230 research outputs found

    Service provisioning problem in cloud and multi-cloud systems

    Get PDF
    Cloud computing is a new emerging paradigm that aims to streamline the on-demand provisioning of resources as services, providing end users with flexible and scalable services accessible through the Internet on a pay-per-use basis. Because modern cloud systems operate in an open and dynamic world characterized by continuous changes, the development of efficient resource provisioning policies for cloud-based services becomes increasingly challenging. This paper aims to study the hourly basis service provisioning problem through a generalized Nash game model. We take the perspective of Software as a Service (SaaS) providers that want to minimize the costs associated with the virtual machine instances allocated in a multiple Infrastructures as a Service (IaaS) scenario while avoiding incurring penalties for execution failures and providing quality of service guarantees. SaaS providers compete and bid for the use of infrastructural resources, whereas the IaaSs want to maximize their revenues obtained providing virtualized resources. We propose a solution algorithm based on the best-reply dynamics, which is suitable for a distributed implementation. We demonstrate the effectiveness of our approach by performing numerical tests, considering multiple workloads and system configurations. Results show that our algorithm is scalable and provides significant cost savings with respect to alternative methods (5% on average but up to 260% for individual SaaS providers). Furthermore, varying the number of IaaS providers means an 8%-15% cost savings can be achieved from the workload distribution on multiple IaaSs

    Generalized Nash equilibria for SaaS/PaaS Clouds

    Get PDF
    Cloud computing is an emerging technology that allows to access computing resources on a pay-per-use basis. The main challenges in this area are the efficient performance management and the energy costs minimization. In this paper we model the service provisioning problem of Cloud Platform-as-a-Service systems as a Generalized Nash Equilibrium Problem and show that a potential function for the game exists. Moreover, we prove that the social optimum problem is convex and we derive some properties of social optima from the corresponding Karush-Kuhn-Tucker system. Next, we propose a distributed solution algorithm based on the best response dynamics and we prove its convergence to generalized Nash equilibria. Finally, we numerically evaluate equilibria in terms of their efficiency with respect to the social optimum of the Cloud by varying our algorithm initial solution. Numerical results show that our algorithm is scalable and very efficient and thus can be adopted for the run-time management of very large scale systems

    A Game-Theoretic Approach for Runtime Capacity Allocation in MapReduce

    Get PDF
    Nowadays many companies have available large amounts of raw, unstructured data. Among Big Data enabling technologies, a central place is held by the MapReduce framework and, in particular, by its open source implementation, Apache Hadoop. For cost effectiveness considerations, a common approach entails sharing server clusters among multiple users. The underlying infrastructure should provide every user with a fair share of computational resources, ensuring that Service Level Agreements (SLAs) are met and avoiding wastes. In this paper we consider two mathematical programming problems that model the optimal allocation of computational resources in a Hadoop 2.x cluster with the aim to develop new capacity allocation techniques that guarantee better performance in shared data centers. Our goal is to get a substantial reduction of power consumption while respecting the deadlines stated in the SLAs and avoiding penalties associated with job rejections. The core of this approach is a distributed algorithm for runtime capacity allocation, based on Game Theory models and techniques, that mimics the MapReduce dynamics by means of interacting players, namely the central Resource Manager and Class Managers

    Supply chain network capacity competition with outsourcing: a variational equilibrium framework

    Get PDF
    This paper develops a supply chain network game theory framework with multiple manufacturers/producers, with multiple manufacturing plants, who own distribution centers and distribute their products, which are distinguished by brands, to demand markets, while maximizing profits and competing noncooperatively. The manufacturers also may avail themselves of external distribution centers for storing their products and freight service provision. The manufacturers have capacities associated with their supply chain network links and the external distribution centers also have capacitated storage and distribution capacities for their links, which are shared among the manufacturers and competed for. We utilize a special case of the Generalized Nash Equilibrium problem, known as a variational equilibrium, in order to formulate and solve the problem. A case study on apple farmers in Massachusetts is provided with various scenarios, including a supply chain disruption, to illustrate the modeling and methodological framework as well as the potential benefits of outsourcing in this sector

    Dynamic Pricing of Applications in Cloud Marketplaces using Game Theory

    Full text link
    The competitive nature of Cloud marketplaces as new concerns in delivery of services makes the pricing policies a crucial task for firms. so that, pricing strategies has recently attracted many researchers. Since game theory can handle such competing well this concern is addressed by designing a normal form game between providers in current research. A committee is considered in which providers register for improving their competition based pricing policies. The functionality of game theory is applied to design dynamic pricing policies. The usage of the committee makes the game a complete information one, in which each player is aware of every others payoff functions. The players enhance their pricing policies to maximize their profits. The contribution of this paper is the quantitative modeling of Cloud marketplaces in form of a game to provide novel dynamic pricing strategies; the model is validated by proving the existence and the uniqueness of Nash equilibrium of the game

    A Competition-based Pricing Strategy in Cloud Markets using Regret Minimization Techniques

    Full text link
    Cloud computing as a fairly new commercial paradigm, widely investigated by different researchers, already has a great range of challenges. Pricing is a major problem in Cloud computing marketplace; as providers are competing to attract more customers without knowing the pricing policies of each other. To overcome this lack of knowledge, we model their competition by an incomplete-information game. Considering the issue, this work proposes a pricing policy related to the regret minimization algorithm and applies it to the considered incomplete-information game. Based on the competition based marketplace of the Cloud, providers update the distribution of their strategies using the experienced regret. The idea of iteratively applying the algorithm for updating probabilities of strategies causes the regret get minimized faster. The experimental results show much more increase in profits of the providers in comparison with other pricing policies. Besides, the efficiency of a variety of regret minimization techniques in a simulated marketplace of Cloud are discussed which have not been observed in the studied literature. Moreover, return on investment of providers in considered organizations is studied and promising results appeared

    Distributed Learning for Stochastic Generalized Nash Equilibrium Problems

    Full text link
    This work examines a stochastic formulation of the generalized Nash equilibrium problem (GNEP) where agents are subject to randomness in the environment of unknown statistical distribution. We focus on fully-distributed online learning by agents and employ penalized individual cost functions to deal with coupled constraints. Three stochastic gradient strategies are developed with constant step-sizes. We allow the agents to use heterogeneous step-sizes and show that the penalty solution is able to approach the Nash equilibrium in a stable manner within O(ÎĽmax)O(\mu_\text{max}), for small step-size value ÎĽmax\mu_\text{max} and sufficiently large penalty parameters. The operation of the algorithm is illustrated by considering the network Cournot competition problem

    Truthful Mechanisms For Resource Allocation And Pricing In Clouds

    Get PDF
    A major challenging problem for cloud providers is designing efficient mechanisms for Virtual Machine (VM) provisioning and allocation. Such mechanisms enable the cloud providers to effectively utilize their available resources and obtain higher profits. Recently, cloud providers have introduced auction-based models for VM provisioning and allocation which allow users to submit bids for their requested VMs. We formulate the dynamic VM provisioning and allocation problem for the auction-based model as an integer program considering multiple types of resources. We then design truthful greedy and optimal mechanisms for the problem such that the cloud provider provisions VMs based on the requests of the winning users and determines their payments. We show that the proposed mechanisms are truthful, that is, the users do not have incentives to manipulate the system by lying about their requested bundles of VM instances and their valuations. We perform extensive experiments using real workload traces in order to investigate the performance of the proposed mechanisms. Our proposed mechanisms achieve promising results in terms of revenue for the cloud provider
    • …
    corecore