊆ dom(f).

Since
∣∣ ∫ 1

0 φ
′(t)dt

∣∣ ≤ ∫ 1
0 |φ

′(t)|dt, integrating φ′(t) over the interval [0, 1] we get

∣∣∣‖u‖2−νx+u − ‖u‖2−νx

∣∣∣ ≤ ν − 2

2
Mf‖u‖3−ν2 .

Using u = y− x in the last inequality, we get |‖y− x‖2−νy − ‖y− x‖2−νx | ≤ ν−2
2 Mf‖y− x‖3−ν2 ,

which is equivalent to

‖y − x‖ν−2
y ≤ ‖y − x‖ν−2

x

(
1− ν−2

2
Mf‖y − x‖ν−2

x ‖x− y‖3−ν2

)−1
= ‖y − x‖ν−2

x

(
1− ν−2

2
dν(x,y)

)−1

‖y − x‖ν−2
y ≥ ‖y − x‖ν−2

x

(
1 + ν−2

2
Mf‖y − x‖ν−2

x ‖x− y‖3−ν2

)−1
= ‖y − x‖ν−2

x

(
1 + ν−2

2
dν(x,y)

)−1
,

given that dν(x,y) < 2
ν−2 . Taking the power of 1

ν−2 > 0 on both sides, we get (3.10) for the

case ν > 2.

Now, we consider the case ν = 2. Let 0 6= u ∈ Rp. We consider the following function

φ(t) := ln
(〈
∇2f(x + tu)u,u

〉)
= ln

(
‖u‖2x+tu

)
.

Clearly, it is easy to show that φ′(t) =
〈∇3f(x+tu)[u]u,u〉
〈∇2f(x+tu)u,u〉 =

〈∇3f(x+tu)[u]u,u〉
‖u‖2x+tu

. Using again

Definition 3.1 with u = v and x + tu instead of x, we obtain |φ′(t)| ≤Mf‖u‖2.

Since
∣∣ ∫ 1

0 φ
′(t)dt

∣∣ ≤ ∫ 1
0 |φ

′(t)|dt, integrating φ′(t) over the interval [0, 1] we get

| ln
(
‖u‖2x+u

)
− ln

(
‖u‖2x

)
| ≤Mf‖u‖2.

Substituting u = y− x into this inequality, we get
∣∣ ln ‖y− x‖y − ln ‖y− x‖x

∣∣ ≤ Mf

2 ‖y− x‖2.

Hence, ln ‖y − x‖x −
Mf

2 ‖y − x‖2 ≤ ln ‖y − x‖y ≤ ln ‖y − x‖x +
Mf

2 ‖y − x‖2. This inequality

leads to (3.10) for the case ν = 2.
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Next, we develop new bounds for the Hessian of f in the following proposition.

Proposition 3.7.2 (Bounds of Hessian). For any x,y ∈ dom(f), let dν(x,y) be defined by

(3.8), and ¯̄ων(·) be defined by (3.9). Then, we have

¯̄ων (dν(x,y))−1∇2f(x) � ∇2f(y) � ¯̄ων (dν(x,y))∇2f(x), (3.11)

where dν(x,y) < 2
ν−2 is required for the case ν > 2.

Proof. Let ν > 2 and 0 6= u ∈ Rn. Consider the following univariate function on [0, 1]:

ψ(t) :=
〈
∇2f(x + t(y − x))u,u

〉
, t ∈ [0, 1].

If we denote by yt := x + t(y − x), then yt − x = t(y − x), ψ(t) = ‖u‖2yt , and ψ′(t) =〈
∇3f(yt)[y − x]u,u

〉
. By Definition 3.1, we have

|ψ′(t)| ≤Mf‖u‖2yt‖y − x‖ν−2
yt ‖y − x‖3−ν2 = Mfψ(t)

[
‖yt−x‖yt

t

]ν−2
‖y − x‖3−ν2 ,

which implies

|d lnψ(t)

dt
| ≤Mf

[
‖yt−x‖yt

t

]ν−2
‖y − x‖3−ν2 . (3.12)

Assume that dν(x,y) < 2
ν−2 . Then, by the definition of yt and dν(·), we have dν(x,yt) =

tdν(x,y) and ‖yt − x‖x = t‖y − x‖x. Using Proposition 3.7.1, we can derive

1
t ‖yt − x‖yt ≤ 1

t

[
1− ν−2

2 dν(x,yt)
]− 1

ν−2 ‖yt − x‖x

=
[
1− ν−2

2 dν(x,y)t
]− 1

ν−2 ‖y − x‖x.

Hence, we can further derive

[
1

t
‖yt − x‖yt

]ν−2

≤ ‖y − x‖ν−2
x

1− ν−2
2 dν(x,y)t

Integrating d lnψ(t)
dt with respect to t on [0, 1] and using the last inequality and (3.12), we get

|
∫ 1

0

d lnψ(t)

dt
dt| ≤

∫ 1

0
|d lnψ(t)

dt
|dt ≤ ‖y − x‖ν−2

x ‖y − x‖3−ν2

∫ 1

0

dt

1− ν−2
2 dν(x,y)t

.
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Clearly, we can compute this integral explicitly as

| ln
[
‖u‖2y
‖u‖2x

]
| = | ln

[
ψ(1)

ψ(0)

]
| ≤ −2dν(x,y)

(ν − 2)dν(x,y)
ln

[
1− ν − 2

2
dν(x,y)

]
= ln

[(
1− ν − 2

2
dν(x,y)

) −2
ν−2

]
.

Rearranging this inequality, we obtain

[
1− ν − 2

2
dν(x,y)

] 2
ν−2

≤
‖u‖2y
‖u‖2x

≡
〈
∇2f(y)u,u

〉
〈∇2f(x)u,u〉

≤
[
1− ν − 2

2
dν(x,y)

] −2
ν−2

.

Since this inequality holds for any 0 6= u ∈ Rp, it implies (3.11). If u = 0, then (3.11) obviously

holds.

Now, we consider the case ν = 2. It follows from (3.12) that

| ln

[
‖u‖2y
‖u‖2x

]
| = |

∫ 1

0

d lnψ(t)

dt
dt| ≤

∫ 1

0
|d lnψ(t)

dt
|dt ≤Mf

∫ 1

0
‖y − x‖2dt = Mf‖y − x‖2.

Since this inequality holds for any u ∈ Rp, it implies (3.11).

The following corollary provides a bound on the mean of the Hessian

G(x,y) :=
∫ 1

0 ∇
2f(x + τ(y − x))dτ , whose proof is moved to Appendix A.1.2.

Corollary 3.7.3. For any x,y ∈ dom(f), let dν(x,y) be defined by (3.8). Then, we have

κν(dν(x,y))∇2f(x) �
∫ 1

0
∇2f(x + τ(y − x))dτ � κν(dν(x,y))∇2f(x), (3.13)

where

κν(t) :=


1−e−t
t if ν = 2

2
νt

[
1−
(
1− ν−2

2 t
) ν
ν−2

]
if ν > 2

and

κν(t) :=



et−1
t if ν = 2

− ln(1−t)
t if ν = 4

2
(ν−4)t

[
1−
(
1− ν−2

2 t
) ν−4
ν−2

]
if ν > 2, ν 6= 4.

Here, if ν > 2, then we require the condition dν(x,y) < 2
ν−2 in (3.13).

Remark 3.7.1. In the above proposition, κν and κν are always non-negative and well-defined

on their domains, respectively.

36



We prove a bound on the gradient inner product of f ∈ F̃M,ν .

Proposition 3.7.4 (Bounds of gradient map). For any x,y ∈ dom(f), we have

κν (−dν(x,y)) ‖y − x‖2x ≤ 〈∇f(y)−∇f(x),y − x〉 ≤ κν (dν(x,y)) ‖y − x‖2x, (3.14)

where, if ν > 2, then the right-hand side inequality of (3.14) holds if dν(x,y) < 2
ν−2 .

Proof. Let yt := x + t(y − x). By the mean-value theorem, we have

〈∇f(y)−∇f(x),y − x〉 =

∫ 1

0

〈
∇2f(yt)(y − x),y − x

〉
dt =

∫ 1

0

1

t2
‖yt − x‖2ytdt. (3.15)

We consider the function ¯̄ων defined by (3.9). It follows from Proposition 3.7.1 that

¯̄ων (−dν(x,yt)) ‖yt − x‖2x ≤ ‖yt − x‖2yt ≤ ¯̄ων (dν(x,yt)) ‖yt − x‖2x.

Note that dν(x,yt) = tdν(x,y) and ‖yt − x‖x = t‖y − x‖x, the last estimate leads to

¯̄ων (−tdν(x,y)) ‖y − x‖2x ≤
1

t2
‖yt − x‖2yt ≤ ¯̄ων (tdν(x,y)) ‖y − x‖2x.

Substituting this estimate into (3.15), we obtain

‖y − x‖2x
∫ 1

0

¯̄ων (−tdν(x,y)) dt ≤ 〈∇f(y)−∇f(x),y − x〉 ≤ ‖y − x‖2x
∫ 1

0

¯̄ων (tdν(x,y)) dt.

Using the function ¯̄ων(τ) from (3.9) to compute the left-hand side and the right-hand side

integrals, we obtain (3.14).

Finally, we prove a bound on function values of f ∈ F̃M,ν in the following proposition.

Proposition 3.7.5 (Bounds of function values). For any x,y ∈ dom(f), we have

ων (−dν(x,y)) ‖y − x‖2x ≤ f(y)− f(x)− 〈∇f(x),y − x〉 ≤ ων (dν(x,y)) ‖y − x‖2x, (3.16)
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where, if ν > 2, then the right-hand side inequality holds if dν(x,y) < 2
ν−2 . Here, dν(x,y) is

defined by (3.8) and ων is defined by

ων(τ) :=



eτ−τ−1
τ2 if ν = 2

−2τ−4 ln(1− τ
2

)

τ2 if ν = 3

(1−τ) ln(1−τ)+τ
τ2 if ν = 4(

2
4−ν

)
1
τ

[
1

(3−ν)τ

((
1− ν−2

2 τ
) 2(3−ν)

2−ν − 1

)
− 1

]
otherwise.

(3.17)

Note that ων(τ) ≥ 0 for all τ ∈ dom(ων).

Proof. For any x,y ∈ dom(f), let yt := x + t(y − x). Then, yt − x = t(y − x). By the

mean-value theorem, we have

f(y)− f(x)− 〈∇f(x),y − x〉 =

∫ 1

0

1
t 〈∇f(yt)−∇f(x),yt − x〉 dt.

Now, by Proposition 3.7.4, we have

κν (−dν(x,yt)) ‖yt − x‖2x ≤ 〈∇f(yt)−∇f(x),yt − x〉 ≤ κν (dν(x,yt)) ‖yt − x‖2x.

Clearly, by the definition (3.8), we have dν(x,yt) = tdν(x,y) and ‖yt − x‖x = t‖y − x‖x.

Combining these relations, and the above two inequalities, we can show that

‖y−x‖2x
∫ 1

0
tκν (−tdν(x,y)) dt ≤ f(y)−f(x)−〈∇f(x),y − x〉 ≤ ‖y−x‖2x

∫ 1

0
tκν (tdν(x,y)) dt.

By integrating the left- and right-hand side of the above inequality, we obtain (3.16).

3.8 Conclusion

We have generalized the self-concordance notion in [75] to a more general class of smooth

and convex functions. Such a function class covers several well-known examples, including

logistic, exponential, reciprocal and standard self-concordant functions. We developed a unified

38



theory to reveal the smoothness structures of this functional class and discussed the behavior in

the dual space. We also obtained some fundamental properties incorporating generalized self-

concordance with Lipschitz gradient and strong convexity. We provided several key bounds on

the Hessian, gradient and function value of this function class. For our reference convenience,

we provide a short summary on the main properties of generalized self-concordant functions in

Table 3.2 below.

Table 3.2: Summary of gsc properties and the corresponding range of ν

Result Property Range of ν

Definitions 3.2.1 and 3.1 definitions of gsc functions ν > 0

Proposition 3.3.1 sum of gsc functions ν ≥ 2

Proposition 3.3.2 affine transformation of gsc functions with
A(x) = Ax+ b

ν ∈ (0, 3] for general A
ν > 3 for over-completed A

Proposition 3.3.4(a) non-degenerate property ν ≥ 2

Proposition 3.3.4(b) unboundedness ν > 0

Proposition 3.4.1(a) gsc and strong convexity ν ∈ (0, 3]

Proposition 3.4.1(b) gsc and Lipschitz gradient continuity ν ≥ 2

Proposition 3.5.1 if f∗ is the conjugate of a gsc function
f , then ν + ν∗ = 6

ν∗ ∈ (0, 6) if p = 1 (univariate)
ν∗ ∈ [3, 6) if p > 1 (multivariate)

Propositions 3.7.1, 3.7.2,
3.7.4, and 3.7.5

local norm, Hessian, gradient, and function
value bounds

ν ≥ 2

Although several results hold for a different range of ν, the complete theory only holds for

ν ∈ [2, 3]. However, this is sufficient to cover two important cases: ν = 2 in [1, 2] and ν = 3 in

[75]. We will further illustrate our main theory and algorithm in Chapter 4.
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CHAPTER 4

Generalized self-concordant minimization

4.1 Introduction

In this chapter, we apply the theory developed in the Chapter 3 to design new Newton-type

methods to minimize a generalized self-concordant function. As stated in Chapter 1, we can

prove both local and global convergence for composite optimization by using our new concept

and theory, without additional smoothness assumptions.

In the rest of this chapter, Section 4.2 is devoted to studying a full-step and damped-step

Newton schemes to minimize a generalized self-concordant function including their convergence

guarantee. Section 4.3 extends to the composite setting (2.7) and studies proximal Newton-type

methods, and investigates their convergence guarantees. Numerical examples are provided in

Section 4.4 to illustrate the advantages of our theory. Section 4.5 summarizes our conclusion.

Besides, several technical results and proofs are moved to the appendix.

4.2 Generalized self-concordant minimization

We apply the theory developed in Chapter 3 to design new Newton-type methods to min-

imize a generalized self-concordant function. More precisely, we consider the following non-

composite convex problem formulation (equation (2.1) of Chapter 2):

f? := min
x∈Rp

f(x),

where f ∈ F̃pMf ,ν
: Rp → R in the sense of Definition 3.1 with ν ∈ [2, 3] and Mf ≥ 0. Since f is

smooth and convex, the optimality condition ∇f(x?f ) = 0 is necessary and sufficient for x?f to

be an optimal solution of (2.1).
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The following theorem shows the existence and uniqueness of the solution x?f of (2.1). It

can be considered as a special case of Theorem 4.3.1 below with g ≡ 0.

Theorem 4.2.1. Suppose that f ∈ F̃Mf ,ν(dom(f)) for given parameters Mf > 0 and ν ∈ [2, 3].

Denote by σmin(x) := λmin(∇2f(x)) and λ(x) := ‖∇f(x)‖∗x for x ∈ dom(f). Suppose further

that there exists x ∈ dom(f) such that σmin(x) > 0 and

λ(x) <
2 [σmin(x)]

3−ν
2

(4− ν)Mf
.

Then, problem (2.1) has a unique solution x?f in dom(f).

We say that the unique solution x?f of (2.1) is strongly regular if ∇2f(x?f ) � 0. The strong

regularity of x?f for (2.1) is equivalent to the strong second order optimality condition. Theorem

4.2.1 covers [74, Theorem 4.1.11] for standard self-concordant functions as a special case.

We consider the following Newton-type scheme to solve (2.1). Starting from an arbitrary

initial point x0 ∈ dom(f), we generate a sequence {xk}k≥0 as follows:

xk+1 := xk + τkn
k
nt, where nknt := −∇2f(xk)−1∇f(xk), (4.1)

and τk ∈ (0, 1] is a given step-size. We call nknt a Newton direction.

• If τk = 1 for all k ≥ 0, then we call (4.1) a full-step Newton scheme.

• Otherwise, i.e., τk ∈ (0, 1), we call (4.1) a damped-step Newton scheme.

Clearly, computing the Newton direction nknt requires to solve the following linear system:

∇2f(xk)nknt = −∇f(xk). (4.2)

Next, we define a Newton decrement λk and a quantity βk, respectively as

λk := ‖nknt‖xk and βk := ‖nknt‖2. (4.3)
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With λk and βk given by (4.3), we also define

dk := Mfλ
ν−2
k β3−ν

k , for ν ∈ [2, 3], (4.4)

then τkdk = dν(xk,xk+1) by the definition of dν in (3.8). Let us first show how to choose a

suitable step-size τk in the damped-step Newton scheme and prove its convergence properties

in the following theorem, whose proof can be found in Appendix A.2.2.

Theorem 4.2.2. Let {xk} be the sequence generated by the damped-step Newton scheme (4.1)

with the following step-size:

τk :=


1
dk

ln(1 + dk) if ν = 2

2
(ν−2)dk

[
1−

(
1 + 4−ν

2 dk
)− ν−2

4−ν
]

if ν ∈ (2, 3],

(4.5)

where dk is defined by (4.4). Then, τk ∈ (0, 1], {xk} in dom(f), and this step-size guarantees

the following descent property

f(xk+1) ≤ f(xk)−∆k, (4.6)

where ∆k := λ2
kτk − ων (τkdk) τ

2
kλ

2
k > 0 with ων defined by (3.17).

Assume that the unique solution x?f of (2.1) exists. Then, there exists a neighborhood

N (x?f ) such that if we initialize the Newton scheme (4.1) at x0 ∈ N (x?f ) ∩ dom(f), then the

whole sequence {xk} converges to x?f at a quadratic rate.

Example 4.1 Better step-size for regularized logistic and exponential models. Con-

sider the minimization problem (2.1) with the objective function f(·) := φ(·) + γ
2‖ · ‖

2
2, where φ

is defined as in (3.5) with ϕi(t) = ln(1 + e−t) being the logistic loss. That is

f(x) :=
1

n

n∑
i=1

ln(1 + e−a
>
i x) +

γ

2
‖x‖22.

As we shown in Chapter 3 that f is either generalized self-concordant with ν = 2 or generalized

self-concordant with ν = 3 but with different constant Mf .

Let us define RA := max{‖ai‖2 | 1 ≤ i ≤ n}. Then, if we consider ν = 2, then we have

M
(2)
f = RA due to Corollary 3.4.4, while if we choose ν = 3, then M

(3)
f = 1√

γRA due to
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Proposition 3.4.1. By the definition of f , we have ∇2f(x) � γI. Hence, using this inequality

and the definition of λk and dk from (4.3), we can show that

dk = M
(2)
f ‖∇

2f(xk)−1∇f(xk)‖2 ≤ RA√
γ λk = M

(3)
f λk. (4.7)

For any τ > 0, we have ln(1+τ)
τ > 1

1+0.5τ . Using this elementary result and (4.7), we obtain

τ
(2)
k = ln(1+dk)

dk
> 1

1+0.5dk
≥ 1

1+0.5M
(3)
f λk

= τ
(3)
k .

This inequality has shown that the step-size τk given by Theorem 4.2.2 satisfies τ
(2)
k > τ

(3)
k ,

where τ
(ν)
k is a given step-size computed by (4.5) for ν = 2 and 3, respectively. Such a statement

confirms that the damped-step Newton method using τ
(2)
k is theoretically better than using τ

(3)
k .

This result will empirically be confirmed by our experiments in Section 4.4. 3

Next, we study the full-step Newton scheme derived from (4.1) by setting the step-size

τk = 1 for all k ≥ 0 as a full-step. Let σk := λmin

(
∇2f(xk)

)
be the smallest eigenvalue of

∇2f(xk). Since ∇2f(xk) � 0, we have σk > 0. The following theorem shows a local quadratic

convergence of the full-step Newton scheme (4.1) for solving (2.1), whose proof can be found

in Appendix A.2.3.

Theorem 4.2.3. Let {xk} be the sequence generated by the full-step Newton scheme (4.1) by

setting the step-size τk = 1 for k ≥ 0. Let dk and λk be defined by (4.3). Then, the following

statements hold:

(a) If ν = 2 and the starting point x0 satisfies σ
−1/2
0 λ0 <

d?2
Mf

, then both sequences {σ−1/2
k λk}

and {dk} decrease and quadratically converge to zero, where d?2 ≈ 0.12964.

(b) If 2 < ν < 3, and the starting point x0 satisfies σ
− 3−ν

2
0 λ0 <

1
Mf

min{d?ν , 0.5}, then both

sequences {σ−
3−ν

2
k λk} and {dk} decrease and quadratically converge to zero, where d?ν is

the unique solution of the equation Rν(t) = 2
(
1− ν−2

2 t
) 4−ν
ν−2 with Rν(·) given by (A.7).

(c) If ν = 3 and the starting point x0 satisfies λ0 <
1

2Mf
, then the sequence {λk} decreases

and quadratically converges to zero.
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As a consequence, if {dk} locally converges to zero at a quadratic rate, then
{
‖xk − x?f‖Hk

}
also locally converges to zero at a quadratic rate, where Hk = I, the identity matrix, if ν = 2;

and Hk = ∇2f(xk)ν−2 if 2 < ν ≤ 3. Hence, {xk} locally converges to x?f , the unique solution

of (2.1), at a quadratic rate.

If we combine the results of Theorem 4.2.2 and Theorem 4.2.3, then we can design a two-

phase Newton algorithm for solving (2.1) as follows:

• Phase 1: Starting from an arbitrary initial point x0 ∈ dom(f), we perform the damped-

step Newton scheme (4.1) until the condition in Theorem 4.2.3 is satisfied.

• Phase 2: Using the output xj of Phase 1 as an initial point for the full-step Newton

scheme (4.1) with τk = 1, and perform this scheme until it achieves an ε-solution xk to

(2.1).

We also note that the damped-step Newton scheme (4.1) can also achieve a local quadratic

convergence as shown in Theorem 4.2.2. Hence, we combine this fact and the above two-phase

scheme to derive the Newton algorithm as shown in Algorithm 1 below.

Algorithm 1 (Newton algorithm for generalized self-concordant minimization)

1: Inputs: Choose an arbitrary initial point x0 ∈ dom(f) and a desired accuracy ε > 0.

2: Output: An ε-solution xk of (2.1).

3: Initialization: Compute d?ν according to Theorem 4.2.3 if needed.

4: For k = 0, . . . , kmax, perform:

5: Compute the Newton direction nknt by solving ∇2f(xk)nknt = −∇f(xk).

6: Compute λk := ‖nknt‖∗xk , and compute βk := ‖nknt‖2 if ν 6= 3.

7: If λk ≤ ε, then TERMINATE and return xk.

8: If Phase 2 is used, then compute σk = λmin(∇2f(xk)) if 2 ≤ ν < 3.

9: If Phase 2 is used and (λk, σk) satisfies Theorem 4.2.3, then set τk :=1 (full-step).

Otherwise, compute the step-size τk by (4.5) (damped-step)

10: Update xk+1 := xk + τkn
k
nt.

11: End for

Per-iteration complexity: The main step of Algorithm 1 is the solution of the symmetric

positive definite linear system (4.2). This system can be solved by using either Cholesky fac-
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torization or conjugate gradient methods, which, in the worst case, requires O(p3) operations.

Computing λk requires the inner product
〈
nknt,∇f(xk)

〉
which needs O(p) operations.

Conceptually, the two-phase option of Algorithm 1 requires the smallest eigenvalue of

∇2f(xk) to terminate Phase 1. However, switching from Phase 1 to Phase 2 can be done

automatically allowing some tolerance in the step-size τk. Indeed, the step-size τk given by

(4.5) converges to 1 as k →∞. Hence, when τk is closed to 1, e.g., τk ≥ 0.9, we can automati-

cally set it to 1 and remove the computation of λk to reduce the computational time.

In the one-phase option, we can always perform only Phase 1 until achieving an ε-optimal

solution as shown in Theorem 4.2.2. Therefore, the per-iteration complexity of Algorithm 1 is

O(p3) +O(p) in the worst case. A careful implementation of conjugate gradient methods with

a warm-start can significantly reduce this per-iteration computation complexity.

Remark 4.2.1 Inexact Newton methods. We can allow Algorithm 1 to compute the New-

ton direction nknt approximately. In this case, we approximately solve the symmetric positive

definite system (4.2). By an appropriate choice of stopping criterion, we can still prove conver-

gence of Algorithm 1 under inexact computation of nknt. For instance, the following criterion is

often used in inexact Newton methods [27], but defined via the local dual norm of f :

‖∇2f(xk)nknt +∇f(xk)‖∗xk ≤ κ‖∇f(xk)‖∗xk ,

for a given relaxation parameter κ ∈ [0, 1). This extension can be found in Chapter 5.

4.3 Composite generalized self-concordant minimization

Let f ∈ F̃Mf ,ν(dom(f)), and g be a proper, closed, and convex function. We consider the

composite convex minimization problem (2.7) in Section 2.4:

F ? := min
x∈Rp

{
F (x) := f(x) + g(x)

}
.
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Note that dom(f) := dom(f) ∩ dom(g) may be empty. To make this problem nontrivial, we

assume that dom(f) is nonempty. The optimality condition for (2.7) can be written as follows:

0 ∈ ∇f(x?) + ∂g(x?). (4.8)

Under the qualification condition 0 ∈ ri(dom(g)− dom(f)), (4.8) is necessary and sufficient for

x? to be an optimal solution of (2.7), where ri(X ) is the relative interior of X .

4.3.1 Existence, uniqueness, and regularity of optimal solutions

Assume that ∇2f(x) is positive definite (i.e., nonsingular) at some point x ∈ dom(f). We

prove in the following theorem that problem (2.7) has a unique solution x?. The proof can

be found in Appendix A.2.4. This theorem can also be considered as a generalization of [74,

Theorem 4.1.11] and [102, Lemma 4] in standard self-concordant settings in [74, 102].

Theorem 4.3.1. Suppose that the function f of (2.7) belongs to F̃Mf ,ν with Mf > 0 and

ν ∈ [2, 3]. Denote by σmin(x) := λmin(∇2f(x)) and λ(x) := ‖∇f(x) + v‖∗x for x ∈ dom(f) and

v ∈ ∂g(x). Suppose further that there exists x ∈ dom(f) such that σmin(x) > 0 and

λ(x) <
2 [σmin(x)]

3−ν
2

(4− ν)Mf
.

Then, problem (2.7) has a unique solution x? in dom(F ).

Now, we recall a condition such that the solution x? of (2.7) is strongly regular in the

following Robinson’s sense [90]. We say that the optimal solution x? of (2.7) is strongly regular

if there exists a neighborhood U(0) of zero such that for any δ ∈ U(0), the following perturbed

problem

min
x∈Rp
{〈∇f(x?)− δ,x− x?〉+ 1

2

〈
∇2f(x?)(x− x?),x− x?

〉
+ g(x)}

has a unique solution x∗(δ), and this solution is Lipschitz continuous on U(0).

If ∇2f(x?) � 0, then x? is strongly regular. While the strong regularity of the solution x?

requires a weaker condition than ∇2f(x?) � 0. For further details of the regularity theory, we

refer the reader to [90].
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4.3.2 Proximal Newton methods

In this section, we develop a proximal Newton algorithm to solve the composite convex

minimization problem (2.7) where f is a generalized self-concordant function. This problem

covers [101, 102] as special cases.

Given xk ∈ dom(f), we first approximate f at xk by the following convex quadratic surro-

gate:

Qf (x; xk) := f(xk) +
〈
∇f(xk),x− xk

〉
+ 1

2

〈
∇2f(xk)(x− xk),x− xk

〉
.

Next, the main step of the proximal Newton method requires to solve the following subproblem,

which is the first step of (2.8):

zk := argmin
x∈dom(g)

{
Qf (x; xk) + g(x)

}
= prox∇2f(xk)−1g

(
xk −∇2f(xk)−1∇f(xk)

)
. (4.9)

The optimality condition for this subproblem is the following linear monotone inclusion:

0 ∈ ∇f(xk) +∇2f(xk)(zk − xk) + ∂g(zk). (4.10)

Here, we note that dom(Qf (·; xk)) = Rp. Hence, dom(Qf (·; xk) + g(·)) = dom(g). In the

setting (2.7), zk may not be in dom(f). Our next step is to update the next iteration xk+1 as

xk+1 := xk + τkn
k
pnt = (1− τk)xk + τkz

k, (4.11)

where nkpnt := zk − xk is the proximal Newton direction, and τk ∈ (0, 1] is a given step-size.

Associated with the proximal Newton direction nkpnt, we define the following proximal New-

ton decrement and the `2-norm quantity of nkpnt as

λk := ‖nkpnt‖xk and βk := ‖nkpnt‖2. (4.12)

Our first goal is to show that we can explicitly compute the step-size τk in (4.11) using λk and

βk such that we obtain a descent property for F . This statement is presented in the following

theorem, whose proof is deferred to Appendix A.2.5.
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Theorem 4.3.2. Let {xk} be the sequence generated by the proximal Newton scheme (4.11)

starting from x0 ∈ dom(f). If we choose the step-size τk as in (4.5) of Theorem 4.2.2, then

τk ∈ (0, 1], {xk} in dom(f) and

F (xk+1) ≤ F (xk)−∆k, (4.13)

where ∆k := λ2
kτk − ων (τkdk) τ

2
kλ

2
k > 0 for τk > 0 and dk as defined in Theorem 4.2.2.

There exists a neighborhood N (x?) of the unique solution x? of (2.7) such that if we

initialize the scheme (4.11) at x0 ∈ N (x?) ∩ dom(f), then {xk} quadratically converges to x?.

Next, we prove a local quadratic convergence of the full-step proximal Newton method

(4.11) with the unit step-size τk = 1 for all k ≥ 0. The proof is given in Appendix A.2.6.

Theorem 4.3.3. Suppose that the sequence {xk} is generated by (4.11) with full-step, i.e.,

τk = 1 for k ≥ 0. Let dk := dν(xk,xk+1) be defined by (3.8) and λk be defined by (4.12). Then,

the following statements hold:

(a) If ν = 2 and the starting point x0 satisfies σ
−1/2
0 λ0 < d?2/Mf , then both sequences

{σ−1/2
k λk} and {dk2} decrease and quadratically converge to zero, where d?2 ≈ 0.35482.

(b) If 2 < ν < 3, and the starting point x0 satisfies σ
− 3−ν

2
0 λ0 <

1
Mf

min{d?ν , 0.5}, then both

sequences {σ−
3−ν

2
k λk} and {dkν} decrease and quadratically converge to zero, where d?ν is

the unique solution to the equation Rν(t)

2−(1− ν−2
2
t)
−2
ν−2

= 2
(
1− ν−2

2 t
) 4−ν
ν−2 . in t with Rν(·)

given in (A.7).

(c) If ν = 3 and the starting point x0 satisfies λ0 <
d?3
Mf

, then the sequence {λk} decreases

and quadratically converges to zero, where d?3 ≈ 0.41886.

As a consequence, if {dk} locally converges to zero at a quadratic rate, then
{
‖xk − x?‖Hk

}
also locally converges to zero at a quadratic rate, where Hk = I, the identity matrix, if ν = 2;

and Hk = ∇2f(xk)ν−2 if 2 < ν ≤ 3. Hence, {xk} locally converges to x?, the unique solution

of (2.7), at a quadratic rate.
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Similar to Algorithm 1, we can also combine the results of Theorems 4.3.2 and 4.3.3 to design

a proximal Newton algorithm for solving (2.7). This algorithm is described in Algorithm 2

below.

Algorithm 2 (Proximal Newton algorithm for composite generalized self-concordant minimiza-
tion)

1: Inputs: Choose an arbitrary initial point x0 ∈ dom(f) and a desired accuracy ε > 0.

2: Output: An ε-solution xk of (2.7).

3: Initialization: Compute d?ν according to Theorem 4.3.3 if needed.

4: For k = 0, . . . , kmax, perform:

5: Compute the proximal Newton direction nkpnt by solving (4.9).

6: Compute λk := ‖nkpnt‖∗xk , and compute βk := ‖nkpnt‖2 if ν 6= 3.

7: If λk ≤ ε, then TERMINATE.

8: If Phase 2 is used, then compute σk = λmin(∇2f(xk)) if 2 ≤ ν < 3.

9: If Phase 2 is used and (λk, σk) satisfies Theorem 4.3.3, then set τk :=1 (full-step).

Otherwise, compute the step-size τk by (4.5) (damped-step).

10: Update xk+1 := xk + τkn
k
pnt.

11: End for

Implementation remarks: The main step of Algorithm 2 is the computation of the proximal

Newton step nkpnt, or the trial point zk in (4.9). This step requires to solve a composite quadratic

convex minimization problem (4.9) with strongly convex objective function. If g is proximally

tractable, then we can apply proximal-gradient methods or splitting techniques [3, 4, 73] to solve

this problem. We can also combine accelerated proximal-gradient methods with a restarting

strategy [36, 41, 79] to accelerate the performance of these algorithms. These methods will be

used in our numerical experiments in Section 4.4.

As noticed in Remark 4.2.1, we can also develop an inexact proximal Newton variant for

Algorithm 2 by approximately solving the subproblem (4.9). We leave this extension to Chapter

5.
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4.4 Numerical experiments

We provide four examples to verify our theoretical results and compare our methods with

existing methods in the leterature. Our algorithms are implemented in Matlab 2014b running

on a MacBook Pro. Retina, 2.7 GHz Intel Core i5 with 16Gb 1867 MHz DDR3 memory.

4.4.1 Comparison with [109] on regularized logistic regression

In this example, we empirically show that our theory provides a better step-size for logistic

regression compared to [109] as theoretically shown in Example 4.1. In addition, our step-size

can be used to guarantee a global convergence of Newton method without linesearch. It can also

be used as a lower bound for backtracking or forward linesearch to enhance the performance of

Algorithm 1.

To illustrate these aspects, we consider the following regularized logistic regression problem:

f? := min
x∈Rp

{
f(x) :=

1

n

n∑
i=1

`(yi(a
>
i x + µ)) +

γ

2
‖x‖22

}
, (4.14)

where `(s) = ln(1 + e−s) is a logistic loss, µ is a given intercept, yi ∈ {−1, 1} and ai ∈ Rp are

given as input data for i = 1, . . . , n, and γ > 0 is a given regularization parameter.

As shown previously in Proposition 3.4.5, f ∈ F̃
M

(3)
f ,3

with M
(3)
f = 1√

γ max{‖ai‖2 | 1 ≤ i ≤

n}. On the other hand, f ∈ F̃
M

(2)
f ,2

with M
(2)
f := max{‖ai‖2 | 1 ≤ i ≤ n}.

We implement Algorithm 1 using two different step-sizes τ
(2)
k = ln(1+dk)

dk
and τ

(3)
k :=

1

1+0.5M
(3)
f λk

as suggested by Theorem 4.2.2 for ν = 2 and ν = 3, respectively. We termi-

nate Algorithm 1 if ‖∇f(xk)‖2 ≤ 10−8 max{1, ‖∇f(x0)‖2}, where x0 = 0 is an initial point.

To solve the linear system (4.2), we apply a conjugate gradient method to avoid computing the

inverse ∇2f(xk)−1 of the Hessian matrix ∇2f(xk) in large-scale problems. We also compare

our algorithms with the fast gradient method in [74] using the optimal step-size for strongly

convex functions, which has the optimal linear convergence rate.
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We test all algorithms on a binary classification dataset downloaded from [17]1. As sug-

gested in [109], we normalize the data such that each row ai has ‖ai‖2 = 1 for i = 1, . . . , n.

The parameter is set to γ := 10−5 as in [109].

The convergence behavior of Algorithm 1 for ν = 2 and ν = 3 is plotted in Figure 4.1 for

the news20 problem. As we can see from this figure that Algorithm 1 with ν = 2 outperforms
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Figure 4.1: The convergence of Algorithm 1 for news20.binary (Left: Relative objective residuals,
Middle: Relative norms of gradient, and Right: step-sizes).

the case ν = 3. The right-most plot reveals the relative objective residual f(xk)−f?
max{1,|f?|} , the middle

one shows the relative gradient norm ‖∇f(xk)‖2
max{1,‖∇f(x0)‖2} , and the left-most figure displays the step-

size τ
(2)
k and τ

(3)
k . Note that the step-size τ

(3)
k of Algorithm 1 depends on the regularization

parameter γ. If γ is small, then τ
(3)
k is also small. In contrast, the step-size τ

(2)
k of Algorithm 1

is independent of γ.

Our second test is performed on six problems with different sizes. Table 4.1 shows the

performance and results of the 3 algorithms: Algorithm 1 with ν = 2, Algorithm 1 with

ν = 3, and the fast-gradient method in [74]. Here, n is the number of data points, p is the

number of variables, iter is the number of iterations, error is the training error measured

by 1
2n

∑n
i=1(1 − sign(yi(a

>
i x + µ))), and f(xk) is the objective value achieved by these three

algorithms.

1https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 4.1: The results of the three algorithms for solving the logistic regression problem (4.14).

Problem Algorithm 1 (ν = 2) Algorithm 1 (ν = 3) Fast gradient method [74]

Name p n iter time[s] f(xk) error iter time[s] f(xk) error iter time[s] f(xk) error

a4a 122 4781 22 0.57 3.250e-01 0.150 177 4.99 3.250e-01 0.150 1396 2.13 3.250e-01 0.150

w4a 300 6760 27 1.14 5.297e-02 0.013 246 8.41 5.297e-02 0.013 863 1.71 5.297e-02 0.013

covtype 54 581012 23 17.22 7.034e-04 0.488 272 235.40 7.034e-04 0.488 1896 318.32 7.034e-04 0.488

rcv1 47236 20242 39 12.45 1.085e-01 0.009 218 60.80 1.085e-01 0.009 366 9.69 1.085e-01 0.009

gisette 5000 6000 40 109.23 1.090e-01 0.008 220 507.03 1.090e-01 0.008 2180 1183.67 1.090e-01 0.008

real-sim 20958 72201 39 22.69 1.287e-01 0.016 218 124.37 1.287e-01 0.016 271 24.74 1.287e-01 0.016

news20 1355191 19954 42 86.47 1.602e-01 0.005 197 420.87 1.602e-01 0.005 623 153.22 1.602e-01 0.005

We observe that our step-size τ
(2)
k using ν = 2 works much better than τ

(3)
k using ν = 3 as

in [109]. This confirms the theoretical analysis in Example 4.1. This step-size is useful for par-

allel and distributed implementation, where evaluating the objective values often requires high

computational effort due to communication and data transferring. Note that the computation

of the step-size τ
(2)
k in Algorithm 1 only needs O(p) operations, and do not require to pass over

all data points. Algorithm 1 with ν = 2 also works better than the fast gradient method [74]

in this experiment, especially for the case n� 1. Note that the fast gradient method uses the

optimal step-size and has a linear convergence rate in this case.

Finally, we show that our step-size τ
(2)
k can be used as a lower bound to enhance a back-

tracking linesearch procedure in Newton methods. The Armijo linesearch condition is given

as

f(xk + τkn
k
nt) ≤ f(xk)− c1τk∇f(xk)>nknt, (4.15)

where c1 ∈ (0, 1) is a given constant. Here, we use c1 = 10−6, which is sufficiently small.

• In our backtracking linesearch variant, we search for the best step-size τ ∈ [τ
(2)
k , 1]. This

variant requires to compute τ
(2)
k , which needs O(p) operations.

• In the standard backtracking linesearch routine, we search for the best step-size τ ∈ (0, 1].

Both strategies use a bisection section rule as τ ← τ/2 starting from τ ← 1. The results on 3

problems are reported in Table 4.2.

As shown in Table 4.2, using the step-size τ
(2)
k as a lower bound for backtracking linesearch

also reduces the number of function evaluations in these three problems. Note that the number

of function evaluations depends on the starting point x0 as well as the factor c1 in (4.15). If
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Table 4.2: The performance and results of the two linesearch variants of Algorithm 1 for solving (4.14).

Problem Algorithm 1 (Standard linesearch) Algorithm 1 (Linesearch with τ
(2)
k )

Name p n iter nfval time[s]
‖∇f(xk)‖2
‖∇f(x0)‖2

f(xk) error iter nfval time[s]
‖∇f(xk)‖2
‖∇f(x0)‖2

f(xk) error

covtype 54 581012 25 68 14.99 5.8190e-09 7.034e-04 0.488 14 31 9.89 1.3963e-11 7.034e-04 0.488

rcv1 47236 20242 9 21 1.85 1.3336e-11 1.085e-01 0.009 9 19 1.88 1.3336e-11 1.085e-01 0.009

gisette 5000 6000 8 22 18.28 1.2088e-09 1.090e-01 0.008 8 17 19.68 1.2088e-09 1.090e-01 0.008

we set c1 too small, then the decrease on f can be small. Otherwise, if we set c1 too high, then

our decrement c1τk∇f(xk)>nknt may never be achieved, and the linesearch condition fails to

hold. If we change the starting point x0, the number of function evaluations can significantly

be increased.

4.4.2 The case ν = 2: Matrix balancing

We consider the following convex optimization problem originated from matrix balancing

[21]:

f? := min
x∈Rp

{
f(x) :=

∑
1≤i,j≤p

aije
xi−xj

}
, (4.16)

where A = (aij)p×p is a nonnegative square matrix in Rp×p. Although (4.16) is a smooth un-

constrained problem, its objective function f is not strongly convex and does not have Lipschitz

gradient. Existing gradient-type methods do not have a theoretical convergence guarantee as

well as a rule to compute step-sizes. However, (4.16) is an important problem in scientific

computing.

By Proposition 3.3.1 and Corollary 3.4.4, f ∈ F̃√2,2. We implement Algorithm 1 and

the most recent method proposed in [21] (called Boxed-constrained Newton method (BCNM))

to solve (4.16). Note that [21] is not directly applicable to (4.16), but it solves a regular-

ization of this problem. Since ∇2f(x) is not positive definite, we use a projected conjugate

gradient gradient (CG) method to solve the linear system in Algorithm 1. We use an acceler-

ated projected gradient method (FISTA) [4] to solve the subproblem for the method in [21].

We terminate these subsolvers using either a tolerance 10−9 or a maximum 200 iterations.

For the outer loop, we terminate Algorithm 1 and BCNM using the same stopping criterion:

δf ′k := ‖∇f(xk)‖2/max{1, ‖∇f(x0)‖2} ≤ 10−8. We choose x0 := 0p as an initial point.
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We test both algorithms on several synthetic and real datasets. The synthetic data is

generated as in [85] with different structures. The basic matrix H = (Hij)p×p is an n×n upper

Hessenberg matrix defined as Hij = 0 if j < i − 1, and Hij = 1 otherwise. H1 differs from

H only in that H11 is replaced by p2; H2 differs from H only in that H12 is replaced by p2;

and H3 = H + (p2 − 1)Ip. We use these matrices for A in (4.16). We take p = 1000, 5000,

10000, and 15000. We name each problem instance by “Hdy”, where H stands for Hessenberg,

and y = 10−3p.

The real data2 has different structures from different application fields, suggested by [19].

Since we require the matrix A to be nonnegative, we take A0 := max{0,A} (entry-wise).

For the real data, if A is high ill-conditioned, then we add uniform noise U [0, σ] to A, where

σ = 10−5 maxij Aij .

The final results of both algorithms are reported in Table 4.3, where p is the size of matrix

A; iter/siter is the maximum number of Newton-type iterations / CG or FISTA iterations;

time[s] is the computational time in second; δf ′k is the relative gradient norm defined above;

trat is the ratio of the computational time between Algorithm 1 and BCNM; and δxk is the

relative difference between xk given by Algorithm 1 and BCNM.

As we can see from our experiment, both methods give almost the same result in terms of

the objective values f(xk) and approximate solutions xk. Given the same stopping criteria and

solution quality, Algorithm 1 outperforms BCNM in all datasets in terms of average computa-

tional time, which is specified by trat = timeBCNM
timeAlg1

. In particular, for many asymmetric and/or

ill-conditioned datasets (e.g., H2d5, or bwm), Algorithm 1 is approximately from 8 to 17 times

faster than BCNM.

4.4.3 The case ν ∈ (2, 3): Distance-weighted discrimination regression.

In this example, we test the performance of Algorithm 1 on the distance-weighted discrim-

ination (DWD) problem introduced in [67]. In order to directly use Algorithm 1, we slightly

2https://math.nist.gov/MatrixMarket/searchtool.html
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Table 4.3: Summary of the results of Algorithm 1 and BCNM on 10 synthetic and 30 real problem
instances

Datasets Algorithm 1 BCNM Comparison

Name p iter/siter time[s] f(xk) δf ′k iter/siter time[s] f(xk) δf ′k trat δxk

Synthetic datasets

H1d1 1000 8/77 0.32 5.07e+05 3.52e-09 8/1028 1.55 5.07e+05 1.82e-10 4.88 4.0e-07
H1d5 5000 7/66 2.54 1.45e+07 2.50e-10 7/648 24.99 1.45e+07 1.73e-10 9.84 3.8e-08
H1d10 10000 7/64 8.74 6.24e+07 8.62e-14 6/461 61.61 6.24e+07 4.82e-09 7.05 7.6e-07
H1d15 15000 7/63 18.63 1.48e+08 3.55e-14 6/395 120.41 1.48e+08 3.66e-10 6.47 2.1e-08
H2d5 5000 7/62 2.53 1.45e+07 7.34e-10 7/640 20.36 1.45e+07 1.88e-10 8.04 1.1e-07
H2d10 10000 7/64 9.16 6.24e+07 2.07e-13 6/467 61.44 6.24e+07 4.75e-09 6.71 7.6e-07
H2d15 15000 7/63 19.66 1.48e+08 3.18e-14 6/395 119.16 1.48e+08 3.52e-10 6.06 1.9e-08
H3d5 5000 4/32 1.34 1.25e+11 1.22e-11 3/15 2.28 1.25e+11 2.47e-11 1.70 6.7e-11
H3d10 10000 4/32 4.52 1.00e+12 1.79e-11 3/14 8.21 1.00e+12 2.29e-11 1.82 2.6e-11
H3d15 15000 4/28 8.72 3.38e+12 1.15e-11 3/12 18.06 3.38e+12 2.59e-10 2.07 4.9e-10

Real datasets

bcs 10974 4/362 43.95 2.28e+12 2.39e-12 9/438 87.89 2.28e+12 9.83e-09 2.00 2.1e-08
bcs 11948 4/204 31.23 9.30e+12 1.85e-12 14/305 91.19 9.30e+12 8.76e-09 2.92 4.8e-08
bcs 15439 4/36 11.89 1.53e+16 1.21e-12 3/16 19.13 1.53e+16 1.13e-10 1.61 4.4e-11
bcsm 15439 4/28 9.86 2.18e+11 1.98e-12 3/12 18.06 2.18e+11 2.52e-10 1.83 3.3e-10
bwm 2000 4/800 4.06 9.13e+07 2.62e-11 500/1680 72.15 9.13e+07 1.05e-08 17.77 7.3e-09
e40r01 17281 5/178 59.65 9.86e+04 3.49e-12 4/230 92.36 9.86e+04 1.20e-09 1.55 4.6e-08
e40r05 17281 6/279 92.71 1.02e+05 5.09e-13 5/476 170.58 1.02e+05 7.07e-10 1.84 3.0e-08
e40r20 17281 7/489 160.63 1.48e+05 7.86e-14 6/751 278.32 1.48e+05 1.14e-09 1.73 1.6e-09
e40r30 17281 7/492 159.09 1.90e+05 6.21e-14 6/759 260.82 1.90e+05 1.11e-09 1.64 2.0e-09
e40r40 17281 7/486 152.54 2.36e+05 6.09e-14 6/726 247.59 2.36e+05 3.15e-09 1.62 3.8e-09
fid011 16614 4/434 122.21 4.55e+11 7.23e-12 21/465 268.17 4.55e+11 9.56e-09 2.19 3.6e-09
fid019 12005 4/241 37.62 1.69e+10 2.06e-12 13/306 84.94 1.69e+10 9.18e-09 2.26 5.3e-08
fid035 19716 4/261 116.65 2.78e+10 5.24e-12 4/295 164.79 2.78e+10 3.67e-09 1.41 1.1e-08
fidm09 4683 4/685 16.14 1.65e+05 2.60e-12 93/829 67.09 1.65e+05 9.85e-09 4.16 2.5e-08
fidm11 22294 3/222 118.68 4.63e+03 2.93e-09 3/299 178.42 4.63e+03 9.16e-10 1.50 1.3e-07
fidm13 3549 4/667 9.17 8.73e+02 9.86e-14 5/653 9.49 8.73e+02 1.68e-09 1.03 2.7e-08
fidm15 9287 3/231 21.43 2.23e+03 7.48e-09 3/321 32.61 2.23e+03 2.03e-09 1.52 6.7e-07
fidm29 13668 4/451 82.61 1.07e+04 1.51e-12 12/452 135.98 1.07e+04 9.67e-09 1.65 1.8e-08
fidm33 2353 4/397 2.62 9.70e+03 1.31e-12 5/585 3.99 9.70e+03 9.88e-09 1.53 2.4e-08
fidm37 9152 4/483 44.73 1.61e+10 1.23e-11 70/614 212.39 1.61e+10 9.84e-09 4.75 2.3e-08
gre 1107 6/595 1.23 1.07e+03 4.27e-10 6/927 1.93 1.07e+03 4.72e-09 1.57 5.6e-08
lnsp 3937 8/402 7.43 2.56e+12 4.03e-14 7/669 13.60 2.56e+12 3.10e-10 1.83 1.5e-08
mah 1258 8/77 0.45 4.57e+05 1.97e-11 8/1001 3.00 4.57e+05 7.25e-11 6.63 4.7e-09
mem 17758 4/32 14.51 4.57e+02 1.53e-13 3/15 26.57 4.57e+02 1.19e-11 1.83 4.8e-11
mhd 3200 4/165 2.22 5.09e+01 2.39e-14 4/437 6.26 5.09e+01 1.94e-09 2.82 1.7e-07
mhd 4800 4/136 3.97 5.30e+01 4.79e-14 3/423 11.88 5.30e+01 3.30e-09 2.99 1.3e-07
olm 2000 8/640 3.27 2.94e+07 2.05e-15 7/846 4.80 2.94e+07 1.30e-10 1.47 2.7e-09
olm 5000 7/426 11.42 5.41e+08 9.14e-11 6/651 20.75 5.41e+08 4.85e-10 1.82 3.5e-09
ora678 2529 9/898 6.95 3.16e+02 9.95e-11 8/1512 11.92 3.16e+02 8.06e-09 1.71 1.1e-06
pde 2961 6/197 2.56 1.05e+04 5.65e-13 5/311 4.17 1.05e+04 6.14e-10 1.63 8.4e-09

modify the setting in [67] to obtain the following form:

f? := min
x=[w,ξ,µ]>∈Rp

{
f(x) :=

1

n

n∑
i=1

1

(a>i w + µyi + ξi)q
+ c>ξ +

1

2

(
γ1‖w‖22 + γ2µ

2 + γ3‖ξ‖22
)}

,

(4.17)

where q > 0, ai, yi (i = 1, . . . , n) and c are given, and γs > 0 (s = 1, 2, 3) are three regularization

parameters for w, µ and ξ, respectively. Here, the variable x consists of the support vector w,

the intercept µ, and the slack variable ξ as used in [67]. Here, we penalize these variables by
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using least squares terms instead of the `1-penalty term as in [67]. Note that the setting (4.17)

is not just limited to the DWD application above, but can also be used to formulate other

practical models such as time optimal path planning problems in robotics [105] if we choose an

appropriate parameter q.

Since ϕ(t) := 1
tq ∈ F̃Mϕ,ν with Mϕ := q+2

(q+2)
√
q(q+1)

n
1
q+2 and ν := 2(q+3)

q+2 ∈

(2, 3), using Proposition 3.3.1, we can show that f ∈ F̃Mf ,ν with Mf :=

q+2
(q+2)
√
q(q+1)

n
1
q+2 max{‖(a>i , yi, e>i )>‖q/(q+2)

2 | 1 ≤ i ≤ n} and the same ν as ϕ (here, ei is

the i-th unit vector). Problem (4.17) can be transformed into a second-order cone program

[44], and can be solved by interior-point methods. For instance, if we choose q = 1, then, by

introducing intermediate variables si and ri, we can transform (4.17) into a second-order cone

program using the fact that 1
ri
≤ si is equivalent to

√
(ri − si)2 + 22 ≤ (ri + si).

We implement Algorithm 1 to solve (4.17) and compare it with the interior-point method

implemented in commercial software: Mosek. We experienced that Mosek is much faster than

other interior-point solvers such as SDPT3 [100] or SDPA [106] in this test. For instance, Mosek

is from 52 to 125 times faster than SDPT3 in this example. Hence, we only present the results

of Mosek.

We also incorporate Algorithm 1 with a backtracking linesearch using our step-size τk (LS

with τk) as a lower bound. Note that since f does not have a Lipschitz gradient map, we cannot

apply gradient-type methods to solve (4.17) due to the lack of a theoretical guarantee.

Since we cannot run Mosek on big data sets, we rather test our algorithms and this interior-

point solvers on the 6 small and medium size problems using data from [17]3. We choose the

regularization parameters as γ1 = γ2 = 10−5 and γ3 = 10−7. Note that if the data set has

the size of (n, p), then number of variables in (4.17) becomes p + n + 1. Hence, we use a

built-in Matlab conjugate gradient solver to compute the Newton direction nknt. The initial

point x0 is chosen as w0 := 0, µ0 := 0 and ξ0 := 1. In our algorithms, we use ‖∇f(xk)‖2 ≤

10−8 max{1, ‖∇f(x0)‖2} as a stopping criterion.

Note that by defining γmin := min{γ1, γ2, γ3} = 10−7 > 0, the objective function of (4.17) is

γmin-strongly convex. By Proposition 3.4.1(a), we can cast this function into F̃M̂f ,ν̂
class with

3https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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ν̂ = 3 and M̂f := γ
−q

2(q+2)

min Mf , where Mf is given above. We also implement Algorithm 1 using

ν̂ = 3 to solve (4.17).

Table 4.4: The performance and results of the four methods for solving the DWD problem (4.17).

Problem Algorithm 1 Algorithm 1 (LS with τk) Algorithm 1 (ν = 3) Mosek

Name n p iter time[s]
‖∇f(xk)‖2
‖∇f(x0)‖2

iter time[s]
‖∇f(xk)‖2
‖∇f(x0)‖2

iter time[s]
‖∇f(xk)‖2
‖∇f(x0)‖2

time[s]
‖∇f(xk)‖2
‖∇f(x0)‖2

q = 1

a1a 1605 119 170 1.35 9.038e-12 13 0.12 4.196e-13 574 5.77 7.031e-14 0.49 1.806e-08
a2a 2265 119 192 2.71 1.661e-13 12 0.15 8.549e-09 633 7.67 8.903e-09 0.50 2.858e-08
a4a 4781 122 247 5.60 1.180e-13 12 0.27 5.380e-10 790 21.06 3.171e-13 0.94 1.740e-08
leu 38 7129 54 2.71 2.214e-10 15 0.58 3.995e-13 193 10.64 5.275e-12 0.72 2.828e-07
w1a 2270 300 169 2.88 9.752e-09 13 0.17 4.968e-09 676 10.44 8.678e-09 0.50 1.561e-08
w2a 3184 300 193 3.32 4.532e-13 13 0.27 1.428e-09 751 15.02 7.662e-14 0.61 1.793e-08

q = 2

a1a 1605 119 166 2.28 6.345e-12 14 0.15 5.185e-13 1372 13.62 3.299e-09 0.48 1.617e-09
a2a 2265 119 186 2.63 3.028e-12 13 0.22 5.015e-09 1484 16.65 5.325e-09 0.56 3.070e-09
a4a 4781 122 235 5.03 8.676e-13 13 0.31 4.347e-10 1764 53.92 2.662e-09 1.25 4.039e-09
leu 38 7129 57 3.08 1.631e-10 16 0.63 2.754e-12 574 39.20 2.076e-12 0.73 6.436e-08
w1a 2270 300 146 2.15 1.311e-12 14 0.22 4.057e-09 1533 27.26 1.110e-09 0.59 1.295e-09
w2a 3184 300 165 3.43 3.397e-09 14 0.29 1.187e-09 1661 30.63 8.004e-09 0.71 1.653e-09

The results and performance of the four algorithms are reported in Table 4.4 for two cases:

q = 1 and q = 2. We can see that Algorithm 1 with ν = 2 outperforms the case ν̂ = 3 in terms

of iterations. The case ν = 2 is approximately from 3 to 13 times faster than the case ν̂ = 3.

This is not surprising since M̂f depends on γmin, and it is large since γmin is small. Hence,

the step-size τ
(3)
k computed by using M̂f is smaller than τ

(2)
k computed from Mf as we have

seen in the first example. Mosek works really well in this example and it is slightly better than

Algorithm 1 with ν = 2. If we combine Algorithm 1 with a backtracking linesearch, then this

variant outperforms Mosek. All the algorithms achieve a very high accuracy in terms of the

relative norm of the gradient ‖∇f(xk)‖2
‖∇f(x0)‖2 , which is up to 10−8. We emphasize that our methods

are highly parallelizable and their performance can be improved by exploiting this structure as

studied in [109] for the logistic case.

4.4.4 The case ν = 3: Portfolio optimization with logarithmic utility functions.

In this example, we aim at verifying Algorithm 2 for solving the composite generalized

self-concordant minimization problem (2.7) with ν = 3. We illustrate this algorithm on the

following portfolio optimization problem with logarithmic utility functions [95] (scaled by a
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factor of 1
n):

f? = min
x∈Rp
{f(x) := −

n∑
i=1

ln(w>i x) | x ≥ 0, 1>x = 1}, (4.18)

where wi ∈ Rp+ for i = 1, . . . , n are given vectors presenting the returns at the i-th period of

the assets considered in the portfolio data. More precisely, as indicated in [11], wi measures the

return as the ratio wij = vi,j/vi−1,j between the closing prices vi,j and vi−1,j of the stocks on

the current day i and on the previous day i−1, respectively; 1 ∈ Rp is a vector of all ones. The

aim is to find an optimal strategy to assign the proportion of the assets in order to maximize

the expected return among all portfolios.

Note that problem (4.18) can be cast into an online optimization model [48]. The authors

in [48] proposed an online Newton method to solve this problem. In this case, the regret of

such an online algorithm showing the difference between the objective function of the online

counterpart and the objective function of (4.18) converges to zero at a rate of 1√
n

as n→∞. If

n is relatively small (e.g., n = 1000), then the online Newton method does not provide a good

approximation to (4.18).

Let ∆ := {x ∈ Rp | x ≥ 0, 1>x = 1} be the standard simplex, and g(x) := δ∆(x) be the

indicator function of ∆. Then, we can formulate (4.18) into (2.7). The function f defined in

(4.18) is (Mf , ν)-generalized self-concordant with ν = 3 and Mf = 2.

We implement Algorithm 2 using an accelerated projected gradient method [4, 74] to com-

pute the proximal Newton direction. We also implement the Frank-Wolfe algorithm and its

linesearch variant in [37, 54], and a projected gradient method using Barzilai and Borwein’s

step-size to solve (4.18). We name these algorithms by FW, FW-LS, and PG-BB, respectively.

We emphasize that both PG-BB and FW-LS do not have a theoretical guarantee when solving

(4.18). FW has a theoretical guarantee as recently proved in [80], but the complexity bound is

rather pessimistic. We terminate all the algorithms using ‖xk+1 − xk‖2 ≤ εmax{1, ‖xk‖2},

where ε = 10−8 in Algorithm 2, ε = 10−6 in PG-BB, and ε = 10−4 in FW and FW-LS. We choose

different accuracies for these methods due to the limitation of first-order methods for attaining

high accuracy solutions in the last three algorithms.

We test these algorithms on two categories of dataset: synthetic and real stock data. For

the synthetic data, we generate matrix W with given price ratios as described above in Matlab.
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More precisely, we generate W := ones(n, p) + N (0, 0.1), which allows the closing prices to

vary about 10% between two consecutive periods. We test with three instances, where (n, p) =

(1000, 800), (1000, 1000), and (1000, 1200), respectively. We name these three datasets by

PortfSyn1, PortfSyn2, and PortfSyn3, respectively. For the real data, we download a US stock

dataset using an excel tool4. This tool gives us the closing prices of the US stock market in a

given period of time. We generate three datasets with different sizes using different numbers

of stocks from 2005 to 2016 as described in [11]. We pre-processed the data by moving stocks

that are empty or lacking of information in the time period we specified. We name these three

datasets by Stock1, Stocks2, and Stocks3, respectively.

The results and the performance of the four algorithms are given in Table 4.5. Here, iter

gives the number of iterations, time is the computational time in second, error measures the

relative difference between the approximate solution xk given by the algorithms and the interior-

point solution provided by CVX [44] with the high precision configuration (up to 1.8× 10−12):

‖xk − x∗cvx‖/max{1, ‖x∗cvx‖}.

Table 4.5: The performance and results of the four algorithms for solving the portfolio optimization
problem (4.18).

Problem Algorithm 2 PG-BB FW FW-LS

Name n p iter time[s] error iter time[s] error iter time[s] error iter time[s] error

Synthetic Data

PortfSyn1 1000 800 6 5.68 2.4e-04 645 3.98 2.3e-04 15530 96.47 2.3e-04 6509 47.88 2.3e-04
PortfSyn2 1000 1000 6 6.96 6.8e-05 1207 11.54 7.5e-05 17201 166.89 1.7e-04 6664 70.15 1.4e-04
PortfSyn3 1000 1200 7 12.91 3.2e-04 959 9.55 3.0e-04 16391 159.28 3.3e-04 5750 64.36 3.2e-04

Real Data

Stocks1 473 500 8 1.22 7.1e-06 736 1.22 1.9e-06 16274 24.93 7.0e-05 2721 5.28 4.1e-04
Stocks2 625 723 8 3.71 2.7e-05 1544 4.37 8.0e-06 11956 34.35 3.1e-04 2347 9.33 5.2e-04
Stocks3 625 889 10 6.83 5.6e-05 1074 6.54 5.4e-06 13027 52.89 1.7e-04 2096 8.46 7.4e-04

From Table 4.5 we can see that Algorithm 2 has a comparable performance to the first-

order methods: FW-LS and PG-BB. While our method has a rigorous convergence guarantee,

these first-order methods remains lacking of a theoretical guarantee. Note that Algorithm 2

and PG-BB are faster than the FW method and its linesearch variant although the optimal solution

x? of this problem is very sparse. We also note that PG-BB gives a smaller error to the CVX

solution. This CVX solution is not the ground-truth x? but gives a high approximation to x?.

4http://www.excelclout.com/historical-stock-prices-in-excel/
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In fact, the CVX solution is dense. Hence, it is not clear if PG-BB produces a better solution

than other methods.

4.5 Conclusion

We have illustrated our theory by applying it to solve a class of smooth convex minimization

problems and its composite setting. We believe that our theory provides an appropriate ap-

proach to exploit the curvature of these problems and allows us to compute an explicit step-size

in Newton-type methods that have a global convergence guarantee even for non-Lipschitz gradi-

ent/Hessian functions. While our theory is still valid for the case ν > 3, we have not found yet

a representative application in a high-dimensional space. We therefore limit our consideration

to Newton and proximal Newton methods for ν ∈ [2, 3], but our key bounds in Section 3.7

remain valid for ν > 3.
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CHAPTER 5

Composite convex optimization with global and local inexact oracles

5.1 Introduction

In this chapter we introduce new global and local inexact second-order oracle concepts

for a wide class of convex functions in composite optimization. In particular, we consider the

following composite convex optimization problem:

F ? = min
x∈Rp

{
F (x) := f(x) +R(x)

}
, (5.1)

where f and R are proper, closed, and convex from Rp → R ∪ {+∞}. It is well-known that

problem (5.1) covers various applications in machine learning, statistics, signal and image pro-

cessing, and control. Very often in applications, f can be considered as a loss or a data fidelity

function, while R is referred to as a regularizer that can promote desired structures of solutions.

In particular, if R is the indicator of a convex set X , then (5.1) also covers constrained settings.

Optimization methods for solving (5.1) often rely on a so-called “oracle” [70] to query

information for generating an approximate solution. However, such an oracle may not be

available in practice, but only its approximation can be accessed. We focus on inexact oracles

to design numerical methods for solving (5.1). We first deal with a relatively general convex

setting of (5.1) by equipping f with a global inexact oracle. Then, we limit our consideration

to a class of self-concordant functions and introduce a local second-order inexact oracle.

The rest of this chapter is organized as follows. Section 5.2 introduces the concept of

inexact oracle, which consists of both global and local inexact oracles. We then develop some

key properties using such inexact oracles. Section 5.3 presents several examples of inexact

oracles. Section 5.4 develops proximal Newton-type methods using inexact oracles. We show

that the obtained algorithms achieve both global convergence and local convergence from linear
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to quadratic rate. We also show that our methods cover some existing inexact methods in the

literature as special cases. Section 5.5 shows an application to primal-dual methods, and the

last section provides some representative examples to illustrate the theory.

5.2 Inexact second-order oracles

We introduce a global and a local inexact oracle concept for self-concordant function class in

convex optimization. Utilizing this new notion, we develop several properties of self-concordant

functions that are similar to [75] but using inexact oracles.

5.2.1 Inexact oracles for convex functions

Let f be a convex function with dom(f) ⊆ Rp. Given three mappings f̃(·) ∈ R, g(·) ∈ Rp,

and H(·) ∈ Sp++ defined on dom(f), similarly to the definition of local norm based on Hessian,

we define the following weighted norm and its dual norm based on H(x) for any u and v as

|‖u|‖x := ‖u‖H(x) = (u>H(x)u)1/2 and |‖v|‖∗x := ‖v‖∗H(x) = (v>H(x)−1v)1/2.

We still have the relation 〈u,v〉 ≤ |‖u|‖x‖v‖∗H(x) for any x ∈ dom(f).

Next, we introduce the following two types of inexact oracle1 of f . Following [74], we define

a strict convex increasing function ω(t) = t − ln(1 + t) and its conjugate ω∗(τ) := ω(−τ) =

−τ − ln(1 − τ). We also define a function ω̃(u, v) := −uv + ln(1 − u) similarly, which will be

used later.

Definition 5.1 Global inexact oracle. For a general convex (possibly non-smooth) function

f , a triple (f̃ , g,H) is called a (δ0, δ1)-global inexact oracle of f with accuracies δ0 ∈ [0, 1] and

δ1 ≥ 0, if for any x ∈ dom(f), we have

ω ((1− δ0)|‖y − x|‖x) ≤ f(y)− f̃(x)− 〈g(x),y − x〉 ≤ ω∗ ((1 + δ0)|‖y − x|‖x) + δ1, (5.2)

1As defined in [74]: Oracle is a process of collecting information of the triple (f̃ , g,H). However, for our
convenience of presentation, we also call this triple an inexact oracle.
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for all x,y ∈ dom(f), H(x) � 0. |‖y−x|‖x < 1
1+δ0

is required on the right-hand side. Moreover,

for any y ∈ Rp such that |‖y − x|‖x < 1
1+δ0

, we have y ∈ dom(f).

This inexact oracle is defined at any x ∈ dom(f). Hence, it is referred to as a global inexact

oracle. Here H(·) � 0 is only required for x in some level set of x0, which will be discussed

in Section 5.4. Moreover, it does not require differentiability of f . However, for this inexact

oracle, if f is twice differentiable, then f̃ gives an approximation to f , g is an approximation

to ∇f , and H is an approximation to ∇2f . δ0 and δ1 are not necessarily depended on x or

y. Clearly, from [74, Theorem 4.1.9], f is a self-concordant function if and only if it admits a

(0, 0)-global inexact oracle, namely f̃(x) = f(x), g(x) = ∇f(x) and H(x) = ∇2f(x) by setting

δ0 = 0 and δ1 = 0.

The second condition “|‖y−x|‖x < 1
1+δ0

implies y ∈ dom(f)” in Definition 5.1 automatically

holds if f is self-concordant and H(x) = ∇2f(x) with δ0 = 0. This condition is often referred to

as Dinkin’s ellipsoid in self-concordant functions, see [74]. If dom(f) = Rp, then this condition

holds. However, when dom(f) ⊂ Rp we need to impose this kind of Dinkin’s ellipsoid inclusion

in our definition of inexact global oracle.

A global inexact oracle will be used to analyze global convergence of our algorithms devel-

oped in the next sections. In order to investigate local convergence of Newton-type methods

we also require a local inexact second-order oracle in addition to this global inexact one.

Definition 5.2 Local inexact second-order oracle. For a twice differentiable convex func-

tion f and a subset X ⊂ dom(f), a triple (f̃ , g,H) is called a (δ0, δ1, δ2, δ3)-local inexact

second-order oracle of f on X if (5.2) holds and additionally the following approximations for

the gradient and for the Hessian maps hold:


|‖g(x)−∇f(x)|‖∗x ≤ δ2,

(1− δ3)2∇2f(x) � H(x) � (1 + δ3)2∇2f(x),

(5.3)

for all x ∈ X , where δ := (δ0, δ1, δ2, δ3) ≥ 0 and 0 ≤ δ0, δ3 < 1.

In this definition we allow δ2 := δ2(x) depending on x ∈ X . Note that we only require these

two conditions in (5.3) in a given subset X of dom(f), therefore this inexact oracle is local.

Again, we observe that any self-concordant function admits a (0, 0, 0, 0)-local oracle.
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Remark 5.2.1. As we will show in Lemma 5.2.1 below, the condition (5.2) is also sufficient

to deduce that |‖g(x) − ∇f(x)|‖∗x ≤ δ2. However, δ2 will be a function of δ0 and δ1, and

δ2 = δ2(δ0, δ1) → 0 as δ0, δ1 → 0. Therefore, the first condition (5.3) can be guaranteed from

the global inexact oracle in Definition 5.1. In order to make our method more flexible, we use

the first condition of (5.3) to define local inexact oracle instead of deriving it from a global

inexact oracle as in Lemma 5.2.1.

5.2.2 Properties of global inexact oracle

Convex functions, including self-concordant functions, have many important properties on

the function values, gradient and Hessian mappings [74, 75]. These properties are necessary to

develop Newton-type methods and interior-point methods. In this subsection, we provide some

key properties required for the analysis of our algorithms as well.

The following lemma provides some key properties of our global inexact oracle of f whose

proof is given in Appendix A.3.1. Note that these properties hold for general convex functions

endowed with such global inexact oracle.

Lemma 5.2.1. Let (f̃ , g,H) be a (δ0, δ1)-global inexact oracle of a convex function f as defined

in Definition 5.1. Then:

(a) For any x ∈ dom(f), we have

f̃(x) ≤ f(x) ≤ f̃(x) + δ1. (5.4)

(b) The inexact gradient g(x̄) certifies a δ1-approximate minimizer x̄ ∈ dom(f) of f with

f? = infx f(x). That is, if 〈g(x̄), y − x̄〉 ≥ 0 for all y ∈ dom(f), then

f? ≤ f(x̄) ≤ f? + δ1.

(c) For any x ∈ dom(f), the difference between g(x) and the true (sub)gradient of a convex

function f is bounded as

|‖∇f(x)− g(x)|‖∗x ≤ δ2(δ0, δ1), (5.5)
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where δ2(δ0, δ1) is the unique nonnegative solution of the equation in δ2: ω
(

δ2
1+δ0

)
= δ1

(always exists). Moreover, δ2(δ0, δ1)→ 0 as δ0, δ1 → 0.

(d) For any x,y ∈ dom(f), we have

ω
(
|‖g(x)−∇f(y)|‖∗x

1+δ0

)
≤ |‖g(x)−∇f(y)|‖∗x|‖y − x|‖x + δ1, (5.6)

5.2.3 Properties of local inexact oracle

We prove some properties of local inexact oracle in the following lemma, whose proof is

given in Appendix A.3.2.

Lemma 5.2.2. Let (f̃ , g,H) be a local inexact oracle of a twice differentiable convex function

f on X ⊂ dom(f) defined in Definition 5.2. Then, for any u,v ∈ Rn and x ∈ X , we have

(1− δ3)‖u‖x ≤ |‖u|‖x ≤ (1 + δ3)‖u‖x,

1
1+δ3
‖v‖∗x ≤ |‖v|‖∗x ≤ 1

1−δ3 ‖v‖
∗
x.

(5.7)

If, in addition, f is self-concordant, then for any x,y ∈ X , we also have:

(1−δ3−|‖y−x|‖x)2

1−δ2
3

H(x) � H(y) � 1−δ2
3

(1−δ3−|‖y−x|‖x)2H(x)

|‖(∇2f(x)−H(x))v|‖∗y ≤ δ3
(1−δ3)(1−δ3−|‖y−x|‖x) |‖v|‖x,

(5.8)

provided that |‖y − x|‖x < 1− δ3.

5.3 Examples of inexact oracles

The notion of inexact oracles naturally appears in the context of Fenchel conjugate, barrier

smoothing, inexact computations, and many other situations. Below are some examples to

show that our definition of inexact oracle makes sense.
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5.3.1 Example 1: The generality of new global inexact oracle

We will show in this example that the class of convex functions satisfying Definition 5.1 is

larger than the class of standard self-concordant functions [75] and Lipschitz gradient convex

functions.

(a) Lipschitz gradient convex functions Let f be a convex function with Lf -Lipschitz

gradient on dom(f) = Rp. Then, (f,∇f, Lf4 I) is a (δ0, δ1)-global inexact oracle of f in the sense

of Definition 5.1 with δ0 = 1, and δ1 := 0.

Indeed, we have 0 ≤ f(y) − f(x) − 〈∇f(x),y − x〉 ≤ Lf
2 ‖y − x‖2 for any x,y ∈ dom(f).

The left-hand side inequality of (5.2) automatically holds since δ0 = 1.

Now, note that τ2

2 ≤ ω∗(τ) for all τ ∈ [0, 1). Hence, using H(x) =
Lf
4 I, we can show that

Lf
2
‖y − x‖2 ≤ 4|‖y − x|‖2x

2
≤ ω∗(2|‖y − x|‖x),

provided that |‖y− x|‖x < 0.5. Therefore, we obtain f(y)− f(x)− 〈∇f(x),y − x〉 ≤ ω∗(2|‖y−

x|‖x), which means that the right-hand side of (5.2) holds. The second condition of Definition

5.1 automatically holds since dom(f) = Rp. This shows that our framework covers the inexact

first-order oracle for smooth convex optimization introduced in [28].

(b) The sum of self-concordant and convex functions Let us consider a functions f

composed of a self-concordant function f1 and a convex function (possibly non-smooth) f2:

f(x) := f1(x) + f2(x). (5.9)

We have dom(f) = dom(f1) ∩ dom(f2). We assume that for any g2(x) ∈ ∂f2(x) there exists

finite constant δ1 > 0 such that

f2(y)− f2(x)− 〈g2(x),y − x〉 ≤ δ1, ∀ x,y ∈ dom(f), |‖y − x|‖x < 1. (5.10)

Then, we can construct a global inexact oracle for f in (5.9) by considering the triple

f̃(x) := f1(x) + f2(x), g(x) := ∇f1(x) + g2(x) for any g2(x) ∈ ∂f2(x), and H(x) := ∇2f1(x),
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and consequently (f̃ , g,H) is a (0, δ1)-global inexact oracle of f in (5.9) by Definition 5.1.

Indeed, since f1 is self-concordant, we have

ω (‖y − x‖x) ≤ f1(y)− f1(x)− 〈∇f1(x),y − x〉 ≤ ω∗ (‖y − x‖x) , ∀ x,y ∈ dom(f1),

for all x,y ∈ dom(f), where the right-hand side inequality holds for any ‖y − x‖x < 1 and

g2(x) ∈ ∂f2(x). Moreover, by convexity of f2 and (5.10) we also have

0 ≤ f2(y)− f2(x)− 〈g2(x),y − x〉 ≤ δ, ∀ x,y ∈ dom(f).

Summing up these two in equalities, we can easily show that the triple (f̃ , g,H) defined above

satisfies (5.2) for (0, δ)-inexact global oracle.

As a special case, let us consider the following function:

f(x) = f1(x) + βf2(x), (5.11)

where f1 is a self-concordant barrier, f2 is an L2-Lipschitz continuous and convex (possibly

nonsmooth) function, and β > 0 is a given parameter.

Assume that the domain of f , i.e. dom(f) = dom(f1) ∩ dom(f2) is bounded. Hence,

the diameter of dom(f), D = maxx,y∈dom(f) ‖x − y‖ is finite. In particular, if dom(f1) or

dom(f2) is bounded, then dom(f) is bounded. Moreover, since f2 is L2-Lipschitz continuous,

i.e., there exists L2 > 0 such that |f2(x)− f2(y)| ≤ L2‖x− y‖ for all x,y ∈ dom(f2), we have

maxx∈dom(f2) ‖∂f2(x)‖ ≤ L2. Using these two facts, we can show that

0 ≤ f2(y)− f2(x)− 〈g2(x),y − x〉 ≤ L2‖x− y‖+ ‖g2(x)‖‖x− y‖ ≤ 2L2D, ∀ x, y ∈ dom(f).

Therefore, we can construct a global inexact oracle for f in (5.11) with δ1 = 2βL2D.

(c) An example with unbounded domain The boundedness of dom(f) in the previous

example is not necessary. For example, let us choose

f(x) := f1(x) + f2(x), where f1(x) := − ln(x) and f2(x) := max{δ1, δ1x} for any δ1 > 0.
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It is clear that dom(f) = {x ∈ R | x > 0}, which is unbounded. If we take f̃(x) := f1(x)+f2(x),

g(x) := f ′1(x) + g2(x), with g2(x) ∈ ∂f2(x), and H(x) := f ′′1 (x), then it is easy to show that

(f̃ , g,H) is a (0, δ1)-inexact global oracle of f .

Indeed, processing as before, the left-hand side inequality of (5.2) holds for δ0 = 0. The

right-hand side inequality of (5.2) has to hold for |‖y − x|‖x < 1
1+δ0

, which induces a bound on

y of the form (y − x)2/x2 ≤ 1/(1 + δ0), that is for δ0 = 0 we have y ≤ 2x. Then, we get

f2(y)− f2(x)− 〈g2(x), y − x〉 ≤ δ1, ∀ x, y ∈ dom(f), |‖y − x|‖x < 1,

which shows that the triple (f̃ , g,H) is a (0, δ1)-global inexact oracle of the nonsmooth convex

function f with unbounded domain.

5.3.2 Example 2: Inexact computation

It is natural to approximate the function value f(x) at x by f̃(x) such that |f(x)−f̂(x)| ≤ ε

for some ε ≥ 0. In this case, we can define a new inexact oracle as follows. Assume that the

triple (f̃ , g,H) satisfies the following inequalities:


|f̂(x)− f(x)| ≤ ε,

|‖g(x)−∇f(x)|‖∗x ≤ δ2,

(1− δ3)2∇2f(x) � H(x) � (1 + δ3)2∇2f(x),

∀ x ∈ dom(f). (5.12)

where ε ≥ 0, δ2 ≥ 0, and δ3 ∈ [0, 1). In addition, H satisfies the condition that for any

x ∈ dom(f), if |‖y − x|‖x < 1
1+2δ2+δ3

for y ∈ Rp, then y ∈ dom(f).

Clearly, (5.12) is more restrictive than the oracles defined in Definition 5.1 and Definition

5.2 as we show in Lemma 5.3.1, whose proof can be found in Appendix A.3.3.

Lemma 5.3.1. Let (f̂ , g,H) satisfy the condition (5.12). Given 2δ2 + δ3 < 1, if we define

f̃(x) = f̂(x) − ε + ω̃(u(δ2, δ3), v(δ2, δ3)), then (f̃ , g,H) is a (δ0, δ1)-inexact global oracle of f .
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More precisely, we have the following bounds

f(y) ≥ f̃(x) + 〈g(x),y − x〉+ ω ((1− δ0)|‖y − x|‖x)

f(y) ≤ f̃(x) + 〈g(x),y − x〉+ ω∗ ((1 + δ0)|‖y − x|‖x) + δ1,

(5.13)

where δ0 := 2δ2 + δ3, and δ1 := 2ε− ω̃
(
u(δ2, δ3), v(δ2, δ3)

)
+ ω̃

(β−1
3 , 4

3β

)
with

u(δ2, δ3) = δ2
(1−δ3)2

(
2− δ2 − 2δ3 −

√
2(1− δ2 − δ3)2 − δ2

2

)
,

v(δ2, δ3) = δ2
2(1−δ3) −

1
2(1−2δ2−δ3)

√
2(1− δ2 − δ3)2 − δ2

2 ,

and β ∈
(

1, 1 + 2δ2
1+δ3

)
being the solution of a quadratic equation (always exists):

3(1 + δ3)β2 + (1 + 3δ2 + δ3)β − 4(1 + 3δ2 + δ3) = 0. (5.14)

5.3.3 Example 3: Fenchel conjugates

Any convex function f can be written as f(x) = supy∈dom(f∗){x>y − f∗(y)}, where f∗ is

the Fenchel conjugate of f . Borrowing this interpretation, we consider the following general

convex function

f(x) := max
u∈dom(ϕ)

{〈
u,A>x

〉
− ϕ(u)

}
, (5.15)

where ϕ is a standard self-concordant function, and A is a given bounded linear operator. In

order to evaluate f and its derivatives, we need to solve the following convex program:

u∗(x) := argminu∈dom(ϕ)

{
ϕ(u)−

〈
u,A>x

〉}
, or equivalent to ∇ϕ(u∗(x))−A>x = 0. (5.16)

Clearly, u∗(x) = ∇ϕ∗(A>x). As shown in [75], f defined by (5.15) is convex, twice differentiable,

and standard self-concordant on

dom(f) := {x ∈ Rn | ϕ(u)−
〈
u,A>x

〉
is bounded from below on dom(ϕ)}.
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The exact gradient and Hessian maps of f are respectively given by

∇f(x) = Au∗(x) and ∇2f(x) = A[∇2ϕ(u∗(x))]−1A>.

However, in many settings, we can only approximate u∗(x) by ũ∗(x) up to a given accuracy δ

in the following sense, which leads to inexact estimations of ∇f and ∇2f .

Definition 5.3. Given x ∈ dom(f) and δ ≥ 0, we say that ũ∗(x) ∈ dom(ϕ) is a δ-solution of

(5.16) if δ(x) := |‖ũ∗(x)− u∗(x)|‖ũ∗(x) ≤ δ, where the local norm is defined w.r.t. ∇2ϕ(ũ∗(x)).

For ũ∗(·) given in Definition 5.3, we define

f̃(x) :=
〈
ũ∗(x),A>x

〉
− ϕ(ũ∗(x)), g(x) := Aũ∗(x), and H(x) := A[∇2ϕ(ũ∗(x))]−1A>.

(5.17)

We show in the following lemma that this triple satisfies our conditions for inexact oracles. In

addition, since u∗(x) is unknown, it is impractical to check δ(x) ≤ δ directly. We show how to

guarantee this condition by approximately checking the optimality condition of (5.16) in the

following lemma, whose proof is given in Appendix A.3.4.

Lemma 5.3.2. Let ũ∗(·) be a δ-approximate solution of u∗(·) in Definition 5.3 and (f̃ , g,H)

be given by (5.17). If δ ∈ [0, 0.292], then f̂(x) := f̃(x)− ω∗
(

δ
1−δ
)

+ ω̃(u(δ, δ3), v(δ, δ3)) is also a

(δ0, δ1)-global inexact oracle of f defined in Definition 5.1, where δ0 and δ1 are defined similarly

as in Lemma 5.3.1. Moreover, we have the following estimates:

|‖g(x)−∇f(x)|‖∗x ≤ δ, and (1− δ3)2∇2f(x) � H(x) � (1 + δ3)2∇2f(x), (5.18)

with δ3 := δ
1−δ .

If ‖∇ϕ(ũ∗(x))−A>x‖∗ũ∗(x) ≤
δ

1−δ for δ ∈ (0, 1), then δ(x) := ‖ũ∗(x)− u∗(x)‖ũ∗(x) ≤ δ.

As an example of (5.15), we consider the following constrained convex optimization problem:

min
u∈Rn

{
φ(u) s.t. Au = b, u ∈ U

}
,
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where φ is a self-concordant function, A ∈ Rn×p, b ∈ Rn, and U is a nonempty, closed and

convex set in Rn that admits a self-concordant barrier (see [74, 75]). The dual function defined

as

f(x) := max
u∈Rn

{〈x,Au− b〉 − φ(u) | u ∈ U}

is convex and differentiable, but does not have Lipschitz gradient and is not self-concordant in

general. Hence, we often smooth it using a self-concordant barrier function bU of U to obtain

fγ(x) := max
u

{
〈x,Au− b〉 − φ(u)− γbU (u)

}
, (5.19)

where γ > 0 is a smoothness parameter. When γ is sufficiently small, fγ(x) can be consider as

an approximation of the dual function f(x) at x. Note that in this case ϕ = φ+ γbU . Similar

to (5.16), very often, we cannot solve the maximization problem (5.19) exactly to evaluate f

and its derivatives. We only obtain an approximate solution ũ∗γ(x) of its true solution u∗γ(x).

In this case, the oracle we obtained via ũ∗γ(·) generates an inexact oracle for the dual function

f(·).

5.4 Inexact proximal-Newton methods using inexact oracles

We utilize our inexact oracles to develop an inexact proximal Newton algorithm (iPNA) for

solving (5.1). Our algorithm allows one to use both inexact oracles and inexact computation for

the proximal Newton direction. Therefore, it is different from some recent works on this topic

such as [40, 66, 109]. [66, 109] only focus on inexact computation of Newton-type directions,

while [40] approximates Hessian mappings using quasi-Newton schemes. Our approach combine

both aspects but for a more general setting.

5.4.1 iPNA with global inexact oracle: Global convergence

We first describe our inexact proximal-Newton algorithm ((iPNA)) to solve (5.1) under the

general setting.
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The inexact proximal-Newton scheme Given a global inexact oracle (f̃ , g,H) of f , we

first build a quadratic surrogate of f at xk ∈ dom(F ) as

Q(x; xk) := f̃(xk) + 〈g(xk),x− xk〉+ 1
2〈H(xk)(x− xk),x− xk〉.

(iPNA) for solving (5.1) consists of two steps:


zk :≈ argminx∈Rp

{
F̂k(x) := Q(x; xk) +R(x)

}
xk+1 := (1− αk)xk + αkz

k = xk + αkd
k with dk := zk − xk,

(iPNA)

where dk is called the inexact-proximal Newton direction, αk ∈ (0, 1] is a given stepsize, and

the approximation :≈ means that zk is computed until satisfying following stoping criterion

|‖νk|‖∗xk ≤ δ
k
4 |‖zk − xk|‖xk , where νk ∈ g(xk) +H(xk)(zk − xk) + ∂R(zk). (5.20)

Note that one can solve the subproblem in iPNA by any first order scheme, such as FISTA [4],

and check criterion (5.20) as described in Appendix A.3.6. Clearly, if δk4 = 0, then zk = z̄k :=

argminx∈Rp
{
F̂k(x) := Q(x; xk) +R(x)

}
, the exact solution of the subproblem in iPNA.

Global convergence We now state one of our main results, the global convergence of our

inexact proximal-Newton algorithm.

Theorem 5.4.1. Assume that (f̃ , g,H) is a (δk0 , δ
k
1 )-inexact global oracle of f as in Defini-

tion 5.1. Let {xk} be the sequence computed by iPNA starting from x0, where αk is computed

as

αk :=
1− δk4

(1 + δk0 )(1 + δk0 + (1− δk4 )λk)
, with λk := |‖dk|‖xk . (5.21)

Then, the following descent property holds:

F (xk+1) ≤ F (xk)− ω
(

(1− δk4 )λk

1 + δk0

)
+ δk1 . (5.22)
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Assume, in addition, that δk1 and δk4 are chosen such that

∞∑
k=0

δk1 < +∞, and 0 ≤ δk4 ≤ δ̄4 < 1. (5.23)

Then, the inexact Newton decrement {λk} converges to zero as k → ∞. Consequently, the

sequence {zk} also satisfies

lim
k→∞

inf
r(zk)∈∂R(zk)

|‖∇f(zk) + r(zk)|‖∗xk ≡ lim
k→∞

inf
∇F (zk)∈∂F (zk)

|‖∇F (zk)|‖∗xk = 0,

which guarantees the optimality condition of (5.1) in the weighted norm |‖ · |‖xk . In particular,

for any given ε > 0, if there exists L ∈ [0,+∞) such that H(xk) � LI for all xk ∈ dom(F ) with

λk ≤ ε, then we have limk→∞ inf∇F (zk)∈∂F (zk) ‖∇F (zk)‖2 = 0.

Proof. From (5.20), we have νk +H(xk)(xk − zk)− g(xk) ∈ ∂R(zk). Using this expression and

convexity of R, with r(xk) ∈ ∂R(xk), we can derive for any x ∈ dom(F ) that:

R(zk) ≤ R(x) +
〈
r(xk), zk − x

〉
= R(x) +

〈
g(xk) +H(xk)(zk − xk)− νk,x− zk

〉
= R(x) +

〈
g(xk),x− zk

〉
+
〈
H(xk)(zk − xk),x− zk

〉
+
〈
νk, zk − x

〉
.

Since xk+1 := (1− αk)xk + αkz
k, we can further derive from the last inequality that

R(xk+1) ≤ (1− αk)R(xk) + αkR(zk)

≤ (1−αk)R(xk)+αkR(x) + αk
[〈
g(xk), x−zk

〉
+ αk

〈
H(xk)dk, x−zk

〉
+
〈
νk, zk−x

〉]
.

Now, using (5.2), we have

f(xk+1)
(5.2)

≤ f̃(xk) +
〈
g(xk),xk+1 − xk

〉
+ ω∗

(
(1 + δk0 )|‖xk+1 − xk|‖xk

)
+ δk1

≤ (1− αk)f(xk) + αkf̃(xk) + αk

〈
g(xk),dk

〉
+ ω∗

(
(1 + δk0 )αk|‖dk|‖xk

)
+(1− αk)δk1 .
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Adding these two inequalities and using (5.20), we can show that

F (xk+1) ≤ (1− αk)F (xk) + αk
[
f̃(xk) +

〈
g(xk),x− xk

〉
+R(x)

]
− α2

kλ
2
k

+ ω∗
(
(1 + δk0 )αk|‖dk|‖xk

)
+ (1− αk)δk1 + αkδ

k
4λ

2
k + αk

〈
H(xk)dk − νk,x− xk

〉
(5.2)

≤ (1− αk)F (xk) + αkF (x)− α2
kλ

2
k + ω∗

(
(1 + δk0 )αk|‖dk|‖xk

)
+ (1− αk)δk1 + αkδ

k
4λ

2
k + αk

〈
H(xk)dk − νk,x− xk

〉
+ δk1 .

(5.24)

Note that the function sk2(t) := λ2
k(1− δk4 )t− ω∗((1 + δk0 )λkt) achieves a maximum at

t∗k =
1− δk4

(1 + δk0 )(1 + δk0 + (1− δk4 )λk)
,

with the optimal value sk2 = ω
(

(1−δk4 )λk
1+δk0

)
. Substituting sk2 into (5.24), we get

F (xk+1) ≤ (1− αk)F (xk) + αkF (xk)− ω
(

(1−δk4 )λk
1+δk0

)
+ δk1 + αk〈H(xk)dk − νk,x− xk〉 (5.25)

for all x ∈ dom(F ). Substituting now x = xk into this inequality, we obtain (5.22). Since

F (xk) ≥ F ? > −∞, by induction, we obtain from (5.22) that

∞∑
k=0

sk2 ≤ F (x0)− F ∗ +
∞∑
k=0

δk1 < +∞.

Hence, we obtain
∑∞

k=0 s
k
2 < +∞, which yields limk→∞ ω

(
(1−δk4 )λk

1+δk0

)
= 0. By the choice of δk0

and δk4 , and the definition of ω, we have limk→∞ λk = 0.

Further, we can write the optimality condition of (5.20) as νk = g(xk) +H(xk)(zk − xk) +

r(zk) where r(zk) ∈ ∂R(zk). Since λk := |‖xk − zk|‖xk → 0 as k → +∞, for k sufficiently large,

and δ0 ∈ [0, 1], we obtain zk ∈ dom(F ) by Definition 5.1. The above optimality condition leads

to

∇f(zk) + r(zk) = −Hk(z
k − xk) + (∇f(zk)− g(xk)) + νk.
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By property of the norm and the definition of our stopping criterion, we have:

|‖∇f(zk) + r(zk)|‖∗
xk
≤ |‖Hk(z

k − xk)|‖∗
xk

+ |‖νk|‖∗
xk

+ |‖∇f(zk)− g(xk)|‖∗
xk

≤ (1 + δk4 )λk + |‖∇f(zk)− g(xk)|‖∗
xk
.

(5.26)

From (5.6) it follows that ω

(
|‖g(xk)−∇f(zk)|‖∗

xk

1+δk0

)
≤ |‖g(xk) − ∇f(zk)|‖∗

xk
λk + δk1 . This implies

that
(

1
1+δk0

− λk
)
|‖g(xk) − ∇f(zk)|‖∗

xk
− ln

(
1 +

|‖g(xk)−∇f(zk)|‖∗
xk

1+δk0

)
≤ δk1 . Since limk→∞ δ

k
1 =

limk→∞ λk = 0 and δk0 ∈ [0, 1] (Definition 5.1), the last inequality implies that limk→∞ |‖g(xk)−

∇f(zk)|‖∗
xk

= 0. Using this limit together with limk→∞ λk = 0 into (5.26), we can conclude

that limk→∞ |‖∇f(zk) + r(zk)|‖∗
xk

= 0. Consequently, we get our statement

lim
k→∞

inf
r(zk)∈∂R(zk)

|‖∇f(zk) + r(zk)|‖∗xk = 0.

Since ∂F (zk) = ∇f(zk) + ∂R(zk), this limit implies limk→∞ inf∇F (zk)∈∂F (zk) |‖∇F (zk)|‖∗
xk

= 0.

Finally, the last statement of this theorem is an immediate consequence of the previous one

since 1√
L
‖∇f(zk) + r(zk)‖2 ≤ |‖∇f(zk) + r(zk)|‖∗

xk
.

Remark 5.4.1. Since limk→∞ λk = limk→∞ |‖zk − xk|‖xk = 0 in Theorem 5.4.1, we can see

that if there exists L ∈ [0,+∞) such that H(xk) � LI for all xk ∈ dom(F ) with λk ≤ ε, then

limk→∞ zk = limk→∞ xk = x∗ if these limits exist (at least via a subsequence). Hence, by [92,

Theorem 24.4], we have infr∗∈∂R(x∗) ‖∇f(x∗) + r∗‖2 = 0.

Remark 5.4.2. To guarantee only the descent property (5.22), one can use a weaker stop-

ping criterion
〈
νk, zk − xk

〉
≤ δk4λ

2
k along with δk4 < 1 instead of (5.20) to avoid the inverse

computation in |‖νk|‖∗
xk

. In addition, the proof of (5.22) holds using this criterion even δk4 is

nonpositive.

5.4.2 iPNA with local inexact oracle: Local convergence

In this subsection, we analyze local convergence of iPNA for solving (5.1) with local inexact

oracle under the self-concordance of f . The following lemma is key to our analysis, whose proof

is defered to Appendix A.3.5.
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Lemma 5.4.2. Let {xk} be the sequence generated by iPNA algorithm. Then:

λk+1 ≤ 1
1−δk+1

4

{
δk+1

2 + 1
(1−δk+1

3 )(1−δk3−αkλk)

[
(1− (δk3 )2)δk2 + (1− (δk3 )2)δk4λk

+ (1− αk)(3− 2(δk+1
3 )2 − (δk3 )2)λk + αk(2 + δk3 )δk3λk +

α2
kλ

2
k

1−δk3−αkλk

]}
,

(5.27)

provided that αkλk + δk3 < 1 and δk4 < 1.

Based on the Lemma 5.4.2 and using either full-step or damped-step we can prove local

convergence of iPNA in the following theorems.

Theorem 5.4.3. Let {xk} be the sequence generated by iPNA using a full-step αk := 1 and

fix a constant ρ := 0.8. Then:

(i) If we choose 0 ≤ δk3 , δk4 ≤ 1
100 , and 0 ≤ δk2 ≤

ρk+1

50 for a given k ≥ 0, then

λk ≤ ρk

10 ⇒ λk+1 ≤ ρk+1

10 .

Consequently, if we choose x0 ∈ dom(F ) such that λ0 ≤ 1
10 , then {λk} converges to zero

at an R-linear rate with a factor of ρ.

(ii) If we choose δk2 , δk3 and δk4 such that 0 ≤ δk2 ≤
ρ
k(k+1)

2

50 and 0 ≤ δk3 , δ
k
4 ≤ min{ 1

100 ,
ρk

10},

for some k ≥ 0, then

λk ≤ ρ
(k−1)k

2

10 ⇒ λk+1 ≤ ρ
k(k+1)

2

10 .

Consequently, if we choose x0 ∈ dom(F ) such that λ0 ≤ 1
10 , then {λk} converges to zero

at an R-superlinear rate.

(iii) If we choose δk2 , δk3 and δk4 such that 0 ≤ δk2 ≤
ρ2k+1

50 and 0 ≤ δk3 , δ
k
4 ≤ min{ 1

100 ,
ρ2k

50 },

for some k ≥ 0, then

λk ≤ min{ 1
10 , ρ

2k} ⇒ λk+1 ≤ min{ 1
10 ,

7
5ρ

2k+1}.

Consequently, if we choose x0 ∈ dom(F ) such that λ0 ≤ 1
10 , then {λk} converges to zero

at an R-quadratic rate.
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In addition, we have

inf
∇F (zk)∈∂F (zk)

‖∇F (zk)‖∗xk ≤ O
(

max{λk, δk1}
)
.

Hence, {inf∇F (zk)∈∂F (zk) ‖∇F (zk)‖∗
xk
} converges to zero at the same rate of {max{λk, δk1}}.

Proof. (a) For the full-step case, we set αk = 1 in (5.27). If we have λk ≤ 1
10 for a given k ≥ 0,

then from (5.27), we can derive

λk+1 ≤
δk+1

2

1− r
+

δk2
(1− r)2(0.9− r)

+
3 + r

(1− r)2(0.9− r)
rkλk +

1

(1− r)2(0.9− r)2
λ2
k (5.28)

provided that 0 ≤ δk3 , δk4 ≤ min{r, rk}. We note that the left-hand side of (5.28) is an increasing

functions of λk, r, rk, and δk2 and δk+1
2 . If we impose λk ≤ 1

10 , then by substituting the upper

bounds rk ≤ 1
100 , r = 1

100 and δk2 , δ
k+1
2 ≤ 1

50 into (5.28), we can over-estimate it as

λk+1 ≤
3

50
≤ 1

10
.

This shows that λk ≤ 1
10 implies λk+1 ≤ 1

10 as long as δk2 ≤ 1
50 and rk ≤ 1

100 , which are

satisfied by all the conditions of (i), (ii) and (iii). By choosing δk2 , δk3 , and δk4 as in (i), (ii), and

(iii), respectively, then utilizing (5.28), we can directly get the conclusion of (i), (ii), and (iii),

respectively.

Theorem 5.4.4. Let {xk} be the sequence generated by iPNA using the damped-step (5.21)

and fix a constant ρ := 0.9. Then:

(i) If we choose 0 ≤ δk0 , δk3 , δk4 ≤ 1
100 , and 0 ≤ δk2 ≤

3ρk+1

200 for all k ≥ 0, then

λk ≤ ρk

10 ⇒ λk+1 ≤ ρk+1

10 .

Consequently, if we choose x0 ∈ dom(F ) such that λ0 ≤ 1
10 , then {λk} converges to zero

at an R-linear rate with a factor of ρ.
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(ii) If we choose δk0 , δk2 , δk3 , and δk4 such that 0 ≤ δk2 ≤
3ρ
k(k+1)

2

200 and 0 ≤ δk0 , δ
k
3 , δ

k
4 ≤

ρk

100

for some k ≥ 0, then

λk ≤ ρ
(k−1)k

2

10 ⇒ λk+1 ≤ ρ
k(k+1)

2

10 .

Consequently, if we choose x0 ∈ dom(F ) such that λ0 ≤ 1
10 , then {λk} converges to zero

at an R-superlinear rate.

(iii) If we choose δk0 , δk2 , δk3 , and δk4 such that 0 ≤ δk2 ≤
3ρ̂2k+1

40 , and 0 ≤ δk0 , δk3 , δk4 ≤
ρ̂2k

100 for

some k ≥ 0, where ρ̂ := 11
25 , then

λk ≤ min{ 1
10 , ρ̂

2k} ⇒ λk+1 ≤ min{ 1
10 ,

497
100 ρ̂

2k+1}.

Consequently, if we choose x0 ∈ dom(F ) such that λ0 ≤ 1
10 , then {λk} converges to zero

at an R-quadratic rate.

Moreover, {inf∇F (zk)∈∂F (zk) |‖∇F (zk)|‖∗
xk
} converges to zero at the same rate as {max{λk, δk1}}.

Proof. For the damped-step case, if 0 ≤ δk0 , δk4 ≤ tk, then αk defined in (5.21) satisfies

1− αk ≤ 1− 1− tk
(1 + tk)(1 + tk + λk)

=
t2k + 3tk + (1 + tk)λk
(1 + tk)(1 + tk + λk)

≤ 3tk + λk. (5.29)

Similar to the proof given previously for the full step, if λk ≤ 1
10 for some k ≥ 0, then from

(5.27) and (5.29) we can show that

λk+1 ≤
δk+1

2

1− t
+

δk2
(1− t)2(0.9− t)

+
12 + t

(1− t)2(0.9− t)
tkλk +

3.7− 3t

(1− t)2(0.9− t)2
λ2
k, (5.30)

given that 0 ≤ δk3 , δ
k
4 ≤ min{t, tk}. By taking t := 1

100 in the above estimate, then after a

few elementary calculations, one can shos that λk ≤ 1
10 implies λk+1 ≤ 0.094 ≤ 1

10 as long as

δk2 ≤ 0.015 and tk ≤ 1
100 . These estimates satisfy all the conditions given in (i), (ii), and (iii)

of (b). Finally, by choosing δk0 , δk2 , δk3 , and δk4 as given in (i), (ii), and (iii), respectively, from

(5.30), we can directly get the conclusion of (i), (ii), and (iii), respectively.

78



Remark 5.4.3. The last statement of Theorem 5.4.3 and 5.4.4 shows the convergence of sub-

gradient sequence {inf∇F (zk)∈∂F (zk) |‖∇F (zk)|‖∗
xk
} of F . If we choose {δk1} with the same rate

as {λk}, then {inf∇F (zk)∈∂F (zk) |‖∇F (zk)|‖∗
xk
} converges to zero with the same rate of {λk}.

Remark 5.4.4. Due to the complexity of (5.27), we only provide one explicit range of δki and

λk by numerically computing their upper bounds. However, we can choose different values than

the ones we provide in Theorems 5.4.3 and 5.4.4.

5.4.3 Relationship to other inexact methods

We show that our iPNA covers both inexact Newton methods in [63, 109] and quasi-Newton

method in [40].

(a) Inexact proximal-Newton methods In [63], the authors discussed a proximal Newton

method where the inexactness lies on the subproblem of computing proximal-Newton direction.

This method can be viewed as a special case of our method by choosing δk0 = δk1 = δk2 = δk3 = 0

(i.e., no inexact oracle was considered in [63]). In this case, the subproblem (5.20) reduces to

the following one by using δk4 = 1− θk:

νk ∈ gk + hk(z̄
k − xk) + ∂R(z̄k), (5.31)

where ‖νk‖∗
xk
≤ (1 − θk)‖z̄k − xk‖xk . For the damped-step proximal Newton method, the

corresponding step-size reduces to αk =
1−δk4

1+(1−δk4 )λk
= θk

1+θkλk
, which is the same as the step-size

defined in [63]. For global convergence, [63, Theorem 3] is a special case of Theorem 5.4.1 with

exact Hessian, gradient, and function values. Furthermore, if we let αk = 1 in Lemma 5.4.2,

then we get the same local convergence result as shown in [63, Theorem 2].

(b) Quasi-Newton methods In [40] a quasi-Newton method for self-concordant minimization

is proposed based on a curvature-adaptive step-sizes that involve both the inexact and the real

Hessian at each loop. However, with our inexact oracle algorithmic setting we can reproduce

the same descent and convergence results as in [40]. In particular, we can recover the descent

property from [40, Section 4]. In order to avoid the notation ambiguity, we express all quantities

appearing in [40] with an additional ·G (e.g. αGk means the αk in [40]), and let Binv
k be the
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inverse inexact Hessian in [40]. Since f is self-concordant, by using (f̃ , g,H) = (f,∇f,∇2f),

we obtain a (0, 0)-global inexact oracle as in Definition 5.1. Since [40] only deals with the

non-composite case, R(x) ≡ 0 in this case. Therefore, our inexact proximal-Newton scheme

(iPNA) is reduced to the inexact Newton scheme:


zk :≈ xk − (∇2f(xk))−1∇f(xk)

xk+1 := (1− αk)xk + αkz
k = xk + αkd

k, where dk := zk − xk,

(iNA)

with νk = ∇f(xk) + ∇2f(xk)dk and λk := ‖dk‖xk . Now, by setting zk = xk − Binv
k ∇f(xk),

then by (iNA), dk = −Binv
k ∇f(xk) is exactly the descent direction dGk in [40]. Moreover, if we

set:

δk4 := 1− αGk = 1−
〈
∇f(xk),−dk

〉
‖dk‖2

xk
= 1 +

〈
∇f(xk),dk

〉
‖dk‖2

xk
= 1 +

〈
∇f(xk),dk

〉
λ2
k

,

then from Theorem 5.4.1 we get that

f(xk+1) ≤ f(xk)− ω((1− δk4 )λk). (5.32)

In particular, the proof in Theorem 5.4.1 is reduced to:

f(xk+1) ≤ f(xk) +
〈
∇f(xk),xk+1 − xk

〉
+ ω∗(‖xk+1 − xk‖xk)

= f(xk) + αk
〈
∇f(xk),dk

〉
+ ω∗(αkλk).

(5.33)

Minimizing the right-hand side over the step-size αk, we obtain the optimal αk as follows:

αk =
−
〈
∇f(xk),dk

〉
λk(λk − 〈∇f(xk),dk〉)

=
−
〈
∇f(xk),dk

〉
/λ2

k

λk(λk − 〈∇f(xk),dk〉)/λ2
k

=
1− δk4

1 + (1− δk4 )λk
.

Substituting this αk into (5.33) we obtain (5.32). Rearranging our step-size we get:

αk =
1− δk4

1 + (1− δk4 )λk
=

αGk
1 + αGk δ

G
k

= tGk ,
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which is exactly the step-size used in [40]. For the descent property, the conclusion in [40,

Lemma 4.1] is f(xk+1) ≤ f(xk)− ω(ηGk ). Comparing this with our descent (5.32), we have:

(1− δk4 )λk =

〈
∇f(xk),−dk

〉
‖dk‖2

xk
· ‖dk‖xk =

〈
∇f(xk),B−1

k ∇f(xk)
〉

λk
=
ρGk
δGk

= ηGk .

Hence we have recovered the main result of [40, Section 4] by using our oracle setting as defined

above and Theorem 5.4.1. Furthermore, [40, Section 5] analysis the convergence behavior of the

quasi-Newton method for a Binv
k that satisfies the condition λI � Binv

k � ΛI for either λ = Λ = 1

(Gradient Descent) or λ and Λ chosen as in [40, Theorem 5.5] (L-BFGS). Moreover, [40, Section

6] derives similar results for Binv
k based on BFGS updates. Since [40, Sections 5 and 6] are just

two particular choices for Binv
k based on the scheme of [40, Section 4], from previous discussion

it follows immediately that we can recover all the local and global convergence results in [40]

under the Lipschitz gradient and strong convexity assumptions considered in that paper.

5.5 Application to primal-dual methods

We have shown in Subsection 5.3.3 that inexact oracles of a convex function can be con-

trolled by approximately evaluating its Fenchel conjugate. In this section, we show how to

apply this theory to design a primal-dual method for solving composite minimization of a

self-concordant objective and a nonsmooth convex regularizer.

We consider the following composite convex problem:

G? := min
y∈Rn

{
G(y) := ϕ(A>y) + ψ(y)

}
, (5.34)

where ϕ : Rp → R ∪ {+∞} is proper, closed, and convex, and ψ : Rn → R ∪ {+∞} is a

smooth convex function. We assume that ψ is self-concordant, ϕ is proximally tractable, and

A ∈ Rn×p is not diagonal. Problem (5.34) covers many applications in the literature such

as image denoising and restoration [8, 16], sparse inverse covariance estimation [39], distance

weighted discrimination [67], robust PCA [81], and fused lasso problems [99].

Since ϕ is nonsmooth, and A is not diagonal, the proximal operator of ϕ(A>(·)) is not

tractable. We instead consider the dual problem of (5.34). Using Fenchel conjugate, the dual
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problem of (5.34) can be written as

F ? := min
x∈Rp

{
F (x) := f(x) +R(x) ≡ ψ∗(Ax) + ϕ∗(−x)

}
, (5.35)

which is exactly of the form (5.1), where f(x) := ψ∗(Ax) and R(x) := ϕ∗(−x). Under our

assumptions, strong duality holds, i.e. (5.35) is also feasible and G? + F ? = 0. The optimality

condition of (5.34) and (5.35) becomes

Ax? = ∇ψ(y?) and − x? ∈ ∂ϕ(A>y?) ⇔ 0 ∈ −A>y? + ∂ϕ∗(−x?). (5.36)

Let y∗(x) ∈ argmaxy∈domψ{
〈
x,A>y

〉
− ψ(y)}. Since the optimal set of (5.34) is nonempty

and ϕ is self-concordant, y∗(x) exists and is unique. Moreover, we can show that the exact

gradient and Hessian mappings of f are ∇f(x) = A>y∗(x) and ∇2f(x) = A>∇2ψ(y∗(x))−1A,

respectively. However, in practice, we can only evaluate an inexact oracle of f as

g(x) := A>ỹ∗(x), and H(x) := A>∇2ψ(ỹ∗(x))−1A, (5.37)

that approximate ∇f(x) and ∇2f(x), respectively, where ỹ∗(x) is an approximate solution of

y∗(x) such that ‖Ax−∇ψ(ỹ∗(x))‖ỹ∗(x) ≤ δ
1−δ as suggested by Lemma 5.3.2.

Now, we can develop an inexact primal-dual method to solve (5.34) as follows. Starting

from an initial point x0 ∈ dom(f), at each iteration k ≥ 0, perform the following steps:

1. Approximately compute ỹ∗(xk) from ‖Axk−∇ψ(ỹ∗(xk))‖∗
ỹ∗(xk)

≤ δk
1−δk , where δk is chosen

according to Lemma 5.3.2 and Theorem 5.4.1.

2. Form an inexact oracle g(xk) := A>ỹ∗(xk) and H(xk) := A>∇2ψ(ỹ∗(xk))−1A of f at

xk.

3. Approximately solve zk ≈ z̄k := arg min
{
Q̃(x; xk) +R(x)

}
as in (iPNA).

4. Compute a step-size αk as in (5.21).

5. Update xk+1 := (1− αk)xk + αkz
k.

Finally, we recover an approximate solution yk := ỹ∗(xk) of y? for (5.34).
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The following lemma shows that ỹ∗(xk) is indeed an approximate solution of (5.34).

Lemma 5.5.1. Let {(zk,yk)} be the sequence generated by our primal-dual scheme above.

Then

‖Azk−∇ψ(yk)‖∗yk ≤
δk

1− δk
+λk and rk ∈ A>yk−∂ϕ∗(−zk) with |‖rk|‖∗xk ≤ (1+δk4 )λk. (5.38)

Consequently, if we compute λk and choose δk such that δk+λk ≤ ε
1+ε and λk ≤ ε

2 , then (zk,yk)

is an ε-solution of the primal problem (5.34) and its dual (5.35), i.e., ‖Azk − ∇ψ(yk)‖∗
yk
≤ ε

and |‖rk|‖∗
xk
≤ ε such that rk ∈ A>yk − ∂ϕ∗(−zk).

Proof. Since we define yk := ỹ∗(xk), from (iPNA) and (5.37), we have

νk ∈ A>yk + A>∇2ψ(yk)−1A(zk − xk)− ∂ϕ∗(−zk).

Let us define rk := νk − A>∇2ψ(yk)−1A(zk − xk). Then, the last condition leads to rk ∈

A>yk − ∂ϕ∗(−zk). Hence, we can estimate |‖rk|‖xk as follows:

|‖rk|‖∗xk ≤ |‖ν
k|‖∗xk + |‖A>∇2ψ(yk)−1A(zk − xk)|‖∗xk ≤ δ

k
4λk + λk = (1 + δk4 )λk.

Therefore, we get the second part of (5.38).

Note that ‖Axk − ∇ψ(yk)‖∗
yk
≤ δk

1−δk . Hence, we can show that ‖Azk − ∇ψ(yk)‖∗
yk
≤

δk
1−δk + ‖A(zk−xk)‖∗

yk
= δk

1−δk + |‖zk−xk|‖xk = δk
1−δk +λk, which proves the first part of (5.38).

The rest of this lemma is a direct consequence of (5.38).

Note that both ‖Azk − ∇ψ(yk)‖∗
yk

and |‖rk|‖∗
xk

are controlled by λk. By Theorem 5.4.1,

we have limk→∞ λk = 0. Consequently, limk→∞ ‖Azk − ∇ψ(yk)‖∗
yk

= limk→∞ |‖rk|‖∗xk = 0.

Hence, we can say that (zk,yk) converges to the solution of (5.34)-(5.35). By Theorem 5.4.3

and 5.4.4, we can also prove locally linear/superlinear/quadratic convergence rates of the two

residual sequences {‖Azk −∇ψ(yk)‖∗
yk
} and {|‖rk|‖∗

xk
}.
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5.6 Preliminary numerical experiments

We provide two numerical examples to verify several aspects of our theoretical results and

compare our algorithms with some existing methods. These algorithms are implemented in

Matlab 2018a running on a Lenovo Thinkpad 2.60GHz Intel Core i7 Laptop with 8Gb memory.

5.6.1 Composite Log-barrier+`p-norm models

This example aims at studying several theoretical aspects of our theory developed in the

previous sections. For this purpose, we consider the following composite log-barrier+`p-norm

model as a special case of (5.34):

G? := min
y∈Rp

{
G(y) := ϕ(A>y) + ψ(y)

}
, (5.39)

where ϕ : Rn → R∪ {+∞} is a proper, closed, and convex function, ψ(y) := −
∑m

i=1wi ln(di −

c>i y), which can be viewed as a barrier function of a polyhedron P :=
{
y ∈ Rp | C>y ≤ d

}
,

A ∈ Rp×n, and w ∈ Rm+ is a weight vector. In our experiments, we focus on the case ϕ is a

finite sum of `p-norms.

Problem (5.39) has concrete applications including solving systems of linear equations and

inequalities [43], Poisson image processing [47, 61], and robust optimization [7].

Unlike several existing models, the linear operator A in (5.39) is composited into a nons-

mooth term ϕ, which makes first-order methods to be intractable. Instead of solving the primal

problem (5.39) directly, we consider its dual formulation as in Section 5.5:

F ? := min
x

{
F (x) := ϕ∗(−x) + ψ∗(Ax)

}
, (5.40)

where ϕ∗ and ψ∗ are the Fenchel conjugates of ϕ and ψ, respectively. Clearly, since ψ is smooth,

one can evaluate its conjugate ψ∗ as well as the derivatives of ψ∗ by solving

ψ∗(Ax) := max
u∈Rn

{
h(u) := 〈Ax,u〉+

m∑
i=1

wi ln(di − c>i u)
}
. (5.41)
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Let us denote by u∗(x) the solution of this problem. Since the underlying function is self-

concordant, one can apply Newton method to compute u∗(x) [74]. However, we can only

approximately compute u∗(x), which leads to inexact oracle of ψ∗. Hence, our theory, in

particular, the results developed in Section 5.5 can be applied to solve (5.41) inexactly.

5.6.1.1 The effect of inexactness to the convergence of iPNA

First, we show how the accuracy of inexact oracles affects the overall convergence of iPNA

when solving (5.40). As indicated by Theorems 5.4.1, 5.4.3, and 5.4.4, iPNA can achieve

different local convergence rates, or can be diverged. In this experiment, we plan to analyze

the convergence or divergence of iPNA under different accuracy levels of inexact oracles.

In this experiment, we generate data according to Subsection 5.6.1.2 below but using A :=

rand(p, 0.1p), where p = 500. For configuration of the experiment, we set the maximum number

of iterations at 100 as a safeguard, but also terminate the algorithm if λk ≤ 10−9 and the relative

objective value satisfies F (xk)−F ? ≤ εmax{1, |F ?|}, where ε = 10−11 for the linear convergence

rate, and ε = 10−12 for the quadratic convergence rate, respectively. The optimal value F ? is

computed by running SDPT3 up to high accuracy. The global convergence of iPNA is reflected

in Figure 5.1, where the sum of errors
∑kmax

k=0 δk1 presented in (5.23) of Theorem 5.4.1 is given

on the left-most plot, the proximal Newton decrement λk is in the middle plot, and the relative

objective residual is on the right-most plot.
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Figure 5.1: Global convergence behavior of iPNA in Theorem 5.4.1.

The left-most plot shows the sum of errors δ1 arisen from δ, the accuracy of the conjugate

function ψ∗ as shown in Definition 5.3. More precisely, if δ is chosen according to Lemma 5.3.2
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to achieve linear, superlinear and quadratic convergence as in Theorem 5.4.3, then, the sum of

errors
∑kmax

k=0 δk1 rendering from Theorem 5.4.1 is given in the left-most plot of Figure 5.1. The

blue line is just the sum of errors when iPNA is convergent as required in Theorem 5.4.1.

The middle plot reveals the inexact proximal Newton decrement λk computed from different

accuracy levels of the subproblem in (5.20). Clearly, the more accurate in (5.20) is given, the

faster convergence in λk is achieved. The right-most plot provides the convergence of the relative

objective residuals under different accuracy level δ4 of the subproblem.

Our next step is to verify the local convergence represented in Theorem 5.4.3, and how

inexact oracles affect the local convergence of iPNA. By choosing different values of δ we obtain

different levels of inexact oracles in ψ∗. Figure 5.2, Figure 5.3, and Figure 5.4 show an R-linear,

R-superlinear, and R-quadratic convergence rate of iPNA, respectively. Here, the reference

level ε representing the desired accuracy of the solution is given in the legend of these figures.
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Figure 5.2: The local linear convergence of iPNA under the effect of inexact oracles.

As we can see from Figure 5.2, if we choose the parameters as in Theorem 5.4.3, 5.4.4 (i)

to reflect a local linear convergence rate, we observe a sublinear convergence in a few dozen of

iterations due to slow global convergence rate, but we can see a fast local convergence at the

last iterations. Notice that this convergence rate is even better than linear in terms of λk or

the relative objective residuals, since we only use the quantity δ of conjugate subproblem to

measure derivatives accuracy via Lemma 5.3.2. δ is controlled by the most accurate tolerance

among δ0, δ2 and δ3 in Theorem 5.4.3, 5.4.4, which gives the convergence rate better than linear.
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Figure 5.3: The local superlinear convergence of iPNA under the effect of inexact oracles.
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Figure 5.4: The local quadratic convergence of iPNA under the effect of inexact oracles.

If we multiply the accuracy δ by 10, and 80, respectively, we can see from this figure that the

linear convergence is destroyed, and the method tends to diverge. If we choose the inexact level

δ4 of the subproblem in (5.20) to 0.8, we also get a significantly slow linear convergence rate.

The superlinear and quadratic convergence rates are reflected in Figure 5.3 and Figure 5.4,

respectively. Both figures look very similar, but the quadratic convergence case achieves much

higher accuracy up to 10−12 after around 100 iterations. If we increase the inexactness of the

inexact oracle by multiplying δ by 10 and 80, respectively, iPNA shows its slow convergence or

even diverges. If we increase the inexactness δ4 of the subproblem in (5.20) to 0.8, we again

obtain a much slower convergence rate.
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5.6.1.2 Application to a network allocation problem

The composite model (5.39) can be applied to solve the following allocation problem. As-

sume that we have K cities described by polytopes as their possible area P[i] := {y ∈ Rp |

C[i]y ≤ d[i]} for i = 1, · · · ,K. These cities are connected by a delivery network describing the

routes between each pair of cities. Our goal is to locate a delivery center y[i] ∈ P[i] such that

the total distances (or the total delivery costs) between these cities is minimized.

In order to guarantee y[i] ∈ P[i], we use a log-barrier function to handle this constraint.

Therefore, one way to model this problem is to fit it into (5.39), where

ϕ(Ay) := µ
∑

(i,j)∈E

cij‖y[i] − y[j]‖2 = µ
∑

(i,j)∈E

cij

√
(y

[i]
1 − y

[j]
1 )2 + (y

[i]
2 − y

[j]
2 )2,

where cij ≥ 0 is the cost that is proportion to the distance between the i-th and j-th city, and

E is the set of edges of the graph described this network, µ > 0 is a penalty parameter in the

barrier formulation (5.39), and A is a matrix describing the difference operator.

We first illustrate this model through a toy example, which creates a shape of UNC and

STOR. Figure 5.5 demonstrates two unicursal routes of those word abbreviations.
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Figure 5.5: Optimal site allocation for routes UNC and STOR.

Figure 5.6 illustrates a real transportation network of US in 20152, and its actual optimal

allocation solution. As we can see in the demo figure, this network model can be widely applied

to airport and subway allocation, bipartite graph allocation, and many other fields with site

allocation problems.

2http://esciencecommons.blogspot.com/2015/06/how-flu-viruses-use-transportation.html
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Figure 5.6: Optimal site allocation for US Network

Next, we test our methods on a collection of problems generated synthetically. We simulate

the data by generating 17 problems with sparse network (ρ = 0.04) and 13 problems with dense

network (ρ = 0.15). For problem of size 2p, we generate an l-by-n rectangle area with l = 10

and n = p/5 in our case, with each area a 10 × 10 square. We randomly select p positions

from the 2p square. For each chosen position i, with the central point being the origin, we

again randomly generates one point as a vertex in each quadrant of the square, and then link

them together as the feasible region of site i, where i = 1, 2, . . . , p, and the matrix and vector

C and d are generated from all feasible regions. We also generate a random adjacency matrix

of size p× p with density ρ = 0.04 as the network, which corresponds to the linear operator A

in the model setting. In practice, we choose µ = 10, which is large enough to guarantee that

the optimal points are near the boundary of feasible regions. (In fact, we exactly use µ = 10

in Figure 5.5 and 5.6 below.) We choose all cij ’s to be 1 in our case. Of course one can also

use different cij ’s to reflect the situation of different cities, or change the density or the shape

of the network to reflect different real situations.

We solve this problem using inexact Newton method as before. Since the problem shares

a sparse structure of matrix A, we set the tolerances of the main loop to be tolgap := 10−10,

and tolsol := 10−8. which measures the relative primal-dual gap defined by rgap := |F ∗+G∗|
1+|F ∗|+|G∗| ,
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and the maximum relative solution difference of primal and dual solutions defined by

rsol := max

{
‖xk+1 − xk‖2
max{1, ‖xk‖2}

,
‖yk+1 − yk‖2
max{1, ‖yk‖2}

}

separately. We terminate our algorithm when the solution pair meets both criteria: (1) rgap <

tolgap; and (2) rsol < tolsol.

5.6.1.3 Comparison to other methods

In this test, we show the advantages of our iPNA to existing state-of-the-arts such as SDPT3:

a well-established interior-point solver to solve (5.39) [100], ADMM: the alternating direction

method of multipliers [12], and CP: Chambolle-Pock’s primal-dual first-order algorithm [16].

We note that since ψ in (5.39) does not have Lipschitz gradient, existing first-order methods

such as proximal gradient-type, Frank-Wolfe, and coordinate descent methods are not applicable

due to the lack of theoretical guarantees. For those three methods, we terminate all methods

when both tolerance tolgap and tolsol are met. For SDPT3, since the formulation is different

from others, we use their default measurement of the relative gap and solution feasibility. For

the first order methods ADMM and CP, since it takes a long time for both to reach a high

solution difference tolerance, we lower tolsol to 10−6, instead of 10−8 in our algorithm. We

also run CP for 10, 000 iterations to get a solution with a very high accuracy as a ground

truth, and compare the relative primal solution error of all algorithms comparing with the

ground truth, and the quantity is denoted by qsol, which measures the solution correctness

and quality of each algorithm. Since there is no convergence rate guarantee at the first phase

of ISNA algorithm, we use “n/t” to represent the number of iterations starts from xk jumping

into the local quadratic convergence range (measured by λk < 0.1, where we start to apply

Theorem 5.4.3, 5.4.4), over the total number of ISNA iterations. If fact, n is the true number

of iterations of the second-order method. The result is listed in Table 5.1.

The performance profile was studied in [32], which can be considered as a standard way to

compare different optimization algorithms. A performance profile is built based on a set S of

ns algorithms (solvers) and a collection P of np problems. We build a profile based on compu-

tational time. We denote by Tij := computational time required to solve problem i by solver j.
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Table 5.1: The performance of two solvers for l1,2-log barrier of 30 problems.

Problem IPNA SDPT3 ADMM Chambolle-Pock

Name n/t t[s] qsol iter t[s] qsol iter t[s] qsol iter t[s] qsol

sparse network

p004120 16/72 2.8 9.0e-06 22 2.4 3.0e-05 207 0.4 9.3e-07 644 2.4 6.9e-05
p004160 16/79 3.1 4.4e-05 28 4.9 5.8e-06 253 0.7 1.2e-06 681 3.5 3.7e-04
p004200 16/91 6.0 4.3e-05 31 8.0 9.9e-06 329 1.3 7.6e-07 701 5.5 3.1e-04
p004240 17/98 6.9 1.1e-05 29 10.6 5.9e-06 336 5.2 1.4e-06 789 9.1 9.6e-05
p004280 16/105 8.7 8.2e-05 34 18.6 5.1e-06 397 13.9 3.3e-06 776 12.0 2.1e-04
p004320 18/114 9.0 1.4e-05 34 21.5 6.5e-06 375 17.6 1.7e-06 733 14.4 7.4e-05
p004360 16/118 10.0 4.1e-05 36 32.4 3.8e-06 308 20.6 1.6e-06 813 21.9 1.5e-04
p004400 18/131 20.2 2.1e-05 41 50.9 2.9e-06 677 64.9 4.2e-06 866 30.0 6.3e-05
p004440 18/132 18.7 7.7e-05 35 60.4 5.2e-06 524 59.7 2.6e-06 843 39.5 1.4e-04
p004480 20/146 26.1 1.5e-05 42 103.8 1.7e-06 584 84.8 5.9e-07 790 60.7 9.5e-05
p004520 17/146 29.3 3.1e-05 34 99.1 3.2e-06 577 102.7 2.0e-06 848 96.4 1.6e-04
p004560 17/150 29.2 2.6e-05 31 98.5 4.2e-06 447 89.9 6.7e-07 815 127.1 1.2e-04
p004600 20/158 42.5 3.6e-05 37 264.6 2.4e-06 564 141.3 2.0e-06 974 197.3 1.3e-04
p004640 18/172 54.0 2.8e-05 36 317.5 2.4e-06 649 184.3 1.1e-06 889 197.4 9.7e-05
p004680 19/172 61.2 3.4e-05 34 380.9 1.8e-06 688 230.6 1.0e-06 1042 267.9 9.2e-05
p004720 17/177 68.5 1.4e-05 38 539.5 2.8e-06 659 269.0 4.4e-07 844 290.1 7.0e-05
p004760 20/190 84.5 3.7e-05 40 742.7 1.5e-06 780 374.2 7.4e-06 1311 1544.9 8.6e-05

dense network

p01580 17/75 1.7 2.7e-05 20 3.4 1.7e-05 356 0.5 1.0e-06 1107 3.4 3.1e-04
p015120 18/86 2.9 3.1e-06 22 8.0 1.2e-05 372 0.9 1.1e-07 491 2.6 2.8e-05
p015160 17/97 3.9 3.9e-06 22 15.7 5.8e-06 501 6.3 5.2e-07 640 6.4 4.0e-05
p015200 16/109 5.7 8.5e-06 28 37.1 1.0e-05 580 16.1 4.5e-07 901 12.6 8.7e-05
p015240 19/121 8.7 4.9e-06 29 59.3 6.3e-06 469 20.4 3.5e-07 613 16.3 3.9e-05
p015280 21/135 13.4 8.2e-06 32 193.6 6.5e-06 599 46.3 4.4e-07 861 25.1 7.8e-05
p015320 20/152 27.4 6.4e-06 33 333.0 4.8e-06 736 81.2 5.1e-07 1070 44.9 6.0e-05
p015360 19/161 33.8 2.6e-06 32 543.1 3.0e-06 694 107.8 3.8e-07 805 46.2 1.9e-05
p015400 20/164 34.2 1.1e-05 33 991.1 4.9e-06 1042 205.0 1.9e-06 946 78.5 7.9e-05
p015440 23/167 41.7 5.5e-06 33 1598.9 4.8e-06 755 225.1 8.0e-07 997 118.6 5.9e-05
p015480 20/188 82.0 2.0e-05 36 2380.3 4.0e-06 854 300.2 9.8e-07 872 213.6 8.6e-05
p015520 24/203 103.8 1.2e-05 40 3571.9 2.5e-06 820 353.1 3.2e-07 922 539.1 7.1e-05
p015560 19/206 121.1 5.8e-06 42 5365.4 1.8e-06 823 412.2 1.1e-06 1003 776.1 4.5e-05

We compare the performance of solver j on problem i with the best performance of any al-

gorithm on this problem; that is we compute the performance ratio rij :=
Tij

min{Tik|k∈S} . Now,

let ρ̃j(τ̃) := 1
np

size {i ∈ P | rij ≤ τ̃} for τ̃ ∈ R+. The function ρ̃j : R → [0, 1] is the prob-

ability for solver j that a performance ratio is within a factor τ̃ of the best possible ratio.

We use the term “performance profile” for the distribution function ρ̃j of a performance met-
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ric. In the following numerical examples, we plotted the performance profiles in log2-scale, i.e.

ρj(τ) := 1
np

size {i ∈ P | log2(rij) ≤ τ := log2 τ̃}.
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Figure 5.7: Performance Profile in time[s] of 4 methods and 30 problems

Figure 5.7 shows the performance profile of the four algorithms on a collection of the 30

problems indicated above. ISNA achieves 24/30 (80%) with the best performance, while ADMM

obtains 6/30 (20%) with the best performance. In terms of computational time, both proximal

inexact Newton method and first-order methods outperform SDPT3 in this experiment. We

can also see from Table 5.1 that ADMM gives the best solution quality in most cases, while CP

gives the worst solution quality.

5.6.2 iPNA for Graphical LASSO with inexact oracles

Proximal-Newton-type methods have been proven to be efficient for graphical LASSO [29,

39, 51, 52, 83]. In this example, we show that our theory can be useful for this problem. We

illustrate this ability by considering a recent setting in [108]. Assume the data has a sparse

graph structure G, then the original graphical lasso model can be written as

F ? := min
X�0

{
F (X) := 〈Cλ,X〉 − log det(X) | Xij = 0, ∀ (i, j) /∈ G

}
,
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where Cλ is a soft-threshold operator which serves as the penalty item, that can recover the

sparse graph G. The form we are interested in is the dual problem (15) of [108]. We focus on

two-folds of the inexactness: (1) the inexactness of the solution of subproblem (5.20), where

R(x) ≡ 0 in this case; (2) the Hessian and the Newton decrement measurement reflected by

Cholesky decomposition. Besides, instead of using line-search, we use the step-size given by

(5.21), the self-concordance theory.

For (1), we solve the Newton decrement inexactly by controlling the tolerance of the pre-

conditioned conjugate gradient (PCG) method. Here we set the tolerance of PCG to be 10−3.

For (2), since we are dealing with the data that shares the sparsity structure, we use the

incomplete Cholesky decomposition instead of exact Cholesky decomposition. In detail, when

we are solving the lower triangular matrix L̃ such that A ≈ L̃L̃>, we fill all other off-diagonal

elements to 0, if the original entry of A is 0. By doing this we take further advantages of

sparsity structure than the original method, and bring the inexactness to the Hessian-related

quantity indirectly.

For data, we use both the real-world biology dataset from [64] and the synthetic data

with sample covariance matrices and the threshold parameter generated from real sparse ma-

trix/graph collection3 as the way did in [108]. Since the Newton-CG(NCG) method with

line-search proposed in the latest paper [108] already compared and beaten QUIC in their ex-

periments, we make use of the chordal property of the graph structure and only compare our

algorithm with the proposed algorithm in their paper. Following their paper, we measure the

stopping criterion of both algorithms by λk. We set the tolerance to be 10−6. For the subprob-

lem, we use the original stop criterion for NCG, but our criteria listed above for our inexact

self-concordant Newton algorithm (ISNA). The results are listed in the following Table 5.2.

In the table, p is the dimension of the original graph/data, “iter” means number of iter-

ations in the main loop, “λe” means the weighted norm λk which is used by NCG when the

algorithm stops. “soldiff” measures the relative solution difference of two methods for primal

solution, and “tratio” represents the time ratio of NCG over ISNA.

From the table we can see that for both synthetic data derived from real sparse graph

structure and real data, we performed better than the state-of-the-art algorithm NCG with

3https://sparse.tamu.edu/
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Table 5.2: The performance of NCG and ISNA for solving the graphical lasso problem.

Problem IPNA NCG with ls Comparison

Name p iter time[s] λe iter time[s] λe soldiff tratio

Synthetic Data

3eltdual 9000 4 11.45 3.0e-07 3 13.15 2.7e-07 3.0e-12 1.15
bcsstm38 8032 3 2.84 6.1e-07 3 4.36 5.2e-10 4.5e-12 1.54
cage8 1015 7 62.99 3.2e-07 4 116.64 3.1e-10 1.1e-09 1.85
cryg10000 10000 6 543.31 4.1e-08 4 634.06 2.8e-10 5.6e-12 1.17
FlyingRobot1 798 6 4.23 5.3e-07 4 9.98 5.2e-11 5.7e-10 2.36
G32 2000 4 2.79 7.3e-07 4 5.17 7.5e-12 4.9e-11 1.85
G50 3000 5 5.49 3.9e-09 4 7.75 6.1e-11 2.6e-13 1.41
G57 5000 5 9.10 2.1e-07 4 12.75 2.6e-10 5.5e-12 1.40
lshp2614 2614 6 108.29 1.8e-07 4 162.54 7.4e-11 1.3e-10 1.50
lshp3025 3025 6 137.24 3.8e-07 4 215.66 6.7e-11 3.2e-10 1.57
NotreDamey 2114 3 1.57 7.6e-08 3 2.19 4.1e-11 1.8e-12 1.40
orsirr2 886 6 7.17 1.7e-07 4 13.35 2.2e-10 4.8e-10 1.86
sherman3 5005 5 56.11 5.1e-07 4 99.77 1.3e-11 3.0e-10 1.78
ukerbe1 5981 3 5.23 5.8e-07 3 8.63 1.2e-10 1.2e-11 1.65
USpowerGrid 4941 3 4.66 4.9e-07 3 7.09 6.7e-09 5.2e-12 1.52

Real Data

Arabidopsis 834 4 1.27 1.2e-07 4 1.41 5.0e-09 2.8e-12 1.11
ER 692 4 0.89 1.5e-08 4 1.25 5.8e-11 8.8e-14 1.40
hereditarybc 1869 4 21.06 2.9e-07 4 35.39 1.7e-07 7.3e-12 1.68
Leukemia 1255 3 0.60 7.6e-08 3 0.76 2.7e-09 8.6e-13 1.25
Lymph 587 4 0.24 8.5e-10 3 0.25 9.1e-07 2.4e-14 1.03
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linesearch. Although for some graphs we cannot accelerate too much, we point out that NCG

already taken the advantages of the chordal structure and used the linesearch, while our meth-

ods specify a step-size and the acceleration is highly related to the sparsity and the shape of the

graph. Besides, we need slightly more iterations and end up with a greater λe than NCG, be-

cause we did not solve the subproblem to a very high accuracy, which leads to a smaller descent.

However, we still met the terminating criterion and obtained the same solution (soldiff) of

the target problem.

5.7 Conclusion

In this chapter we introduced the concept of inexact oracle, which consists of both global

and local inexact oracles. Following the definition, we developed some key properties using

such oracles and presented several examples. We then developed the inexact proximal Newton-

type methods and showed that the obtained algorithms achieved both global convergence and

local convergence from linear to quadratic rate. We also showed that our methods cover some

existing inexact methods in the literature as special cases. For application, we developed the

corresponding theory for primal-dual methods, and provided some representative examples to

illustrate the entire inexact oracle theory.
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CHAPTER 6

Conclusions and future works

6.1 Conclusions

In this thesis, we have introduced two new concepts for a class of convex functions. The

first concept is a so-called “generalized self-concordance” notion, which can be considered as a

generalization of the standard self-concordant concept introduced by Nesterov and Nemirovski

in the early 1990s. The second one is a newly inexact oracle notion in the context of composite

convex optimization. Both concepts cover a wide range class of convex functions than existing

structural assumptions used in the literature.

The generalized self-concordant function class covers many important and well-known mod-

els in convex optimization, machine learning, and statistics. Relying on our new definition, we

have developed several fundamental properties for this class of functions and provided a unified

framework to develop new numerical methods. As byproducts, we have applied our new theory

to develop a class of Newton-type methods that include different variants such as damped-step

Newton, full-step Newton, quasi-Newton, and proximal Newton-type methods. Our new the-

ory allows us to analyze both global and local convergence of the new algorithms in a rigorous

manner without imposing any unverifiable assumptions as in existing methods. We have also

illustrated the benefits of the proposed methods through some numerical examples using both

synthetic and real datasets, and compared them with some state-of-the-art algorithms.

In the second part, we have introduced novel global and local second-order inexact oracle

concepts for a wide class of convex functions. Our global inexact oracle covers both the well-

known Lipschitz gradient and self-concordant convex function classes as special cases. Utilizing

our new definitions, we have developed several key properties and provided representative exam-

ples for our new function class. Then, we have developed an inexact proximal Newton methods

under inexact oracles. We have proved both global and local convergence of the proposed meth-
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ods. We have achieved different local convergence rates ranging from R-linear, R-superlinear

to R-quadratic by controlling the inexactness levels in our oracles under the self-concordant

assumption. We have also customized our method to handle a primal-dual formulation. Our

theoretical results have been verified through several numerical results in comparison with other

state-of-the-art methods.

6.2 Future works

The theory and numerical methods developed in this thesis are expected to have broad

applications in different fields. For the generalized self-concordance notion, firstly, we plan to

apply our results to solve some representative applications in high-dimensional spaces, where

existing methods do not have a theoretical guarantee. Our next idea is to combine this new

theory and some recent advanced techniques such as stochastic, randomized, and conjugate

gradient methods to scale up the problem sizes. Secondly, we wish to further accelerate existing

methods to solve more problems which possess proper smoothness structures. To do this, we will

combine other smoothness structures, such as the Lipschitz gradient, and/or strong convexity

structures together with generalized self-concordant settings, explore key properties of the joint

structures, and develop the corresponding numerical methods.

For our new inexact oracle concepts, firstly, we plan to handle inexactness situations for

a wider class of functions than the current settings, especially in the local convergent stage.

Since iterative schemes based on local oracle concepts are still limited to the self-concordant

function class, one of our approach is to expand the inexact oracle settings to the generalized

self-concordant function class developed in the first part of this thesis. By doing this, we can

accelerate a broader range of composite optimization problems than existing cases. Secondly,

we expect to customize our inexact oracle settings to one or more general algorithmic schemes,

including but not limited to [block] coordinate descent, sketching, and random subsampling

methods, to develop new inexact methods with better performance or stability. To do this, we

need to expand our theory from existing deterministic schemes to stochastic ones, and study

further the relations between inexact oracles and distributed and parallel computations.
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We emphasize that our framework can be extended to handle constrained convex problems

by combining with duality theory. We have illustrated this idea in the second part of this

thesis, but we still expect to develop other schemes for solving constrained convex problems by

utilizing our new concepts introduced in this thesis.
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APPENDIX A

PROOFS OF TECHNICAL RESULTS

This appendix provides the full proofs of technical results that are not shown in the main

text of each chapter.

A.1 Technical proofs of results in Chapter 3

A.1.1 The proof of Proposition 3.5.1: Fenchel’s conjugate

Let us consider the set X := {x ∈ Rp | f(u) − 〈x,u〉 is bounded from below on dom(f)}. We

first show that dom(f∗) = X .

By the definition of dom(f∗), we have dom(f∗) = {x ∈ Rp | f∗(x) < +∞}. Take any

x ∈ dom(f∗), one has f∗(x) = maxu∈dom(f){〈x,u〉 − f(u)} < +∞. Hence f(u) − 〈x,u〉 ≥

−f∗(x) > −∞ for all u ∈ dom(f), which implies x ∈ X .

Conversely, assume that x ∈ X . By the definition of X , f(u) − 〈x,u〉 is bounded from

below for all u ∈ dom(f). That is, there exists M ∈ [0,+∞), such that f(u) − 〈x,u〉 ≥ −M

for all u ∈ dom(f). By the definition of the conjugate, f∗(x) = maxu∈dom(f){〈x,u〉 − f(u)} ≤

M < +∞. Hence, x ∈ dom(f∗).

For any x ∈ dom(f∗), the optimality condition of maxu{〈x,u〉 − f(u)} is x = ∇f(u). Let

us denote by x(u) = ∇f(u). Then, we have f∗(x(u)) = 〈x(u),u〉 − f(u). Taking derivative of

f∗ with respect to x on both sides, and using x(u) = ∇f(u), we have

∇xf
∗(x(u)) = u + u′xx(u)− u′x∇f(u) = u.

We further take the second-order derivative of the above equation with respect to u to get

∇2f∗(x(u))x′u(u) = I.
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Using the two relations above and the fact that x′u(u) = ∇2f(u), we can derive

〈
∇f∗(x(u)), x′u(u)v

〉
=
〈
u, x′u(u)v

〉
=
〈
∇2f(u)v,u

〉
(A.1)〈

∇2f∗(x(u))x′u(u)v, x′u(u)w
〉

=
〈
v, x′u(u)w

〉
=
〈
∇2f(u)v,w

〉
, (A.2)

where u ∈ dom(f), and v,w ∈ Rp. Using (A.1) and (A.2), we can compute the third-order

derivative of f∗ with respect to x(u) as

〈∇3f∗(x(u))[x′u(u)w]x′u(u)v, x′u(u)v〉

=
〈(〈
∇2f∗(x(u))x′u(u)v, x′u(u)v

〉)′
u
,w
〉
− 2

〈
∇2f∗(x(u))x′u(u)v, (x′u(u)v)′uw

〉
(A.1)
= 〈(〈x′u(u)v,v〉)′u,w〉 − 2

〈
∇2f∗(x(u))x′u(u)v, (x′u(u)v)′uw

〉
(A.2)
=

〈
∇3f(u)[w]v,v

〉
− 2 〈(x′u(u)v)′uw,v〉

= −
〈
∇3f(u)[w]v,v

〉
.

(A.3)

Denote ξ := x′u(u)w and η := x′u(u)v. Note that since x′u(u) = ∇2f(u), we have ξ = ∇2f(u)w,

η = ∇2f(u)v, and w = ∇2f(u)−1ξ. Using these relations and ∇2f∗(x(u))x′u(u) = I, we can

derive

|〈∇3f∗(x(u))[ξ]η, η〉| (A.3)
= |

〈
∇3f(u)[w]v,v

〉 (3.2)

≤ Mf‖v‖2u‖w‖ν−2
u ‖w‖3−ν2

= Mf

〈
∇2f(u)v,v

〉 〈
∇2f(u)w,w

〉 ν−2
2 ‖w‖3−ν2

= Mf

〈
η,∇2f∗(x(u))x′(u)v

〉 〈
ξ,∇2f∗(x(u))x′(u)w

〉 ν−2
2 ‖∇2f(u)−1ξ‖3−ν

= Mf

〈
∇2f∗(x(u))η, η

〉 〈
∇2f∗(x(u))ξ, ξ

〉 ν−2
2
〈
∇2f∗(x(u))ξ,∇2f∗(x(u))ξ

〉3−ν
.

For any H ∈ Sp++, we have 〈Hξ, ξ〉 ≤ ‖Hξ‖2‖ξ‖2. For any ν ≥ 3, this inequality leads to

〈Hξ, ξ〉
ν−2

2 ‖Hξ‖3−ν ≤ 〈Hξ, ξ〉
4−ν

2 ‖ξ‖ν−3
2 .

Using this inequality with H = ∇2f∗(x(u)) into the last expression, we obtain

|
〈
∇3f∗(x(u))[ξ]η, η

〉
| ≤Mf

〈
∇2f∗(x(u))η, η

〉 〈
∇2f∗(x(u))ξ, ξ

〉 4−ν
2 ‖ξ‖ν−3

2

= Mf‖η‖2x(u)‖ξ‖
4−ν
x(u)‖ξ‖

ν−3
2 .
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The above inequality shows that f∗ ∈ F̃Mf∗ ,ν∗ with Mf∗ = Mf and ν∗ = 6 − ν. However, to

guarantee ν − 3 ≥ 0 and 6− ν > 0, we require 3 ≤ ν < 6.

Finally, we prove the case of univariate functions, i.e., p = 1. Indeed, we have

x(u) = f ′(u), (f∗)′(x(u)) = u, and (f∗)′′(x(u))x′(u) = 1. (A.4)

Here, f ′ is the derivative of f with respect to u. Taking the derivative of the last equation on

both sides with respect to u, we obtain

(f∗)′′′(x(u))(x′(u))2 + (f∗)′′(x(u))x′′(u) = 0.

Solving this equation for (f∗)′′′(x(u)) and then using (A.4) and x′′(u) = f ′′′(u), we get

|(f∗)′′′(x(u))| = | (f
∗)′′(x(u))x′′(u)

(x′(u))2 | = |((f∗)′′(x(u)))3f ′′′(u)|

≤ Mf |((f∗)′′(x(u)))3(f ′′(u))
ν
2 | = Mf ((f∗)′′(x(u)))

6−ν
2 .

This inequality shows that f∗ is generalized self-concordant with ν∗ = 6− ν for any ν ∈ (0, 6).

A.1.2 The proof of Corollary 3.7.3: Bound on the mean of Hessian operator

Let yτ := x+τ(y−x). Then dν(x,yτ ) = τdν(x,y). By (3.11), we have ∇2f(x+τ(y−x)) �(
1− ν−2

2 τdν(x,y)
) −2
ν−2 ∇2f(x) and∇2f(x+τ(y−x)) �

(
1− ν−2

2 τdν(x,y)
) 2
ν−2 ∇2f(x) . Hence,

we have

Iν(x,y)∇2f(x) �
∫ 1

0
∇2f(x + τ(y − x))dτ � Iν(x,y)∇2f(x),

where Iν(x,y) :=
∫ 1

0

(
1− ν−2

2 τdν(x,y)
) 2
ν−2 dτ and Iν(x,y) :=

∫ 1
0

(
1− ν−2

2 τdν(x,y)
) −2
ν−2 dτ are

the two integrals in the above inequality. Computing these integrals explicitly, we can show

that

• If ν = 4, then Iν(x,y) = 1− d4(x,y)
2 and Iν(x,y) = − ln(1−d4(x,y))

d4(x,y) .
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• If ν 6= 4, then we can easily compute Iν(x,y) = 2
νdν(x,y)

(
1−

(
1− ν−2

2 dν(x,y)
) ν
ν−2

)
, and

Iν(x,y) = 2
(ν−4)dν(x,y)

(
1−

(
1− ν−2

2 dν(x,y)
) ν−4
ν−2

)
.

Hence, we obtain (3.13).

Finally, we prove for the case ν = 2. Indeed, by (3.11), we have e−d2(x,yτ )∇2f(x) �

∇2f(yτ ) � ed2(x,yτ )∇2f(x). Since d2(x,yτ ) = τd2(x,y), the last estimate leads to

(∫ 1

0
e−d2(x,y)τdτ

)
∇2f(x) �

∫ 1

0
∇2f(yτ )dτ �

(∫ 1

0
ed2(x,y)τdτ

)
∇2f(x),

which is exactly (3.13).

A.2 Technical proofs of results in Chapter 4

A.2.1 Techical lemmas

The following lemmas will be used in our analysis. Lemma A.2.1 is elementary, but we

provide its proof for completeness.

Lemma A.2.1. (a) For a fixed r ≥ 1 and t̄ ∈ (0, 1), consider a function ψr(t) :=

1−(1−t)r−rt(1−t)r
rt2(1−t)r on t ∈ (0, 1). Then, ψ is positive and increasing on (0, t̄] and

lim
t→0+

ψr(t) = r+1
2 , lim

t→1−
ψr(t) = +∞, and sup

0≤t≤t̄
|ψr(t)| ≤ C̄r(t̄) < +∞,

where C̄r(t̄) := 1−(1−t̄)r−rt̄(1−t̄)r
rt̄2(1−t̄)r ∈ (0,+∞).

(b) For t > 0, we also have et−1−t
t ≤

(
3
2 + t

3

)
tet.

Proof. The statement (b) is rather elementary, we only prove (a). Since r ≥ 1, limt→0+(1 −

(1 − t)r − rt(1 − t)r) = limt→0+ rt2(1 − t)r = 0 and rt2(1 − t)r > 0 for t ∈ (0, 1), applying

L’Hôspital’s rule, we have

lim
t→0+

ψr(t) =
limt→0+ r(r + 1)t(1− t)r−1

limt→0+ rt(2− (2 + r)t)(1− t)r−1
=

limt→0+(r + 1)

limt→0+(2− (2 + r)t)
=
r + 1

2
.

The limit limt→1− ψr(t) = +∞ is obvious.
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Next, it is easily to compute ψ′r(t) = (1−t)r+1(rt+2)+(r+2)t−2
rt3(1−t)r+1 . Let mr(t) := (1 − t)r+1(rt +

2) + (r + 2)t− 2 be the numerator of ψ′r(t).

We have m′r(t) = r+ 2− (1− t)r(r2t+ 2rt+ r+ 2), and m′′r(t) = r(r+ 1)(r+ 2)t(1− t)r−1.

Clearly, since r ≥ 1, m′′r(t) ≥ 0 for t ∈ [0, 1]. This implies that m′r is nondecreasing on

[0, 1]. Hence, m′r(t) ≥ m′r(0) = 0 for all t ∈ [0, 1]. Consequently, mr is nondecreasing on

[0, 1]. Therefore, mr(t) ≥ mr(0) = 0 for all t ∈ [0, 1]. Using the formula of ψ′r, we can see

that ψ′r(t) ≥ 0 for all t ∈ (0, 1). This implies that ψr is nondecreasing on (0, 1). Moreover,

limt→0+ ψr(t) = r+1
2 > 0. Hence, ψr(t) > 0 for all t ∈ (0, 1). This implies that ψr is bounded

on (0, t̄] ⊂ (0, 1) by ψr(t̄).

Similar to Corollary 3.7.3, we prove the following lemma on the bound of the Hessian

difference.

Lemma A.2.2. Given x,y ∈ dom(f), the matrix H(x,y) defined by

H(x,y) := ∇2f(x)−1/2

[∫ 1

0

(
∇2f(x + τ(y − x))−∇2f(x)

)
dτ

]
∇2f(x)−1/2, (A.5)

satisfies

‖H(x,y)‖ ≤ Rν (dν(x,y)) dν(x,y), (A.6)

where Rν(t) is defined as follows for t ∈ [0, 1):

Rν(t) :=


(

3
2 + t

3

)
et if ν = 2

2
(4−ν)t2

[ (
1− ν−2

2 t
) 4−ν

2−ν − 1
]
− 1

t if 2 < ν ≤ 3.

(A.7)

Moreover, for a fixed t̄ ∈ (0, 1), we have sup
0≤t≤t̄

|Rν(t)| ≤ M̄ν(t̄), where

M̄ν(t̄) := max

{
2

(4− ν)t̄2

[(
1− ν − 2

2
t̄

) 4−ν
2−ν
− 1
]
− 1

t̄
,

(
3

2
+
t̄

2

)
et̄

}
∈ (0,+∞).

Proof. By Corollary 3.7.3, if we define G(x,y) :=
∫ 1

0

[
∇2f(x + τ(y − x))−∇2f(x)

]
dτ , then

[κν(dν(x,y))− 1]∇2f(x) � G(x,y) � [κν(dν(x,y))− 1]∇2f(x). (A.8)
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Since H(x,y) = ∇2f(x)−1/2G(x,y)∇2f(x)−1/2, the last inequality implies

‖H(x,y)‖ ≤ max
{

1− κν(dν(x,y)), κν(dν(x,y))− 1
}
.

Let Cmax(t) := max
{

1− κν(t), κν(t)− 1
}

be for t ∈ [0, 1). We consider two cases.

(a) For ν = 2, since e−t + et ≥ 2, we have 1−e−t
t + et−1

t ≥ 2, which implies Cmax(t) =

κν(t) − 1 = et−1−t
t . Hence, by Lemma A.2.1, we have Cmax(t) ≤

(
3
2 + t

3

)
tet, which leads to

Rν(t) :=
(

3
2 + t

3

)
et.

(b) For ν ∈ (2, 3], we have

Cmax(t) = max{1− 2
νt

[
1− (1− ν−2

2 t)
ν
ν−2

]
, 2

(4−ν)t

[
(1− ν−2

2 t)
4−ν
2−ν − 1

]
− 1}

= 2
(4−ν)t

[ (
1− ν−2

2 t
) 4−ν

2−ν − 1
]
− 1.

Indeed, we show that 2
(4−ν)t

[
(1− ν−2

2 t)
4−ν
2−ν − 1

]
+ 2

νt

[
1− (1− ν−2

2 t)
ν
ν−2

]
≥ 2. Let u := 4−ν

ν−2 >

0, v := ν
ν−2 > 0 and t̃ := ν−2

2 t ∈ [0, 1). The last inequality is equivalent to 1
u

[
1

(1−t̃)u − 1
]

+

1
v

[
1− (1− t̃)v

]
≥ 2t̃. Consider the function s(t̃) := 1

v −
1
u + 1

u(1−t̃)u −
(1−t̃)v
v − 2t̃. Then

it is suffices to prove that s(t̃) ≥ 0. It is clear that s′(t̃) = 1
(1−t̃)u+1 + (1 − t̃)v−1 − 2 =

(1 − t̃)−
2

ν−2 + (1 − t̃)
2

ν−2 − 2 ≥ 0 for all t̃ ∈ [0, 1). We obtain s(t̃) ≥ s(0) = 0. Hence,

Cmax(t) = 2
(4−ν)t

[ (
1− ν−2

2 t
) 4−ν

2−ν − 1
]
− 1 and Rν(t) = Cmax(t)/t as shown in (A.7). Let r := u,

then Rν(t) = ν−2
2 ψr(t̃), where ψr is defined in Lemma A.2.1.

Putting (a) and (b) together, we obtain (A.6) with Rν defined by (A.7). The boundedness

of Rν follows from Lemma A.2.1.

A.2.2 The proof of Theorem 4.2.2: Convergence of damped Newton methods

The proof of this theorem is divided into two parts: computation of the step-size, and the

proof the local quadratic convergence.

Computing the step-size τk: From Proposition 3.7.5, for any xk,xk+1 ∈ dom(f), if

dν(xk,xk+1) < 2
ν−2 , then we have

f(xk+1) ≤ f(xk) +
〈
∇f(xk),xk+1 − xk

〉
+ ων

(
dν(xk,xk+1)

)
‖xk+1 − xk‖2xk .
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Now, using (4.1), we have
〈
∇f(xk),xk+1 − xk

〉
= −τk

(
‖∇f(xk)‖∗

xk

)2
= −τkλ2

k. On the other

hand, we have

‖xk+1 − xk‖2
xk

(4.1)
= τ2

k

〈
∇2f(xk)−1∇f(xk),∇f(xk)

〉 (4.3)
= τ2

kλ
2
k,

‖xk+1 − xk‖22
(4.1)
= τ2

k

〈
∇2f(xk)−1∇f(xk),∇2f(xk)−1∇f(xk)

〉 (4.3)
= τ2

kβ
2
k.

Using the definition of dν(·) in (3.8), the two last equalities, and (4.4), we can easily show that

dν(xk,xk+1) = τkdk. Substituting these relations into the first estimate, we obtain

f(xk+1) ≤ f(xk)−
(
τkλ

2
k − ων (τkdk) τ

2
kλ

2
k

)
.

We consider the following cases:

(a) If ν = 2, then, by (3.17), we have ηk(τ) := λ2
kτ −

(
λk
dk

)2 (
eτdk − τdk − 1

)
. This function

attains the maximum at τk := ln(1+dk)
dk

∈ (0, 1) with

ηk(τk) =

(
λk
dk

)2 [
(1 + dk) ln(1 + dk)− dk

]
.

It is easy to check from the right-hand side that ∆k := ηk(τk) > 0 for τk > 0.

(b) If ν = 3, by (3.17), we have ηk(τ) := λ2
kτ +

(
λk
dk

)2
[2τdk + 4 ln(1− 0.5τdk)] with dk =

Mfλk. We can show that ηk(τ) achieves the maximum at τk = 1
1+0.5dk

= 1
1+0.5Mfλk

∈ (0, 1)

with

ηk(τk) =
λ2
k

1 + 0.5Mfλk
+

(
2

Mf

)2 [ 0.5Mfλk
1 + 0.5Mfλk

+ ln

(
1−

0.5Mfλk
1 + 0.5Mfλk

)]
.

We can also easily check from right-hand side that ∆k := ηk(τk) > 0 for λk > 0.

(c) If 2 < ν < 3, then we have dk = Mfλ
ν−2
k β3−ν

k . By (3.17), we have

ηk(τ) =

(
λ2
k +

λ2
k

dk

2

4− ν

)
τ −

(
λk
dk

)2 2

(4− ν)(3− ν)

(1− ν − 2

2
τdk

) 2(3−ν)
2−ν

− 1

 .
Our aim is to find τ∗ ∈ (0, 1] by solving maxτ∈[0,1] ηk(τ). This problem always has a global

solution. First, we compute the first- and the second-order derivatives of ηk as follows:

η′k(τ) = λ2
k

[
1− 2

(ν − 4)dk

(
1−

(
1− ν − 2

2
τdk

) ν−4
ν−2

)]
and η′′k (τ) = −λ2

k

(
1− ν − 2

2
τdk

) −2
ν−2

.
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Let us set η′k(τk) = 0. Then, we get

τk =
2

(ν − 2)dk

[
1−

(
1 +

4− ν
2

dk

)− ν−2
4−ν
]
∈ (0, 1) (by the Bernoulli inequality),

with

ηk(τk) =
2λ2

k

(ν − 2)dk

{
1− 4− ν

2(3− ν)

(
1 +

4− ν
2

dk

)2−ν

+
1

(3− ν)dk

[
1−

(
1 +

4− ν
2

dk

)2−ν
]}

.

In addition, we can check that η′′k(τk) < 0. Hence, the value of τk above achieves the maximum

of ηk(·). Then, we have ∆k := ηk(τk) > ηk(0) = 0.

The proof of local quadratic convergence: Let x?f be the optimal solution of (2.1). We

have

‖xk+1 − x?f‖xk = ‖xk − τk∇2f(xk)−1∇f(xk)− x?f‖xk

≤ (1− τk)‖xk − x?f‖xk + τk‖xk − x?f −∇2f(xk)−1∇f(xk)‖xk .

Hence, we can write

‖xk+1− x?f‖xk≤(1−τk)‖xk − x?f‖xk+τk‖∇2f(xk)−1
[
∇f(x?f )−∇f(xk)−∇2f(xk)(x?f−xk)

]
‖xk .

(A.9)

Let us define Tk :=
∥∥∥∇2f(xk)−1

[
∇f(x?f )−∇f(xk)−∇2f(xk)(x?f−xk)

] ∥∥∥
xk

and consider three

cases as follows:

(a) For ν = 2, using Corollary 3.7.3, we have
(

1−e−d̄k
d̄k

)
∇2f(xk) �

∫ 1
0 ∇

2f(xk + t(x?f −

xk))dt �
(
ed̄k−1
d̄k

)
∇2f(xk), where d̄k := Mf‖xk − x?f‖2. Using the above inequality, we can

show that

Tk ≤ max

{
1− 1− e−d̄k

d̄k
,
ed̄k − 1

d̄k
− 1

}
‖xk − x?f‖xk =

(
ed̄k − 1− d̄k

d̄2
k

)
d̄k‖xk − x?f‖xk .
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Let σk := λmin(∇2f(xk)). We first derive

‖∇2f(xk)−1∇f(xk)‖2 = ‖∇2f(xk)−1(∇f(xk)−∇f(x?f ))‖2

= ‖
∫ 1

0 ∇
2f(xk)−1∇2f(xk + t(x?f − xk))(xk − x?f )dt‖2

= ‖∇2f(xk)−1/2K(xk,x?f )∇2f(xk)1/2(xk − x?f )‖2

≤ 1√
σk
‖K(xk,x?f )‖‖xk − x?f‖xk .

where K(xk,x?f ) :=
∫ 1

0 ∇
2f(xk)−1/2∇2f(xk + t(x?f − xk)∇2f(xk)−1/2dt. Using Corollary 3.7.3

and noting that d̄k := Mf‖xk−x?f‖2, we can estimate ‖K(xk,x?f )‖ ≤ ed̄k−1
d̄k

. Using the two last

estimates, and the definition of dk, we can derive

dk = Mf‖∇2f(xk)−1∇f(xk)‖2 ≤
Mf e

d̄k−1

d̄k
√
σk
‖xk − x?f‖xk ≤Mfe

‖xk−x?f‖xk√
σk

,

provided that d̄k ≤ 1. Since, the step-size τk = 1
dk

ln(1 + dk), we have 1 − τk ≤ dk
2 ≤

Mf e‖xk−x?f‖xk
2
√
σk

. On the other hand, ed̄k−1−d̄k
d̄2
k

≤ e
2 for all 0 ≤ d̄k ≤ 1. Substituting Tk into

(A.9) and using these relations, we have

‖xk+1 − x?f‖xk ≤ e
2 d̄k‖x

k − x?f‖xk +
Mf e

2

‖xk−x?f‖
2
xk√

σk
,

provided that d̄k ≤ 1. On the other hand, by Proposition 3.7.2, we have ‖xk+1 − x?f‖xk+1 ≤

e
d̄k+1+d̄k

2 ‖xk+1 − x?f‖xk and σ−1
k+1 ≤ e

d̄k+d̄k+1σ−1
k . In addition, d̄k ≤

Mf√
σk
‖xk − x?f‖xk Combining

the above inequalities, we finally get

‖xk+1 − x?f‖xk+1

√
σk+1

≤Mfe
1+d̄k+1+d̄k

(
‖xk − x?f‖xk√

σk

)2

,

which shows that

{
‖xk−x?f‖xk√

σk

}
quadratically converges to zero locally. Since ‖xk − x?f‖2 ≤

‖xk−x?f‖xk√
σk

, we can also conclude that {‖xk − x?f‖2} quadratically converges to zero.

(b) For ν = 3, we can follow [74]. However, for completeness, we give a short proof

here. Using Corollary 3.7.3, we have
(

1− rk
2 +

r2
k

12

)
∇2f(xk) �

∫ 1
0 ∇

2f(xk + t(x?f − xk))dt �
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1
1−0.5rk

∇2f(xk), where rk := Mf‖xk−x?f‖xk < 2. Using the above inequality, we can show that

Tk ≤ max

{
rk
2
−
r2
k

12
,

0.5rk
1− 0.5rk

}
‖xk − x?f‖xk =

0.5Mf‖xk − x?f‖2xk
1− 0.5Mf‖xk − x?f‖xk

.

Substituting Tk into (A.9) and using τk = 1
1+0.5Mfλk

, we have

‖xk+1 − x?f‖xk ≤
0.5Mfλk

1 + 0.5Mfλk
‖xk − x?f‖xk +

1

1 + 0.5Mfλk

(
0.5Mf‖xk − x?f‖2xk

1− 0.5Mf‖xk − x?f‖xk

)
.

Next, we need to upper bound λk. Since ∇f(x?f ) = 0. Using Corollary 3.7.3, we can bound λk

as

λk = ‖∇f(xk)‖∗
xk

= ‖∇2f(xk)−1/2(∇f(xk)−∇f(x?f ))‖2

= ‖
∫ 1

0 ∇
2f(xk)−1/2∇2f(xk + t(x?f − xk))(x?f − xk)dt‖2

≤ ‖xk − x?f‖xk‖
∫ 1

0 ∇
2f(xk)−1/2∇2f(xk + t(x?f − xk))∇2f(xk)−1/2dt‖2

Corollary 3.7.3
≤ ‖xk−x?f‖xk

1−0.5Mf‖xk−x?f‖xk
≤ 2‖xk − x?f‖xk ,

provided that Mf‖xk − x?f‖xk < 1. Overestimating the above inequality using this bound, we

get

‖xk+1 − x?f‖xk ≤ 0.5Mfλk‖xk − x?f‖xk +
0.5Mf‖xk−x?f‖

2
xk

1−0.5Mf‖xk−x?f‖xk

≤Mf‖xk − x?f‖2xk +Mf‖xk − x?f‖2xk = 2Mf‖xk − x?f‖2xk ,

provided that Mf‖xk −x?f‖xk < 1. On the other hand, we can also estimate ‖xk+1−x?f‖xk+1 ≤
‖xk+1−x?f‖xk

1−0.5Mf(‖xk+1−x?f‖xk+‖xk−x?f‖xk)
. Combining the last two inequalities, we get

‖xk+1 − x?f‖xk+1 ≤
2Mf‖xk − x?f‖2xk

1− 2Mf‖xk − x?f‖2xk − 0.5Mf‖xk − x?f‖xk

The right-hand side function ψ(t) =
2Mf

1−2Mf t2−0.5Mf t
≤ 4Mf on t ∈

[
0, 1

2Mf

]
. Hence, if ‖xk −

x?f‖xk ≤
1

2Mf
, then ‖xk+1 − x?f‖xk+1 ≤ 4Mf‖xk − x?f‖2xk . This shows that if x0 ∈ dom(f) is

chosen such that ‖x0 − x?f‖x0 < 1
4Mf

, then {‖xk − x?f‖xk} quadratically converges to zero.

(c) For ν ∈ (2, 3), with the same argument as in the proof of Theorem 4.2.3, we can show

that

‖xk+1 − x?f‖xk ≤ Rν(dk)dk‖xk − x?f‖xk ,
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where Rν is defined by (A.7) and dk := Mf‖xk−x?f‖
3−ν
2 ‖xk−x?f‖

ν−2
xk

. Using again the argument

as in the proof of Theorem 4.2.3, we have

‖xk+1 − x?f‖xk+1

σ
3−ν

2
k+1

≤ Cν(dk, ‖xk − x?f‖xk)

‖xk − x?f‖xk

σ
3−ν

2
k

2

.

Here, Cν(·, ·) is a given function deriving from Rν . Under the condition that dk and ‖xk−x?f‖xk

are sufficiently small, we can show that Cν(dk, ‖xk − x?f‖xk) ≤ C̄ν . Hence, the last inequality

shows that
{‖xk−x?f‖xk

σ
3−ν

2
k

}
quadratically converges to zero. Since σ

3−ν
2

k ‖xk−x?f‖Hk
≤ ‖xk−x?f‖xk ,

where Hk := ∇2f(xk)ν−2, we have ‖xk − x?f‖Hk
≤ ‖xk−x?f‖xk

σ
3−ν

2
k

. Hence, we can conclude that

{‖xk − x?f‖Hk
} also locally converges to zero at a quadratic rate.

A.2.3 The proof of Theorem 4.2.3: Convergence of full Newton methods

We divide this proof into two parts: the quadratic convergence of
{

λk

σ
3−ν

2
k

}
, and the quadratic

convergence of
{
‖xk − x?f‖Hk

}
.

The quadratic convergence of
{

λk

σ
3−ν

2
k

}
: Since the full-step Newton scheme updates xk+1 :=

xk −∇2f(xk)−1∇f(xk), if we denote by nknt = xk+1 − xk = −∇2f(xk)−1∇f(xk), then the last

expression leads to ∇f(xk) +∇2f(xk)nknt = 0. In addition, ‖nknt‖xk = ‖∇f(xk)‖∗
xk

= λk.

First, by ∇f(xk) +∇2f(xk)nknt = 0 and the mean-value theorem, we can show that

∇f(xk+1) = ∇f(xk+1)−∇f(xk)−∇2f(xk)nknt =

∫ 1

0

[
∇2f(xk + tnknt)−∇2f(xk)

]
nkntdt.

Let us define

Gk :=

∫ 1

0

[
∇2f(xk + tnknt)−∇2f(xk)

]
dt and Hk := ∇2f(xk)−1/2Gk∇2f(xk)−1/2.

Then, the above estimate implies ∇f(xk+1) = Gkn
k
nt. Hence, we can show that

[
‖∇f(xk+1)‖∗xk

]2
=
〈
∇2f(xk)−1Gkn

k
nt,Gkn

k
nt

〉
=
〈
Hk∇2f(xk)1/2nknt,Hk∇2f(xk)1/2nknt

〉
≤ ‖Hk‖2‖nknt‖2xk = ‖Hk‖2λ2

k.
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By Lemma A.2.2, we have ‖Hk‖ ≤ Rν(dk)dk, where Rν is defined by (A.7). Combining the two

last inequalities and using Proposition 3.7.2, we consider the following cases:

(a) If ν = 2, then we have λ2
k+1 ≤ ed

k
2
[
‖∇f(xk+1)‖∗

xk

]2
, which implies λk+1 ≤

e
dk2
2 R2(dk2)dk2λk. Note that λk ≥

√
σkd

k
2

Mf
and 1

σk+1
≤ ed

k
2

σk
. Based on the above inequality, we

have

λk+1√
σk+1

≤MfR2(dk2)ed
k
2

(
λk√
σk

)2

.

By a numerical calculation, we can easily check that if dk < d?2 ≈ 0.12964, then

λk+1√
σk+1

≤ 2Mf

(
λk√
σk

)2

.

Consequently, if λ0√
σ0
< 1

Mf
min{d?2, 0.5} =

d?2
Mf

, then we can prove

dk+1
2 ≤ dk2 and

λk+1√
σk+1

≤ λk√
σk
,

by induction. Under the condition λ0√
σ0
<

d?2
Mf

, the above inequality shows that the ratio { λk√
σk
}

converges to zero at a quadratic rate.

Now, if ν > 2, then we consider different cases. Note that

λ2
k+1 ≤

(
1− ν − 2

2
dk

) −2
ν−2 [

‖∇f(xk+1)‖∗xk
]2
,

which follows that

λk+1 ≤
(

1− ν − 2

2
dk

) −1
ν−2

Rν(dk)dkλk. (A.10)

Note that dk = Mfβ
3−ν
k λν−2

k and σ−1
k+1 ≤

(
1− ν−2

2 dk
) −2
ν−2 σ−1

k . Based on these relations and

(A.10) we can argue as follows:

(b) If 2 < ν < 3, then λk ≥ βk
√
σk, which follows that dk ≤Mfσ

− 3−ν
2

k λk. Hence,

λk+1

σ
3−ν

2
k+1

≤
(

1− ν − 2

2
dk

)− 4−ν
ν−2

Rν(dk)Mf

 λk

σ
3−ν

2
k

2

.
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If dk < d?ν , where d?ν is the unique solution to the equation

(
1− ν − 2

2
dk

)− 4−ν
ν−2

Rν(dk) = 2,

then σ
− 3−ν

2
k+1 λk+1 ≤ 2Mf

(
σ
− 3−ν

2
k λk

)2

. Note that it is straightforward to check that this equation

always admits a positive solution. Hence, if we choose x0 ∈ dom(f) such that σ
− 3−ν

2
0 λ0 <

1
Mf

min{d?ν , 0.5}, then we can prove the following two inequalities together by induction:

dk ≤ dk+1 and σ
− 3−ν

2
k+1 λk+1 ≤ σ

− 3−ν
2

k λk.

In addition, the above inequality also shows that {σ−
3−ν

2
k λk} quadratically converges to zero.

(c) If ν = 3, then dk = Mfλk, and

λk+1 ≤ (1− 0.5dk)
−1R3(dk)dkλk = Mf

R3(dk)

1− 0.5dk
λ2
k.

Directly checking the right-hand side of the above estimate, one can show that if dk < d?3 = 1,

then λk+1 ≤ 2Mfλ
2
k. Hence, if λ0 <

1
Mf

min{d?3, 0.5} = 1
2Mf

, then we can prove the following

two inequalities together by induction:

dk+1 ≤ dk and λk+1 ≤ λk.

Moreover, the first inequality above also shows that {λk} converges to zero quadratically.

The quadratic convergence of
{
‖xk − x?f‖Hk

}
: First, using Proposition 3.7.4 with x := xk

and y = x?f , and noting that ∇f(x?f ) = 0, we have

κ̄ν(−dν(xk,x?f ))‖xk − x?f‖2xk ≤
〈
∇f(xk),xk − x?f

〉
≤ ‖∇f(xk)‖∗xk‖x

k − x?f‖xk ,

where the last inequality follows from the Cauchy-Schwarz inequality. Hence, we obtain

κ̄ν(−dν(xk,x?f ))‖xk − x?f‖xk ≤ ‖∇f(xk)‖∗xk = λk. (A.11)
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We consider three cases:

(1) When ν = 2, we have κ̄ν(τ) = eτ−1
τ . Hence, κ̄ν(−dν(xk,x?f )) = 1−e−dν (xk,x?f )

dν(xk,x?f )
≥ 1 −

dν(xk,x?f )

2 ≥ 1
2 whenever dν(xk,x?f ) ≤ 1. Using this inequality in (A.11), we have ‖xk − x?f‖xk ≤

2‖∇f(xk)‖∗
xk

= 2λk provided that dν(xk,x?f ) ≤ 1. One the other hand, by the definition of

σk, we have
√
σk‖xk − x?f‖2 ≤ ‖xk − x?f‖xk . Combining the two last inequalities, we obtain

‖xk − x?f‖2 ≤
2λk√
σk

provided that dν(xk,x?f ) ≤ 1. Since { λk√
σk
} locally converges to zero at a

quadratic rate, the last relation also shows that
{
‖xk − x?f‖2

}
also locally converges to zero at

a quadratic rate.

(2) For ν = 3, we have κ̄ν(−dν(xk,x?f )) = 1
1+0.5dν(xk,x?f )

and dν(xk,x?f ) = Mf‖xk − x?f‖xk .

Hence, from (A.11), we obtain
‖xk−x?f‖xk

1+0.5Mf‖xk−x?f‖xk
≤ λk. This implies ‖xk−x?f‖xk ≤

λk
1−0.5Mfλk

as

long as 0.5Mfλk < 1. Clearly, since λk locally converges to zero at a quadratic rate, ‖xk−x?f‖xk

also locally converges to zero at a quadratic rate.

(3) For 2 < ν < 3, we have κ̄ν(−dν(xk,x?f )) =
(

2
ν−4

)
(1+ ν−2

2
dν(xk,x?f ))

ν−4
ν−2−1

dν(xk,x?f )
≥ 1 −

0.5dν(xk,x?f ) ≥ 0.5 provided that dν(xk,x?f ) < 1. Similar to the case ν = 2, we have

σ
3−ν

2
k ‖xk−x?f‖Hk

≤ ‖xk−x?f‖xk ≤ 2λk, where Hk := ∇2f(xk)ν−2. Hence, ‖xk−x?f‖Hk
≤ 2λk

σ
3−ν

2
k

.

Since
{

λk

σ
3−ν

2
k

}
locally converges to zero at a quadratic rate,

{
‖xk−x?f‖Hk

}
also locally converges

to zero at a quadratic rate.

A.2.4 The proof of Theorem 4.3.1: Solution existence and uniqueness

Consider a sublevel set LF (x) := {y ∈ dom(F ) | F (y) ≤ F (x)} of F in (2.7). For any

y ∈ LF (x) and v ∈ ∂g(x), by (3.16) and the convexity of g, we have

F (x) ≥ F (y) ≥ F (x) + 〈∇f(x) + v,y − x〉+ ων (−dν(x,y)) ‖y − x‖2x.

By the Cauchy-Schwarz inequality, we have

ων (−dν(x,y)) ‖y − x‖x ≤ ‖∇f(x) + v‖∗x. (A.12)

Now, using the assumption ∇2f(x) � 0 for some x ∈ dom(f), we have σmin(x) :=

λmin(∇2f(x)) > 0, the smallest eigenvalue of ∇2f(x).
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(a) If ν = 2, then d2(x,y) = Mf‖y − x‖2 ≤
Mf√
σmin(x)

‖y − x‖x. This estimate together with

(A.12) imply

ω2 (−d2(x,y)) d2(x,y) ≤
Mf√
σmin(x)

‖∇f(x) + v‖∗x =
Mf√
σmin(x)

λ(x). (A.13)

We consider the function s2(t) := ω2(−t)t = 1 − 1−e−t
t . Clearly, s′2(t) = et−t−1

t2et
> 0 for

all t ∈ R+. Hence, s2(t) is increasing on R+. However, s2(t) < 1 and lim
t→+∞

s2(t) = 1.

Therefore, if
Mf√
σmin(x)

λ(x) < 1, then the equation s2(t)− Mf√
σmin(x)

λ(x) = 0 has a unique

solution t∗ ∈ (0,+∞). In this case, for 0 ≤ d2(x,y) ≤ t∗, (A.13) holds. This condition

leads to Mf‖y − x‖2 ≤ t∗ < +∞, which implies that the sublevel set LF (x) is bounded.

Consequently, solution x? of (2.7) exists.

(b) If 2 < ν ≤ 3, then

dν(x,y) ≤
Mf

σmin(x)
3−ν

2

‖y − x‖x.

This inequality together with (A.12) imply

ων (−dν(x,y)) dν(x,y) ≤
Mf

σmin(x)
3−ν

2

‖∇f(x) + v‖∗x =
Mf

σmin(x)
3−ν

2

λ(x).

We consider sν(t) := ων(−t)t. After a few elementary calculations, we can easily check

that sν is increasing on R+ and sν(t) < 2
4−ν for all t > 0, and lim

t→+∞
sν(t) = 2

4−ν . Hence,

if
Mf

σmin(x)
3−ν

2
λ(x) < 2

4−ν , then, similar to Case (a), we can show that solution x? of (2.7)

exists. This condition implies that λ(x) < 2σmin(x)
3−ν

2

(4−ν)Mf
. Especially, when ν = 3, this

condition becomes λ(x) < 2
Mf

.

Note that the condition on λ(x) in both cases (a) and (b) can be unified. The uniqueness of

the solution x? in these cases follows from the strict convexity of F .
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A.2.5 The proof of Theorem 4.3.2: Convergence of the damped PN method

Given H ∈ Sp++ and a proper, closed, and convex function g : Rp → R ∪ {+∞}, slightly

different from (2.6), we define

PgH(u) := (H + ∂g)−1(u) = argminx{g(x) + 1
2 〈Hx,x〉 − 〈u,x〉}.

If H = ∇2f(x) is the Hessian mapping of a strictly convex function f , then we can also write

P∇2f(x)(u) shortly as Px(u) for our notational convenience. The following lemma will be used

in the sequel, whose proof can be found in [102].

Lemma A.2.3. Let g : Rp → R ∪ {+∞} be a proper, closed, and convex function, and

H ∈ Sp++. Then, the mapping PgH defined above is non-expansive with respect to the weighted

norm defined by H, i.e., for any u,v ∈ Rp, we have

‖PgH(u)− PgH(v)‖H ≤ ‖u− v‖∗H. (A.14)

Let us define

Sx(u) := ∇2f(x)u−∇f(u) and ex(u,v) := [∇2f(x)−∇2f(u)](v − u), (A.15)

for any vectors x,u ∈ dom(f) and v ∈ Rp. We now prove Theorem 4.3.2 in the main text.

The proof of Theorem 4.3.2 is divided into two parts: computation of the step-size, and the

proof the local quadratic convergence.

Computing the step-size τk: Since zk satisfies the optimality condition (4.10), we have

−∇f(xk)−∇2f(xk)nkpnt ∈ ∂g(zk).

Using Proposition 3.7.5 we obtain

f(xk+1) ≤ f(xk) + τk

〈
∇f(xk), nkpnt

〉
+ ων(τkdk)τ

2
kλ

2
k.
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Since xk+1 = (1− τk)xk + τkz
k, using this relation and the convexity of g, we have

g(xk+1) ≤ g(xk)− τk
〈
∇f(xk) +∇2f(xk)nkpnt, n

k
pnt

〉
.

Summing up the last two inequalities, we obtain the following estimate

F (xk+1) ≤ F (xk)− ηk(τk).

With the same argument as in the proof of Theorem 4.2.2, we obtain the conclusion of Theo-

rem 4.3.2.

The proof of local quadratic convergence: We consider the distance between xk+1 and

x? measured by ‖xk+1 − x?‖x? . By the definition of xk+1, we have

‖xk+1 − x?‖x? ≤ (1− τk)‖xk − x?‖x? + τk‖zk − x?‖x? . (A.16)

Using the new notations in (A.15), it follows from the optimality condition (4.8) and (4.10) that

zk = Pgx?(Sx?(xk) + ex?(x
k, zk)) and x? = Pgx?(Sx?(x?)). By Lemma A.2.3 and the triangle

inequality, we can show that

‖zk − x?‖x? ≤ ‖Sx?(xk)− Sx?(x?)‖∗x? + ‖ex?(xk, zk)‖∗x? . (A.17)

By following the same argument as in [102], if we apply Lemma A.2.2, then we can derive

‖Sx?(xk)− Sx?(x?)‖∗x? ≤ Rν(dν(x?,xk))dν(x?,xk)‖xk − x?‖x? , (A.18)

where Rν(·) is defined by (A.7).

Next, using the same argument as the proof of (A.25) in Theorem 4.3.3 below, we can

bound the second term ‖ex?(xk, zk)‖∗x? of (A.17) as

‖ex?(xk, zk)‖∗x? ≤


[ (

1− ν−2
2 dν(x?,xk)

) −2
ν−2 − 1

]
‖zk − xk‖x? , if ν > 2

(
edν(x?,xk) − 1

)
‖zk − xk‖x? if ν = 2.
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Combining this inequality, (A.17) (A.18), and the triangle inequality

‖zk − xk‖x? ≤ ‖zk − x?‖x? + ‖xk − x?‖x? ,

we obtain

‖zk − xk‖x? ≤ R̂ν(dν(x?,xk))‖xk − x?‖x? (A.19)

and

‖zk − x?‖x? ≤ R̃ν(dν(x?,xk))dν(x?,xk)‖xk − x?‖x? , (A.20)

where R̂ν and R̃ν are defined as

R̂ν(t) :=


tRν(t)+1

2−(1− ν−2
2
t)
−2
ν−2

, if ν > 2

tRν(t)+1
2−et if ν = 2

and R̃ν(t) :=


tRν(t)−1+(1− ν−2

2
t)
−2
ν−2

t

(
2−(1− ν−2

2
t)
−2
ν−2

) , if ν > 2

tRν(t)−1+et

t(2−et) if ν = 2

respectively.

By using Lemma A.2.2 and after some simple calculations, one can show that there exists

a constant cν ∈ (0,+∞) such that if t ∈ [0, d̄ν ], then both R̂ν(t) and R̃ν(t) ∈ [0, cν ], where

d̄ν := 2
ν−2(1 − 0.6

ν−2
2 ) for ν ≥ 2 (when t → 0+ or ν = 2, we consider the limit). Using this

bound, (A.16) (A.20) and the fact that τk ≤ 1, we can bound

‖xk+1 − x?‖x? ≤
[
(1− τk) + cνdν(x?,xk)

]
‖xk − x?‖x? . (A.21)

Let σ? := σmin(∇2f(x?)) be the smallest eigenvalue of ∇2f(x?). We consider the following

cases:

(a) If ν = 2, for 0 ≤ dν(x?,xk) ≤ d̄ν , we can bound 1− τk as

1− τk = 1− ln(1+dk)
dk

≤ dk
2 =

Mf

2 ‖z
k − xk‖2 ≤

Mf

2
‖zk−xk‖x?√

σ?

(A.19)

≤ cνMf

2
√
σ?
‖xk − x?‖x? .
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On the other hand, we have dν(x?,xk) = Mf‖xk − x?‖2 ≤
Mf√
σ?
‖xk − x?‖x? . Using these

estimates into (A.21), we get

‖xk+1 − x?‖x? ≤
(
cνMf

2
√
σ?
‖xk − x?‖x? +

cνMf√
σ?
‖xk − x?‖x?

)
‖xk − x?‖x? =

3cνMf

2
√
σ?
‖xk − x?‖2x? .

Let c?ν :=
3cνMf

2
√
σ?

. The last estimate shows that if ‖x0 − x?‖x? ≤ min{ d̄ν
√
σ?

Mf
, 1
c?ν
}, then {‖xk −

x?‖x?} quadratically converges to zero.

(b) If 2 < ν ≤ 3, then we first show that

dν(x?,xk) = Mf‖xk − x?‖3−ν2 ‖xk − x?‖ν−2
x? ≤

Mf

(σ?)
3−ν

2

‖xk − x?‖x? . (A.22)

Hence, if ‖xk − x?‖x? ≤ mν d̄ν , where mν := (σ?)
3−ν

2

Mf
, then dν(x?,xk) ≤ d̄ν . Next, using the

definition of dk in (4.4), we can bound it as

dk = Mf‖zk − xk‖ν−2
xk
‖zk − xk‖3−ν2

(3.11)

≤ Mf

[
‖zk−xk‖x?

(1− ν−2
2
dν(x?,xk))

1
ν−2

]ν−2
‖zk−xk‖3−ν

x?

(σ?)
3−ν

2

≤ Mf

(1− ν−2
2
d̄ν)(σ?)

3−ν
2
‖zk − xk‖x?

(A.19)

≤ Mf

(1− ν−2
2
d̄ν)(σ?)

3−ν
2
cν‖xk − x?‖x? .

Using this estimate, letting d̂k := ν−2
2 dk, then we can bound 1− τk as follows:

1− τk = 1− 1
d̂k

+ 1
d̂k

(
1−

4−ν
ν−2

d̂k

1+ 4−ν
ν−2

d̂k

) ν−2
4−ν Bernoulli’s inequality

≤ 1− 1
d̂k

+ 1
d̂k

(
1− ν−2

4−ν

4−ν
ν−2

d̂k

1+ 4−ν
ν−2

d̂k

)
=

4−ν
ν−2

d̂k

1+ 4−ν
ν−2

d̂k
≤ 4−ν

ν−2 d̂k ≤
(4−ν)Mf

2(1− ν−2
2
d̄ν)(σ?)

3−ν
2
cν‖xk − x?‖x? = nν‖xk − x?‖x? ,

where nν :=
(4−ν)Mf

2(1− ν−2
2
d̄ν)(σ?)

3−ν
2
cν > 0. Substituting this estimate and (A.22) into (A.21), we get

‖xk+1 − x?‖x? ≤
(
nν +

cν
mν

)
‖xk − x?‖2x? = c∗ν‖xk − x?‖2x? .

Hence, if ‖x0−x?‖x? ≤ min{mν d̄ν ,
1
c?ν
}, then the last estimate shows that the sequence {‖xk −

x?‖x?} quadratically converges to zero.
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In summary, there exists a neighborhood N (x?) of x?, such that if x0 ∈ N (x?) ∩ dom(f),

then the whole sequence {‖xk − x?‖x?} quadratically converges to zero. �

A.2.6 The proof of Theorem 4.3.3: Quadratic convergence of the PN method

Since zk is the optimal solution to (4.9), which satisfies (4.10), we have ∇2f(xk)xk −

∇f(xk) ∈ (∇2f(xk) + ∂g)(zk). Using this optimality condition, we get

xk+1 = zk = Pg
xk

(Sxk(xk) + exk(xk, zk)) and

xk+2 = zk+1 = Pg
xk

(Sxk(xk+1) + exk(xk+1, zk+1)).

Let us define λ̃k+1 := ‖nk+1
pnt ‖xk . Then, by Lemma (A.2.3) and the triangular inequality, we

have

λ̃k+1 ≤ ‖Sxk(xk+1)− Sxk(xk)‖∗
xk

+ ‖exk(xk+1, zk+1)− exk(xk, zk)‖∗
xk

= ‖Sxk(xk+1)− Sxk(xk)‖∗
xk

+ ‖exk(xk+1, zk+1)‖∗
xk
.

(A.23)

Let us first bound the term ‖Sxk(xk+1)− Sxk(xk)‖∗
xk

as follows:

‖Sxk(xk+1)− Sxk(xk)‖∗xk ≤ Rν(dk)dkλk, (A.24)

where Rν(t) is defined as (A.7). Indeed, from the mean-value theorem, we have

‖Sxk(xk+1)− Sxk(xk)‖∗xk = ‖
∫ 1

0
[∇2f(xk + tnkpnt)−∇2f(xk)]nkpntdt‖xk ≤ ‖H(xk,xk+1)‖λk,

where H is defined as (A.5). Combining the above inequality and (A.7) in Lemma A.2.2, we

get (A.24).

Next we bound the term ‖exk(xk+1, zk+1)‖∗
xk

as follows:

‖exk(xk+1, zk+1)‖xk ≤


[ (

1− ν−2
2 dk

) −2
ν−2 − 1

]
λ̃k+1, if ν > 2

(edk − 1)λ̃k+1 if ν = 2.

(A.25)
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Note that

‖exk(xk+1, zk+1)‖∗xk = ‖[∇2f(xk)−∇2f(xk+1)](zk+1 − xk+1)‖∗xk ≤ ‖H̃(xk,xk+1)‖λ̃k+1,

where

H̃(x,y) := ∇2f(x)−1/2
(
∇2f(x)−∇2f(y)

)
∇2f(x)−1/2

= I−∇2f(x)−1/2∇2f(y)∇2f(x)−1/2.

By Proposition 3.7.2, we have

‖H̃(x,y)‖ ≤


max{1−

(
1− ν−2

2 dν(x,y)
) 2
ν−2 ,

(
1− ν−2

2 dν(x,y)
) −2
ν−2 − 1}, if ν > 2

max{1− e−dν(x,y), edν(x,y) − 1} if ν = 2.

This inequality can be simplified as

‖H̃(x,y)‖ ≤


(
1− ν−2

2 dν(x,y)
) −2
ν−2 − 1, if ν > 2

edν(x,y) − 1 if ν = 2.

(A.26)

Hence, the inequality (A.25) holds.

Now, we combine (A.23)(A.24), and (A.25), if ν = 2, and assuming that dk < ln 2, then we

get

λ̃k+1 ≤
R2(dk)dk
2− edk

λk.

By Proposition 3.7.2, we have λ2
k+1 ≤ edk λ̃2

k+1. Combining this estimate and the last inequality,

we get

λk+1 ≤
R2(dk)dke

dk
2

2− edk
λk. (A.27)

Note that λk ≥
√
σkdk
Mf

and σ−1
k+1 ≤ e

dkσ−1
k . It follows from (A.27) that

λk+1√
σk+1

≤Mf
R2(dk)e

dk

2− edk

(
λk√
σk

)2

.
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By a numerical calculation, we can check that if dk ≤ d?2 ≈ 0.35482, then

λk+1√
σk+1

≤ 2Mf

(
λk√
σk

)2

.

Hence, if we choose x0 ∈ dom(f) such that λ0√
σ0
≤ 1

Mf
min{d?2, 0.5} =

d?2
Mf

, then we can prove

the following two inequalities together by induction:

dk+1 ≤ dk and
λk+1√
σk+1

≤ λk√
σk
.

These inequalities show the nonincreasing monotonicity of {dk} and {λk}. The above inequality

also shows the local quadratic convergence of the sequence { λk√
σk
}.

Now, if ν > 2 and assume that dk <
ν−2

2

(
1−

(
1
2

) ν−2
2

)
, then

λ̃k+1 ≤
Rν(dk)dk

2−
(
1− ν−2

2 dk
) −2
ν−2

λk.

By Proposition 3.7.2, we have λ2
k+1 ≤

(
1− ν−2

2 dk
) −2
ν−2 λ̃2

k+1. Hence, combining these inequali-

ties, we get

λk+1 ≤
Rν(dk)dk

(
1− ν−2

2 dk
) −1
ν−2

2−
(
1− ν−2

2 dk
) −2
ν−2

λk. (A.28)

Note that dk = Mfβ
3−ν
k λν−2

k , σ−1
k+1 ≤

(
1− ν−2

2 dk
) −2
ν−2 σ−1

k and σ−1
k+1 ≤

(
1− ν−2

2 dk
) −2
ν−2 σ−1

k .

Using these relations and (A.28), we consider two cases:

(a) If ν = 3, then dk = Mfλk, and

λk+1 ≤
R3(dk)(1− 0.5dk)

−1

2− (1− 0.5dk)−2
dkλk = Mf

R3(dk)(1− 0.5dk)
−1

2− (1− 0.5dk)−2
λ2
k.

By a simple numerical calculation, we can show that if dk ≤ d?3 ≈ 0.41886, then λk+1 ≤ 2Mfλ
2
k.

Hence, if λ0 <
1
Mf

min{d?3, 0.5} =
d?3
Mf

, then we can prove the following two inequalities together

by induction

dk+1 ≤ dk and λk+1 ≤ λk.
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These inequalities show the non-increasing monotonicity of {dk} and {λk}. The above inequality

also shows the quadratic convergence of the sequence {λk}.

(b) If 2 < ν < 3, then λk ≥ βk
√
σk, which implies that dk ≤Mfσ

− 3−ν
2

k λk. Hence, we have

λk+1

σ
3−ν

2
k+1

≤
Rν(dk)

(
1− ν−2

2 dk
)− 4−ν

ν−2

2−
(
1− ν−2

2 dk
) −2
ν−2

Mf

 λk

σ
3−ν

2
k

2

.

If dk < d?ν , then σ
− 3−ν

2
k+1 λk+1 ≤ 2Mf

(
σ
− 3−ν

2
k λk

)2

, where d?ν is the unique solution to the equation

Rν(dk)
(
1− ν−2

2 dk
)− 4−ν

ν−2

2−
(
1− ν−2

2 dk
) −2
ν−2

= 2.

Note that it is straightforward to check that this equation always admits a positive solution.

Therefore, if σ
− 3−ν

2
0 λ0 ≤ 1

Mf
min{d?ν , 0.5}, then we can prove the following two inequalities

together by induction:

dk ≤ dk+1 and σ
− 3−ν

2
k+1 λk+1 ≤ σ

− 3−ν
2

k λk.

These inequalities show the non-increasing monotonicity of {dk} and {λk}. The above inequality

also shows the quadratic convergence of the sequence
{

λk

σ
3−ν

2
k

}
.

Finally, to prove the local quadratic convergence of {xk} to x?, we use the same argument

as in the proof of Theorem 4.2.3 and Theorem 4.3.2, where we omit the details here.

A.3 Technical proofs of results in Chapter 5

A.3.1 The proof of Lemma 5.2.1: Properties of global inexact oracle

(a) Substituting x = y into (5.2), we obtain (5.4) for all x ∈ dom(f).

(b) Clearly, if 〈g(x̄),y − x̄〉 ≥ 0 for all y ∈ dom(f), then 〈g(x̄),x? − x̄〉 ≥ 0 for a minimizer

x? of f . Using this relation into (5.2), we have

f? = f(x?) ≥ f̃(x̄) + ω((1− δ0)|‖x? − x̄|‖x̄) ≥ f̃(x̄)
(5.4)

≥ f(x̄)− δ1.

This implies f? ≤ f(x̄) ≤ f? + δ1.
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(c) Let ∇f(x) be a (sub)gradient of f at x. For y ∈ dom(f), it follows from (5.2) and (5.4)

that

f(y) ≥ f(x) + 〈∇f(x),y − x〉 ≥ f̃(x) + 〈∇f(x),y − x〉 .

Subtracting this estimate from the second inequality of (5.2), we have

〈∇f(x)− g(x),y − x〉 ≤ ω∗ ((1 + δ0)|‖y − x|‖x) + δ1, (A.29)

provided that |‖y − x|‖x < 1
1+δ0

. Let us consider an arbitrary z ∈ Rp such that

|‖∇f(x)− g(x)|‖∗x = | 〈∇f(x)− g(x), z〉 | and |‖z|‖x = 1.

Then, by choosing y ∈ dom(f) such that y = yτ (x) := x + τsign(〈∇f(x)− g(x), z〉)z for some

τ > 0, (A.29) becomes

τ |‖∇f(x)− g(x)|‖∗x ≤ ω∗ ((1 + δ0)τ) + δ1,

which is equivalent to

|‖∇f(x)− g(x)|‖∗x ≤ s(τ ; δ0, δ1) := ω∗((1+δ0)τ)+δ1
τ . (A.30)

Let us take τ := c̄
(1+δ0+c̄)(1+δ0) for some c̄ > 0. Then, we can check that |‖y − x|‖x = τ < 1

1+δ0
.

In this case, the right-hand side of (A.30) becomes

s(c̄; δ0, δ1) = (1+δ0)(1+δ0+c̄)
c̄

[
δ1 + ln

(
1 + c̄

1+δ0

)]
− (1 + δ0), (A.31)

for any c̄ > 0. Minimizing (A.31) over c̄, we can show that the minimum is attained at

c̄ := c̄(δ0, δ1) > 0 which is the unique solution of ω
(

c̄
1+δ0

)
= δ1 in c̄. Substituting c̄ = c̄(δ0, δ1)

in s(c̄; δ0, δ1), we can see that the minimum value of (A.31) is c̄(δ0, δ1).

(d) Let us consider the function ϕ(y) := f(y) −
〈
∇f(x0),y

〉
for some x0 ∈ dom(f). It

is clear that ∇ϕ(x0) = 0, which shows that x0 is a minimizer of ϕ. Hence, we have ϕ(x0) ≤

ϕ(x − tH(x)−1h(x)) for some t > 0 such that x − tH(x)−1h(x) ∈ dom(f). If we define
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ϕ̃(x) := f̃(x) −
〈
∇f(x0),x

〉
, and h(x) := g(x) −∇f(x0), then, by using (5.2), we can further

derive

ϕ(x0) ≤ ϕ(x− tH(x)−1h(x)) ≤ ϕ̃(x)− t(|‖h(x)|‖∗x)2 + ω∗ ((1 + δ0)t|‖h(x)|‖∗x)) + δ1.

Minimizing the right-hand side w.r.t t > 0 and note that dom(f) is open, we obtain

ϕ(x0) ≤ ϕ̃(x)− ω
(
|‖h(x)|‖∗x
1 + δ0

)
+ δ1,

given t = 1
(1+δ0)(1+δ0+|‖h(x)|‖∗x) . Using the definition of ϕ, we can show that

ω
(
|‖h(x)|‖∗x

1+δ0

)
≤ f̃(x)− f(x0)−

〈
∇f(x0),x− x0

〉
+ δ1

(5.4)

≤ −ω((1− δ0)|‖x− x0|‖x) +
〈
g(x)−∇f(x0),x− x0

〉
+ δ1

≤ |‖h(x)|‖∗x|‖x− x0|‖x + δ1,

where the last inequality is by the Cauchy-Schwarz inequality and ω(·) ≥ 0. By letting x0 = y

into this inequality, we obtain

ω
(
|‖g(x)−∇f(y)|‖∗x

1+δ0

)
≤ |‖g(x)−∇f(y)|‖∗x|‖y − x|‖x + δ1,

which is exactly (5.6). �

A.3.2 The proof of Lemma 5.2.2: Properties of local inexact oracle

The estimates in (5.7) are direct consequences of (5.3). We prove (5.8). From [74, Theorem

4.1.6], for all x ∈ dom(f) and y satisfying ‖y − x‖x < 1, we have

(1− ‖y − x‖x)2∇2f(x) � ∇2f(y) � 1
(1−‖y−x‖x)2∇2f(x),
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provided that ‖y − x‖x < 1. Moreover, by using the second inequality of (5.3), we can easily

show that, for any x ∈ X , one has

(1 + δ3)−1|‖y − x|‖x ≤ ‖y − x‖x ≤ (1− δ3)−1|‖y − x|‖x, (A.32)

for all y ∈ dom(f). Combining these two inequalities we can further derive

H(y) � (1− δ3)∇2f(y) � (1− δ3) (1− ‖y − x‖x)2∇2f(x)

� 1− δ3

1 + δ3
(1− ‖y − x‖x)2H(x) � (1−δ3−|‖y−x|‖x)2

1−δ2
3

H(x),

and

H(y) � (1 + δ3)∇2f(y) � 1+δ3
(1−‖y−x‖x)2∇2f(x)

� 1+δ3
1−δ3

1
(1−‖y−x‖x)2H(x) � 1+δ3

1−δ3
1

(1−(1−δ3)−1|‖y−x|‖x)2H(x),

which is the first estimate of (5.8).

To prove the last relation, let Gx = [∇2f(x)]−1/2(∇2f(x)−H(x))[∇2f(x)]−1/2. Then, from

local oracle definition we have ‖Gx‖ ≤ δ3. Moreover, one can show that

|‖(∇2f(x)−H(x))v|‖∗y ≤ 1
1−δ3 ‖(∇

2f(x)−H(x))v‖∗y

≤ 1
1−δ3

(
v>(∇2f(x)−H(x)) 1

(1−‖y−x‖x)2 [∇2f(x)]−1(∇2f(x)−H(x))v
)1/2

≤ 1
(1−δ3)(1−‖y−x‖x)‖Gx[∇2f(x)]1/2v‖ ≤ 1

(1−δ3)(1−‖y−x‖x)‖Gx‖‖v‖x

≤ δ3
(1−δ3)2((1−(1−δ3)−1|‖y−x|‖x))

|‖v|‖x

= δ3
(1−δ3)(1−δ3−|‖y−x|‖x) |‖v|‖x.

This is exactly the second estimate of (5.8). �
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A.3.3 The proof of Lemma 5.3.1: Computational inexact oracle

For any x,y ∈ dom(f) and α ∈ (0, 1), we have:

f(y) ≥ f(x) + 〈∇f(x),y − x〉+ ω(‖y − x‖x)

≥ f̂(x) + 〈g(x),y − x〉 − ε+ 〈∇f(x)− g(x),y − x〉+ ω(‖y − x‖x)

≥ f̂(x) + 〈g(x),y − x〉 − ε− |‖∇f(x)− g(x)|‖∗x|‖y − x|‖x + ω((1− δ3)|‖y − x|‖x)

≥ f̂(x) + 〈g(x),y − x〉+ ω(α(1− δ3)|‖y − x|‖x)

− ε− δ2|‖y − x|‖x + ω((1− δ3)|‖y − x|‖x)− ω(α(1− δ3)|‖y − x|‖x), (A.33)

where the first inequality is from [74, Theorem 4.1.7], the second and the last are from oracle

setting, and the third is from Cauchy-Schwarz inequality. Now we consider the function ψ(t) :=

−δ2t+ω(γt)−ω(αγt) where γ := 1−δ3. Clearly, we can write ψ(t) = γt−ln(1+γt)−δ2t−αγt+

ln(1 + αγt). We have ψ′(t) = (1− α)γ − δ2 − γ
1+γt + αγ

1+αγt , and ψ′′(t) = γ2

(1+γt)2 − (αγ)2

(1+αγt)2 ≥ 0.

Hence, it is convex. It attains the minimum at t∗ > 0 as a solution of (1−α)γ−δ2− γ
1+γt+

αγ
1+αγt =

0. Solving this equation, we get

t∗ =
1

2αγ

(√
(1 + α)2 +

4αδ2

(1− α)γ − δ2
− (1 + α)

)
> 0,

is the minimum point, provided that (1− α)γ > δ2. Substituting this into (A.33), we obtain

f(y) ≥ f̃(x) + 〈g(x),y − x〉+ ω (α(1− δ3)|‖y − x|‖x) ,

where f̃(x) := f̂(x)− ε+ ψ(t∗). It remains to compute ψ(t∗). For this t = t∗, using first-order

optimal condition we get

ψ(t∗) = γt∗ − ln(1 + γt∗)− δ2t
∗ − αγt∗ + ln(1 + αγt∗)

=
1

1 + αγt∗
(1− α)γt∗

1 + γt∗
+ ln

(
1− (1− α)γt∗

1 + γt∗

)
.
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Substituting the expression of t∗, we have

(1− α)γt∗

1 + γt∗
=

(1− α)[(1 + α)(1− δ3) + δ2]

2(1− δ3)

− (1− α)(1− δ3)− δ2

2(1− δ3)

√
(1 + α)2 +

4αδ2

(1− α)(1− δ3)− δ2
,

and

1

1 + αγt∗
=

(1− α)(1− δ3)− δ2

2(1− α)α(1− δ3)

√
(1 + α)2 +

4αδ2

(1− α)(1− δ3)− δ2

− (1− α)(1− δ3)− δ2

2α(1− δ3)
.

By computing ψ(t∗) directly with α = 1− 2δ2
1−δ3 > 0, we obtain the first inequality of (5.13). To

prove the second inequality of (5.13), we also have

f(y) ≤ f(x) + 〈∇f(x),y − x〉+ ω∗(‖y − x‖x)

≤ f̂(x) + 〈g(x),y − x〉+ ω∗(β(1 + δ3)|‖y − x|‖x)

+ ε+ |‖g(x)−∇f(x)|‖∗x|‖y − x|‖x + ω∗((1 + δ3)|‖y − x|‖x)

− ω∗(β(1 + δ3)|‖y − x|‖x), (A.34)

where the first inequality is from [74, Theorem 4.1.8], while the second is from oracle setting

and Cauchy-Schwarz inequality. Let us consider the function

ψ̄(t) = δ2t+ ω∗(γ̄t)− ω∗(βγ̄t)

= δ2t− γ̄t− ln(1− γ̄t) + βγt+ ln(1− βγ̄t)

= (β − 1)γ̄t+ δ2t+ ln(1− βγ̄t)− ln(1− γ̄t),

where γ̄ = 1 + δ3 ≥ 1. We have ψ̄′(t) = (β − 1)γ̄ + δ2 − βγ̄
1−βγ̄t + γ̄

1−γ̄t and ψ̄′′(t) = − (βγ̄)2

(1−βγ̄t)2 +

γ̄2

(1−γ̄t)2 ≤ 0 for β ≥ 1. Letting ψ′(t) = 0 we get

t̄∗ =
1

2βγ̄

(
1 + β −

√
(1 + β)2 − 4βδ2

(β − 1)γ̄ + δ2

)
> 0
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is the maximum point, provided that δ2 > 0 For this t = t̄∗, using first-order optimal condition

we get

ψ̄(t̄∗) = (β − 1)γ̄t̄∗ + δ2t̄
∗ + ln(1− βγ̄t̄∗)− ln(1− γ̄t̄∗)

=
1

1− βγ̄t̄∗
(β − 1)γ̄t̄∗

1− γ̄t̄∗
+ ln

(
1− (β − 1)γ̄t

1− γ̄t̄∗

)
.

Substituting t̄∗, we get

(β − 1)γ̄t̄∗

1− γ̄t̄∗
=

(β − 1)(1 + δ3) + δ2

2(1 + δ3)

√
(1 + β)2 − 4βδ2

(β − 1)(1 + δ3) + δ2

− (β − 1)[(β + 1)(1 + δ3) + δ2]

2(1 + δ3)
,

and

1

1− βγ̄t̄∗
=

(β − 1)(1 + δ3) + δ2

2β(1 + δ3)

− (β − 1)(1 + δ3) + δ2

2(β − 1)β(1 + δ3)

√
(1 + β)2 − 4βδ2

(β − 1)(1 + δ3) + δ2
.

Substituting above formulations back to (A.34), and using the increasing property of ω and

ω∗, we obtain the second inequality in (5.13) by letting δ1 := 2ε − ψ(t∗) + ψ̄(t̄∗) ≥ 0 and

δ0 := max{1− (1−δ3)α, (1+δ3)β−1}. Finally the lemma is proven by taking α = 1− 2δ2
1−δ3 > 0

and β as shown in equation (5.14). �

A.3.4 The proof of Lemma 5.3.2: Inexact oracle of dual problem

Since ϕ is self-concordant, by [74, Theorem 4.1.6] we have

(1− δ(x))2[∇2ϕ(u∗(x))]−1 � [∇2ϕ(ũ∗(x))]−1 � (1− δ(x))−2[∇2ϕ(u∗(x))]−1.

Multiplying this inequality by A and A> on the left and right of each item, we obtain

(1− δ(x))2∇2f(x) � H(x) � (1− δ(x))−2∇2f(x). (A.35)
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Since δ(x) ≤ δ, then imposing that (1 − δ)2 ≥ (1 − δ3)2 and (1 − δ)−2 ≤ (1 + δ3)2, we get

δ3 ≥ δ/(1− δ), which proves the second bound of (5.18).

Next, by definition of g(x) and ∇f(x), we can derive that

[|‖g(x)−∇f(x)|‖∗x]2 = (ũ∗(x)−u∗(x))>A>
(
A∇2ϕ(ũ∗(x))−1A>

)−1
A(ũ∗(x)−u∗(x))

≤ (ũ∗(x)− u∗(x))>∇2ϕ(ũ∗(x))(ũ∗(x)− u∗(x))

= ‖ũ∗(x)− u∗(x)‖2ũ∗(x) ≤ δ
2(x) ≤ δ2,

which implies the first estimate of (5.18). Here, the inequality in this chain follows from the

fact that A>(AQ−1A>)−1A � Q for a symmetric positive definite matrix Q = ∇2ϕ(u∗(x))

(see [31] for a detailed proof of this fact).

Finally, by definition of f(·) and f̃(·), we can derive

f(x)− f̃(x) =
[〈
u∗(x),A>x

〉
− ϕ(u∗(x))

]
−
[〈
ũ∗(x),A>x

〉
− ϕ(ũ∗(x))

]
= ϕ(ũ∗(x))− ϕ(u∗(x))−

〈
A>x, ũ∗(x)− u∗(x)

〉
= ϕ(ũ∗(x))− ϕ(u∗(x))− 〈∇ϕ(u∗(x)), ũ∗(x)− u∗(x)〉 ,

where the last equality follows from the optimality condition ∇ϕ(u∗(x)) = A>x for u∗(x).

Since ϕ is self-concordant, using [74, Theorem 4.1.7, 4.1.8] we get

ω(‖ũ∗(x)− u∗(x)‖u∗(x)) ≤ f(x)− f̃(x) ≤ ω∗(‖ũ∗(x)− u∗(x)‖u∗(x)),

which leads to

0 ≤ ω
(

δ(x)

1 + δ(x)

)
≤ f(x)− f̃(x) ≤ ω∗

(
δ(x)

1− δ(x)

)
≤ ω∗

(
δ

1− δ

)
, (A.36)

given δ(x) < 1. The proof is completed using Lemma 5.3.1 by letting ε := ω∗

(
δ

1−δ

)
and δ2, δ3

defined above. Since 2δ2 + δ3 < 1 is required in Lemma 5.3.1, we have δ ∈ [0, 0.292].
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From the optimality condition of (5.16) we have ∇ϕ(u∗(x)) − A>x = 0. Let r(x) :=

∇ϕ(ũ∗(x))−A>x. Then, using self-concordance of ϕ, we have

‖ũ∗(x)− u∗(x)‖2u∗(x)

1 + ‖ũ∗(x)− u∗(x)‖u∗(x)
≤ 〈∇ϕ(ũ∗(x))−∇ϕ(u∗(x)), ũ∗(x)− u∗(x)〉 = 〈r(x), ũ∗(x)− u∗(x)〉 .

Since δ(x) := ‖ũ∗(x)−u∗(x)‖ũ∗(x), by the Cauchy-Schwarz inequality, we can show that δ(x)2

1+δ(x) ≤

‖r(x)‖∗ũ∗(x)δ(x). Therefore, we obtain the last statement of Lemma 5.3.2 provided that δ ∈

(0, 1). �

A.3.5 The proof of Lemma 5.4.2: Key estimate for local convergence

From the definition of νk in (5.20) we have

H(xk)xk+νk−g(xk) ∈ ∂R(z̄k)+H(xk)z̄k, or z̄k ∈ Pxk(xk+[H(xk)]−1(νk−g(xk))). (A.37)

On the other hand, if we denote rxk(z̄k) := g(xk) +H(xk)(z̄k − xk), then

νk − rxk(z̄k) ∈ ∂R(z̄k)

⇐⇒ z̄k + [H(xk+1)]−1(νk − rxk(z̄k)) ∈ z̄k + [H(xk+1)]−1∂R(z̄k)

⇐⇒ z̄k = Pxk+1(z̄k + [H(xk+1)]−1(νk − rxk(z̄k))).

(A.38)

For simplicity of notation, we define Hk := H(xk), f ′k := ∇f(xk) and gk := g(xk). By the

triangle inequality, it is obvious that

λk+1 = |‖xk+1 − z̄k+1|‖xk+1 ≤ |‖z̄k+1 − z̄k|‖xk+1 + |‖xk+1 − z̄k|‖xk+1 . (A.39)
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For the second item, by (5.7) and iPNA, we have

|‖xk+1 − zk|‖xk+1 ≤ (1 + δk+1
3 )|‖xk+1 − zk|‖xk+1 ≤ 1+δk+1

3

1−|‖xk+1−xk|‖
xk
|‖xk+1 − zk|‖xk

≤ 1+δk+1
3

1−
|‖xk+1−xk|‖

xk

1−δk3

|‖xk+1−zk|‖
xk

1−δk3
=

1+δk+1
3

1−δk3−|‖xk+1−xk|‖
xk
|‖xk+1 − zk|‖xk

=
(1+δk+1

3 )(1−αk)λk
1−δk3−αkλk

.

(A.40)

For the first item, by the inexact subproblem setting (5.20) and nonexpansiveness of the prox-

imal operator Px, we have

|‖z̄k+1 − z̄k|‖xk+1

= |‖Pxk+1(xk+1 +H−1
k+1(νk+1 − gk+1)− Pxk+1(z̄k +H−1

k+1(νk − rxk(z̄k)))|‖xk+1

≤ |‖(xk+1 +H−1
k+1(νk+1 − gk+1)− (z̄k +H−1

k+1(νk − rxk(z̄k)))|‖xk+1

= |‖(Hk+1 −Hk)(x
k+1 − z̄k)− (gk+1 − gk −Hk(x

k+1 − xk)) + (νk+1 − νk)|‖∗
xk+1 .

(A.41)

For the last item of (A.41), by triangle inequality we have

|‖νk+1 − νk|‖∗
xk+1 ≤ |‖νk+1|‖∗

xk+1 + |‖νk|‖∗
xk+1

(5.8)

≤ |‖νk+1|‖∗
xk+1 +

(1−(δk3 )2)

(1−δk+1
3 )(1−δk3−αkλk)

|‖νk|‖∗
xk

below(5.20)

≤ δk+1
4 λk+1 +

1−(δk3 )2

(1−δk+1
3 )(1−δk3−αkλk)

δk4λk.

(A.42)

Next, using triangle inequality, we can derive that

|‖(Hk+1 −Hk)(x
k+1 − z̄k)− (gk+1 − gk −Hk(x

k+1 − xk))|‖∗
xk+1

≤ |‖Hk+1(xk+1 − zk)|‖∗
xk+1 + |‖Hk(x

k+1 − zk)|‖∗
xk+1

+ |‖f ′k+1 − gk+1|‖∗xk+1 + |‖f ′k − gk|‖∗xk+1

+ |‖f ′k+1 − f ′k −∇2f(xk)(xk+1 − xk)|‖∗
xk+1 + |‖(Hk −∇2f(xk))(xk+1 − xk)|‖∗

xk+1

≤ (1+δk+1
3 )(1−αk)

1−δk3−αkλk
λk +

(1−(δk3 )2)(1−αk)

(1−δk+1
3 )(1−δk3−αkλk)

λk + δk+1
2 +

(1−(δk3 )2)δk2
(1−δk+1

3 )(1−δk3−αkλk)

+ 1
1−δk+1

3

(
αkλk

1−δk3−αkλk

)2
+

(2+δk3 )δk3
1−δk+1

3

αkλk
1−δk3−αkλk

(A.43)
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where the last inequality follows from (5.3)(5.7) and (iPNA). Using triangle inequality for

(A.41), adding (A.40)(A.42), and (A.43) together back to (A.39), and rearranging the result,

we get the desired inequality. �

A.3.6 Implementation details: Approximate proximal-Newton directions

When solving the subproblem in iPNA to compute a proximal-Newton direction, we use

FISTA [4]. At the j-th iteration, a new estimate dj is computed through the following update

dj = proxαR

(
xk + w − α(g(xk) +H(xk)w)

)
− xk,

where w is calculated as

w = dj−1 +
tj−1 − 1

tj
(dj−1 − dj−2).

By definition of proximal operator proxαR, the following relation holds:

1

α
(w − dj) ∈ g(xk) +H(xk)w + ∂R(xk + dj),

which yields that the vector

ν :=
w − dj

α
+H(xk)(dj −w) =

(
Ip
α
−H(xk)

)
(w − dj)

satisfies the condition ν ∈ g(xk) + H(xk)(dj) + ∂R(xk + dj). In our implementation, ν was

used in the condition (5.20) to determine whether to accept this dj as an inexact direction at

iteration k in iPNA.
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inverse covariance matrix estimation using quadratic approximation. In Advances in
neural information processing systems, pages 2330–2338, 2011.
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