978 research outputs found

    On the Spectrum of Wenger Graphs

    Full text link
    Let q=peq=p^e, where pp is a prime and e≥1e\geq 1 is an integer. For m≥1m\geq 1, let PP and LL be two copies of the (m+1)(m+1)-dimensional vector spaces over the finite field Fq\mathbb{F}_q. Consider the bipartite graph Wm(q)W_m(q) with partite sets PP and LL defined as follows: a point (p)=(p1,p2,…,pm+1)∈P(p)=(p_1,p_2,\ldots,p_{m+1})\in P is adjacent to a line [l]=[l1,l2,…,lm+1]∈L[l]=[l_1,l_2,\ldots,l_{m+1}]\in L if and only if the following mm equalities hold: li+1+pi+1=lip1l_{i+1} + p_{i+1}=l_{i}p_1 for i=1,…,mi=1,\ldots, m. We call the graphs Wm(q)W_m(q) Wenger graphs. In this paper, we determine all distinct eigenvalues of the adjacency matrix of Wm(q)W_m(q) and their multiplicities. We also survey results on Wenger graphs.Comment: 9 pages; accepted for publication to J. Combin. Theory, Series

    On two problems in Ramsey-Tur\'an theory

    Full text link
    Alon, Balogh, Keevash and Sudakov proved that the (k−1)(k-1)-partite Tur\'an graph maximizes the number of distinct rr-edge-colorings with no monochromatic KkK_k for all fixed kk and r=2,3r=2,3, among all nn-vertex graphs. In this paper, we determine this function asymptotically for r=2r=2 among nn-vertex graphs with sub-linear independence number. Somewhat surprisingly, unlike Alon-Balogh-Keevash-Sudakov's result, the extremal construction from Ramsey-Tur\'an theory, as a natural candidate, does not maximize the number of distinct edge-colorings with no monochromatic cliques among all graphs with sub-linear independence number, even in the 2-colored case. In the second problem, we determine the maximum number of triangles asymptotically in an nn-vertex KkK_k-free graph GG with α(G)=o(n)\alpha(G)=o(n). The extremal graphs have similar structure to the extremal graphs for the classical Ramsey-Tur\'an problem, i.e.~when the number of edges is maximized.Comment: 22 page

    Density theorems for bipartite graphs and related Ramsey-type results

    Full text link
    In this paper, we present several density-type theorems which show how to find a copy of a sparse bipartite graph in a graph of positive density. Our results imply several new bounds for classical problems in graph Ramsey theory and improve and generalize earlier results of various researchers. The proofs combine probabilistic arguments with some combinatorial ideas. In addition, these techniques can be used to study properties of graphs with a forbidden induced subgraph, edge intersection patterns in topological graphs, and to obtain several other Ramsey-type statements

    Ramsey-type theorems for lines in 3-space

    Full text link
    We prove geometric Ramsey-type statements on collections of lines in 3-space. These statements give guarantees on the size of a clique or an independent set in (hyper)graphs induced by incidence relations between lines, points, and reguli in 3-space. Among other things, we prove that: (1) The intersection graph of n lines in R^3 has a clique or independent set of size Omega(n^{1/3}). (2) Every set of n lines in R^3 has a subset of n^{1/2} lines that are all stabbed by one line, or a subset of Omega((n/log n)^{1/5}) such that no 6-subset is stabbed by one line. (3) Every set of n lines in general position in R^3 has a subset of Omega(n^{2/3}) lines that all lie on a regulus, or a subset of Omega(n^{1/3}) lines such that no 4-subset is contained in a regulus. The proofs of these statements all follow from geometric incidence bounds -- such as the Guth-Katz bound on point-line incidences in R^3 -- combined with Tur\'an-type results on independent sets in sparse graphs and hypergraphs. Although similar Ramsey-type statements can be proved using existing generic algebraic frameworks, the lower bounds we get are much larger than what can be obtained with these methods. The proofs directly yield polynomial-time algorithms for finding subsets of the claimed size.Comment: 18 pages including appendi

    An approximate version of Sidorenko's conjecture

    Get PDF
    A beautiful conjecture of Erd\H{o}s-Simonovits and Sidorenko states that if H is a bipartite graph, then the random graph with edge density p has in expectation asymptotically the minimum number of copies of H over all graphs of the same order and edge density. This conjecture also has an equivalent analytic form and has connections to a broad range of topics, such as matrix theory, Markov chains, graph limits, and quasirandomness. Here we prove the conjecture if H has a vertex complete to the other part, and deduce an approximate version of the conjecture for all H. Furthermore, for a large class of bipartite graphs, we prove a stronger stability result which answers a question of Chung, Graham, and Wilson on quasirandomness for these graphs.Comment: 12 page

    Some Ramsey- and anti-Ramsey-type results in combinatorial number theory and geometry

    Get PDF
    A szerző nem járult hozzá nyilatkozatában a dolgozat nyilvánosságra hozásához
    • …
    corecore