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CHAPTER 1: INTRODUCTION

The number of enterprises and individuals that are outsourcing their workloads to cloud
providers has increased rapidly in recent years. Cloud providers form a large pool of
abstracted, virtualized, and dynamically scalable resources allocated to users based on a
pay-as-you-go model. These resources are provided as three different types of services:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS). IaaS provides CPUs, storage, networks and other low level resources, PaaS provides
programming interfaces, and SaaS provides already created applications. In this thesis, we
focus on TaaS where cloud providers offer different types of resources in the form of VM
instances. laaS providers such as Microsoft Azure [5] and Amazon Elastic Compute Cloud
(Amazon EC2) [1] offer four types of VM instances: small (S), medium (M), large (L), and
extra large (XL).

Cloud providers face many decision problems when offering IaaS to their customers.
One of the major decision problems is how to provision and allocate VM instances. Cloud
providers provision their resources either statically or dynamically, and then allocate them
in the form of VM instances to their customers. In the case of static provisioning, the cloud
provider pre-provisions a set of VM instances without considering the current demand
from the users, while in the case of dynamic provisioning, the cloud provider provisions
the resources by taking into account the current users’ demand. Due to the variable load
demand, dynamic provisioning leads to a more efficient resource utilization and ultimately
to higher revenues for the cloud provider. The aim of this study is to facilitate dynamic
provisioning of multiple types of resources based on the users’ requests.

To sell the VM instances to users, cloud providers can employ fixed-price and auction-
based models. In the fixed-price model, the price of each type of VM instance is fixed and
pre-determined by the cloud provider, while in the auction-based model, each user bids
for a subset of available VM instances (bundle) and an auction mechanism decides the

price and the allocation. In this study, we consider the design of mechanisms for auction-



based settings. In the auction-based models, users can obtain their requested resources
at lower prices than in the case of the fixed-price models. Also, the cloud providers can
increase their profit by allowing users to bid on unutilized capacity. An example of such
auction-based mechanism is the spot market introduced by Amazon [1]. Such mechanisms
are usually executed over short time-windows (e.g., every hour) to efficiently provision the
unutilized resources of the cloud provider. Our setup and mechanisms are different from
the Amazon spot market. The Amazon spot market allows requests only for individual VM
instances and not for bundles of VM instances of different types. In addition, all winning
users in the Amazon spot market pay the same (per unit) price. In our setting, we allow
users to request bundles of VM instances. We consider a set of users and a set of items
(VM instances), where each user bids for a subset of items (bundle). Since several VM
instances of the same type are available to users, the problem can be viewed as a multi-
unit combinatorial auction. Each user has a private value (private type) for her requested
bundle. In our model, the users are single minded, that means each user is either assigned
her entire requested bundle of VM instances and she pays for it, or she does not obtain
any bundle and pays nothing. The users are also selfish in the sense that they want to
maximize their own utility. It may be beneficial for them to manipulate the system by
declaring a false type (i.e., different bundles or bids from their actual request).

One of the key properties of a provisioning and allocation mechanism is to give incentives
to users so that they reveal their true valuations for the bundles. In general, greedy
algorithms do not necessarily satisfy the properties required to achieve truthfulness (also
called incentive-compatibility or strategy-proofness [43]) and they need to be specifically
designed to satisfy those properties. Our goal is to design truthful greedy mechanisms
that solve the VM provisioning and allocation problem in the presence of multiple types
of resources (e.g., cores, memory, storage, etc.). The mechanisms allocate resources to
the users such that the social welfare (i.e., the sum of users’ valuations for the requested

bundles of VMs) is maximized.



1.1 Owur Contribution

We address the problem of VM provisioning and allocation in clouds in the presence of
multiple types of resources. To the best of our knowledge, this is the first study proposing
truthful mechanisms for VM provisioning and allocation in clouds that take into account
the heterogeneity and the scarcity of the cloud resources. We design a truthful optimal
mechanism and a family of truthful greedy mechanisms for VM provisioning and allocation
that give incentives to the users to reveal their true valuations for their requested bundles
of VM instances. Our proposed mechanisms consist of determining the VM provisioning
and allocation and the payments for each user. Our proposed greedy mechanisms provide
very fast solutions making them suitable for execution in short time-window auctions. In
addition, we determine the approximation ratio of the proposed mechanisms, guaranteeing
a bound for the obtained solutions. We design truthful greedy mechanisms in spite the fact
that greedy algorithms, in general, do not necessarily satisfy the properties required to guar-
antee truthfulness. In doing so, the allocation and payment determination of the proposed
mechanisms are designed to satisfy the truthfulness property. Our proposed mechanisms
allow dynamic provisioning of VMs, and do not require pre-provisioning the VMs. As a
result, cloud providers can fulfill dynamic market demands efficiently. A key property of
our proposed mechanisms is the consideration of multiple types of resources when provi-
sioning the VMs, which is the case in real cloud settings. Previous work considered only
one type of resource and did not take into account the scarcity of each resource type when
making the VM instance provisioning an allocation decisions. The novelty of our proposed
mechanisms consists of taking these into account to improve the allocation decisions. We
perform extensive experiments that show that our proposed greedy mechanisms are able

to find near optimal allocations while satisfying the truthfulness property.



1.2 Related Work

Several researchers investigated various resource allocation problems in clouds and grids by
employing game theory. Wei et al. [49] formulated the resource allocation problem as a task
scheduling problem with QoS constraints. They proposed a game-theoretic approximated
solution. However, there is an assumption that the cloud provider knows the execution
time of each subtask, which is unrealistic in cloud environments. Jain et al. [19] designed
an efficient truthful-in-expectation mechanism for resource allocation in clouds where only
one type of resource was considered. Kong et al. [23] designed a stochastic mechanism to
allocate resources among selfish VMs in a non-cooperative cloud environment. Mashayekhy
and Grosu [29, 31, 33] investigated the problem of federating resources in grids by employ-
ing coalitional game theory and designed grid federation formation mechanisms. They
also studied the problem of federating resources in grids considering the trust relationship
among grid service providers [32]. Mashayekhy and Grosu [30] addressed the problem of
federation formation in clouds and designed a coalitional game-based mechanism that en-
ables the cloud providers to dynamically form a cloud federation maximizing their profit.
Wang et al. [48] showed that system heterogeneity plays an important role in determining
the dynamics of truthful mechanisms. Our proposed mechanisms take into account the
heterogeneity of the systems and that of user requests when making allocation decisions.
Ardagna et al. [8] modeled the service provisioning problem as a generalized Nash game
and proved the existence of equilibria for such game. In their model, the objective of the
SaaS is to maximize its revenue satisfying the service level agreement, while the objective
of the TaaS is to maximize the profit by determining the spot instances price. Di Valerio et
al. [15] formulated the service provisioning problem as a Stackelberg game, and computed
the equilibrium price and allocation strategy by solving the associated optimization prob-
lem. However, both studies considered only one type of VM instances, thus, the problem
they solved is a one dimensional provisioning problem.

Mechanism design theory has been employed in designing truthful allocation mecha-

nisms in several areas. In particular, there is a large body of work in spectrum auctions,



where a government or a primary license holder sells the right to use a specific frequency
band in a specific area via auction-based mechanisms (e.g., [21, 50, 53, 54]). In these stud-
ies, only one type of resource (i.e., the spectrum) is available for allocation. However, in
this thesis, we consider several types of resources (e.g., core, memory, storage), and thus
the mechanisms proposed in the above studies cannot be used in our context. Zhou et
al. [53] proposed a truthful mechanism, that assumes the existence of k uniform channels
that can be spatially reused (i.e., a channel can be allocated to more than one user simul-
taneously). Their greedy mechanism sorts the bidders in descending order of their bids.
Wu and Vaidya [50] extended the study of Zhou et al. by proposing a truthful mechanism
considering grouping the users based on their spatial conflicts. Their greedy mechanism is
based on the ordering of the groups’ bids. However, VM instances cannot be simultaneously
assigned to the users and thus, their mechanism cannot be used to solve the VM allocation
problem. The closest work to ours in the spectrum allocation area is by Jia et al. [20] who
proposed truthful mechanisms for a secondary spectrum market. The authors considered K
uniform channels covering a certain region that is partitioned into small cells. This problem
considers several cells available which in some sense correspond to several types of VMs in
our study. However, in each cell a fixed number of uniform channels are available to be
sold, whereas, in our case, each VM instance is composed of several types of heterogeneous
resources. Furthermore, the mechanism proposed by Jia et al. [20] incorporates a simple
greedy metric for ordering the users that is based on the ratio of their bids to the number
of requested channels. However, our proposed mechanisms incorporate bid density metrics
that not only consider the structure of VMs (i.e., the multiple resources), but also take
into account the scarcity of resources. In addition, we do not limit the number of available
VMs for each type of VM, and we allow dynamic provisioning of VMs.

The design of truthful mechanisms for resource allocation in clouds has been investi-
gated by Zaman and Grosu [51, 52]. They proposed a combinatorial auction-based mech-
anism, CA-GREEDY, to allocate VM instances in clouds [52]. They showed that CA-
GREEDY can efficiently allocate VM instances in clouds generating higher revenue than
the currently used fixed price mechanisms. However, CA-GREEDY requires that the VMs



are provisioned in advance, that is, it requires static provisioning. They extended their
work to dynamic scenarios by proposing a mechanism called CA-PROVISION [51]. CA-
PROVISION selects the set of VM instances in a dynamic fashion which reflects the market
demand at the time when the mechanism is executed. However, these mechanisms do not
consider several types of resources. Their proposed mechanisms only consider computa-
tional resources (i.e., cores), which is only one of the dimensions in our proposed model.
In addition to this, our proposed mechanisms consider the scarcity of the resources when
making provisioning and allocation decisions.

The design of truthful mechanisms for several classes of combinatorial optimization
problems was initiated by Nisan and Ronen [42]. Efficiently computable truthful mecha-
nisms for several problems has since been proposed and investigated by Archer and Tar-
dos [7], Mu’alem and Nisan [37], and Awerbuch et al. [9]. The reader is referred to Nisan et
al. [43] for a comprehensive introduction to mechanism design. Rothkopf et al. [44] were
the first to investigate the winner determination problem and the complexity of solving
combinatorial auctions. Sandholm [45] proved that solving the winner determination prob-
lem is NP-complete. Zurel and Nisan [55] presented a heuristic algorithm for combinatorial
auctions. For a detailed survey on combinatorial auctions the reader is referred to [14].
Lehmann et al. [25] proposed a greedy truthful mechanism for single-unit combinatorial
auctions where all items are non-identical. However, our focus is on the design of greedy
truthful mechanisms in multi-unit settings. In a multi-unit combinatorial auction, there
exists many types of items and many identical items of each type. Several studies focused
on finding solutions for multi-unit combinatorial auctions without considering the truthful-
ness [18, 26]. Bartal et al. [10] proposed a truthful mechanism for multi-unit combinatorial
auctions where each item has a fixed number of units. This is not the case in clouds due
to the fact that the resources are provisioned dynamically based on the user requests, and
the number of VMs are not known.

The VM provisioning and allocation problem considering multiple types of resources can
be formulated as a multidimensional knapsack problem which is a class of General Assign-

ment Problem (GAP). Mansini and Speranza [28] proposed an exact algorithm for solving



small size multidimensional knapsack problems. Their approach is based on the optimal
solution of subproblems by improving the efficiency of the branch-and-bound method for
the integer program formulation. Shmoys and Tardos [47] proposed a 2-approximation for
GAP without considering the truthfulness property. There are several studies on designing
truthful mechanisms for GAP. Aggarwal and Hartline [6] designed truthful mechanisms
for auctions by modeling them as knapsack problems. Greedy algorithms for solving the
multidimensional knapsack problem (MKP) have been extensively studied by Kellerer et
al. [22]. However, none of these studies considered the design of truthful mechanisms.
Several researchers investigated the problem of VM provisioning in clouds from different
points of view and applied various methodologies to solve it. Calheiros et al. [12] designed
a provisioning technique using a queuing network system model that dynamically adapts
to workload changes related to applications. Their prediction-based approach determines
the number of allocated VMs. Bi et al. [11] proposed a dynamic provisioning technique
for multi-tier applications in cloud based on queuing networks. However, their objective
is to minimize the total number of VM instances allocated to the users based on their
request specifications. Ellens et al. [16] analyzed the problem of allocating resources to
different users with multiple service request classes. They modeled a cloud provider using a
queuing system with different priority classes. Fang et al. [17] proposed a Cloud Resource
Prediction and Provisioning scheme (RPPS) that predicts the future demand using the
ARIMA model and performs proactive resource provisioning for cloud applications. In
RPPS, a cloud provider can dynamically add VMs. Lampe et al. [24] proposed a heuristic
approach considering several types of resources. However, they did not propose a truthful
mechanism. Chaisiri et al. [13] proposed an optimal cloud resource provisioning algorithm
to minimize the total cost of provisioning resources. They modeled the problem as a
stochastic integer program, where there are several cloud providers and one consumer.
The algorithm considers all possible combinations of VMs. Being a NP-hard problem, the
algorithm for solving it does not scale well to larger input sizes. Shi et al. [46] formulated
the problem of VM allocation as a Mixed Integer Program by considering fixed price VM

instances. However, they concluded that this optimal approach is not practical for medium



and large problems. The focus was on maximizing the cloud provider’s profit without
considering the users’ incentives for manipulating the allocation mechanisms by untruthful

reporting.

1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2, we describe the VM provi-
sioning and allocation problem in clouds. In Chapter 3, we introduce the basic concepts
of mechanism design and present the design of an optimal mechanism for VM provisioning
and allocation. In Chapter 4, we present the proposed mechanisms and characterize their
properties. In Chapter 5, we evaluate the mechanisms by extensive simulation experiments.

In Chapter 6, we summarize our results and present possible directions for future research.



CHAPTER 2: VM PROVISIONING
AND ALLOCATION PROBLEM

We consider a cloud provider offering R types of resources, R = {1,..., R}, to users in the
form of VM instances. These types of resources include cores, memory, storage, etc. The
cloud provider has restricted capacity, C,, on each resource r € R available for allocation.
The cloud provider offers these resources in the form of M types of VMs, VM = {1,..., M},
where each VM of type m € VM provides a specific amount of each type of resource r € R.
The amount of resources of type r that one VM instance of type m provides is denoted by
W As an example, in Table 2.1, we present the four types of VM instances offered by
Amazon EC2 at the time of writing this thesis. If we consider that CPU represents the
type 1 resource, memory, the type 2 resource, and storage, the type 3 resource, we can
characterize, for example, the Large instance (m = 3) by: wy; = 4, wyp = 7.5 GB, and
w3 = 850 GB.

We consider a set U of N users requesting a set of VM instances. User i, i =1,..., N,
requests a bundle S; =< k;1, ko, ..., kipg > of M types of VM instances, where k;,, is the
number of requested VM instances of type m € VM. In addition, she specifies a bid b; for
her requested bundle S;. User i values her requested bundle S; at v;(.S;), where v;(S;) is
called the wvaluation of user ¢ for bundle S;. The valuation represents the maximum price
a user is willing to pay for using the requested bundle for a unit of time. Each user can
submit her request as a vector specifying the number of VM instances, and her bid. For
example, (< 1,3,4,2 >, $20) represents a user requesting 1 small VM instance, 3 medium
VM instances, 4 large VM instances, and 2 extra large VM instances, and her bid is $20.

We denote by V' the social welfare, which is defined as the sum of users’ valuations:

V= Z’UZ(SZ) T (2.1)
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Table 2.1: VM instance types offered by Amazon EC2.

Small | Medium | Large | Extralarge
m=1| m=2 |m=23 m=4
CPU 1 2 4 8
Memory (GB) | 1.7 3.75 7.5 15
Storage (GB) 160 410 850 1690
where x;, i = 1,..., N, are decision variables defined as follows: z; = 1, if bundle S; is

allocated to user i; and x; = 0, otherwise.

To design incentive-compatible mechanisms, we consider the standard mechanism design
objective, that is, maximizing the social welfare [43]. Maximizing social welfare can help a
cloud provider increase its revenue by allocating the VMs to the users who value them the
most.

We formulate the problem of VM provisioning and allocation in clouds (VMPAC) as an
Integer Program (called VMPAC-IP) as follows:

Maximize V (2.2)
Subject to:
Z Z kimWprr; < CpyVr € R (2.3)
i€l mevM
x; ={0,1},Viel (2.4)
The solution to this problem is a vector x = (21, Zs, ..., xy) maximizing the social welfare.

Constraints (2.3) ensure that the allocation of each resource type does not exceed the
available capacity of that resource. Constraints (2.4) represent the integrality requirements
for the decision variables. These constraints force the cloud provider to provision the
whole bundle of VM instances and to allocate bundles to the selected users. The VMPAC
problem is equivalent to the multidimensional knapsack problem (MKP) [22], where the
knapsack constraints are the resource capacity constraints and the bundles are the items.

The objective is to select a subset of items for the multidimensional knapsack maximizing
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the total value. As a result, the VMPAC problem is strongly NP-hard.
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CHAPTER 3: MECHANISM
DESIGN FRAMEWORK

In this chapter, we first present the basic concepts of mechanism design and then propose

an optimal mechanism that solves VMPAC.

3.1 Preliminaries

A mechanism M = (A, P) consists of an allocation function 4 = (A;,...,Ay) and a
payment rule P = (Py,...,Py). The allocation function determines which users receive
their requested bundles, and the payment rule determines the amount that each user must
pay.

In our model, there are N users in U, and the type of a user i is denoted by 6; = (S;, b;).
We denote by 6 = (6;,...,0y), the vector of types of all users, and by 0_;, the vector of
all types except user i’s type (i.e., 0_; = (01,...,0;_1,0;11,...,0y)). The allocation and
payments depend on the users type declarations. The allocation function finds a subset
A(0) C U of winning users, where A; is the allocated bundle of VMs to user i.

The users are assumed to be single-minded. That means, user ¢ desires only the re-
quested bundle of VM instances, S;, and derives a value of b; if she gets the requested
bundle or any superset of it, and zero value, otherwise. Thus, the valuation function for

user 7 is as follows:

b; it S; C A

0 otherwise

The bundle of VM instances requested by a single-minded user consists of the minimum
amount of resources that the user needs in order to run her job.

User i has a quasi-linear utility function u;(6) = v;(.A;(0)) — P;(0), where P;(0) is the
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payment for user i that the mechanism calculates based on the payment rule P. Each
user’s type is private knowledge. The users may declare different types from their true
types. We denote by 6; = (3,, i)l) user i’s declared type. Note that 6; = (.S;, b;) is user ¢’s
true type. The goal of a user is to maximize her utility, and she may manipulate the
mechanism by lying about her true type to increase her utility. In our case, since the
type of a user is a pair of bundle and value, the user can lie about the value by reporting a
higher value in the hope to increase the likelihood of obtaining her requested bundle. These
manipulations by the users will lead to inefficient allocation of resources and ultimately will
reduce the revenue obtained by the cloud provider. We want to prevent such manipulations
by designing truthful mechanisms for solving VMPAC. A mechanism is truthful if all users

have incentives to reveal their true types.

Definition 1 (Truthfulness). A mechanism M is truthful (also called strategy-proof or in-
centive compatible [43]) if for every user i, for every type declaration of the other users 6_;,

a true type declaration 0; and any other declaration 0; of user i, we have that u;(6;, 9_Z) >

u,(él, é_l)

In other words, a mechanism is truthful if truthful reporting is a dominant strategy for
the users, that is, the users maximize their utilities by truthful reporting independently of
what the other users are reporting. To obtain a truthful mechanism the allocation function
A must be monotone and the payment rule must be based on the critical value [37].

To define monotonicity, we need to introduce a preference relation > on the set of types

~

as follows: 0 = 0; if b, > b; and S; =< ki1, kin, ..., king >, S0 =< kly, kly, ...kl > such
that > v ]%gmme < D mevm l%imme,Vr € R. That means type 9; is more preferred
than 6; if user i requests fewer resources of each type in her current bundle and/or submits

a higher bid.

Definition 2 (Monotonicity). An allocation function A is monotone if it allocates the
resources to user i with 0; as her declared type, then it also allocates the resources to user i

with 0!, where 6} = 0;.
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Algorithm 1 VCG-VMPAC Mechanism

: Input: C = (C4,...,CRg); vector of resource capacities
{Collect user requebts (types).}
for all : € Y do
Collect user type éi = (S’l, I;Z) from user ¢
end for
{Allocation.}
(V*, x*) = Solve IP-VMPAC(#, C)
Provisions and allocates VM instances according to x*.
9: {Payment.}
10: for all s € U do
11: (V" x’*) = Solve IP-VMPAC(_;, C)

12: sumi = sums = 0

13: foralljel,j#ido
14: sumi = sumq + I;Jx;*
15: Sumeo = sSums + I;J:vj
16: end for

17: P; = sumq — sums

18: end for

19: Output: V*, x*, P = (P1,Pa,...,PN)

Any winning user who receives her requested bundle by declaring a type 6; is still wining

if she requests a smaller bundle and submits a higher bid.

Definition 3 (Critical value). Let A be a monotone allocation function, then for every 0;,
there exist a unique value v§, called critical value, such that Vo, = (S, v8), 6; is a winning

declaration, and V6; < (S;,v%), 0; is a losing declaration.

The mechanism M works as follows. It first receives the declared types (bundles and
bids) from each participating user, and then, based on the received types determines the
allocation using the allocation function A4 and the payments using the payment rule P.
The payment rule P is based on the critical value and is defined as follows:
if © wins

Pi(6) = (3.2)

0 otherwise

where v is the critical value of user i.
In the next section, we design a Vickrey-Clarke-Groves (VCG)-based optimal mecha-
nism that solves the VMPAC problem.
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3.2 Truthful Optimal Mechanism

We introduce a VCG-based truthful optimal mechanism that solves the VMPAC prob-
lem. A VCG-based mechanism requires an optimal allocation algorithm implementing the

allocation function A [43]. A VCG mechanism [43] is defined as follows.

Definition 4. A mechanism M = (A, P) is a Vickrey-Clarke-Groves (VCG) mechanism

if A mazimizes the social welfare, and

PiO)= > b— b;, (3.3)

JEA(B_,) JEA(),j#i

~

where 3¢ q ;) bj is the optimal social welfare that would have been obtained had user i

not participated, and ZjeA(é) i I;j is the sum of all users valuations except user i’s.

We define the VCG-based mechanism that solves the VMPAC problem as follows:

Definition 5. The VCG-VMPAC mechanism consists of the optimal allocation algorithm
that solves IP-VMPAC and the payment function defined by the VCG payment rule given
in equation (3.3).

The VCG-VMPAC mechanism is given in Algorithm 1. The mechanism is run periodi-
cally by the cloud provider. VCG-VMPAC has one input parameter, the vector of resource
capacities C = (C1, ..., Cg), and three output parameters: V*, the optimal social welfare,
x*, the optimal allocation of VM instances to the users, and P the payments. The mech-
anism collects the requests from the users, expressed as types (lines 2-4), and determines
the optimal allocation by solving the IP-VMPAC (line 6). Once the optimal allocation is
determined the mechanism provisions the required number and types of VM instances and
determines the payments. The users are then charged the amount determined by the mech-
anism (lines 9-15). The VCG payment of a user i is calculated by solving the IP-VMPAC
to find the allocation and welfare obtained without user i’s participation (line 10). Based
on the optimal allocation to the users with and without user ¢’s participation, the mech-

anism finds the payment for user ¢, where sum; is the sum of all values without user i’s
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Algorithm 2 G-VMPAC-X Mechanism

: {Collect user requests (types)}
for all : € U do
Collect user type 0; = (S’Z, l;l) from user 4
end for
{Allocation}
(V*, x*) = G-VMPAC-X-ALLOC(8, C)
Provisions and allocates VM instances according to x*.
{Payment}
P =PAY(6, C, x)

participation in the mechanism, and sums is the sum of all except user i’s value in the

optimal case (lines 11-15).

optimal allocation. However, the VMPAC is strongly NP-hard, and thus, the execution
time of VCG-VMPAC becomes prohibitive for large instances of VMPAC. To be able to

solve VMPAC in reasonable time, we resort to greedy mechanisms, which we design in the

Being a VCG-based mechanism, VCG-VMPAC is truthful [43], and it determines the

next chapter.
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CHAPTER 4: TRUTHFUL
GREEDY MECHANISMS

In this chapter, we present the proposed truthful greedy mechanisms and then investigate

their properties.

4.1 G-VMPAC-X Truthful Greedy Mechanisms

The VMPAC problem is strongly NP-hard and there is no Fully Polynomial Time Ap-
proximation Scheme (FPTAS) for solving it, unless P = NP [22]. Thus, one solution to
solve VMPAC is to design heuristic approximation algorithms. In general, approximation
algorithms do not necessarily satisfy the properties required to achieve truthfulness, and
thus, they need to be specifically designed for truthfulness. Our goal is to design truthful
greedy approximation mechanisms that solve the VMPAC problem.

We propose a family of truthful greedy mechanisms, called G-VMPAC-X. The G-
VMPAC-X family is given in Algorithm 2. A mechanism from this family is executed
periodically by the cloud provider. The mechanism collects the requests from the users
expressed as types (lines 1-3) and determines the allocation by calling the allocation algo-
rithm (lines 4-5). The allocation algorithm can be any version of the G-VMPAC-X-ALLOC
allocation algorithms that we present later in this chapter. Once the allocation is deter-
mined, the mechanism provisions the required number and types of VM instances (line 6).
Then, the mechanism determines the payments by calling the PAY function (lines 7-8).
The users are then charged the amount determined by the mechanism.

The general form of the allocation algorithm (called G-VMPAC-X-ALLOC) of this fam-
ily of mechanisms is given in Algorithm 3. G-VMPAC-X-ALLOC has two input parameters:
the vector of users declared types 9, and the vector of resource capacities C = (C1, ..., CR);

and two output parameters: V', the total social welfare and x, the allocation of VM in-
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Algorithm 3 G-VMPAC-X-ALLOC Allocation algorithms

Input: § = (él, cee éN); vector of types (bundle, bid)
Input: C = (Cy,...,CR); vector of resource capacities
V=0
x—0
c=cC
for all r € R do
fr < 1, for G-VMPAC-I-ALLOC; or
fr < C% for G-VMPAC-II-ALLOC; or
fre-z%%ﬂ%iﬁ,ﬁmCFVMPACJILALLOC
8: end for -
9: forallield d

100 dj= —2—
V3o fréir
11: end for

12: Sort U in decreasing order of d;
13: for all i € U do

14:  flag < TRUE

15:  for allr € R do

16: Cr=Cr =3 cvm FimWme
17: if C. <0 then
18: flag «— FALSE
19: break;

20: end if

21: end for

22:  if flag then

24: z, =1

25: c=cC

26: end if

27: end for

28: Output: V, x

stances to the users. The algorithm orders the users (lines 6-10) according to a general

density metric defined as:

A~

b .
dj=——"Tt Viel (4.1)

\/ Zf:l frdir

where @ = Y 11 KimWny is the amount of each resource of type r requested by user 4,
and f, is the relevance factor characterizing the scarcity of resources of type r. A higher
f» means a higher scarcity of resource r, thus, a lower density. That means, a user that
requests more resources of a scarce type is less likely to receive her requested bundle. G-

VMPAC-X-ALLOC algorithm allocates the VM instances to users in decreasing order of
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their densities.

The choice of relevance factors, f,, defines the members of the G-VMPAC-X family
of allocation algorithms. We consider three choices for f,., and obtain three allocation
algorithms, G-VMPAC-I-ALLOC, G-VMPAC-II-ALLOC, and G-VMPAC-III-ALLOC, as
follows:

1) G-VMPAC-I-ALLOC: obtained when f,. = 1, ¥r € R. This is a direct generalization
of the one-dimensional case considered by Lehmann et al. [25]. This generalization does
not take into account the scarcity of different resources and may not work well in situations
in which the VM instances are highly heterogeneous in terms of the resources provided.

2) G-VMPAC-II-ALLOC: obtained when f, = 0%7 Vr € R. This addresses the scarcity
issues in G-VMPAC-I, by scaling the values of f,. with the inverse of capacity C, for each
resource 7.

3) G-VMPAC-III-ALLOC: obtained when f, = %%57&, Vr € R. This relevance fac-
tor considers the relative scarcity of resources. As a restﬂt, resources with higher demands
have a higher f, and thus, contribute more to decreasing the density. Users requesting
more highly demanded resources have lower densities and are less likely to receive their
requested bundles.

Once the users are sorted according to their density values (line 10), the algorithm
determines the allocation x (lines 11-22). In doing so, the algorithm checks the feasibility
of allocating the requested bundle of each user (lines 12-17). If the allocation is feasible,
the algorithm updates V' and z; (lines 19-20). The time complexity of the algorithms is
O(N(RM +1logN)).

The PAY function is given in Algorithm 4. The PAY function has three input param-
eters, the vector of users declared types (9), the vector of resource capacities C, and the
optimal allocation x*. It has one output parameter: P, the payment vector for the users.
PAY determines the payments of users sorted according to the density metric (lines 4-16).
For each user i, PAY sets her initial payment to 0 (line 5). If user ¢ is among the win-

ning users, PAY updates her payment (lines 7-16), otherwise the payment remains 0. The

payments are based on the critical values of the winning users. In doing so, PAY calls the
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Algorithm 4 PAY: Payment Function

1: Input: 6 = (él, e, éN); vector of types (bundle, bid)

2: Input: C; vector of resource capacities

3: Input: x*; winning users

4: for all i € U, where U is sorted in decreasing order of d; do

5 Pi=0
6 if z7 then
7 l=-1
8 (V'*, x'*) = G-VMPAC-X-ALLOC (0 \ 6;, C)
9: for all j € U,d; < d; in decreasing order of d; do
10: if 27 = 0 and 77 then
11: l=j
12: break;
13: end if
14: end for
15: if [ then
16: Pi = diy/ Zf:l fragr
17: else
18: P:=0
19: end if
20: end if
21: end for

22: Output: P = (P1,Pa,...,Pn)

allocation algorithm, G-VMPAC-X-ALLOC without considering the participation of user ¢
(line 8). Then, PAY tries to find user j such that she wins in the absence of user 4, and she
does not win in the presence of user ¢ (lines 9-10). If PAY finds such a user, it stores her
index [ (lines 11-12), otherwise user i pays 0 (line 16). The payment of winning user ¢ is
calculated by multiplying Zle a; with the highest density among the losing users, user [,

who would win if ¢ would not be a winner (line 14).

4.2 G-VMPAC-X Mechanisms Properties

In this section, we show that the G-VMPAC-X mechanisms are truthful and determine
their approximation ratio. We show first that the allocation algorithms are monotone, and

thus, satisfy the first requirement for truthfulness.
Theorem 1. The G-VMPAC-X-ALLOC allocation algorithms are monotone.

Proof. We show that the algorithms that are part of G-VMPAC-X-ALLOC family produce

monotone allocations. In order to show this, we assume that user ¢ with declared type 0;
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is allocated her requested bundle and show that she is still allocated if she declares type
0!, where 0, = ;. Here, 6; = 0;, means that user ¢ may request a VM bundle with fewer
resources of each type or report a higher value. We separate the proof into three cases as
follows.

i) User ¢ declares a higher value, i.e., Z); > b;. This leads to a higher density, d; > d;
in all G-VMPAC-X algorithms. This is due to the fact that the requested amount of each
resource is the same in both bundles corresponding to 0; and é; Thus, user ¢ remains
in the same or advances to a higher position in the greedy order when declaring é; As
a result, her allocation will not change when any of the algorithms that are members of
G-VMPAC-X-ALLOC is used.

ii) User i declares a bundle S/ =< k/,, kl,, ... ki, > with fewer resources of each type
than bundle S; =< k;y, kio, . ..,l;:iM >, e, Y cvm l%gmwmr < Y omev M Eimtmrs V1 € R.
That means, user i requests fewer resources and as a result, a) < a;,Vr € R. It is
easy to see that in G-VMPAC-I-ALLOC and G-VMPAC-II-ALLOC, this leads to a higher
density for user ¢, that is, d, > d;. We now show that d; > d; for G-VMPAC-III. In the
G-VMPAC-III case, Zf.,vzl a; — a;- and C). have the same values in both type declarations
(éZ and é;) In the following, we denote by a = Zﬁyzl Qi — Q. Since a, < G, by
multiplying with —C,. both sides of the inequality, we obtain —C,a}. > —C\a;. Then,
by adding a(a + a; + al, — C,) and a;.a),. on both sides of the inequality, we obtain

(o +d,)(a+ aiy — Cp) > (a—+ ay)(a + d, — C,), therefore 2tte=Cr - 2 —Cr g

/
a+a;r a+tag,

fr > f!, which implies d; > d;.

iii) User ¢ declares a higher value, 13; > b;, and a bundle g{ with fewer resources than ;.
From the above two cases, user ¢ will still be allocated the bundle, thus remaining among
the winning users.

In all three cases, user ¢’s allocation will not change, and she remains among the winning
users. This implies that all the allocation algorithms in the G-VMPAC-X-ALLOC family

are monotone. O

In the following, we show that the payment algorithm is based on the critical value, and

thus, satisfies the second requirement for truthfulness.
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Theorem 2. The payment algorithm, PAY, implements the critical value payment.

Proof. To prove that PAY determines the critical value payment for the users, we need to
show that P; is the critical value for user i. Note that P; = d;/ Zil fra;., where [ is the
index of user [ who would have won if user ¢ did not participate, and she appears after
user 7 based on the decreasing order of the density metric. We separate the proof into two
cases as follows:

/
i

i) User i declares a higher value than P;, (i.e., b, > P;). In this case, she wins and pays

the same amount P;.

ii) User i declares a lower value than P;, (i.e., b, < P;). This leads to a density

d, = b < P

V Zf:l fT’a’iT \V Zf:l fra'ir
Since P; = dj4/ Zle frair, we obtain

J < dl\/ Zf=1 Jrair _d
Z \/ 27}«11 frai

As a result, d, < d;, and user i is not a winning user.

These show that the payment P; is the minimum valuation that user ¢ must bid to
obtain her required bundle. In the case in which user ¢ is not a winner, she pays 0, thus,
satisfying the properties of the critical value payment. As a result, the payment determined

by PAY is the critical value payment. O
We now show that the proposed mechanisms are truthful.
Theorem 3. The proposed mechanisms in the G-VMPAC-X family are truthful.

Proof. The allocation algorithms in the G-VMPAC-X family are monotone (Theorem 1)
and the payment (implemented by PAY) is the critical value payment (Theorem 2), there-
fore, according to [37], the mechanisms in the G-VMPAC-X family are truthful. O
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In the following, we analyze the effect of untruthful reporting on the utility of the users
participating in the G-VMPAC-II mechanism by considering an example. The behavior of
the other two proposed mechanisms is similar and we do not present them here. To show
that our proposed mechanism, G-VMPAC-II, is robust against manipulation by a user, we
consider three users requesting VM instances of the type given in Table 1. The true types
of the three users are as follows: user 1, (< 5,0,0,0 >, $10); user 2, (< 0,4,0,0 >, $25) and
user 3, (< 2,0,0,2 >, $15). The capacity of the three resources are as follows: 30 cores,
80 GB of memory, and 6000 GB of storage. The G-VMPAC-II calculates the density for
each of the users as 15.68, 29.31, and 11.73, respectively, then allocates resources to user 1
and 2 in the case that all users declare their true types. The payments of the winning users
determined by G-VMPAC-IT are $7.47 and $10.0, respectively.

We assume that user 2 lies about her type f5. The consequence of such a declaration
depends on her reported value by and the bundle S;. We consider different scenarios as
shown in Table 4.1, where user 2 does not reveal her true type. Case I is when user 2
declares her true type. In case II, user 2 reports a value greater than her true type and she
still wins, and the mechanism determines the same payment for her as in case I. In case III,
user 2 reports a value less than her true type, but not less than the price determined by our
mechanism. In this case, the user is still winning, and pays the same amount as in case I.
In case IV, user 2 reports a value below her determined payment. In this case, she will not
get her requested bundle, and her utility is zero. In case V, she declares a larger bundle
and still obtains the bundle due to available capacities. However, she pays more and her
utility decreases. In case VI, she declares a larger bundle but becomes a loser since the
cloud provider does not have enough resources to fulfill her requested bundle. As a result,
her utility is zero. In all cases, the user can not increase her utility by declaring a type
other than her true type, and thus, the truthfulness property is satisfied.

In the following, we determine the approximation ratio of the greedy mechanisms in the

G-VMPAC-X family.

Theorem 4. The approzimation ratio of the mechanisms in the G-VMPAC-X family is

NRC s, where Chp = maX,er C,.
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Table 4.1: Different scenarios for user 2’s type declaration

Casgq So bo Scenario Stat. Pay. Utility
I <0,4,0,0> $25| bo=b2, 952 =52 W | 100  15.0
I | <0,4,0,0> $30| by >by, So =S W | 10.0  15.0
I | <0,4,0,0> $20| bo <bz, S2 =92 W | 10.0 15.0
IV | <0,4,0,0> $5 | by <by, S2=S L |0 0

V | <1,4,0,0> $25| by =bs, S2> S W | 10.55 14.45
VI | <0,4,0,3> $25| bo=b3,9 >S5 L |0 0

Proof. Let X* be set of users in the optimal solution, and V* be the optimal value. Let
X and V be the set of users and the value in the obtained solution by G-VMPAC-X,
respectively. We need to prove that V* < Va, where « is the approximation ratio.

We define X = X\ (X NX*) and X* = X*\ (X N X*). Therefore, we have X N X* = ().
Based on the new sets X and X *, the corresponding values are V and V*, respectively.
Now, instead of proving V* < aV, it is sufficient to prove that V* < oV. This is due to
the fact that we can subtract the values of the users in (X N X*) from both V and V*.

=S b <aY b =av (12)
ieX* icX

We define a set of users D; for user i,Vi € U including user ¢ such that if j € D; then
j > i (based on the order) and j € X* but j ¢ X because of user i. Meaning that,
user ¢ blocks each user in D; from entering X. It is obvious that X* C UZ.E D;. Then,
Zief(* b < Zz’eU
that: Zje D i)j < ab;. Note that every j € D; appeared after ¢ in the greedy order, and
thus, d; < d;. Then,

l;i < azie % l;Z Therefore, it is sufficient to show for every i € X

iexDi

13- < [;i\/ Zf:l frajr (4 3)
T \/ Zf:l fra'ir |
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Summing over all j € D;, we have:

. Z;z E:f: Jrajy
PIUEDD =
JjeD; JED; > ey frai

(4.4)

Using the Cauchy-Schwarz inequality on ) Zle fraj, of Equation (4.4), we have:

JED;

2

R
S Z 12 Z fra'jr (45)

j€D; jeD; r=1

(4.6)

Replacing this in Equation (4.4) we obtain

) i
[ —— N |
]EZDi ’ Zf:l frair JEZDi

We now consider each of the three mechanisms individually and determine their approxi-

(4.7)

mation ratios.

G-VMPAC-I: Since X* is an allocation and f, = 1 for G-VMPAC-I we have
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where C)q: = max,cr C,. Replacing this in Equation (4.7) we obtain

ZMM S (4.9)

The worst case is when > 7| a;, has the minimum value, which is 1. In addition, we have

>jep, 1= V/'N. Therefore,

|/\
o

ma:c (4.10)

="

As a result, the approximation ratio is @« = vV NRC},4z-

G-VMPAC-II: Since X* is an allocation and f, = C% for G-VMPAC-II we have

> ZCL (4.11)

JED; 7=

Replacing this in Equation (4.7) we obtain

1 (4.12)

: R
The worst case is when » ", ¢ has the minimum value, which is C#, where Cup =
max

max,cr Cr. In addition, /> jep, 1= V/N. Therefore,

> by < biv/NRCpyg (4.13)
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As a result, the approximation ratio is @« = vV NRC},4z-

G-VMPAC-III: Since X* is an allocation and f, = % for G-VMPAC-III we have
i=1 dir

ZZZZ 1aw’_ r 'T’SROmax (4‘14)

JE€D; r=1 z la”"

where C,4; = max,cx C,. Replacing this in Equation (4.7) we obtain

1 (4.15)

- biv/RCraz
> bi< 2.
< \/ZR ZZ }Vaw = Qe jebi

Z 1[17,7‘

The worst case is when Z Z#’aair has the minimum value, which is 1. In addition,

> by < biv/NRCpyg (4.16)
JED;

As a result, the approximation ratio is @« = vV NRC},4z-
Thus, the mechanisms from G-VMPAC-X family achieve an approximation ratio of

NRC - O

In our previous work [40], we proposed two greedy mechanisms having an approximation
ratio of RC,q.. In this thesis, our proposed mechanisms obtain a better approximation
ratio than that of [40] for many instances of the VMPAC problems that are of practical
interest. This is due to the fact that in many actual instances of the VMPAC problem
RC0e > N, since the number of requests is less than the total maximum capacity of the
resources. Note that the obtained bound is for the extreme worst case scenario in which for
G-VMPAC-I, we assume Zle a;r = 1. For example, this corresponds to a request of 1MB
of storage, which is not realistic in practice. For practical scenarios, we expect the solution
to be much closer to the optimal, as validated by the experimental results presented in the

next chapter. The approximation ratio becomes constant under the realistic assumption
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that the size of the requests are within a given range. This is the case for the current cloud
providers, which offer a bounded number of VM instances for each request (e.g., Microsoft
Azure currently offers a maximum of 20 VM instances to each user).

In Theorem 4, we obtain an approximation ratio for the mechanisms in the G-VMPAC-
X family by analyzing the extreme worst case scenario. The approximation ratio becomes
constant under the realistic assumption that the size of the requests are within a given
range. This is the case for the current cloud providers, which offer a bounded number of
VM instances for each request (e.g., Microsoft Azure currently offers a maximum of 20 VM
instances to each user).

Following the proof of Theorem 4, let X* be the set of users in the optimal solution,
and X be the set of users in the obtained solution by G-VMPAC-X, where X N X* = 0.
We consider a set of users D; for user i such that if j € D; then j > ¢ (based on the order)
and j € X* but j ¢ X because of user i. Meaning that, user ¢ blocks each user in D; from
entering X. However, based on the bound on the number of VM instances available for a
user imposed by the cloud provider, user ¢ can only block a given number ¢ of users. As

a result, » 1 = ¢, where ¢ is a constant. That is, every user in the greedy approach

jeD;
can block a constant number of users from the optimal solution to appear in the greedy
solution. In addition, in order for user i to be able to block ¢ users, its request should be
a;» ~ qa;.,Vr. Note that this is the worst case scenario given the fact that requests are
within a given range.

We now consider the general form for the three mechanisms, and determine their ap-

proximation ratio for the practical cases described above. We continue from Equation (4.7).

By replacing ZjeDi 1 and a;. in Equation (4.7), we have:

(4.17)
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Then,
> b <biv/g (4.18)
JeD;

As a result, the approximation ratio achieved by the G-VMPAC-X mechanisms is /g for

instances of the VMPAC problem encountered in practice, where ¢ is a constant.
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CHAPTER 5: EXPERIMENTAL
RESULTS

We perform extensive experiments with real workload data in order to investigate the prop-
erties of the proposed mechanisms in the G-VMPAC-X family, and the VCG-VMPAC mech-
anism (optimal). We also compare our proposed mechanisms with CA-PROVISION [51].
Since CA-PROVISION considers only the computational resource, in our experiments CA-
PROVISION does not use the amount of other requested resources such as memory and
storage when making allocation decisions. For the VCG-VMPAC mechanism, we use the
CPLEX solver to solve the VMPAC problem optimally. The CPLEX 12 solver is provided
by IBM ILOG CPLEX Optimization Studio for Academics Initiative [3].

All five mechanisms were executed 59,636 times with a total of 3,514,150 user requests.
The auctions are generated using six workload logs from the Grid Workloads Archive [2]
and the Parallel Workloads Archive [4]. We present statistics of the logs in Table 5.1. The
mechanisms are implemented in C++ and the experiments are conducted on Intel 2.93GHz
Quad Proc Hexa Core nodes with 90GB RAM which are part of the Wayne State Grid
System. In this chapter, we describe the experimental setup and analyze the experimental

results.

5.1 Experimental Setup

Because real users request data have not been publicly released by cloud providers yet, for
our experiments, we rely on well studied and standardized workloads from both the Grid
Workloads Archive [2] and the Parallel Workloads Archive [4]. From the Grid Workloads
Archive, we selected four out of six available logs. These logs are: 1) DAS-2 traces from
a research grid at the Advanced School for Computing and Imaging in Netherlands; 2)
NorduGrid traces from the NorduGrid system; 3) AuverGrid traces from the AuverGrid
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Table 5.1: Statistics of workload logs.

Logfile Avg Range of Range of Range of Storage Available | Memory Storage
jobs per CPU memory (MB) CPUs Capacity Capacity
hour (MB) (MB) (MB)

GWA-T-1 DAS-2 81 [1-128] [1-4,295] [10-51,070] 247 760 2,500

GWA-T-3 NorduGrid 34 1 [1-2,147] [10-1,053,072] 24 14,000 640,000

GWA-T-4 AuverGrid 33 1 [1.7-3,668] [10-259,316] 7 8,800 640,000

GWA-T-10 SHARCNET 147 [1-3000] [1-32,021] [10-2,087,029] 85 9,700 4,000

METACENTRUM-2009-2 42 [1-60] [1-61,538] [10-2,592,130] 44 9,700 178,000

PIK-IPLEX-2009-1 36 [1-2560] [1-29,360] [10-4,815,007] 88 89,000 470,000

system; 4) SHARCNET traces from SHARCNET clusters installed at several academic
institutions in Ontario, Canada. From the Parallel Workloads Archive, we selected two
logs that were recorded most recently. These logs are: 5) MetaCentrum from the national
grid of the Czech republic; 6) IBM iDataPlex Cluster log from the Potsdam Institute for
Climate Impact Research (PIK) in Germany. The logs are selected based on the availability
of recorded both CPU and memory requests/usage. Table 5.2 provides a brief description
of the selected workloads. The table contains the names of the log files, the durations the
logs were recorded, and the total number of submitted jobs. In our experiments, each job
in a log represents a user request. In addition, each hour of a log represents one auction.

We consider each log as a series of auctions, where the users can submit their requests
over time to a cloud provider. We setup the auctions to run every hour just to follow the
standard practice in Amazon EC2. Participants of each auction include the new users and
those users who are not served and their deadline has not been exceeded. The new arriving
users are indicated based on the submission time of their requests.

To generate the user requests for the experiments, we extract the data from six fields of
the log files as follows: (1) JobID: the jobs identifier; (2) SubmitTime: the job submission
time; (3) RunTime: the time the job needs to complete its execution; (4) ReqNProcs: the
requested number of processors; (5) Used Memory: the average used memory per processor;
(6) AverageCPUTimeUsed: the average CPU time over all allocated processors. Since the
amount of storage usage was not recorded in the workloads, to generate the requested
storage, we use the value of this field. In each log, we remove the jobs with missing values
in these fields.

For each job in a log, we generate a user request. Since the logs provide data on resource



32

Table 5.2: Workload logs.

Logfile Duration Jobs
(hours)
GWA-T-1 DAS-2 13,534 1,099,803
GWA-T-3 NorduGrid 8,127 276,144
GWA-T-4 AuverGrid 8,298 274,455
GWA-T-10 SHARCNET | 6,909 1,018,355
METACENTRUM-2009-2 | 2,402 102,538
PIK-IPLEX-2009-1 20,366 742,855

usage, we consider these as values for the requested a;., the amount of each resource of
type r requested by user ¢, where 7 is a job in a log and r is a resource type. As a result,
a user request contains the requested number of CPUs, the amount of memory and the
amount of storage. To generate bids for users, we generate a random number b; for each
user ¢ between 1 and 10. We also generate a deadline for each job request which is between
3 to 6 times the job’s runtime. The deadline is when a user stops bidding for her requested

bundle irrespective of her allocation.

5.2 Analysis of Results

We compare the performance of G-VMPAC-X, VCG-VMPAC and CA-PROVISION for
different workloads. For each workload, we compute the execution time and the average
social welfare, revenue, and utilization of the resources per hour for each mechanisms.

We present the results for all the selected logs. As for VCG-VMPAC (optimal), it is only
able to complete the experiments for two of the logs: GWA-T-3 NorduGrid and GWA-T-4
AuverGrid. VCG-VMPAC takes 2,623.54 seconds for GWA-T-4 AuverGrid and 132,678.31
seconds for GWA-T-3 NorduGrid. For the rest of the logs, VCG-VMPAC is not able to solve
the VMPAC problem for the selected workloads within 48 hours. VCG-VMPAC is unable
to solve these problems due to exceeding the memory capacity (90 GB) of the machines
we used to run the experiments. This is the reason that we do not present the results

of the optimal VCG-VMPAC mechanism for all the logs in the large scale experiments.
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Figure 5.1: G-VMPAC-X performance (small scale experiments): Social welfare
This shows that the optimal mechanism is not suitable for solving large scale VMPAC
problems, and thus, we need to resort to heuristic mechanisms. Because of this limitation
with VCG-VMPAC, we compare VCG-VMPAC with the rest of the mechanisms in the
small scale experiments considering only 500 hours of the logs to show the performance of

all mechanisms.

5.2.1 Small-scale

We compare the performance of the mechanisms by considering small scale experiments
consisting of only 500 auction hours from the selected logs.

Fig. 5.1 shows that the achieved average social welfare per hour for the proposed mech-
anisms is very close to that of the optimal mechanism, VCG-VMPAC. However, as shown
in Fig. 5.2, the execution time of our proposed mechanisms, G-VMPAC-X, are about four
to five orders of magnitude lower than that of VCG-VMPAC. Note that this is only for the
first 500 auction hours. Fig. 5.3 shows the average revenue per hour achieved by the cloud

provider using the mechanisms. G-VMPAC-II achieves the highest revenue among all the
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Figure 5.2: G-VMPAC-X performance (small scale experiments): Execution time
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Figure 5.3: G-VMPAC-X performance (small scale experiments): Revenue

mechanisms for all workloads.
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Figure 5.4: G-VMPAC-X performance: Social welfare (*VCG-VMPAC was not able to determine
the allocation for GWA-T-1 DAS-2, GWA-T-10 SHARCNET, METACENTRUM-2009-2, and PIK-IPLEX-
2009-1 in feasible time, and thus, there are no bars in the plots in Figs. 1 to 7 for those cases)

5.2.2 Large-scale

First, we analyze the performance of the mechanisms in terms of social welfare. Fig. 5.4
shows the average social welfare per hour for the selected logs. All mechanisms obtain the
highest social welfare per hour for GWA-T-1 DAS-2 because of the combination of several
factors such as capacities, number of request per hour, and the percentage of users served.

CA-PROVISION performs slightly better on PIK-IPLEX-2009-1 than on the rest of the
logs. This is due to the fact that in this log the CPU is the scarcest resource compared to
the other resources, and this mechanism only relies on one dimension (the computational
resource). As a result, using this mechanism users who request fewer CPUs with relatively
high bid get higher priorities than others. Therefore, this mechanism selects the users who
are more likely to be in the optimal solution, and thus, it achieves higher social welfare in
this case. This is not the case for the other logs where CPU is not the only scarce resource.
Since CA-PROVISION considers only CPU compared to other methods that consider all

the resource types, it has the lowest performance in general.
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Figure 5.5: G-VMPAC-X performance: Revenue

The performance of G-VMPAC-I is susceptible to the relative magnitude of the amount
of the requested resources. Therefore, if the requested resources are highly heterogeneous
(say 10,000 MB of storage vs. a few number of CPUs), a resource that has a higher
relative magnitude than the others becomes dominant in determining the density metric
by G-VMPAC-I. As a result, that resource has the most impact on the performance of
G-VMPAC-I. If such resource is scarce, then G-VMPAC-I obtains the best performance.
In GWA-T-3 NorduGrid, where storage has a high relative magnitude and is scarce, G-
VMPAC-I performs better than other mechanisms.

In most cases, G-VMPAC-II which uses the inverse of the capacity as a weighting factor,
achieves a higher social welfare than the rest of the mechanisms. This is due to the fact
that G-VMPAC-II considers the impact of all resources in order to calculate the density
metric for each user.

The results show that for GWA-T-4 AuverGrid, G-VMPAC-III achieves a social welfare
that is the highest. This is due to the fact that the total amount of requested resource,

Zﬁil a;, is relatively close to the capacity of that resource, C in this log. In such case, G-
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Figure 5.6: G-VMPAC-X performance: Execution time
VMPAC-IIT considers the impact of all resources in order to calculate the density metric for
each user. However, when the sum of the requested resources are very high in comparison
with the available capacity, G-VMPAC-III performs very close to G-VMPAC-I. This is due
to the fact that f, = ZN:}V#I;;CT approaches 1, which is the case for G-VMPAC-I.

Fig. 5.5 shows the avelljage revenue per hour achieved by the cloud provider when using
the five mechanisms. Even though, all the mechanisms try to maximize the social welfare,
they also obtain high revenue for the cloud provider. G-VMPAC-II achieves the highest
revenue among all the greedy mechanisms for all workloads.

Fig. 5.6 shows the execution times of the mechanisms on a logarithmic scale. As we
expected from the time complexity of the mechanisms, the execution times of G-VMPAC-X
and CA-PROVISION are in the same order of magnitude for each of the logs. The optimal
mechanism, VCG-VMPAC, could not find the solutions even after 48 hours for four out of
six logs. This is due to the fact that the problem gets more complex for higher number of

requests, number of auction hours, and available capacity. VCG-VMPAC is able to solve

VMPAC for the full GWA-T-4 AuverGrid log since the available capacity of CPU in each
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Figure 5.7: G-VMPAC-X performance: Users served.
(*see Fig. 1 note on VCG-VMPAC)
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Figure 5.8: G-VMPAC-X core utilization (*see Fig. 1 note on VCG-VMPAC)
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Figure 5.9: G-VMPAC-X memory utilization (*see Fig. 1 note on VCG-VMPAC)
auction is very low. As a result, the feasible solution area becomes strictly limited, and the
CPLEX solver can find the optimal solutions faster than for the rest of the logs.

Fig. 5.7 shows the percentage of served users for each of the five mechanisms. Note that
VCG-VMPAC does not serve a higher number of users than the other mechanisms. This
is due to the fact that the optimal mechanism finds the most valuable subset of users in
order to maximize the social welfare.

Figs. 5.8 to 5.10 show the utilization of cores, memory and storage, respectively. Note
that a higher utilization does not show the effectiveness of the mechanisms. The objective
of all the mechanisms is maximizing the social welfare not the utilization of the resources.
The memory and storage utilization in the case of CA-PROVISION are higher than those of
the other mechanisms. CA-PROVISION chooses users who value CPUs the most without
considering their requested memory and storage. These users are more likely to requests
higher amounts of memory and storage which results in a higher memory and storage
utilization for CA-PROVISION.

From all the above results, we conclude that G-VMPAC-II finds near-optimal solutions
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Figure 5.10: G-VMPAC-X storage utilization (*see Fig. 1 note on VCG-VMPAC)
to the VMPAC problem and requires small execution times. The small execution time of
our proposed G-VMPAC-X mechanisms makes them good candidates for deployment on

the current cloud computing systems.
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CHAPTER 6: CONCLUSION

We addressed the problem of dynamic VM provisioning and allocation in clouds by design-
ing truthful mechanisms that give incentives to the users to reveal their true valuations
for their requested bundles of VM instances. The proposed truthful optimal and greedy
mechanisms for solving the VMPAC problem consider the presence of resources of mul-
tiple types. We determined the approximation ratio of the proposed greedy mechanisms
and investigated their properties by performing extensive experiments. The results showed
that the proposed greedy mechanisms determine near optimal solutions while effectively
capturing the dynamic market demand, provisioning the computing resources to match
the demand, and generating high revenue. In addition, the execution time of the proposed
greedy mechanisms is very small. As a recommendation, G-VMPAC-II is the best choice for
the cloud providers since it yields the highest revenue among the proposed greedy mech-
anisms. We plan to implement a prototype allocation system in an experimental cloud

computing system to further investigate the performance of our proposed mechanisms.
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A major challenging problem for cloud providers is designing efficient mechanisms for
Virtual Machine (VM) provisioning and allocation. Such mechanisms enable the cloud
providers to effectively utilize their available resources and obtain higher profits. Recently,
cloud providers have introduced auction-based models for VM provisioning and allocation
which allow users to submit bids for their requested VMs. We formulate the dynamic
VM provisioning and allocation problem for the auction-based model as an integer pro-
gram considering multiple types of resources. We then design truthful greedy and optimal
mechanisms for the problem such that the cloud provider provisions VMs based on the
requests of the winning users and determines their payments. We show that the proposed
mechanisms are truthful, that is, the users do not have incentives to manipulate the system
by lying about their requested bundles of VM instances and their valuations. We perform
extensive experiments using real workload traces in order to investigate the performance
of the proposed mechanisms. Our proposed mechanisms achieve promising results in terms

of revenue for the cloud provider.
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