40 research outputs found

    Generalized Processing for Pulsed Synthetic Aperture Radar

    Get PDF
    The Range-Doppler Algorithm (RDA) and the Chirp-Scaling Algorithm (CSA) process Synthetic Aperture Radar (SAR) data with approximations to ideal SAR processing. These approximations are invalid for data from systems with wide bandwidths, large bandwidths, and/or low center frequencies. While simple and efficient, these frequency-domain methods are thus limited by the SAR parameters. This paper explores these limits and proposes a generalized chirp-scaling approach for extending the utility of frequency-domain processing. We demonstrate how different order approximations of the SAR signal in the two-dimensional frequency domain affect image focusing for varying SAR parameters. From these results, a guideline is set forth which suggests the required order of approximation terms for proper focusing. A proposed generalized frequency-domain processing approach is derived. This method is an efficient arbitrary-order chirp-scaling algorithm that processes the data using the appropriate number of approximation terms. The new method is demonstrated using simulated data

    ΠŸΡ€ΠΎΡΡ‚ΠΎΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ компСнсации ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΉ свСтящихся Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΏΠΎ Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ для Ρ€Π΅ΠΆΠΈΠΌΠ° Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠ±Π·ΠΎΡ€Π° РБА (Π°Π½Π³Π».)

    Get PDF
    Introduction.Β  Range Cell Migration (RCM) is a source of image blurring in synthetic aperture radars (SAR). There are two groups of signal processing algorithms used to compensate for migration effects. The first group includes algorithms that recalculate the SAR signal from the "along–track range – slant range" coordinate system into the "along-track rangeΒ  –  cross-track range"Β  coordinates using the method of interpolation. The disadvantage of these algorithms is their considerable computational cost. Algorithms of the second group do not rely on interpolation thus being more attractive in terms of practical application.Aim. To synthesize a simple algorithm for compensating for RCM without using interpolation.Materials and methods. The synthesis was performed using a simplified version of the Chirp Scaling algorithm.Results.Β  A simple algorithm, which presents a modification of the Keystone Transform algorithm, was synthesized. The synthesized algorithm based on Fast Fourier Transforms and the Hadamard matrix products does not require interpolation.Conclusion. A verification of the algorithm quality via mathematical simulation confirmed its high efficiency. Implementation of the algorithm permits the number of computational operations to be reduced. The final radar imageΒ  produced using the proposed algorithm is built in the true Cartesian coordinates. The algorithm can be applied for SAR imaging of moving targets. The conducted analysis showed that the algorithm yields Β theΒ  image of a moving target provided that the coherent processing interval is sufficiently large. The image lies along a line, which angle of inclination is proportional to the projection of the target relative velocity on the line-of-sight. Estimation of the image parameters permits the target movement parameters to be determined.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. ΠœΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ свСтящихся Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΏΠΎ Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ источником расфокусировки Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π² Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ‚ΠΎΡ€Π°Ρ… с синтСзированной Π°ΠΏΠ΅Ρ€Ρ‚ΡƒΡ€ΠΎΠΉ (РБА). БущСствуСт Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ сигналов для компСнсации ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΉ. ΠŸΠ΅Ρ€Π²Π°Ρ Π³Ρ€ΡƒΠΏΠΏΠ° Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π° основании ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ интСрполяции осущСствляСтся пСрСсчСт принятых сигналов ΠΈΠ· систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ "ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½Π°Ρ Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ – наклонная Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ"Β  Π² систСму "ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½Π°Ρ Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ – попСрСчная Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ". НСдостатком Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² Π΄Π°Π½Π½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ являСтся ΠΈΡ… высокая Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ. Алгоритмы Π²Ρ‚ΠΎΡ€ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ интСрполяционныС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ поэтому Π±ΠΎΠ»Π΅Π΅ ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ для практичСского использования.ЦСль.Β  Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ простой Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ компСнсации ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΉ Π±Π΅Π· примСнСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ интСрполяции.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π‘ΠΈΠ½Ρ‚Π΅Π· Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° осущСствлСн Π½Π° основании ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½ΠΎΠΉ вСрсии Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π›Π§Πœ-Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ (Chirp Scaling Algorithm).Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½ простой Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ, ΡΠ²Π»ΡΡŽΡ‰ΠΈΠΉΡΡ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° "Π·Π°ΠΌΠΊΠΎΠ²ΠΎΠ³ΠΎ камня".Алгоритм основан Π½Π° использовании быстрых ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π€ΡƒΡ€ΡŒΠ΅ ΠΈ поэлСмСнтных ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΉ. Π’ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ΅ Π½Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ интСрполяции.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° качСства Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π½Π° основС матСматичСского модСлирования ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ»Π° Π΅Π³ΠΎ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. ИспользованиС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° позволяСт ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ количСство Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ.ЀинальноС Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΠΎΠ΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°, строится Π²Β  истинной Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Алгоритм ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ для построСния РБА ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ двиТущихся Ρ†Π΅Π»Π΅ΠΉ. Π”Π°Π½Π½Ρ‹ΠΉ Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ позволяСт ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Ρ…ΠΎΡ€ΠΎΡˆΠΎ сфокусированноС ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ двиТущСйся Ρ†Π΅Π»ΠΈ, ΠΊΠΎΠ³Π΄Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» синтСзирования достаточно Π²Π΅Π»ΠΈΠΊ. Π˜Π·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ двиТущСйся Ρ†Π΅Π»ΠΈ выстраиваСтся вдоль ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° прямой, ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»Π΅Π½ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ скорости Ρ†Π΅Π»ΠΈ Π½Π° линию визирования. ΠžΡ†Π΅Π½ΠΊΠ° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² изобраТСния позволяСт ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ двиТСния Ρ†Π΅Π»ΠΈ

    Imaging Formation Algorithm of the Ground and Space-Borne Hybrid BiSAR Based on Parameters Estimation from Direct Signal

    Get PDF
    This paper proposes a novel image formation algorithm for the bistatic synthetic aperture radar (BiSAR) with the configuration of a noncooperative transmitter and a stationary receiver in which the traditional imaging algorithm failed because the necessary imaging parameters cannot be estimated from the limited information from the noncooperative data provider. In the new algorithm, the essential parameters for imaging, such as squint angle, Doppler centroid, and Doppler chirp-rate, will be estimated by full exploration of the recorded direct signal (direct signal is the echo from satellite to stationary receiver directly) from the transmitter. The Doppler chirp-rate is retrieved by modeling the peak phase of direct signal as a quadratic polynomial. The Doppler centroid frequency and the squint angle can be derived from the image contrast optimization. Then the range focusing, the range cell migration correction (RCMC), and the azimuth focusing are implemented by secondary range compression (SRC) and the range cell migration, respectively. At last, the proposed algorithm is validated by imaging of the BiSAR experiment configured with china YAOGAN 10 SAR as the transmitter and the receiver platform located on a building at a height of 109 m in Jiangsu province. The experiment image with geometric correction shows good accordance with local Google images

    Factorized Geometrical Autofocus for Synthetic Aperture Radar Processing

    Get PDF
    Synthetic Aperture Radar (SAR) imagery is a very useful resource for the civilian remote sensing community and for the military. This however presumes that images are focused. There are several possible sources for defocusing effects. For airborne SAR, motion measurement errors is the main cause. A defocused image may be compensated by way of autofocus, estimating and correcting erroneous phase components. Standard autofocus strategies are implemented as a separate stage after the image formation (stand-alone autofocus), neglecting the geometrical aspect. In addition, phase errors are usually assumed to be space invariant and confined to one dimension. The call for relaxed requirements on inertial measurement systems contradicts these criteria, as it may introduce space variant phase errors in two dimensions, i.e. residual space variant Range Cell Migration (RCM). This has motivated the development of a new autofocus approach. The technique, termed the Factorized Geometrical Autofocus (FGA) algorithm, is in principle a Fast Factorized Back-Projection (FFBP) realization with a number of adjustable (geometry) parameters for each factorization step. By altering the aperture in the time domain, it is possible to correct an arbitrary, inaccurate geometry. This in turn indicates that the FGA algorithm has the capacity to compensate for residual space variant RCM. In appended papers the performance of the algorithm is demonstrated for geometrically constrained autofocus problems. Results for simulated and real (Coherent All RAdio BAnd System II (CARABAS II)) Ultra WideBand (UWB) data sets are presented. Resolution and Peak to SideLobe Ratio (PSLR) values for (point/point-like) targets in FGA and reference images are similar within a few percents and tenths of a dB. As an example: the resolution of a trihedral reflector in a reference image and in an FGA image respectively, was measured to approximately 3.36 m/3.44 m in azimuth, and to 2.38 m/2.40 m in slant range; the PSLR was in addition measured to about 6.8 dB/6.6 dB. The advantage of a geometrical autofocus approach is clarified further by comparing the FGA algorithm to a standard strategy, in this case the Phase Gradient Algorithm (PGA)

    Research progress on geosynchronous synthetic aperture radar

    Get PDF
    Based on its ability to obtain two-dimensional (2D) high-resolution images in all-time and all-weather conditions, spaceborne synthetic aperture radar (SAR) has become an important remote sensing technique and the study of such systems has entered a period of vigorous development. Advanced imaging modes such as radar interferometry, tomography, and multi-static imaging, have been demonstrated. However, current in-orbit spaceborne SARs, which all operate in low Earth orbits, have relatively long revisit times ranging from several days to dozens of days, restricting their temporal sampling rate. Geosynchronous SAR (GEO SAR) is an active research area because it provides significant new capability, especially its much-improved temporal sampling. This paper reviews the research progress of GEO SAR technologies in detail. Two typical orbit schemes are presented, followed by the corresponding key issues, including system design, echo focusing, main disturbance factors, repeat-track interferometry, etc, inherent to these schemes. Both analysis and solution research of the above key issues are described. GEO SAR concepts involving multiple platforms are described, including the GEO SAR constellation, GEO-LEO/airborne/unmanned aerial vehicle bistatic SAR, and formation flying GEO SAR (FF-GEO SAR). Due to the high potential of FF-GEO SAR for three-dimensional (3D) deformation retrieval and coherence-based SAR tomography (TomoSAR), we have recently carried out some research related to FF-GEO SAR. This research, which is also discussed in this paper, includes developing a formation design method and an improved TomoSAR processing algorithm. It is found that GEO SAR will continue to be an active topic in the aspect of data processing and multi-platform concept in the near future

    Space-Variant Post-Filtering for Wavefront Curvature Correction in Polar-Formatted Spotlight-Mode SAR Imagery

    Full text link

    Frequency-modulated continuous-wave synthetic-aperture radar: improvements in signal processing

    Get PDF
    With the advance of solid state devices, frequency-modulated continuous-wave (FMCW) designs have recently been used in synthetic-aperture radar (SAR) to decrease cost, size, weight and power consumption, making it deployable on smaller mobile plat-forms, including small (< 25 kg) unmanned aerial vehicle(s) (UAV). To foster its mobile uses, several SAR capabilities were studied: moving target indication (MTI) for increased situational awareness, bistatic operation, e.g. in UAV formation flights, for increased range, and signal processing algorithms for faster real-time performance. Most off-the-shelf SAR systems for small mobile platforms are commercial proprie-tary and/or military (ITAR, International Trades in Arms Regulations) restricted. As such, it necessitated the design and build of a prototype FMCW SAR system at the early stage to serve as a research tool. This enabled unrestricted hardware and software modifica-tions and experimentation. A model to analyze the triangularly modulated (TM) linear frequency modulated (LFM) waveform as one signal was established and used to develop a MTI algorithm which is effective for slow moving targets detection. Experimental field data collected by the prototyped FMCW SAR was then used to validate and demonstrate the effectiveness of the proposed MTI method. A bistatic FMCW SAR model was next introduced: Bistatic configuration is a poten-tial technique to overcome the power leakage problem in monostatic FMCW SAR. By mounting the transmitter and receiver on spatially separate mobile (UAV) platforms in formation deployment, the operation range of a bistatic FMCW SAR can be significantly improved. The proposed approximation algorithm established a signal model for bistatic FMCW SAR by using the Fresnel approximation. This model allows the existing signal processing algorithms to be used in bistatic FMCW SAR image generation without sig-nificant modification simplifying bistatic FMCW SAR signal processing. The proposed range migration algorithm is a versatile and efficient FMCW SAR sig-nal processing algorithm which requires less memory and computational load than the traditional RMA. This imaging algorithm can be employed for real-time image genera-tion by the FMCW SAR system on mobile platforms. Simulation results verified the pro-posed spectral model and experimental data demonstrated the effectiveness of the modi-fied RMA

    Motion Compensation for Near-Range Synthetic Aperture Radar Applications

    Get PDF
    The work focuses on the analysis of influences of motion errors on near-range SAR applications and design of specific motion measuring and compensation algorithms. First, a novel metric to determine the optimum antenna beamwidth is proposed. Then, a comprehensive investigation of influences of motion errors on the SAR image is provided. On this ground, new algorithms for motion measuring and compensation using low cost inertial measurement units (IMU) are developed and successfully demonstrated
    corecore