
Wayne State University

Wayne State University Theses

1-1-2014

Truthful Mechanisms For Resource Allocation
And Pricing In Clouds
Mahyar Movahednejad
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

Part of the Computer Sciences Commons

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Movahednejad, Mahyar, "Truthful Mechanisms For Resource Allocation And Pricing In Clouds" (2014). Wayne State University Theses.
Paper 308.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses/308?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages

Truthful Mechanisms for Resource Allocation and Pricing in Clouds

by

Mahyar Movahed Nejad

THESIS

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2014

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

c© COPYRIGHT BY

Mahyar Movahed Nejad

2014

ALL RIGHTS RESERVED

DEDICATION

To my parents Maryam and Ali, and my brother Mehran.

ii

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my advisor Dr. Grosu who introduced me to an

exciting research area which ultimately resulted in this thesis. I am thankful for his mentorship, support

and encouragement, and for everything he has taught me without which this thesis would have not been

completed. Dr. Grosu has also been more than a thesis advisor for me, providing me with ongoing advice

on broader research studies including my dissertation research.

I would like to thank my thesis committee members Dr. Fotouhi and Dr. Shi for their time and consider-

ations.

I have been greatly privileged to work with my best friend Lena Mashayekhy during my graduate studies.

Her brilliance contributed significantly to the improvement of our research projects.

I would like to express my sincere gratitude to my parents Maryam and Ali, and my brother Mehran. I

always feel their endless love and support.

I will treasure the knowledge and personal growth that I have gained throughout my graduate studies, and

I hope they empower me to do good with good analytics.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Tables . v

List of Figures . vi

Chapter 1: Introduction . 1

1.1 Our Contribution . 3

1.2 Related Work . 4

1.3 Organization . 8

Chapter 2: VM Provisioning and Allocation Problem 9

Chapter 3: Mechanism Design Framework 12

3.1 Preliminaries . 12

3.2 Truthful Optimal Mechanism . 15

Chapter 4: Truthful Greedy Mechanisms . 17

4.1 G-VMPAC-X Truthful Greedy Mechanisms 17

4.2 G-VMPAC-X Mechanisms Properties . 20

Chapter 5: Experimental Results . 30

5.1 Experimental Setup . 30

5.2 Analysis of Results . 32

5.2.1 Small-scale . 33

5.2.2 Large-scale . 35

Chapter 6: Conclusion . 41

References . 44

Abstract . 50

Autobiographical Statement . 51

iv

LIST OF TABLES

2.1 VM instance types offered by Amazon EC2. 10

4.1 Different scenarios for user 2’s type declaration 24

5.1 Statistics of workload logs. 31

5.2 Workload logs. 32

v

LIST OF FIGURES

5.1 G-VMPAC-X performance (small scale experiments): Social welfare 33

5.2 G-VMPAC-X performance (small scale experiments): Execution time . . . 34

5.3 G-VMPAC-X performance (small scale experiments): Revenue 34

5.4 G-VMPAC-X performance: Social welfare (*VCG-VMPAC was not able to deter-

mine the allocation for GWA-T-1 DAS-2, GWA-T-10 SHARCNET, METACENTRUM-

2009-2, and PIK-IPLEX-2009-1 in feasible time, and thus, there are no bars in the plots

in Figs. 1 to 7 for those cases) . 35

5.5 G-VMPAC-X performance: Revenue . 36

5.6 G-VMPAC-X performance: Execution time 37

5.7 This is the caption; This is the second line 38

5.8 G-VMPAC-X core utilization (*see Fig. 1 note on VCG-VMPAC) 38

5.9 G-VMPAC-X memory utilization (*see Fig. 1 note on VCG-VMPAC) 39

5.10 G-VMPAC-X storage utilization (*see Fig. 1 note on VCG-VMPAC) 40

vi

1

CHAPTER 1: INTRODUCTION

The number of enterprises and individuals that are outsourcing their workloads to cloud

providers has increased rapidly in recent years. Cloud providers form a large pool of

abstracted, virtualized, and dynamically scalable resources allocated to users based on a

pay-as-you-go model. These resources are provided as three different types of services:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service

(SaaS). IaaS provides CPUs, storage, networks and other low level resources, PaaS provides

programming interfaces, and SaaS provides already created applications. In this thesis, we

focus on IaaS where cloud providers offer different types of resources in the form of VM

instances. IaaS providers such as Microsoft Azure [5] and Amazon Elastic Compute Cloud

(Amazon EC2) [1] offer four types of VM instances: small (S), medium (M), large (L), and

extra large (XL).

Cloud providers face many decision problems when offering IaaS to their customers.

One of the major decision problems is how to provision and allocate VM instances. Cloud

providers provision their resources either statically or dynamically, and then allocate them

in the form of VM instances to their customers. In the case of static provisioning, the cloud

provider pre-provisions a set of VM instances without considering the current demand

from the users, while in the case of dynamic provisioning, the cloud provider provisions

the resources by taking into account the current users’ demand. Due to the variable load

demand, dynamic provisioning leads to a more efficient resource utilization and ultimately

to higher revenues for the cloud provider. The aim of this study is to facilitate dynamic

provisioning of multiple types of resources based on the users’ requests.

To sell the VM instances to users, cloud providers can employ fixed-price and auction-

based models. In the fixed-price model, the price of each type of VM instance is fixed and

pre-determined by the cloud provider, while in the auction-based model, each user bids

for a subset of available VM instances (bundle) and an auction mechanism decides the

price and the allocation. In this study, we consider the design of mechanisms for auction-

2

based settings. In the auction-based models, users can obtain their requested resources

at lower prices than in the case of the fixed-price models. Also, the cloud providers can

increase their profit by allowing users to bid on unutilized capacity. An example of such

auction-based mechanism is the spot market introduced by Amazon [1]. Such mechanisms

are usually executed over short time-windows (e.g., every hour) to efficiently provision the

unutilized resources of the cloud provider. Our setup and mechanisms are different from

the Amazon spot market. The Amazon spot market allows requests only for individual VM

instances and not for bundles of VM instances of different types. In addition, all winning

users in the Amazon spot market pay the same (per unit) price. In our setting, we allow

users to request bundles of VM instances. We consider a set of users and a set of items

(VM instances), where each user bids for a subset of items (bundle). Since several VM

instances of the same type are available to users, the problem can be viewed as a multi-

unit combinatorial auction. Each user has a private value (private type) for her requested

bundle. In our model, the users are single minded, that means each user is either assigned

her entire requested bundle of VM instances and she pays for it, or she does not obtain

any bundle and pays nothing. The users are also selfish in the sense that they want to

maximize their own utility. It may be beneficial for them to manipulate the system by

declaring a false type (i.e., different bundles or bids from their actual request).

One of the key properties of a provisioning and allocation mechanism is to give incentives

to users so that they reveal their true valuations for the bundles. In general, greedy

algorithms do not necessarily satisfy the properties required to achieve truthfulness (also

called incentive-compatibility or strategy-proofness [43]) and they need to be specifically

designed to satisfy those properties. Our goal is to design truthful greedy mechanisms

that solve the VM provisioning and allocation problem in the presence of multiple types

of resources (e.g., cores, memory, storage, etc.). The mechanisms allocate resources to

the users such that the social welfare (i.e., the sum of users’ valuations for the requested

bundles of VMs) is maximized.

3

1.1 Our Contribution

We address the problem of VM provisioning and allocation in clouds in the presence of

multiple types of resources. To the best of our knowledge, this is the first study proposing

truthful mechanisms for VM provisioning and allocation in clouds that take into account

the heterogeneity and the scarcity of the cloud resources. We design a truthful optimal

mechanism and a family of truthful greedy mechanisms for VM provisioning and allocation

that give incentives to the users to reveal their true valuations for their requested bundles

of VM instances. Our proposed mechanisms consist of determining the VM provisioning

and allocation and the payments for each user. Our proposed greedy mechanisms provide

very fast solutions making them suitable for execution in short time-window auctions. In

addition, we determine the approximation ratio of the proposed mechanisms, guaranteeing

a bound for the obtained solutions. We design truthful greedy mechanisms in spite the fact

that greedy algorithms, in general, do not necessarily satisfy the properties required to guar-

antee truthfulness. In doing so, the allocation and payment determination of the proposed

mechanisms are designed to satisfy the truthfulness property. Our proposed mechanisms

allow dynamic provisioning of VMs, and do not require pre-provisioning the VMs. As a

result, cloud providers can fulfill dynamic market demands efficiently. A key property of

our proposed mechanisms is the consideration of multiple types of resources when provi-

sioning the VMs, which is the case in real cloud settings. Previous work considered only

one type of resource and did not take into account the scarcity of each resource type when

making the VM instance provisioning an allocation decisions. The novelty of our proposed

mechanisms consists of taking these into account to improve the allocation decisions. We

perform extensive experiments that show that our proposed greedy mechanisms are able

to find near optimal allocations while satisfying the truthfulness property.

4

1.2 Related Work

Several researchers investigated various resource allocation problems in clouds and grids by

employing game theory. Wei et al. [49] formulated the resource allocation problem as a task

scheduling problem with QoS constraints. They proposed a game-theoretic approximated

solution. However, there is an assumption that the cloud provider knows the execution

time of each subtask, which is unrealistic in cloud environments. Jain et al. [19] designed

an efficient truthful-in-expectation mechanism for resource allocation in clouds where only

one type of resource was considered. Kong et al. [23] designed a stochastic mechanism to

allocate resources among selfish VMs in a non-cooperative cloud environment. Mashayekhy

and Grosu [29, 31, 33] investigated the problem of federating resources in grids by employ-

ing coalitional game theory and designed grid federation formation mechanisms. They

also studied the problem of federating resources in grids considering the trust relationship

among grid service providers [32]. Mashayekhy and Grosu [30] addressed the problem of

federation formation in clouds and designed a coalitional game-based mechanism that en-

ables the cloud providers to dynamically form a cloud federation maximizing their profit.

Wang et al. [48] showed that system heterogeneity plays an important role in determining

the dynamics of truthful mechanisms. Our proposed mechanisms take into account the

heterogeneity of the systems and that of user requests when making allocation decisions.

Ardagna et al. [8] modeled the service provisioning problem as a generalized Nash game

and proved the existence of equilibria for such game. In their model, the objective of the

SaaS is to maximize its revenue satisfying the service level agreement, while the objective

of the IaaS is to maximize the profit by determining the spot instances price. Di Valerio et

al. [15] formulated the service provisioning problem as a Stackelberg game, and computed

the equilibrium price and allocation strategy by solving the associated optimization prob-

lem. However, both studies considered only one type of VM instances, thus, the problem

they solved is a one dimensional provisioning problem.

Mechanism design theory has been employed in designing truthful allocation mecha-

nisms in several areas. In particular, there is a large body of work in spectrum auctions,

5

where a government or a primary license holder sells the right to use a specific frequency

band in a specific area via auction-based mechanisms (e.g., [21, 50, 53, 54]). In these stud-

ies, only one type of resource (i.e., the spectrum) is available for allocation. However, in

this thesis, we consider several types of resources (e.g., core, memory, storage), and thus

the mechanisms proposed in the above studies cannot be used in our context. Zhou et

al. [53] proposed a truthful mechanism, that assumes the existence of k uniform channels

that can be spatially reused (i.e., a channel can be allocated to more than one user simul-

taneously). Their greedy mechanism sorts the bidders in descending order of their bids.

Wu and Vaidya [50] extended the study of Zhou et al. by proposing a truthful mechanism

considering grouping the users based on their spatial conflicts. Their greedy mechanism is

based on the ordering of the groups’ bids. However, VM instances cannot be simultaneously

assigned to the users and thus, their mechanism cannot be used to solve the VM allocation

problem. The closest work to ours in the spectrum allocation area is by Jia et al. [20] who

proposed truthful mechanisms for a secondary spectrum market. The authors considered K

uniform channels covering a certain region that is partitioned into small cells. This problem

considers several cells available which in some sense correspond to several types of VMs in

our study. However, in each cell a fixed number of uniform channels are available to be

sold, whereas, in our case, each VM instance is composed of several types of heterogeneous

resources. Furthermore, the mechanism proposed by Jia et al. [20] incorporates a simple

greedy metric for ordering the users that is based on the ratio of their bids to the number

of requested channels. However, our proposed mechanisms incorporate bid density metrics

that not only consider the structure of VMs (i.e., the multiple resources), but also take

into account the scarcity of resources. In addition, we do not limit the number of available

VMs for each type of VM, and we allow dynamic provisioning of VMs.

The design of truthful mechanisms for resource allocation in clouds has been investi-

gated by Zaman and Grosu [51, 52]. They proposed a combinatorial auction-based mech-

anism, CA-GREEDY, to allocate VM instances in clouds [52]. They showed that CA-

GREEDY can efficiently allocate VM instances in clouds generating higher revenue than

the currently used fixed price mechanisms. However, CA-GREEDY requires that the VMs

6

are provisioned in advance, that is, it requires static provisioning. They extended their

work to dynamic scenarios by proposing a mechanism called CA-PROVISION [51]. CA-

PROVISION selects the set of VM instances in a dynamic fashion which reflects the market

demand at the time when the mechanism is executed. However, these mechanisms do not

consider several types of resources. Their proposed mechanisms only consider computa-

tional resources (i.e., cores), which is only one of the dimensions in our proposed model.

In addition to this, our proposed mechanisms consider the scarcity of the resources when

making provisioning and allocation decisions.

The design of truthful mechanisms for several classes of combinatorial optimization

problems was initiated by Nisan and Ronen [42]. Efficiently computable truthful mecha-

nisms for several problems has since been proposed and investigated by Archer and Tar-

dos [7], Mu’alem and Nisan [37], and Awerbuch et al. [9]. The reader is referred to Nisan et

al. [43] for a comprehensive introduction to mechanism design. Rothkopf et al. [44] were

the first to investigate the winner determination problem and the complexity of solving

combinatorial auctions. Sandholm [45] proved that solving the winner determination prob-

lem is NP-complete. Zurel and Nisan [55] presented a heuristic algorithm for combinatorial

auctions. For a detailed survey on combinatorial auctions the reader is referred to [14].

Lehmann et al. [25] proposed a greedy truthful mechanism for single-unit combinatorial

auctions where all items are non-identical. However, our focus is on the design of greedy

truthful mechanisms in multi-unit settings. In a multi-unit combinatorial auction, there

exists many types of items and many identical items of each type. Several studies focused

on finding solutions for multi-unit combinatorial auctions without considering the truthful-

ness [18, 26]. Bartal et al. [10] proposed a truthful mechanism for multi-unit combinatorial

auctions where each item has a fixed number of units. This is not the case in clouds due

to the fact that the resources are provisioned dynamically based on the user requests, and

the number of VMs are not known.

The VM provisioning and allocation problem considering multiple types of resources can

be formulated as a multidimensional knapsack problem which is a class of General Assign-

ment Problem (GAP). Mansini and Speranza [28] proposed an exact algorithm for solving

7

small size multidimensional knapsack problems. Their approach is based on the optimal

solution of subproblems by improving the efficiency of the branch-and-bound method for

the integer program formulation. Shmoys and Tardos [47] proposed a 2-approximation for

GAP without considering the truthfulness property. There are several studies on designing

truthful mechanisms for GAP. Aggarwal and Hartline [6] designed truthful mechanisms

for auctions by modeling them as knapsack problems. Greedy algorithms for solving the

multidimensional knapsack problem (MKP) have been extensively studied by Kellerer et

al. [22]. However, none of these studies considered the design of truthful mechanisms.

Several researchers investigated the problem of VM provisioning in clouds from different

points of view and applied various methodologies to solve it. Calheiros et al. [12] designed

a provisioning technique using a queuing network system model that dynamically adapts

to workload changes related to applications. Their prediction-based approach determines

the number of allocated VMs. Bi et al. [11] proposed a dynamic provisioning technique

for multi-tier applications in cloud based on queuing networks. However, their objective

is to minimize the total number of VM instances allocated to the users based on their

request specifications. Ellens et al. [16] analyzed the problem of allocating resources to

different users with multiple service request classes. They modeled a cloud provider using a

queuing system with different priority classes. Fang et al. [17] proposed a Cloud Resource

Prediction and Provisioning scheme (RPPS) that predicts the future demand using the

ARIMA model and performs proactive resource provisioning for cloud applications. In

RPPS, a cloud provider can dynamically add VMs. Lampe et al. [24] proposed a heuristic

approach considering several types of resources. However, they did not propose a truthful

mechanism. Chaisiri et al. [13] proposed an optimal cloud resource provisioning algorithm

to minimize the total cost of provisioning resources. They modeled the problem as a

stochastic integer program, where there are several cloud providers and one consumer.

The algorithm considers all possible combinations of VMs. Being a NP-hard problem, the

algorithm for solving it does not scale well to larger input sizes. Shi et al. [46] formulated

the problem of VM allocation as a Mixed Integer Program by considering fixed price VM

instances. However, they concluded that this optimal approach is not practical for medium

8

and large problems. The focus was on maximizing the cloud provider’s profit without

considering the users’ incentives for manipulating the allocation mechanisms by untruthful

reporting.

1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2, we describe the VM provi-

sioning and allocation problem in clouds. In Chapter 3, we introduce the basic concepts

of mechanism design and present the design of an optimal mechanism for VM provisioning

and allocation. In Chapter 4, we present the proposed mechanisms and characterize their

properties. In Chapter 5, we evaluate the mechanisms by extensive simulation experiments.

In Chapter 6, we summarize our results and present possible directions for future research.

9

CHAPTER 2: VM PROVISIONING

AND ALLOCATION PROBLEM

We consider a cloud provider offering R types of resources, R = {1, . . . , R}, to users in the

form of VM instances. These types of resources include cores, memory, storage, etc. The

cloud provider has restricted capacity, Cr, on each resource r ∈ R available for allocation.

The cloud provider offers these resources in the form of M types of VMs, VM = {1, . . . , M},
where each VM of type m ∈ VM provides a specific amount of each type of resource r ∈ R.

The amount of resources of type r that one VM instance of type m provides is denoted by

wmr. As an example, in Table 2.1, we present the four types of VM instances offered by

Amazon EC2 at the time of writing this thesis. If we consider that CPU represents the

type 1 resource, memory, the type 2 resource, and storage, the type 3 resource, we can

characterize, for example, the Large instance (m = 3) by: w11 = 4, w12 = 7.5 GB, and

w13 = 850 GB.

We consider a set U of N users requesting a set of VM instances. User i, i = 1, . . . , N ,

requests a bundle Si =< ki1, ki2, . . . , kiM > of M types of VM instances, where kim is the

number of requested VM instances of type m ∈ VM. In addition, she specifies a bid bi for

her requested bundle Si. User i values her requested bundle Si at vi(Si), where vi(Si) is

called the valuation of user i for bundle Si. The valuation represents the maximum price

a user is willing to pay for using the requested bundle for a unit of time. Each user can

submit her request as a vector specifying the number of VM instances, and her bid. For

example, (< 1, 3, 4, 2 >, $20) represents a user requesting 1 small VM instance, 3 medium

VM instances, 4 large VM instances, and 2 extra large VM instances, and her bid is $20.

We denote by V the social welfare, which is defined as the sum of users’ valuations:

V =
∑

i∈U

vi(Si) · xi (2.1)

10

Table 2.1: VM instance types offered by Amazon EC2.

Small Medium Large Extralarge
m = 1 m = 2 m = 3 m = 4

CPU 1 2 4 8
Memory (GB) 1.7 3.75 7.5 15
Storage (GB) 160 410 850 1690

where xi, i = 1, . . . , N , are decision variables defined as follows: xi = 1, if bundle Si is

allocated to user i; and xi = 0, otherwise.

To design incentive-compatible mechanisms, we consider the standard mechanism design

objective, that is, maximizing the social welfare [43]. Maximizing social welfare can help a

cloud provider increase its revenue by allocating the VMs to the users who value them the

most.

We formulate the problem of VM provisioning and allocation in clouds (VMPAC) as an

Integer Program (called VMPAC-IP) as follows:

Maximize V (2.2)

Subject to:
∑

i∈U

∑

m∈VM

kimwmrxi ≤ Cr, ∀r ∈ R (2.3)

xi = {0, 1}, ∀i ∈ U (2.4)

The solution to this problem is a vector x = (x1, x2, . . . , xN) maximizing the social welfare.

Constraints (2.3) ensure that the allocation of each resource type does not exceed the

available capacity of that resource. Constraints (2.4) represent the integrality requirements

for the decision variables. These constraints force the cloud provider to provision the

whole bundle of VM instances and to allocate bundles to the selected users. The VMPAC

problem is equivalent to the multidimensional knapsack problem (MKP) [22], where the

knapsack constraints are the resource capacity constraints and the bundles are the items.

The objective is to select a subset of items for the multidimensional knapsack maximizing

11

the total value. As a result, the VMPAC problem is strongly NP-hard.

12

CHAPTER 3: MECHANISM

DESIGN FRAMEWORK

In this chapter, we first present the basic concepts of mechanism design and then propose

an optimal mechanism that solves VMPAC.

3.1 Preliminaries

A mechanism M = (A,P) consists of an allocation function A = (A1, . . . ,AN) and a

payment rule P = (P1, . . . ,PN). The allocation function determines which users receive

their requested bundles, and the payment rule determines the amount that each user must

pay.

In our model, there are N users in U , and the type of a user i is denoted by θi = (Si, bi).

We denote by θ = (θ1, . . . , θN), the vector of types of all users, and by θ−i, the vector of

all types except user i’s type (i.e., θ−i = (θ1, . . . , θi−1, θi+1, . . . , θN)). The allocation and

payments depend on the users type declarations. The allocation function finds a subset

A(θ) ⊆ U of winning users, where Ai is the allocated bundle of VMs to user i.

The users are assumed to be single-minded. That means, user i desires only the re-

quested bundle of VM instances, Si, and derives a value of bi if she gets the requested

bundle or any superset of it, and zero value, otherwise. Thus, the valuation function for

user i is as follows:

vi(Ai) =

bi if Si ⊆ Ai

0 otherwise

(3.1)

The bundle of VM instances requested by a single-minded user consists of the minimum

amount of resources that the user needs in order to run her job.

User i has a quasi-linear utility function ui(θ) = vi(Ai(θ))− Pi(θ), where Pi(θ) is the

13

payment for user i that the mechanism calculates based on the payment rule P. Each

user’s type is private knowledge. The users may declare different types from their true

types. We denote by θ̂i = (Ŝi, b̂i) user i’s declared type. Note that θi = (Si, bi) is user i’s

true type. The goal of a user is to maximize her utility, and she may manipulate the

mechanism by lying about her true type to increase her utility. In our case, since the

type of a user is a pair of bundle and value, the user can lie about the value by reporting a

higher value in the hope to increase the likelihood of obtaining her requested bundle. These

manipulations by the users will lead to inefficient allocation of resources and ultimately will

reduce the revenue obtained by the cloud provider. We want to prevent such manipulations

by designing truthful mechanisms for solving VMPAC. A mechanism is truthful if all users

have incentives to reveal their true types.

Definition 1 (Truthfulness). A mechanismM is truthful (also called strategy-proof or in-

centive compatible [43]) if for every user i, for every type declaration of the other users θ̂−i,

a true type declaration θi and any other declaration θ̂i of user i, we have that ui(θi, θ̂−i) ≥
ui(θ̂i, θ̂−i).

In other words, a mechanism is truthful if truthful reporting is a dominant strategy for

the users, that is, the users maximize their utilities by truthful reporting independently of

what the other users are reporting. To obtain a truthful mechanism the allocation function

A must be monotone and the payment rule must be based on the critical value [37].

To define monotonicity, we need to introduce a preference relation � on the set of types

as follows: θ̂′i � θ̂i if b̂′i ≥ b̂i and Ŝi =< k̂i1, k̂i2, . . . , k̂iM >, Ŝ ′
i =< k̂′

i1, k̂
′
i2, . . . , k̂

′
iM > such

that
∑

m∈VM k̂′
imwmr ≤

∑

m∈VM k̂imwmr, ∀r ∈ R. That means type θ̂′i is more preferred

than θ̂i if user i requests fewer resources of each type in her current bundle and/or submits

a higher bid.

Definition 2 (Monotonicity). An allocation function A is monotone if it allocates the

resources to user i with θ̂i as her declared type, then it also allocates the resources to user i

with θ̂′i, where θ̂′i � θ̂i.

14

Algorithm 1 VCG-VMPAC Mechanism

1: Input: C = (C1, . . . , CR); vector of resource capacities
2: {Collect user requests (types).}
3: for all i ∈ U do

4: Collect user type θ̂i = (Ŝi, b̂i) from user i

5: end for

6: {Allocation.}
7: (V ∗, x∗) = Solve IP-VMPAC(θ̂,C)
8: Provisions and allocates VM instances according to x∗.
9: {Payment.}

10: for all i ∈ U do

11: (V ′∗, x′∗) = Solve IP-VMPAC(θ̂−i,C)
12: sum1 = sum2 = 0
13: for all j ∈ U , j 6= i do

14: sum1 = sum1 + b̂jx
′∗
j

15: sum2 = sum2 + b̂jx
∗
j

16: end for

17: Pi = sum1 − sum2

18: end for

19: Output: V ∗, x∗, P = (P1,P2, . . . ,PN)

Any winning user who receives her requested bundle by declaring a type θ̂i is still wining

if she requests a smaller bundle and submits a higher bid.

Definition 3 (Critical value). Let A be a monotone allocation function, then for every θi,

there exist a unique value vc
i , called critical value, such that ∀θ̂i � (Si, v

c
i), θ̂i is a winning

declaration, and ∀θ̂i ≺ (Si, v
c
i), θ̂i is a losing declaration.

The mechanism M works as follows. It first receives the declared types (bundles and

bids) from each participating user, and then, based on the received types determines the

allocation using the allocation function A and the payments using the payment rule P.

The payment rule P is based on the critical value and is defined as follows:

Pi(θ̂) =

vc
i if i wins

0 otherwise

(3.2)

where vc
i is the critical value of user i.

In the next section, we design a Vickrey-Clarke-Groves (VCG)-based optimal mecha-

nism that solves the VMPAC problem.

15

3.2 Truthful Optimal Mechanism

We introduce a VCG-based truthful optimal mechanism that solves the VMPAC prob-

lem. A VCG-based mechanism requires an optimal allocation algorithm implementing the

allocation function A [43]. A VCG mechanism [43] is defined as follows.

Definition 4. A mechanism M = (A,P) is a Vickrey-Clarke-Groves (VCG) mechanism

if A maximizes the social welfare, and

Pi(θ̂) =
∑

j∈A(θ̂−i)

b̂j −
∑

j∈A(θ̂),j 6=i

b̂j , (3.3)

where
∑

j∈A(θ̂−i)
b̂j is the optimal social welfare that would have been obtained had user i

not participated, and
∑

j∈A(θ̂),j 6=i b̂j is the sum of all users valuations except user i’s.

We define the VCG-based mechanism that solves the VMPAC problem as follows:

Definition 5. The VCG-VMPAC mechanism consists of the optimal allocation algorithm

that solves IP-VMPAC and the payment function defined by the VCG payment rule given

in equation (3.3).

The VCG-VMPAC mechanism is given in Algorithm 1. The mechanism is run periodi-

cally by the cloud provider. VCG-VMPAC has one input parameter, the vector of resource

capacities C = (C1, . . . , CR), and three output parameters: V ∗, the optimal social welfare,

x∗, the optimal allocation of VM instances to the users, and P the payments. The mech-

anism collects the requests from the users, expressed as types (lines 2-4), and determines

the optimal allocation by solving the IP-VMPAC (line 6). Once the optimal allocation is

determined the mechanism provisions the required number and types of VM instances and

determines the payments. The users are then charged the amount determined by the mech-

anism (lines 9-15). The VCG payment of a user i is calculated by solving the IP-VMPAC

to find the allocation and welfare obtained without user i’s participation (line 10). Based

on the optimal allocation to the users with and without user i’s participation, the mech-

anism finds the payment for user i, where sum1 is the sum of all values without user i’s

16

Algorithm 2 G-VMPAC-X Mechanism

1: {Collect user requests (types)}
2: for all i ∈ U do

3: Collect user type θ̂i = (Ŝi, b̂i) from user i

4: end for

5: {Allocation}
6: (V ∗, x∗) = G-VMPAC-X-ALLOC(θ̂,C)
7: Provisions and allocates VM instances according to x∗.
8: {Payment}
9: P =PAY(θ̂,C,x)

participation in the mechanism, and sum2 is the sum of all except user i’s value in the

optimal case (lines 11-15).

Being a VCG-based mechanism, VCG-VMPAC is truthful [43], and it determines the

optimal allocation. However, the VMPAC is strongly NP-hard, and thus, the execution

time of VCG-VMPAC becomes prohibitive for large instances of VMPAC. To be able to

solve VMPAC in reasonable time, we resort to greedy mechanisms, which we design in the

next chapter.

17

CHAPTER 4: TRUTHFUL

GREEDY MECHANISMS

In this chapter, we present the proposed truthful greedy mechanisms and then investigate

their properties.

4.1 G-VMPAC-X Truthful Greedy Mechanisms

The VMPAC problem is strongly NP-hard and there is no Fully Polynomial Time Ap-

proximation Scheme (FPTAS) for solving it, unless P = NP [22]. Thus, one solution to

solve VMPAC is to design heuristic approximation algorithms. In general, approximation

algorithms do not necessarily satisfy the properties required to achieve truthfulness, and

thus, they need to be specifically designed for truthfulness. Our goal is to design truthful

greedy approximation mechanisms that solve the VMPAC problem.

We propose a family of truthful greedy mechanisms, called G-VMPAC-X. The G-

VMPAC-X family is given in Algorithm 2. A mechanism from this family is executed

periodically by the cloud provider. The mechanism collects the requests from the users

expressed as types (lines 1-3) and determines the allocation by calling the allocation algo-

rithm (lines 4-5). The allocation algorithm can be any version of the G-VMPAC-X-ALLOC

allocation algorithms that we present later in this chapter. Once the allocation is deter-

mined, the mechanism provisions the required number and types of VM instances (line 6).

Then, the mechanism determines the payments by calling the PAY function (lines 7-8).

The users are then charged the amount determined by the mechanism.

The general form of the allocation algorithm (called G-VMPAC-X-ALLOC) of this fam-

ily of mechanisms is given in Algorithm 3. G-VMPAC-X-ALLOC has two input parameters:

the vector of users declared types θ̂, and the vector of resource capacities C = (C1, . . . , CR);

and two output parameters: V , the total social welfare and x, the allocation of VM in-

18

Algorithm 3 G-VMPAC-X-ALLOC Allocation algorithms

1: Input: θ̂ = (θ̂1, . . . , θ̂N); vector of types (bundle, bid)
2: Input: C = (C1, . . . , CR); vector of resource capacities
3: V = 0
4: x← 0

5: Ĉ = C

6: for all r ∈ R do

7: fr ← 1, for G-VMPAC-I-ALLOC; or
fr ← 1

Cr

for G-VMPAC-II-ALLOC; or

fr ←
P

N

i=1
âir−Cr

P

N

i=1
âir

, for G-VMPAC-III-ALLOC

8: end for

9: for all i ∈ U do

10: di = b̂i√
P

R

r=1
fr âir

11: end for

12: Sort U in decreasing order of di

13: for all i ∈ U do

14: flag ← TRUE

15: for all r ∈ R do

16: C̃r = Ĉr −
∑

m∈VM
kimwmr

17: if C̃r < 0 then

18: flag ← FALSE

19: break;
20: end if

21: end for

22: if flag then

23: V = V + b̂i

24: xi = 1
25: Ĉ = C̃

26: end if

27: end for

28: Output: V , x

stances to the users. The algorithm orders the users (lines 6-10) according to a general

density metric defined as:

di =
b̂i

√

∑R

r=1 frâir

, ∀i ∈ U (4.1)

where âir =
∑

m∈VM k̂imwmr is the amount of each resource of type r requested by user i,

and fr is the relevance factor characterizing the scarcity of resources of type r. A higher

fr means a higher scarcity of resource r, thus, a lower density. That means, a user that

requests more resources of a scarce type is less likely to receive her requested bundle. G-

VMPAC-X-ALLOC algorithm allocates the VM instances to users in decreasing order of

19

their densities.

The choice of relevance factors, fr, defines the members of the G-VMPAC-X family

of allocation algorithms. We consider three choices for fr, and obtain three allocation

algorithms, G-VMPAC-I-ALLOC, G-VMPAC-II-ALLOC, and G-VMPAC-III-ALLOC, as

follows:

1) G-VMPAC-I-ALLOC: obtained when fr = 1, ∀r ∈ R. This is a direct generalization

of the one-dimensional case considered by Lehmann et al. [25]. This generalization does

not take into account the scarcity of different resources and may not work well in situations

in which the VM instances are highly heterogeneous in terms of the resources provided.

2) G-VMPAC-II-ALLOC: obtained when fr = 1
Cr

, ∀r ∈ R. This addresses the scarcity

issues in G-VMPAC-I, by scaling the values of fr with the inverse of capacity Cr for each

resource r.

3) G-VMPAC-III-ALLOC: obtained when fr =
PN

i=1 âir−Cr
PN

i=1 âir
, ∀r ∈ R. This relevance fac-

tor considers the relative scarcity of resources. As a result, resources with higher demands

have a higher fr and thus, contribute more to decreasing the density. Users requesting

more highly demanded resources have lower densities and are less likely to receive their

requested bundles.

Once the users are sorted according to their density values (line 10), the algorithm

determines the allocation x (lines 11-22). In doing so, the algorithm checks the feasibility

of allocating the requested bundle of each user (lines 12-17). If the allocation is feasible,

the algorithm updates V and xi (lines 19-20). The time complexity of the algorithms is

O(N(RM + log N)).

The PAY function is given in Algorithm 4. The PAY function has three input param-

eters, the vector of users declared types (θ̂), the vector of resource capacities C, and the

optimal allocation x∗. It has one output parameter: P, the payment vector for the users.

PAY determines the payments of users sorted according to the density metric (lines 4-16).

For each user i, PAY sets her initial payment to 0 (line 5). If user i is among the win-

ning users, PAY updates her payment (lines 7-16), otherwise the payment remains 0. The

payments are based on the critical values of the winning users. In doing so, PAY calls the

20

Algorithm 4 PAY: Payment Function

1: Input: θ̂ = (θ̂1, . . . , θ̂N); vector of types (bundle, bid)
2: Input: C; vector of resource capacities
3: Input: x∗; winning users
4: for all i ∈ U , where U is sorted in decreasing order of di do

5: Pi = 0
6: if x∗

i then

7: l = −1
8: (V ′∗, x′∗) = G-VMPAC-X-ALLOC (θ̂ \ θ̂i,C)
9: for all j ∈ U , dj < di in decreasing order of dj do

10: if x∗
j = 0 and x′∗

j then

11: l = j

12: break;
13: end if

14: end for

15: if l then

16: Pi = dl

√

∑R

r=1
frâir

17: else

18: Pi = 0
19: end if

20: end if

21: end for

22: Output: P = (P1,P2, . . . ,PN)

allocation algorithm, G-VMPAC-X-ALLOC without considering the participation of user i

(line 8). Then, PAY tries to find user j such that she wins in the absence of user i, and she

does not win in the presence of user i (lines 9-10). If PAY finds such a user, it stores her

index l (lines 11-12), otherwise user i pays 0 (line 16). The payment of winning user i is

calculated by multiplying
∑R

r=1 âir with the highest density among the losing users, user l,

who would win if i would not be a winner (line 14).

4.2 G-VMPAC-X Mechanisms Properties

In this section, we show that the G-VMPAC-X mechanisms are truthful and determine

their approximation ratio. We show first that the allocation algorithms are monotone, and

thus, satisfy the first requirement for truthfulness.

Theorem 1. The G-VMPAC-X-ALLOC allocation algorithms are monotone.

Proof. We show that the algorithms that are part of G-VMPAC-X-ALLOC family produce

monotone allocations. In order to show this, we assume that user i with declared type θ̂i

21

is allocated her requested bundle and show that she is still allocated if she declares type

θ̂′i, where θ̂′i � θ̂i. Here, θ̂′i � θ̂i, means that user i may request a VM bundle with fewer

resources of each type or report a higher value. We separate the proof into three cases as

follows.

i) User i declares a higher value, i.e., b̂′i > b̂i. This leads to a higher density, d′
i > di

in all G-VMPAC-X algorithms. This is due to the fact that the requested amount of each

resource is the same in both bundles corresponding to θ̂i and θ̂′i. Thus, user i remains

in the same or advances to a higher position in the greedy order when declaring θ̂′i. As

a result, her allocation will not change when any of the algorithms that are members of

G-VMPAC-X-ALLOC is used.

ii) User i declares a bundle Ŝ ′
i =< k̂′

i1, k̂
′
i2, . . . , k̂

′
iM > with fewer resources of each type

than bundle Ŝi =< k̂i1, k̂i2, . . . , k̂iM >, i.e.,
∑

m∈VM k̂′
imwmr ≤

∑

m∈VM k̂imwmr, ∀r ∈ R.

That means, user i requests fewer resources and as a result, a′
ir < air, ∀r ∈ R. It is

easy to see that in G-VMPAC-I-ALLOC and G-VMPAC-II-ALLOC, this leads to a higher

density for user i, that is, d′
i > di. We now show that d′

i > di for G-VMPAC-III. In the

G-VMPAC-III case,
∑N

i′=1 ai′r− air and Cr have the same values in both type declarations

(θ̂i and θ̂′i). In the following, we denote by α =
∑N

i′=1 ai′r − air. Since a′
ir < air, by

multiplying with −Cr both sides of the inequality, we obtain −Cra
′
ir > −Crair. Then,

by adding α(α + air + a′
ir − Cr) and aira

′
ir on both sides of the inequality, we obtain

(α + a′
ir)(α + air − Cr) > (α + air)(α + a′

ir − Cr), therefore α+air−Cr

α+air
>

α+a′

ir−Cr

α+a′

ir

. Thus,

fr > f ′
r, which implies d′

i > di.

iii) User i declares a higher value, b̂′i > b̂i, and a bundle Ŝ ′
i with fewer resources than Ŝi.

From the above two cases, user i will still be allocated the bundle, thus remaining among

the winning users.

In all three cases, user i’s allocation will not change, and she remains among the winning

users. This implies that all the allocation algorithms in the G-VMPAC-X-ALLOC family

are monotone.

In the following, we show that the payment algorithm is based on the critical value, and

thus, satisfies the second requirement for truthfulness.

22

Theorem 2. The payment algorithm, PAY, implements the critical value payment.

Proof. To prove that PAY determines the critical value payment for the users, we need to

show that Pi is the critical value for user i. Note that Pi = dl

√

∑R

r=1 frair, where l is the

index of user l who would have won if user i did not participate, and she appears after

user i based on the decreasing order of the density metric. We separate the proof into two

cases as follows:

i) User i declares a higher value than Pi, (i.e., b̂′i > Pi). In this case, she wins and pays

the same amount Pi.

ii) User i declares a lower value than Pi, (i.e., b̂′i < Pi). This leads to a density

d′
i =

b̂′i
√

∑R

r=1 frair

<
Pi

√

∑R

r=1 frair

.

Since Pi = dl

√

∑R

r=1 frair, we obtain

d′
i <

dl

√

∑R

r=1 frair
√

∑R

r=1 frair

= dl.

As a result, d′
i < dl, and user i is not a winning user.

These show that the payment Pi is the minimum valuation that user i must bid to

obtain her required bundle. In the case in which user i is not a winner, she pays 0, thus,

satisfying the properties of the critical value payment. As a result, the payment determined

by PAY is the critical value payment.

We now show that the proposed mechanisms are truthful.

Theorem 3. The proposed mechanisms in the G-VMPAC-X family are truthful.

Proof. The allocation algorithms in the G-VMPAC-X family are monotone (Theorem 1)

and the payment (implemented by PAY) is the critical value payment (Theorem 2), there-

fore, according to [37], the mechanisms in the G-VMPAC-X family are truthful.

23

In the following, we analyze the effect of untruthful reporting on the utility of the users

participating in the G-VMPAC-II mechanism by considering an example. The behavior of

the other two proposed mechanisms is similar and we do not present them here. To show

that our proposed mechanism, G-VMPAC-II, is robust against manipulation by a user, we

consider three users requesting VM instances of the type given in Table 1. The true types

of the three users are as follows: user 1, (< 5, 0, 0, 0 >, $10); user 2, (< 0, 4, 0, 0 >, $25) and

user 3, (< 2, 0, 0, 2 >, $15). The capacity of the three resources are as follows: 30 cores,

80 GB of memory, and 6000 GB of storage. The G-VMPAC-II calculates the density for

each of the users as 15.68, 29.31, and 11.73, respectively, then allocates resources to user 1

and 2 in the case that all users declare their true types. The payments of the winning users

determined by G-VMPAC-II are $7.47 and $10.0, respectively.

We assume that user 2 lies about her type θ̂2. The consequence of such a declaration

depends on her reported value b2 and the bundle S2. We consider different scenarios as

shown in Table 4.1, where user 2 does not reveal her true type. Case I is when user 2

declares her true type. In case II, user 2 reports a value greater than her true type and she

still wins, and the mechanism determines the same payment for her as in case I. In case III,

user 2 reports a value less than her true type, but not less than the price determined by our

mechanism. In this case, the user is still winning, and pays the same amount as in case I.

In case IV, user 2 reports a value below her determined payment. In this case, she will not

get her requested bundle, and her utility is zero. In case V, she declares a larger bundle

and still obtains the bundle due to available capacities. However, she pays more and her

utility decreases. In case VI, she declares a larger bundle but becomes a loser since the

cloud provider does not have enough resources to fulfill her requested bundle. As a result,

her utility is zero. In all cases, the user can not increase her utility by declaring a type

other than her true type, and thus, the truthfulness property is satisfied.

In the following, we determine the approximation ratio of the greedy mechanisms in the

G-VMPAC-X family.

Theorem 4. The approximation ratio of the mechanisms in the G-VMPAC-X family is
√

NRCmax, where Cmax = maxr∈R Cr.

24

Table 4.1: Different scenarios for user 2’s type declaration

Case S2 b2 Scenario Stat. Pay. Utility

I < 0, 4, 0, 0 > $25 b̂2 = b2, Ŝ2 = S2 W 10.0 15.0

II < 0, 4, 0, 0 > $30 b̂2 > b2, Ŝ2 = S2 W 10.0 15.0

III < 0, 4, 0, 0 > $20 b̂2 < b2, Ŝ2 = S2 W 10.0 15.0

IV < 0, 4, 0, 0 > $5 b̂2 < b2, Ŝ2 = S2 L 0 0

V < 1, 4, 0, 0 > $25 b̂2 = b2, Ŝ2 > S2 W 10.55 14.45

VI < 0, 4, 0, 3 > $25 b̂2 = b2, Ŝ2 > S2 L 0 0

Proof. Let X∗ be set of users in the optimal solution, and V ∗ be the optimal value. Let

X and V be the set of users and the value in the obtained solution by G-VMPAC-X,

respectively. We need to prove that V ∗ ≤ V α, where α is the approximation ratio.

We define X̂ = X \ (X ∩X∗) and X̂∗ = X∗ \ (X ∩X∗). Therefore, we have X̂ ∩ X̂∗ = ∅.
Based on the new sets X̂ and X̂∗, the corresponding values are V̂ and V̂ ∗, respectively.

Now, instead of proving V ∗ ≤ αV , it is sufficient to prove that V̂ ∗ ≤ αV̂ . This is due to

the fact that we can subtract the values of the users in (X ∩X∗) from both V and V ∗.

V̂ ∗ =
∑

i∈X̂∗

b̂i ≤ α
∑

i∈X̂

b̂i = αV̂ (4.2)

We define a set of users Di for user i, ∀i ∈ U including user i such that if j ∈ Di then

j ≥ i (based on the order) and j ∈ X∗ but j 6∈ X because of user i. Meaning that,

user i blocks each user in Di from entering X. It is obvious that X∗ ⊆ ⋃

i∈XDi. Then,
∑

i∈X̂∗ b̂i ≤
∑

i∈
S

j∈X̂
Dj

b̂i ≤ α
∑

i∈X̂ b̂i. Therefore, it is sufficient to show for every i ∈ X̂

that:
∑

j∈Di
b̂j ≤ αb̂i. Note that every j ∈ Di appeared after i in the greedy order, and

thus, dj ≤ di. Then,

b̂j ≤
b̂i

√

∑R

r=1 frajr
√

∑R

r=1 frair

(4.3)

25

Summing over all j ∈ Di, we have:

∑

j∈Di

b̂j ≤
∑

j∈Di

b̂i

√

∑R

r=1 frajr
√

∑R

r=1 frair

≤ b̂i
√

∑R

r=1 frair

∑

j∈Di

√

√

√

√

R
∑

r=1

frajr (4.4)

Using the Cauchy-Schwarz inequality on
∑

j∈Di

√

∑R

r=1 frajr of Equation (4.4), we have:

∑

j∈Di

√

√

√

√

R
∑

r=1

frajr

2

≤
∑

j∈Di

1
∑

j∈Di

R
∑

r=1

frajr (4.5)

Using square root on both sides we obtain:

∑

j∈Di

√

√

√

√

R
∑

r=1

frajr ≤
√

∑

j∈Di

1

√

√

√

√

∑

j∈Di

R
∑

r=1

frajr (4.6)

Replacing this in Equation (4.4) we obtain

∑

j∈Di

b̂j ≤
b̂i

√

∑R

r=1 frair

√

∑

j∈Di

1

√

√

√

√

∑

j∈Di

R
∑

r=1

frajr (4.7)

We now consider each of the three mechanisms individually and determine their approxi-

mation ratios.

G-VMPAC-I: Since X∗ is an allocation and fr = 1 for G-VMPAC-I we have

∑

j∈Di

R
∑

r=1

ajr ≤
R

∑

r=1

Cr ≤ RCmax (4.8)

26

where Cmax = maxr∈R Cr. Replacing this in Equation (4.7) we obtain

∑

j∈Di

b̂j ≤
b̂i

√
RCmax

√

∑R

r=1 air

√

∑

j∈Di

1 (4.9)

The worst case is when
∑R

r=1 air has the minimum value, which is 1. In addition, we have
√

∑

j∈Di
1 =
√

N . Therefore,

∑

j∈Di

b̂j ≤ b̂i

√

NRCmax (4.10)

As a result, the approximation ratio is α =
√

NRCmax.

G-VMPAC-II: Since X∗ is an allocation and fr = 1
Cr

for G-VMPAC-II we have

∑

j∈Di

R
∑

r=1

ajr

Cr

≤ R (4.11)

Replacing this in Equation (4.7) we obtain

∑

j∈Di

b̂j ≤
b̂i

√
R

√

∑R

r=1
air

Cr

√

∑

j∈Di

1 (4.12)

The worst case is when
∑R

r=1
air

Cr
has the minimum value, which is 1

Cmax
, where Cmax =

maxr∈R Cr. In addition,
√

∑

j∈Di
1 =
√

N . Therefore,

∑

j∈Di

b̂j ≤ b̂i

√

NRCmax (4.13)

27

As a result, the approximation ratio is α =
√

NRCmax.

G-VMPAC-III: Since X∗ is an allocation and fr =
PN

i=1 air−Cr
PN

i=1 air
for G-VMPAC-III we have

∑

j∈Di

R
∑

r=1

∑N

i=1 air − Cr
∑N

i=1 air

ajr ≤ RCmax (4.14)

where Cmax = maxr∈R Cr. Replacing this in Equation (4.7) we obtain

∑

j∈Di

b̂j ≤
b̂i

√
RCmax

√

∑R

r=1

PN
i=1 air−Cr
PN

i=1 air
air

√

∑

j∈Di

1 (4.15)

The worst case is when
∑R

r=1

PN
i=1 air−Cr
PN

i=1 air
air has the minimum value, which is 1. In addition,

√

∑

j∈Di
1 =
√

N .

∑

j∈Di

b̂j ≤ b̂i

√

NRCmax (4.16)

As a result, the approximation ratio is α =
√

NRCmax.

Thus, the mechanisms from G-VMPAC-X family achieve an approximation ratio of
√

NRCmax.

In our previous work [40], we proposed two greedy mechanisms having an approximation

ratio of RCmax. In this thesis, our proposed mechanisms obtain a better approximation

ratio than that of [40] for many instances of the VMPAC problems that are of practical

interest. This is due to the fact that in many actual instances of the VMPAC problem

RCmax > N , since the number of requests is less than the total maximum capacity of the

resources. Note that the obtained bound is for the extreme worst case scenario in which for

G-VMPAC-I, we assume
∑R

r=1 âir = 1. For example, this corresponds to a request of 1MB

of storage, which is not realistic in practice. For practical scenarios, we expect the solution

to be much closer to the optimal, as validated by the experimental results presented in the

next chapter. The approximation ratio becomes constant under the realistic assumption

28

that the size of the requests are within a given range. This is the case for the current cloud

providers, which offer a bounded number of VM instances for each request (e.g., Microsoft

Azure currently offers a maximum of 20 VM instances to each user).

In Theorem 4, we obtain an approximation ratio for the mechanisms in the G-VMPAC-

X family by analyzing the extreme worst case scenario. The approximation ratio becomes

constant under the realistic assumption that the size of the requests are within a given

range. This is the case for the current cloud providers, which offer a bounded number of

VM instances for each request (e.g., Microsoft Azure currently offers a maximum of 20 VM

instances to each user).

Following the proof of Theorem 4, let X̂∗ be the set of users in the optimal solution,

and X̂ be the set of users in the obtained solution by G-VMPAC-X, where X̂ ∩ X̂∗ = ∅.
We consider a set of users Di for user i such that if j ∈ Di then j ≥ i (based on the order)

and j ∈ X̂∗ but j 6∈ X̂ because of user i. Meaning that, user i blocks each user in Di from

entering X̂. However, based on the bound on the number of VM instances available for a

user imposed by the cloud provider, user i can only block a given number q of users. As

a result,
∑

j∈Di
1 = q, where q is a constant. That is, every user in the greedy approach

can block a constant number of users from the optimal solution to appear in the greedy

solution. In addition, in order for user i to be able to block q users, its request should be

air ≃ qajr, ∀r. Note that this is the worst case scenario given the fact that requests are

within a given range.

We now consider the general form for the three mechanisms, and determine their ap-

proximation ratio for the practical cases described above. We continue from Equation (4.7).

By replacing
∑

j∈Di
1 and air in Equation (4.7), we have:

∑

j∈Di

b̂j ≤
b̂i

√

∑R

r=1 frqajr

√
q

√

√

√

√q

R
∑

r=1

frajr (4.17)

29

Then,

∑

j∈Di

b̂j ≤ b̂i

√
q (4.18)

As a result, the approximation ratio achieved by the G-VMPAC-X mechanisms is
√

q for

instances of the VMPAC problem encountered in practice, where q is a constant.

30

CHAPTER 5: EXPERIMENTAL

RESULTS

We perform extensive experiments with real workload data in order to investigate the prop-

erties of the proposed mechanisms in the G-VMPAC-X family, and the VCG-VMPAC mech-

anism (optimal). We also compare our proposed mechanisms with CA-PROVISION [51].

Since CA-PROVISION considers only the computational resource, in our experiments CA-

PROVISION does not use the amount of other requested resources such as memory and

storage when making allocation decisions. For the VCG-VMPAC mechanism, we use the

CPLEX solver to solve the VMPAC problem optimally. The CPLEX 12 solver is provided

by IBM ILOG CPLEX Optimization Studio for Academics Initiative [3].

All five mechanisms were executed 59,636 times with a total of 3,514,150 user requests.

The auctions are generated using six workload logs from the Grid Workloads Archive [2]

and the Parallel Workloads Archive [4]. We present statistics of the logs in Table 5.1. The

mechanisms are implemented in C++ and the experiments are conducted on Intel 2.93GHz

Quad Proc Hexa Core nodes with 90GB RAM which are part of the Wayne State Grid

System. In this chapter, we describe the experimental setup and analyze the experimental

results.

5.1 Experimental Setup

Because real users request data have not been publicly released by cloud providers yet, for

our experiments, we rely on well studied and standardized workloads from both the Grid

Workloads Archive [2] and the Parallel Workloads Archive [4]. From the Grid Workloads

Archive, we selected four out of six available logs. These logs are: 1) DAS-2 traces from

a research grid at the Advanced School for Computing and Imaging in Netherlands; 2)

NorduGrid traces from the NorduGrid system; 3) AuverGrid traces from the AuverGrid

31

Table 5.1: Statistics of workload logs.

Logfile Avg
jobs per
hour

Range of
CPU

Range of
memory
(MB)

Range of Storage
(MB)

Available
CPUs

Memory
Capacity
(MB)

Storage
Capacity
(MB)

GWA-T-1 DAS-2 81 [1-128] [1-4,295] [10-51,070] 247 760 2,500
GWA-T-3 NorduGrid 34 1 [1-2,147] [10-1,053,072] 24 14,000 640,000
GWA-T-4 AuverGrid 33 1 [1.7-3,668] [10-259,316] 7 8,800 640,000
GWA-T-10 SHARCNET 147 [1-3000] [1-32,021] [10-2,087,029] 85 9,700 4,000
METACENTRUM-2009-2 42 [1-60] [1-61,538] [10-2,592,130] 44 9,700 178,000
PIK-IPLEX-2009-1 36 [1-2560] [1-29,360] [10-4,815,007] 88 89,000 470,000

system; 4) SHARCNET traces from SHARCNET clusters installed at several academic

institutions in Ontario, Canada. From the Parallel Workloads Archive, we selected two

logs that were recorded most recently. These logs are: 5) MetaCentrum from the national

grid of the Czech republic; 6) IBM iDataPlex Cluster log from the Potsdam Institute for

Climate Impact Research (PIK) in Germany. The logs are selected based on the availability

of recorded both CPU and memory requests/usage. Table 5.2 provides a brief description

of the selected workloads. The table contains the names of the log files, the durations the

logs were recorded, and the total number of submitted jobs. In our experiments, each job

in a log represents a user request. In addition, each hour of a log represents one auction.

We consider each log as a series of auctions, where the users can submit their requests

over time to a cloud provider. We setup the auctions to run every hour just to follow the

standard practice in Amazon EC2. Participants of each auction include the new users and

those users who are not served and their deadline has not been exceeded. The new arriving

users are indicated based on the submission time of their requests.

To generate the user requests for the experiments, we extract the data from six fields of

the log files as follows: (1) JobID: the jobs identifier; (2) SubmitTime: the job submission

time; (3) RunTime: the time the job needs to complete its execution; (4) ReqNProcs: the

requested number of processors; (5) Used Memory: the average used memory per processor;

(6) AverageCPUTimeUsed: the average CPU time over all allocated processors. Since the

amount of storage usage was not recorded in the workloads, to generate the requested

storage, we use the value of this field. In each log, we remove the jobs with missing values

in these fields.

For each job in a log, we generate a user request. Since the logs provide data on resource

32

Table 5.2: Workload logs.

Logfile Duration
(hours)

Jobs

GWA-T-1 DAS-2 13,534 1,099,803
GWA-T-3 NorduGrid 8,127 276,144
GWA-T-4 AuverGrid 8,298 274,455
GWA-T-10 SHARCNET 6,909 1,018,355
METACENTRUM-2009-2 2,402 102,538
PIK-IPLEX-2009-1 20,366 742,855

usage, we consider these as values for the requested air, the amount of each resource of

type r requested by user i, where i is a job in a log and r is a resource type. As a result,

a user request contains the requested number of CPUs, the amount of memory and the

amount of storage. To generate bids for users, we generate a random number bi for each

user i between 1 and 10. We also generate a deadline for each job request which is between

3 to 6 times the job’s runtime. The deadline is when a user stops bidding for her requested

bundle irrespective of her allocation.

5.2 Analysis of Results

We compare the performance of G-VMPAC-X, VCG-VMPAC and CA-PROVISION for

different workloads. For each workload, we compute the execution time and the average

social welfare, revenue, and utilization of the resources per hour for each mechanisms.

We present the results for all the selected logs. As for VCG-VMPAC (optimal), it is only

able to complete the experiments for two of the logs: GWA-T-3 NorduGrid and GWA-T-4

AuverGrid. VCG-VMPAC takes 2,623.54 seconds for GWA-T-4 AuverGrid and 132,678.31

seconds for GWA-T-3 NorduGrid. For the rest of the logs, VCG-VMPAC is not able to solve

the VMPAC problem for the selected workloads within 48 hours. VCG-VMPAC is unable

to solve these problems due to exceeding the memory capacity (90 GB) of the machines

we used to run the experiments. This is the reason that we do not present the results

of the optimal VCG-VMPAC mechanism for all the logs in the large scale experiments.

33

 0

 10

 20

 30

 40

 50

 60

 70

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

A
ve

ra
ge

 s
oc

ia
l w

el
fa

re
 p

er
 h

ou
r

Workload file

CA-PROVISION
G-VMPAC-I
G-VMPAC-II
G-VMPAC-III
VCG-VMPAC

Figure 5.1: G-VMPAC-X performance (small scale experiments): Social welfare

This shows that the optimal mechanism is not suitable for solving large scale VMPAC

problems, and thus, we need to resort to heuristic mechanisms. Because of this limitation

with VCG-VMPAC, we compare VCG-VMPAC with the rest of the mechanisms in the

small scale experiments considering only 500 hours of the logs to show the performance of

all mechanisms.

5.2.1 Small-scale

We compare the performance of the mechanisms by considering small scale experiments

consisting of only 500 auction hours from the selected logs.

Fig. 5.1 shows that the achieved average social welfare per hour for the proposed mech-

anisms is very close to that of the optimal mechanism, VCG-VMPAC. However, as shown

in Fig. 5.2, the execution time of our proposed mechanisms, G-VMPAC-X, are about four

to five orders of magnitude lower than that of VCG-VMPAC. Note that this is only for the

first 500 auction hours. Fig. 5.3 shows the average revenue per hour achieved by the cloud

provider using the mechanisms. G-VMPAC-II achieves the highest revenue among all the

34

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

E
xe

cu
tio

n
tim

e
(S

ec
on

ds
)

Workload file

CA-PROVISION
G-VMPAC-I
G-VMPAC-II
G-VMPAC-III
VCG-VMPAC

Figure 5.2: G-VMPAC-X performance (small scale experiments): Execution time

 0

 100

 200

 300

 400

 500

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

A
ve

ra
ge

 r
ev

en
ue

 p
er

 h
ou

r

Workload file

CA-PROVISION
G-VMPAC-I
G-VMPAC-II
G-VMPAC-III
VCG-VMPAC

Figure 5.3: G-VMPAC-X performance (small scale experiments): Revenue

mechanisms for all workloads.

35

 0

 50

 100

 150

 200

 250

 300

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

A
ve

ra
ge

 s
oc

ia
l w

el
fa

re
 p

er
 h

ou
r

Workload file

CA-PROVISION
G-VMPAC-I
G-VMPAC-II
G-VMPAC-III

VCG-VMPAC*

Figure 5.4: G-VMPAC-X performance: Social welfare (*VCG-VMPAC was not able to determine
the allocation for GWA-T-1 DAS-2, GWA-T-10 SHARCNET, METACENTRUM-2009-2, and PIK-IPLEX-
2009-1 in feasible time, and thus, there are no bars in the plots in Figs. 1 to 7 for those cases)

5.2.2 Large-scale

First, we analyze the performance of the mechanisms in terms of social welfare. Fig. 5.4

shows the average social welfare per hour for the selected logs. All mechanisms obtain the

highest social welfare per hour for GWA-T-1 DAS-2 because of the combination of several

factors such as capacities, number of request per hour, and the percentage of users served.

CA-PROVISION performs slightly better on PIK-IPLEX-2009-1 than on the rest of the

logs. This is due to the fact that in this log the CPU is the scarcest resource compared to

the other resources, and this mechanism only relies on one dimension (the computational

resource). As a result, using this mechanism users who request fewer CPUs with relatively

high bid get higher priorities than others. Therefore, this mechanism selects the users who

are more likely to be in the optimal solution, and thus, it achieves higher social welfare in

this case. This is not the case for the other logs where CPU is not the only scarce resource.

Since CA-PROVISION considers only CPU compared to other methods that consider all

the resource types, it has the lowest performance in general.

36

 0

 100

 200

 300

 400

 500

 600

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

A
ve

ra
ge

 r
ev

en
ue

 p
er

 h
ou

r

Workload file

CA-PROVISION
G-VMPAC-I
G-VMPAC-II
G-VMPAC-III

VCG-VMPAC*

Figure 5.5: G-VMPAC-X performance: Revenue

The performance of G-VMPAC-I is susceptible to the relative magnitude of the amount

of the requested resources. Therefore, if the requested resources are highly heterogeneous

(say 10,000 MB of storage vs. a few number of CPUs), a resource that has a higher

relative magnitude than the others becomes dominant in determining the density metric

by G-VMPAC-I. As a result, that resource has the most impact on the performance of

G-VMPAC-I. If such resource is scarce, then G-VMPAC-I obtains the best performance.

In GWA-T-3 NorduGrid, where storage has a high relative magnitude and is scarce, G-

VMPAC-I performs better than other mechanisms.

In most cases, G-VMPAC-II which uses the inverse of the capacity as a weighting factor,

achieves a higher social welfare than the rest of the mechanisms. This is due to the fact

that G-VMPAC-II considers the impact of all resources in order to calculate the density

metric for each user.

The results show that for GWA-T-4 AuverGrid, G-VMPAC-III achieves a social welfare

that is the highest. This is due to the fact that the total amount of requested resource,
∑N

i=1 âir, is relatively close to the capacity of that resource, Cr in this log. In such case, G-

37

 0.1

 1

 10

 100

 1000

 10000

 100000

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

E
xe

cu
tio

n
tim

e
(S

ec
on

ds
)

Workload file

CA-PROVISION
G-VMPAC-I
G-VMPAC-II
G-VMPAC-III

VCG-VMPAC*

Figure 5.6: G-VMPAC-X performance: Execution time

VMPAC-III considers the impact of all resources in order to calculate the density metric for

each user. However, when the sum of the requested resources are very high in comparison

with the available capacity, G-VMPAC-III performs very close to G-VMPAC-I. This is due

to the fact that fr =
PN

i=1 âir−Cr
PN

i=1 âir
approaches 1, which is the case for G-VMPAC-I.

Fig. 5.5 shows the average revenue per hour achieved by the cloud provider when using

the five mechanisms. Even though, all the mechanisms try to maximize the social welfare,

they also obtain high revenue for the cloud provider. G-VMPAC-II achieves the highest

revenue among all the greedy mechanisms for all workloads.

Fig. 5.6 shows the execution times of the mechanisms on a logarithmic scale. As we

expected from the time complexity of the mechanisms, the execution times of G-VMPAC-X

and CA-PROVISION are in the same order of magnitude for each of the logs. The optimal

mechanism, VCG-VMPAC, could not find the solutions even after 48 hours for four out of

six logs. This is due to the fact that the problem gets more complex for higher number of

requests, number of auction hours, and available capacity. VCG-VMPAC is able to solve

VMPAC for the full GWA-T-4 AuverGrid log since the available capacity of CPU in each

38

 0

 20

 40

 60

 80

 100

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

S
er

ve
d

us
er

s

Workload file

CA-PROVISION
G-VMPAC-I
G-VMPAC-II
G-VMPAC-III

VCG-VMPAC*

Figure 5.7: G-VMPAC-X performance: Users served.
(*see Fig. 1 note on VCG-VMPAC)

 0

 20

 40

 60

 80

 100

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

C
or

e
ut

ili
za

tio
n

Workload file

CA-PROVISION
G-VMPAC-I
G-VMPAC-II
G-VMPAC-III

VCG-VMPAC*

Figure 5.8: G-VMPAC-X core utilization (*see Fig. 1 note on VCG-VMPAC)

39

 0

 20

 40

 60

 80

 100

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

M
em

or
y

ut
ili

za
tio

n

Workload file

CA-PROVISION
G-VMPAC-I
G-VMPAC-II
G-VMPAC-III

VCG-VMPAC*

Figure 5.9: G-VMPAC-X memory utilization (*see Fig. 1 note on VCG-VMPAC)

auction is very low. As a result, the feasible solution area becomes strictly limited, and the

CPLEX solver can find the optimal solutions faster than for the rest of the logs.

Fig. 5.7 shows the percentage of served users for each of the five mechanisms. Note that

VCG-VMPAC does not serve a higher number of users than the other mechanisms. This

is due to the fact that the optimal mechanism finds the most valuable subset of users in

order to maximize the social welfare.

Figs. 5.8 to 5.10 show the utilization of cores, memory and storage, respectively. Note

that a higher utilization does not show the effectiveness of the mechanisms. The objective

of all the mechanisms is maximizing the social welfare not the utilization of the resources.

The memory and storage utilization in the case of CA-PROVISION are higher than those of

the other mechanisms. CA-PROVISION chooses users who value CPUs the most without

considering their requested memory and storage. These users are more likely to requests

higher amounts of memory and storage which results in a higher memory and storage

utilization for CA-PROVISION.

From all the above results, we conclude that G-VMPAC-II finds near-optimal solutions

40

 0

 20

 40

 60

 80

 100

 120

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

S
to

ra
ge

 u
til

iz
at

io
n

Workload file

CA-PROVISION
G-VMPAC-I
G-VMPAC-II
G-VMPAC-III

VCG-VMPAC*

Figure 5.10: G-VMPAC-X storage utilization (*see Fig. 1 note on VCG-VMPAC)

to the VMPAC problem and requires small execution times. The small execution time of

our proposed G-VMPAC-X mechanisms makes them good candidates for deployment on

the current cloud computing systems.

41

CHAPTER 6: CONCLUSION

We addressed the problem of dynamic VM provisioning and allocation in clouds by design-

ing truthful mechanisms that give incentives to the users to reveal their true valuations

for their requested bundles of VM instances. The proposed truthful optimal and greedy

mechanisms for solving the VMPAC problem consider the presence of resources of mul-

tiple types. We determined the approximation ratio of the proposed greedy mechanisms

and investigated their properties by performing extensive experiments. The results showed

that the proposed greedy mechanisms determine near optimal solutions while effectively

capturing the dynamic market demand, provisioning the computing resources to match

the demand, and generating high revenue. In addition, the execution time of the proposed

greedy mechanisms is very small. As a recommendation, G-VMPAC-II is the best choice for

the cloud providers since it yields the highest revenue among the proposed greedy mech-

anisms. We plan to implement a prototype allocation system in an experimental cloud

computing system to further investigate the performance of our proposed mechanisms.

42

List of Publications

1. Truthful Greedy Mechanisms for Dynamic Virtual Machine Provisioning and Allocation

in Clouds

M. Nejad, L. Mashayekhy and D. Grosu

IEEE Transactions on Parallel and Distributed Systems (TPDS), Vol. 25, 2014. [38]

2. Energy-aware Scheduling of MapReduce Jobs

L. Mashayekhy, M. Nejad, D. Grosu, D. Lu, W. Shi

Proc. of the 3rd IEEE International Congress on Big Data (BigData’14) - Research Track, Alaska,

USA, June 2014. [34]

3. Incentive-Compatible Online Mechanisms for Resource Provisioning and Allocation in

Clouds

L. Mashayekhy, M. Nejad, D. Grosu, A. Vasilakos

Proc. of the 7th IEEE International Conference on Cloud Computing (CLOUD’14) - Research Track,

Alaska, USA, June 2014. (Acceptance rate: 20%) [35]

4. A Truthful Approximation Mechanism for Autonomic Virtual Machine Provisioning and

Allocation in Clouds

L. Mashayekhy, M. Nejad and D. Grosu

Proc. of the ACM Cloud and Autonomic Computing Conference (CAC’13), Miami, USA, August 2013.

[36]

5. A Family of Greedy Mechanisms for Dynamic Virtual Machine Provisioning and Allocation

in Clouds

M. Nejad, L. Mashayekhy and D. Grosu

Proc. of the IEEE 6th International Conference on Cloud Computing (CLOUD’13) - Research Track,

Santa Clara Marriott, USA, July 2013. (Acceptance rate: 18%) [40]

6. Effects of Traffic Network Dynamics on Hierarchical Community-based Representations

of Large Road Networks

M. Nejad, L. Mashayekhy and R. Chinnam

Proc. of the 15th IEEE International Intelligent Transportation Systems Conference (ITSC’12), pp.

1900-1905, Anchorage, USA, September 2012. [39]

7. State Space Reduction in Modeling Traffic Network Dynamics for Dynamic Routing under

ITS

M. Nejad, L. Mashayekhy, A. Taghavi and R. Chinnam

43

Proc. of the 14th IEEE International Intelligent Transportation Systems Conference (ITSC’11), pp.

277-282, Washington DC, USA, October 2011. [41]

8. Designing customer-oriented catalogs in e-CRM using an effective self-adaptive genetic

algorithm

I. Mahdavi, M. Nejad, F. Adbesh

Expert Systems with Applications, Volume 38, No. 1, January 2011. [27]

44

REFERENCES

[1] Amazon EC2 Instance Types.

[2] Grid workloads archive.

[3] IBM ILOG CPLEX V12.1 user’s manual.

[4] Parallel workloads archive.

[5] WindowsAzure.

[6] G. Aggarwal and J. Hartline. Knapsack auctions. In Proc. of the 17th annual ACM-

SIAM symposium on Discrete algorithm, pages 1083–1092, 2006.

[7] A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents. In Proc.

of the 42nd IEEE Symposium on Foundations of Computer Science, pages 482–491,

2001.

[8] D. Ardagna, B. Panicucci, and M. Passacantando. Generalized Nash equilibria for

the service provisioning problem in cloud systems. IEEE Transactions on Services

Computing, 6(4):429–442, 2013.

[9] B. Awerbuch, Y. Azar, and A. Meyerson. Reducing truth-telling online mechanisms

to online optimization. In Proc. of the 35th annual ACM symposium on Theory of

computing, pages 503–510, 2003.

[10] Y. Bartal, R. Gonen, and N. Nisan. Incentive compatible multi unit combinatorial auc-

tions. In Proc. of the 9th Conf. on Theoretical Aspects of Rationality and Knowledge,

pages 72–87, 2003.

[11] J. Bi, Z. Zhu, R. Tian, and Q. Wang. Dynamic provisioning modeling for virtualized

multi-tier applications in cloud data center. In Proc. of the 3rd IEEE Intl. Conf. on

Cloud Computing, pages 370–377, 2010.

45

[12] R. N. Calheiros, R. Ranjan, and R. Buyya. Virtual machine provisioning based on

analytical performance and qos in cloud computing environments. In Proc. of the 40th

Intl. Conf. on Parallel Processing, pages 295–304, 2011.

[13] S. Chaisiri, B.-S. Lee, and D. Niyato. Optimization of resource provisioning cost in

cloud computing. IEEE Transactions on Services Computing, 5(2):164–177, 2012.

[14] S. De Vries and R. V. Vohra. Combinatorial auctions: A survey. INFORMS Journal

on computing, 15(3):284–309, 2003.

[15] V. Di Valerio, V. Cardellini, and F. Lo Presti. Optimal pricing and service provisioning

strategies in cloud systems: a Stackelberg game approach. In Proc. of the 6th IEEE

Intl. Conf. on Cloud Computing, pages 115–122, 2013.

[16] W. Ellens, M. Zivkovic, J. Akkerboom, R. Litjens, and H. van den Berg. Performance

of cloud computing centers with multiple priority classes. In Proc. of the 5th IEEE

Intl. Conf. on Cloud Computing, pages 245–252, 2012.

[17] W. Fang, Z. Lu, J. Wu, and Z. Cao. Rpps: A novel resource prediction and provi-

sioning scheme in cloud data center. In Proc. of the 9th IEEE Intl. Conf. on Services

Computing, pages 609–616, 2012.

[18] R. Gonen and D. Lehmann. Optimal solutions for multi-unit combinatorial auctions:

Branch and bound heuristics. In Proc. 2nd ACM Conf. on Electronic Commerce, pages

13–20, 2000.

[19] N. Jain, I. Menache, J. Naor, and J. Yaniv. A truthful mechanism for value-based

scheduling in cloud computing. Theory of Computing Systems, pages 1–19, 2013.

[20] J. Jia, Q. Zhang, Q. Zhang, and M. Liu. Revenue generation for truthful spectrum

auction in dynamic spectrum access. In Proc. 10th ACM Intl. Symp. on Mobile Ad

Hoc Networking and Computing, pages 3–12, 2009.

46

[21] G. S. Kasbekar and S. Sarkar. Spectrum auction framework for access allocation in

cognitive radio networks. IEEE/ACM Transactions on Networking, 18(6):1841–1854,

2010.

[22] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[23] Z. Kong, C.-Z. Xu, and M. Guo. Mechanism design for stochastic virtual resource

allocation in non-cooperative cloud systems. In Proc. 4th IEEE Intl. Conf. on Cloud

Computing, pages 614–621, 2011.

[24] U. Lampe, M. Siebenhaar, A. Papageorgiou, D. Schuller, and R. Steinmetz. Maxi-

mizing cloud provider profit from equilibrium price auctions. In Proc. 5th IEEE Intl.

Conf. on Cloud Computing, pages 83–90, 2012.

[25] D. Lehmann, L. Oćallaghan, and Y. Shoham. Truth revelation in approximately effi-

cient combinatorial auctions. Journal of the ACM, 49(5):577–602, 2002.

[26] K. Leyton-Brown, Y. Shoham, and M. Tennenholtz. An algorithm for multi-unit

combinatorial auctions. In Proc. of the National Conf. on Artificial Intelligence, pages

56–61, 2000.

[27] I. Mahdavi, M. Movahednejad, and F. Adbesh. Designing customer-oriented cata-

logs in e-crm using an effective self-adaptive genetic algorithm. Expert Systems with

Applications, 38(1):631–639, 2011.

[28] R. Mansini and M. Speranza. Coral: An exact algorithm for the multidimensional

knapsack problem. INFORMS Journal on Computing, 24(3):399–415, 2012.

[29] L. Mashayekhy and D. Grosu. A merge-and-split mechanism for dynamic virtual orga-

nization formation in grids. In Proc. 30th IEEE Intl. Conf. on Performance Computing

and Communications Conference, pages 1–8, 2011.

[30] L. Mashayekhy and D. Grosu. A coalitional game-based mechanism for forming cloud

federations. In Proc. of the 5th IEEE Intl. Conf. on Utility and Cloud Computing,

pages 223–227, 2012.

47

[31] L. Mashayekhy and D. Grosu. A distributed merge-and-split mechanism for dynamic

virtual organization formation in grids. In Proc. 11th IEEE Intl. Conf. on Network

Computing and Applications, pages 36–43, 2012.

[32] L. Mashayekhy and D. Grosu. A reputation-based mechanism for dynamic virtual

organization formation in grids. In Proc. 41st IEEE Intl. Conf. on Parallel Processing,

pages 108–117, 2012.

[33] L. Mashayekhy and D. Grosu. A merge-and-split mechanism for dynamic virtual orga-

nization formation in grids. IEEE Transactions on Parallel and Distributed Systems,

25(3):540–549, 2014.

[34] L. Mashayekhy, M. Nejad, D. Grosu, D. Lu, and W. Shi. Energy-aware scheduling of

mapreduce jobs. In Proc. of the 3rd IEEE International Congress on Big Data, 2014.

[35] L. Mashayekhy, M. Nejad, D. Grosu, and A. Vasilakos. Incentive-compatible online

mechanisms for resource provisioning and allocation in clouds. In Proc. of the 7th

IEEE International Conference on Cloud Computing, 2014.

[36] L. Mashayekhy, M. M. Nejad, and D. Grosu. A truthful approximation mechanism

for autonomic virtual machine provisioning and allocation in clouds. In Proc. of the

ACM Cloud and Autonomic Computing Conference, pages 1–10, 2013.

[37] A. Mu’alem and N. Nisan. Truthful approximation mechanisms for restricted combi-

natorial auctions. In Proc. 18th Nat. Conf. on Artificial Intelligence, pages 379–384,

2002.

[38] M. Nejad, L. Mashayekhy, and D. Grosu. Truthful greedy mechanisms for dynamic vir-

tual machine provisioning and allocation in clouds. Parallel and Distributed Systems,

IEEE Transactions on, PP(99):1–1, 2014.

[39] M. M. Nejad, L. Mashayekhy, and R. B. Chinnam. Effects of traffic network dynamics

on hierarchical community-based representations of large road networks. In Proc. of

48

the 15th International IEEE Conference on Intelligent Transportation Systems, pages

1900–1905, 2012.

[40] M. M. Nejad, L. Mashayekhy, and D. Grosu. A family of truthful greedy mechanisms

for dynamic virtual machine provisioning and allocation in clouds. In Proc. of the 6th

IEEE Intl. Conf. on Cloud Computing, pages 188–195, 2013.

[41] M. M. Nejad, L. Mashayekhy, A. Taghavi, and R. B. Chinnam. State space reduction in

modeling traffic network dynamics for dynamic routing under its. In Proc. of the 14th

International IEEE Conference on Intelligent Transportation Systems, pages 277–282,

2011.

[42] N. Nisan and A. Ronen. Algorithmic mechanism design. In Proc. of the 31st annual

ACM symposium on Theory of computing, pages 129–140, 1999.

[43] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani. Algorithmic game theory.

Cambridge University Press, 2007.

[44] M. H. Rothkopf, A. Pekeč, and R. M. Harstad. Computationally manageable combi-

national auctions. Management science, 44(8):1131–1147, 1998.

[45] T. Sandholm. Algorithm for optimal winner determination in combinatorial auctions.

Artificial intelligence, 135(1):1–54, 2002.

[46] L. Shi, B. Butler, D. Botvich, and B. Jennings. Provisioning of requests for virtual

machine sets with placement constraints in iaas clouds. In Proc. IFIP/IEEE Intl.

Symposium on Integrated Network Management, pages 499–505, 2013.

[47] D. Shmoys and É. Tardos. An approximation algorithm for the generalized assignment

problem. Mathematical Programming, 62(1):461–474, 1993.

[48] Y. Wang, A. Nakao, and A. V. Vasilakos. Heterogeneity playing key role: Modeling

and analyzing the dynamics of incentive mechanisms in autonomous networks. ACM

Transactions on Autonomous and Adaptive Systems, 7(3):31, 2012.

49

[49] G. Wei, A. Vasilakos, Y. Zheng, and N. Xiong. A game-theoretic method of fair

resource allocation for cloud computing services. The Journal of Supercomputing,

54(2):252–269, 2010.

[50] F. Wu and N. Vaidya. A strategy-proof radio spectrum auction mechanism in nonco-

operative wireless networks. IEEE Transactions on Mobile Computing, 12(5):885–894,

2013.

[51] S. Zaman and D. Grosu. Combinatorial auction-based dynamic vm provisioning and

allocation in clouds. In Proc. 3rd IEEE Intl. Conf. on Cloud Comp. Tech. and Sci.,

pages 107–114, 2011.

[52] S. Zaman and D. Grosu. Combinatorial auction-based allocation of virtual machine

instances in clouds. J. of Parallel and Distributed Computing, 73(4):495–508, 2013.

[53] X. Zhou, S. Gandhi, S. Suri, and H. Zheng. ebay in the sky: strategy-proof wire-

less spectrum auctions. In Proc. of the 14th ACM Intl. Conf. on Mobile Comp. and

Networking, pages 2–13, 2008.

[54] X. Zhou and H. Zheng. Trust: A general framework for truthful double spectrum

auctions. In Proc. of IEEE INFOCOM 2009, pages 999–1007, 2009.

[55] E. Zurel and N. Nisan. An efficient approximate allocation algorithm for combinatorial

auctions. In Proc. of the 3rd ACM Conf. on Electronic Commerce, pages 125–136, 2001.

50

ABSTRACT

Truthful Mechanisms for Resource Allocation and Pricing in Clouds

by

Mahyar Movahed Nejad

May 2014

Advisor: Dr. Daniel Grosu

Major: Computer Science

Degree: Master of Science

A major challenging problem for cloud providers is designing efficient mechanisms for

Virtual Machine (VM) provisioning and allocation. Such mechanisms enable the cloud

providers to effectively utilize their available resources and obtain higher profits. Recently,

cloud providers have introduced auction-based models for VM provisioning and allocation

which allow users to submit bids for their requested VMs. We formulate the dynamic

VM provisioning and allocation problem for the auction-based model as an integer pro-

gram considering multiple types of resources. We then design truthful greedy and optimal

mechanisms for the problem such that the cloud provider provisions VMs based on the

requests of the winning users and determines their payments. We show that the proposed

mechanisms are truthful, that is, the users do not have incentives to manipulate the system

by lying about their requested bundles of VM instances and their valuations. We perform

extensive experiments using real workload traces in order to investigate the performance

of the proposed mechanisms. Our proposed mechanisms achieve promising results in terms

of revenue for the cloud provider.

51

AUTOBIOGRAPHICAL STATEMENT

Mahyar Movahed Nejad received his BSc degree in mathematics from Iran University of

Science and Technology. He received his MSc degree in socio-economic systems engineering

from Mazandaran University of Science and Technology. He is currently a MSc student in

computer science, and a PhD candidate in industrial and systems engineering at Wayne

State University, Detroit. His research interests include distributed systems, big data an-

alytics, game theory, network optimization, and integer programming. He is a student

member of the IEEE and the INFORMS.

	Wayne State University
	1-1-2014
	Truthful Mechanisms For Resource Allocation And Pricing In Clouds
	Mahyar Movahednejad
	Recommended Citation

	sutlall.eps

